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Abstract
Technological characteristics and meteorological conditions are major determinants of the
greenhouse gas (GHG) footprints of photovoltaic facilities. By accounting for technological and
meteorological differences, we quantified the GHG footprints of 9992 utility-scale photovoltaic
facilities worldwide. We obtained a median greenhouse gas footprint of 58.7 g CO2-eq kWh−1,
with a 3-fold spread (28.2–94.6 g CO2-eq kWh−1, 2.5th and 97.5th percentiles). Differences in
panel type appeared to be the most important determinant of variability in the GHG footprint,
followed by irradiation and a facility’s age. We also provided a meta-model based on these three
predictors for users to determine the facility-specific greenhouse gas footprint. The total
cumulative electricity produced by the utility-scale photovoltaic fleet worldwide is 457 TWh yr−1,
99.6% of which is produced at footprints below 100 g CO2-eq kWh−1. Compared to earlier studies,
the footprints we computed of global utility-scale facilities show a relatively large spread. In order
to further improve the accuracy of facility-specific footprints, more information on panel type as
well as production country is required.

1. Introduction

Photovoltaic solar power (PV) is an important source
of renewable energy, producing electricity at much
lower greenhouse gas (GHG) emissions than con-
ventional fossil-based technologies [1]. By 2019,
global PV capacity reached 580 GW [2] and gener-
ated ∼720 TWh of electricity, roughly 3% of cur-
rent global electricity production [3]. PV is now the
third-largest renewable electricity source after hydro-
power and onshore wind [4], and its share is grow-
ing rapidly, with a potential 877 GW added by 2024,
accounting for 60% of the expected growth of all
renewables [3].

Various studies have investigated how life-cycle
GHG emissions of PV compare to emissions from
fossil-based electricity sources. One approach in such
studies is to perform ameta-analysis by gathering case
studies reported in literature and harmonize their
findings to represent standardized system boundar-
ies for irradiation, lifetime, performance ratio and/or
module efficiency [5–8]. TheGHG footprints in these

papers, expressed as life-cycle GHG emissions per
unit of electricity produced, range from ∼14 to 82 g
CO2-eq kWh−1 under harmonized conditions, with
the greatest source of variation being the type of
panel [7, 9, 10]. Typically, thin film panels such as
cadmium telluride, copper indium gallium diselenide
and amorphous silicon have lower GHG footprints
than mono- and poly-crystalline silicon panels.

Meta-analyses provide insights in the sources of
life-cycle GHG emissions related to PV, but because
of the harmonization process they do not show how
footprints can vary in reality. Location of installa-
tion determines the amount of irradiation received
by the panels, and location of production determ-
ines the GHG emissions during manufacturing, both
important factors in the PV GHG footprints [10–14].
Furthermore, intra-type variation in module effi-
ciency, type of mounting system, lifetime, degrada-
tion and capacity can explain variations in PV GHG
footprints [5, 15–20]. With higher irradiation, for
instance, footprints reduce due to higher electri-
city production [5, 10–13, 17, 18]. Spatial differences
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in environmental footprints of PV are assessed by
Louwen et al [21] for rooftop PV in Eurasia and
Africa, Ito et al [22] for two sites in France and
Moroco, and Pérez-López et al [23], Perez-Lopez
et al [24] for utility-scale PV globally. These studies
indicate that GHG footprints of PV vary signific-
antly with location. Placing a PV facility at a loca-
tion with high irradiation can reduce the GHG foot-
print by up to∼75% [21], and even within a country
such as France choosing a location with higher irradi-
ation can reduce the footprint by ∼25% [23]. While
providing valuable insights into the geographic vari-
ation of PV footprints, these studies do not use data
on the actual fleet of PV facilities, and therefore can-
not assess the footprint of actual PV electricity.

Here, we quantified life-cycle GHG footprints of
the global utility-scale PV fleet, including ∼10 000
facilities.With theseGHG footprintswe derivedGHG
emission—electricity supply curves for the PV fleet
and built a regression model to analyse which tech-
nological and/or climatological variables are most
important for determining the GHG footprint. In
addition, this regression model can be used for quick
estimation of GHG footprints of PV. We use 30 years
of the most recent high-resolution climate reanalysis
dataset ERA5 [25] at ∼0.25◦ spatial and hourly time
resolution, as well as a global dataset on facility-
specific location and technological characteristics of
existing and planned utility-scale facilities, combined
with regionalized life-cycle inventory data for PV
production.

2. Materials andmethods

2.1. GHG footprint
We compute the GHG environmental footprint
EFGHG as impact I per unit of electric power P:

EFGHG =
I

P
(1)

where we consider life-cycle impact I in g CO2-eq,
and lifetime electricity output P of a PV facility in
kWh. For a location-specific EF, we use a dataset of
9992 utility-scale photovoltaic parks across the globe
(see section 2.2), market shares by origin countries
per continent [26] and production location-specific
impact I (this section), as well as a high-resolution
global climate reanalysis dataset (see section 2.3).
Figure 1 provides an overview of our methods.

Life-cycle greenhouse gas emissions, or impact I
in equation (1), are derived using market shares by
origin countries per continent [26] and production
location-specific impact (see SI section B for further
details) and a facility’s panel surface area:

I= Im2 ·A (2)

with surface area A (m2) depending on a facility’s
capacity and efficiency:

A=
Wp

rsdsSTC · η
(3)

following Bhandari et al [7]. Capacity in Wp is avail-
able from the Wiki-Solar dataset (‘Wp’ for Watt-
peak, indicating direct current output under stand-
ard testing conditions), rsdsSTC is surface downward
solar radiation under standard testing conditions
(1000 Wm−2) and η is panel efficiency (as a fraction
of solar radiation that the panel can convert into elec-
tricity). η depends on panel type and year, following
Chen et al [27], see SI section A.

We derived for each panel type considered
(mono-crystalline silicon, poly-crystalline silicon,
amorphous silicon, cadmium telluride and copper
indium (gallium) diselenide life cycle GHG emissions
(Im2) representing a continent-specific weighted
average of production countries, as data on the
production location for each individual facility is
unavailable. Market shares by producing countries
per continent are obtained from Absolute Reports
[26]. We use 2016 market shares for current facilities,
and 2019 market shares for planned facilities. Type-
specific impacts per producing country (China, EU,
US, Malaysia and Korea) are obtained from literature
(see SI table B1).

Besides the impacts per m2 of panel, a PV facil-
ity’s impact derives from the so-called ‘balance of
systems’ (BOS). The BOS includes the mounting
system, wiring and inverters [5]. Here we use EcoIn-
vent 3.5 values per m2 of open-groundmounting sys-
tem as well as the impacts of inverters and electrical
installation per unit capacity, independent of panel
type and production location.

For more detail on life-cycle GHG emissions, see
SI section B.

The electricity output of a PV facility depends
on multiple variables, including the panel type, irra-
diation and temperature. Here we follow the PV
power computations of Jerez et al [28], based on
Mavromatakis et al [29]. Jerez et al [28] define the PV
power generation potential PVpot, a dimensionless
magnitude accounting for the performance of a PV
cell with respect to the power capacity (here expressed
in MWac, obtained from the WikiSolar database).
PVpot depends on radiation rad and cell temper-
ature Tcell, the latter depending on air temperature,
radiation and wind [30] as well as panel type. We
furthermore account for losses due to panel degrad-
ation. In short, the instantaneous PV power produc-
tion provided to the grid (in alternating current) is
given by:

P(t) = PVpot(rad,Tcell) ·MWac · floss. (4)

For PVpot we use the location-specific hourly ERA5
climate variables for 1988–2017 (see section 2.3), thus
obtaining a power output representative of current
climate. Loss ratio floss is applied to account for panel
degradation and is set to 0.899, representing a loss of
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Figure 1. Overview of methods. Blue boxes refer to facility-specific technological characteristics (section 2.2), mainly from
Wiki-Solar, the red box refers to input from the ERA5 climate reanalysis dataset (section 2.3). The equations refer to the
computations described in section 2.1.

0.7% yr−1 over a 30 years lifetime [23, 31]. A 30 year
lifetime is assumed to be representative of modern
PV [31]. The full equations for computing generated
electricity are given in SI section C.

2.2. Facility-specific technology and location data
To compute facility-specific impact I and power out-
put P, we need to know a facility’s age (construction
year), panel type, capacity and location-specific cli-
mate variables (see figure 1). We use the Wiki-Solar
dataset (http://wiki-solar.org) which provides tech-
nological characteristics of utility-scale PV projects
around the globe, with aminimum,median andmax-
imum capacity of 3, 10 and 3000 MWp. Wiki-Solar
includes 10 268 PV facilities, of which 9992 with a
known location. 7982 facilities are operating or were
in late stages of construction at the time of data-
gathering (2019) and 2010 are planned. The median
construction year is 2016. The total capacity in these
9992 facilities is 367GWp. Figure 2 shows the location
and capacities of all facilities.

The Wiki-Solar dataset provides information on
the panel type for 1249 out of 9992 facilities. We
consider the five most common types [32]; mono-
crystalline silicon, poly-crystalline silicon, amorph-
ous silicon, cadmium telluride and copper indium
(gallium) diselenide. To increase the number of facil-
ities with known panel type, we gathered extra
information from PV suppliers in Wiki-Solar as well
as US EIA and GEO datasets [33, 34]. We found spe-
cific panel types for 99 additional facilities, and nar-
rowed the panel type to either crystalline or thin film
for 1443 and 17 facilities, respectively. Where a spe-
cific type is unknown, we computed the GHG foot-
print for the two crystalline types in case of crystal-
line panels, the three thin film types in case of thin
film panels, or all five types where no information on
panel type was found. The results represent an aver-
age footprint of these types weighted by 2016 pro-
duction data for current facilities and 2019 produc-
tion data for planned facilities (see SI table A2). As

described above in section 2.1, results also represent
a continent-specific weighted average of Ipanel by pro-
duction countries.

For capacity, Wiki-Solar provides both MWac
and MWp for 2046 facilities. For these facilities, the
median performance ratio (PR = MWac/MWp) is
0.8, which is also the IEA recommended value [31].
For all remaining facilities, either MWac or MWp is
given, and the PR value of 0.8 is used to derive the
missing MWac or MWp.

For more detail on the Wiki-Solar dataset and
gap filling, see Supplementary Information section
A (available online at stacks.iop.org/ERL/16/094056/
mmedia).

2.3. Climate data
For power output computation, we use the most
recent and highest-resolution global re-analysis data-
set representing current climate at 0.25◦ × 0.25◦

(roughly 30 × 30 km at equator) [25], obtained
through theCopernicus Climate Change Service [35].
Hourly resolution allows us to include the daily cycle
of radiation as well as temporal variation in cell effi-
ciency due to cell temperature (including air tem-
perature, radiation and wind, see SI section C [36].
Hourly data gives improved estimates of PV power
generation compared to lower-resolution data [37]
(for more detail see SI section D).

2.4. GHG emission—supply curves
To create GHG emission—supply curves, we ordered
all 9992 by their GHG footprint and computed
the cumulative power production. Furthermore, we
applied a bootstrapping technique to determine
the uncertainty introduced by panel type, which is
unknown for a large number of facilities. Instead of
using weighted footprints at facilities where panel is
unknown, we created 10 000 instances of our dataset,
where each time a facility’s footprint (if unknown) is
set to that of one of the panel types, selected using
2016 (2019) production data as weights for current
(planned) facilities (Fraunhofer ISE [32], also used
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Figure 2. Location (map) and histogram (inset) of capacity, in MWp, available from the Wiki-Solar database for currently
operating facilities (top) and planned facilities (bottom). The red dashed line in the histogram indicates the median capacity.

in the weighted footprints in section 3.1). 2016 is the
median construction year for facilities with unknown
type in theWiki-Solar database, 2019 is the latest year
for which type-specific production data is available
(see SI table A2).

2.5. Regression analyses
After computing the GHG footprint for utility-scale
PV facilities, we created a linear regression model
to help determine which of the predictors we take
into account (age, panel type, capacity and location-
specific climate variables, see figure 1) explains most
of the variance in EFGHG. We build this model on
the 1348 facilities for which panel type is known.
Note that we cannot currently take production loca-
tion into account in this regression, as facility-specific
production location is unknown (instead we used
continent-specific weighted averages of production
countries based on market shares). For the climate
variables, we use location-specific 30-year mean day-
time irradiation I, temperature T and wind speed u as
well a coefficient of variation (CV) for each variable to
represent intra-year variation (see SI equation 6). The
correlation matrix of the predictors (supplementary

figure E1) shows that there are no significant cor-
relations between the variables, and the variance
inflaction factors (vifs) are all below 5. Capacity
is log-transformed because its distribution is right-
skewed. We also log-transformed the response vari-
able (EFGHG). The model includes the interaction
between panel type and construction year, because
these together determine efficiency η used in the life-
cycle GHG emissions (equation (3), SI section A).

After determining the best model, based on the
Akaike Information Criterion, we assess the import-
ance of each predictor using predictor randomiz-
ation. Each predictor is randomized in turn, after
which the model is re-built. The larger the drop in
the model’s R2, the more important a predictor is.
Results are shown in section 3.3 and more details on
the regression model can be found in Supplementary
section E.

3. Results

3.1. GHG footprints
The GHG footprint of all PV facilities is 58.7
(28.2–94.6) g CO2-eq kWh−1 (median, 2.5%–97.5%

4



Environ. Res. Lett. 16 (2021) 094056 J H C Bosmans et al

Figure 3. GHG footprint in g CO2-eq kWh−1 for currently operating (top) and planned (bottom) facilities. The box plots show
the median (red line), 25th and 75th percentiles (blue box) as well as the 2.5th and 97.5th percentile (whiskers) of the footprints
per continent (Afr: Africa, Asia, Eur: Europe, N Am: North America, S Am: South America, Oce: Oceania). The footprints reflect
those of the panel type where known, and that of a weighted average of types based on 2016 and 2019 production data where
panel type is not (fully) known (see SI section (A)). They furthermore reflect continent-specific weighted averages of impacts
from various production countries (see SI section (B)).

quantiles). 9810 out of the 9992 facilities (98.2%)
have a GHG footprint below 100 g CO2-eq kWh−1.
Figure 3 shows that the spatial pattern is mostly dom-
inated by latitude, with facilities at higher latitudes
having higher GHG footprints due to lower irra-
diation and electricity output. The latitudinal pat-
tern also emerges by looking at GHG footprints
per continent (box plots in figure 3); Europe has
the highest footprint, with a median EFGHG of 76.9
(46.1–112.2) g CO2-eq kWh−1 (based on current and
planned facilities combined). Lowest footprints are
found in low-latitude continents; South America
(45.4 [30.6–62.3] g CO2-eq kWh−1) and Africa (49.1
[31.5–61.0] g CO2-eq kWh−1).

Besides latitude, panel type also has a great influ-
ence on EFGHG. As a sensitivity analysis, we assessed
the non-weighted footprints of the 7148 facilities of
unknown type, for which footprints were computed
for all five types, across types and continents. This
indicates that panel type can have a larger effect
on GHG footprints than location of installation;

choosing cadmium telluride in Europe can result in
lower footprints (35.9 [23.0–51.7] g CO2-eq kWh−1)
than choosing mono-crystalline panels in South
America (57.9 [44.0–74.7] g CO2-eq kWh−1), des-
pite facilities in South America receiving much
higher irradiation than those in Europe (2165 vs
1135 kWhm−2 yr−1, median values).

Differentiating between operating and planned
facilities indicates slightly lower footprints for cur-
rent facilities (58.4 [27.1–93.3]) compared to planned
facilities (60.1 [38.4–95.6]). This increase occurs des-
pite an increase in panel efficiency, which causes
lower footprints for newer facilities of all individual
panel types. However, across all facilities, the increase
in market share of mono-Si panels (see SI table A2),
which have the highest impacts of all panel types,
causes footprints to increase. Also, in Europe a higher
share of planned facilities is produced in China, fur-
ther increasing EFGHG. InNorthAmerica the opposite
happens; footprints drop as imports shift from China
to production locations with lower impacts.

5
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Figure 4. Cumulative power production (TWh yr−1, y-axis) versus GHG footprint (g CO2-eq kWh−1, x-axis), for current (a) and
planned (b) facilities. The bootstrapping technique described in the text (Materials and Methods section 3.2) was used to
determine the 2.5th and 97.5th percentile and median footprint at every 2 TWh yr−1 power production. The plots extend to the
median values of the maximum power and the maximum EFGHG of each bootstrap.

3.2. GHG emission—supply curves
The GHG emission supply curves show that all facil-
ities together produce 457 TWh yr−1 with a max-
imum GHG footprint of 138 g CO2-eq kWh−1. The
majority of power, 455 TWh yr−1 (99.6%), is pro-
duced with a footprint below 100 g CO2-eq kWh−1,
in 9810 facilities. 262 TWh yr−1 is produced by cur-
rent facilities (see figure 4(a)), and 194 TWh yr−1 by
planned facilities (see figure 4(b)). For current facil-
ities, 7818 out of 7934 facilities (97.9%) have a foot-
print below 100 g CO2-eq kWh−1. For planned facil-
ities, 1992 out of 2010 (99.1%) have a footprint below
100 g CO2-eq kWh−1.

Furthermore, by applying a bootstrapping tech-
nique we find that for current facilities, uncertainty
in panel type does not have a strong effect on the
GHG emission—supply curve (see figure 4(a)). The
spread induced by unknown panel types (differ-
ence between the 2.5th and 97.5th percentiles) is
less than 5 g CO2-eq kWh−1, and is highest at low
footprints (∼10%). Near total cumulative produc-
tion the spread reduces to ∼1%. For planned facil-
ities, the spread is larger (see figure 4(b)), because a
large part of these facilities (94.0%) has an unknown
panel type. At low footprints the spread reaches 50%,
or 11 g CO2-eq kWh−1. The spread reduces to ∼5%
in the upper regions of the emission—supply curve,
and reduces further towards the total cumulative
production.

3.3. Regression analyses
The best linear regression model to fit the EFGHG,
based on the facility-specific predictors we take into
account, is:

log(EFGHG) = 65.1− 0.031 ·Year
+βtype − 0.00025 · Imean

+ 0.0007 ·Tmean − 0.0039 · umean

− 0.17 · ICV +βY−type ·Year (5)

where βtype and βY−type have a type-specific value,
because PV panel type is a categorical variable. βtype
is −48.9 for mono-Si, −48.6 for poly-Si, −13.1 for
CdTe,−51.3 for CI(G)S and 0 for a-Si.βY−type is 0.024
formono-Si, 0.024 for poly-Si, 0.0064 for CdTe, 0.025
for CI(G)S and 0 for a-Si. The model’s R2 is 0.9868,
see SI figure E2. Year should be given in absolute value
(i.e. 2009, 2017), irradiation Imean in kWhm−2 yr−1,
daytime temperature Tmean in degrees C, and daytime
wind speed umean in m s−1, ICV as a fraction (see SI
section E).

The fact that equation (5) does not include capa-
city and variation in temperature and wind indic-
ates that these are not important predictors of EFGHG

(see SI section E). Randomizing each predictor in
equation (5) in turn indicates that PV type is themost
important predictor, as the change in R2 is largest, fol-
lowed by mean irradiation (see figure 5). Year, or age
of facility (used together with panel type to determ-
ine panel efficiency) is the third most important pre-
dictor of EFGHG.

This regression model and importance analyses
thus indicates that with only panel type, yearly irradi-
ation and age of a facility, data which should easily be
available to a user interested in a specific PV facility,
one can quickly make an estimate of the GHG foot-
print, representing a globally weighted average for
PV-producing countries across the world. Reducing
the regression model to these three predictors results
in the following meta-model:

log(EFGHG) = 64.3− 0.031 ·Year
+βtype − 0.00023 · Imean

+βY−type ·Year (6)

where βtype is −12.7 for CdTe, -49.4 for CI(G)S, 48.9
for mono-Si, 47.6 for poly-Si and 0 for a-Si. βY−type is
0.0062 for CdTe, 0.025 for CI(G)S, 0.024 formono-Si,
0.024 for poly-Si and 0 for a-Si. Year should be given

6
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Figure 5. Importance of predictors of EFGHG. The change in R2 is computed by the R2 of the original model (equation (5)) minus
the equation (5) if that specific predictor is randomized.

in absolute value (i.e. 2009, 2017), irradiation Imean in
kWhm−2 yr−1. This model has an R2 of 0.9862, very
close to the best model with R2 = 0.9868.

4. Discussion

4.1 Interpretation
Our study confirms that photovoltaic solar power can
produce electricity at much lower GHG footprints
than fossil fuel, which has footprints in the range
of 710–950 g CO2-eq kWh−1 for coal or 410–650 g
CO2-eq kWh−1 for gas. When carbon capture and
storage (CCS) is considered, themajority of the fossil-
based electricity still has a higher footprint than PV
(70–290 g CO2-eq kWh−1) [1, 9].

Compared to published studies or meta-analyses,
our footprints are on the same order of magnitude
but are generally higher (figure 6). Our range is often
larger than that reported in other studies, because
we consider a large range of system boundaries such
as irradiation and age (efficiency). Some studies also
consider a range of system boundaries; see SI tables
F1–F4 for parameters used in the literature discussed
here and shown in figure 6. Similar ranges of EFGHG

are reported by Ludin et al [20]. For poly-Si and
CdTe they even extend slightly above our values,
which could be related to including lower panel effi-
ciencies and shorter lifetimes. Leccisi et al [10] also
report a range of footprints, representing a range
of irradiation similar to ours, as well as produc-
tion countries. Their lower GHG footprints could be
related to higher panel efficiencies (compared to our
median values) as well as relatively low impacts I.
However, other studies with lower panel efficiencies
(such as Hertwich et al [15], Bergesen et al [9] for
CdTe and CI(G)S) also report lower GHG footprints,
with similar life times and irradiation, likely related

to different boundary conditions, inventory data or
assessmentmethods.Nian [11] report a similar range,
across a similar range of irradiation. High efficiencies
may explainwhy their footprints are overall lower. See
SI section F for more details on comparing our foot-
prints to those in literature.

4.2 Production location
One important source of variability in PV environ-
mental footprints, and in different footprints repor-
ted in literature, is the location where the panels are
produced. Several studies compare footprints of PV
produced in different locations, mostly due to dif-
ferent background electricity mixes [10, 11, 13, 19,
24, 38–41]. Furthermore, changes in manufacturing
efficiencies and/or import of materials can affect the
impacts and footprints for a single production loc-
ation [12–14, 42, 43]. Of all studies providing foot-
prints (shown in figure 6) and/or impact I we sum-
marized the systemboundaries, including production
location if provided, in SI tables F1–F4 (see also SI
section F). A large range of impact I is shown, often
related to production location. Locations (countries)
with a low-GHG background electricity mix such
as France or Germany are typically associated with
low GHG emissions during production (impact I),
while countries with electricity mixes strongly based
on e.g. coal, such as China, typically have the highest
GHG life-cycle emissions. Even for one production
country a large range of emissions is reported; for
instance for poly-Si from China Leccisi et al [10]
report 165 kg CO2-eqm−2 while Grant et al [41]
report 519 kg CO2-eqm−2.

The exact impact I, and subsequently the GHG
footprint, thus strongly depends on the production
location as well as the chosen system boundaries,
life cycle inventories, impact assessment methods

7
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Figure 6. Reported GHG footprints of PV electricity in literature compared to ours (Bos, for Bosmans et al). Ber: Bergesen et al
[15], Bey: Beylot et al [16], Her: Hertwich et al [9], Hou: Hou et al [12], Hsu: Hsu et al [5], Ito: Ito et al [22], Kim: Kim et al [6],
K14: Kim et al [44], Lec: Leccisi et al [10], Lud: Ludin et al [20], Mil: Miller et al [13], Nia: Nian [11], Wet: Wetzel and Borchers
[18], dWS: de Wild-Scholten [38], Yao: Yao et al [42], Yue: Yue et al [43]. From our study (Bos) we report the median (white line)
and 2.5–97.5th percentiles (bar extent), based on the subset of facilities where panel type is known (450 facilities with mono-Si,
402 with poly-Si, 416 with CdTe, 73 with CI(G)S, 43 with a-Si). SI section F and tables F1–F4 give an overview of system
boundaries used in the studies represented here. Note that the poly-Si footprints of Yao et al [42] are beyond the range shown here
(cropped for visibility).

etc [14]. We included variation in production loc-
ation by using continent-specific weighted averages
of the most important production countries based
on market shares, but acknowledge that in order to
derive facility-specific footprints, more information
on facility-specific supply chains is necessary.

Note that we did not include variation in BOS
production location. Nian [11] report variation in
impacts I and footprints for both panels and BOS,
showing that changing production location for BOS
has an effect, but the effect of changing panel
production location is larger. Overall the impacts
associated with panels are larger than the impacts
associated with BOS, particularly for crystalline
panels [14, 44].

4.3 Limitations
A number of assumptions and uncertains may influ-
ence our results.

Some of the input (figure 1) was unknown, par-
ticularly for panel type. Our results as well as those of
others [10, 23] indicate that panel type is an import-
ant predictor of EFGHG. We used an average footprint
if type is unknown, weighted by production values
of the five most common types considered, which
we believe results in a representative variation of
EFGHG of global PV electricity production. Also, the
global emission-supply curve is not strongly affected
by uncertainty in panel type. Having more data on
panel type will however reduce the uncertainty in
facility-specific EFGHG.
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When computing life-cycle GHG emissions (I in
equation (1)), we did not include facility-specific sup-
ply chains, but continent-specific weighted averages
of production countries based onmarket shares. Vari-
ation in production location can be an important
source of variation in GHG footprints, as described in
the previous section. If facility-specific supply chains
are known, production country can be added to
the regression analysis, improving the prediction of
facility-specific GHG footprints.

Another important predictor of EFGHG is panel
efficiency. In this study, efficiency varies based on
construction year and panel type, but further vari-
ation in efficiency can be introduced among different
manufacturers or models of the same type. Besides
improved panel efficiencies, EFGHG also decreases
over time due to improved material and energy util-
ization in the production process, [e.g. 42, 45]. The
latter is not considered in our study.

Furthermore, ‘balance of system’ components
(BOS) were assumed to be the same for all facilities,
but we acknowledge that different mounting struc-
tures can affect the GHG emissions of a PV facility
[7, 16]. We also ignored differences in BOS due to tilt
angles or tracking systems. Of all facilities from the
Wiki-Solar database,∼10%uses 1- or 2-way tracking.
Although this increases the power output of a facil-
ity [46, 47], it also increases environmental impacts
due to increased electricity and material needs. Sinha
et al [47] report that therefore the EFGHG of fixed
and tracking systems are comparable, while Leccisi
et al [10] find that EFGHG is reduced for an East-
West-tracking system, particularly for crystalline pan-
els. Miller et al [13] find that whether the PV GHG
footprint is in- or decreased when a tracking system
is included strongly depends on the panel type as well
as irradiation and cloud cover.

When computing the life-time electricity output
(P in equation (1)), we included location-specific
high-resolution climate variables, as well as a loss
factor to take panel degradation into account. Using
a IEA-recommended fixed loss factor of 0.7% [31] we
ignore that panel degradation can vary between loca-
tions and panel types [13, 21, 48–50]. We also ignore
that power production can be reduced by shading or
soiling through e.g. dust or snow as well as faulty
installation or lack of maintenance [21, 49, 51, 52].
Third, we assume a fixed lifetime of 30 years for all
facilities. A shorter or longer lifetime will directly
affect the footprint, as shown by [5, 6, 18]. We use
the ERA5 reanalysis data from 1988 to 2017 to obtain
a representative power output under current climate.
We tested that power output is not sensitive to the
exact years chosen; for 1460 locations we compared
average power output for 2008–2017 to that of 1988–
2017 and found that the difference is less than 1%
for 88% of the locations, and all differences are less
than 3%. We did not account for the panel type-
specific effects of low irradiance, variation in spectral

irradiance or angle of incidence on PV electricity pro-
duction [37]. Furthermore, our footprint is expressed
per kWh produced, while the amount of power ulti-
mately consumed will be lower due to losses in the
power grid as well as potential mismatches between
PV production and power demand. Adding battery
storage would allow for less power losses, but will
likely increase environmental footprints, depending
on the battery type [53]. The inclusion of batter-
ies may increase payback times and global warming
potential by up to 30% [54].

Lastly, we computed electric power output for
all facilities assuming flat panels. Louwen et al [21],
Chen et al [55] show that the tilt of a facility can
have a large range within which electricity production
remains very similar, but we acknowledge that espe-
cially at higher latitudes we may underestimate elec-
tricity output.

4.4 Outlook
Our conclusions hold for GHG footprints, but this
type of analysis could be expanded to other impact
categories, such as material scarcity or eco-toxicity.
Furthermore, the regression model we built can be
used to estimate GHG footprints for individual facil-
ities even with limited input. Computational efforts
can be reduced by not using temporarily detailed
climate data, as the regression model indicated that
climate variables other than mean irradiation do
not strongly affect a PV facility’s life-cycle GHG
footprint. It is however important to fill data gaps
concerning the panel type used and production
location.

Our GHG emission—supply curves of cumulat-
ive PV production can also be used in integrated
assessmentmodels (IAMs), in addition to cost-supply
curves [56], to include both financial and environ-
mental constraints in renewable energy scenarios.
For future scenarios, one should take into account
reduced impacts I duringmanufacturing due to tech-
nological advances as well as the decarbonization of
energy supply [e.g. 45, 57].

5. Conclusion

In this study we computed the GHG footprint for
9992 utility-scale PV facilities across the globe, based
on facility-specific construction year, capacity, panel
type and high-resolution climate data, as well as vari-
ation in production location. We find utility-scale PV
GHG footprints of 58.7 (28.2–94.6) g CO2-eq kWh−1

(median, 2.5–97.5th quantiles). Spatially, locations
with higher irradiation logically have lower foot-
prints, but panel type is the most important pre-
dictor of EFGHG. Placing a cadmium telluride panel,
with low life-cycle GHG emissions, in Europe can res-
ult in a lower GHG footprint than placing a mono-
crystalline silicon panel, with high life-cycle GHG
emissions, in South America, despite the much larger
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irradiation at facilities in the latter continent [21, 23].
Panel efficiency (here determined through a facilities
age) is the third most important predictor of GHG
footprints.

We acknowledge that with more data, more
accurate facility-specific footprints can be computed.
Efforts shouldmainly focus on adding panel type and
production country. We do find that the uncertainty
in panel type does not strongly affect the global PV
GHG emission—electricity supply curves.
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