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ABSTRACT

Context. The Event Horizon Telescope (EHT) has imaged the shadow of the supermassive black hole in M 87. A library of gen-
eral relativistic magnetohydrodynamics (GMRHD) models was fit to the observational data, providing constraints on black hole
parameters.
Aims. We investigate how much better future experiments can realistically constrain these parameters and test theories of gravity.
Methods. We generated realistic synthetic 230 GHz data from representative input models taken from a GRMHD image library for
M 87, using the 2017, 2021, and an expanded EHT array. The synthetic data were run through an automated data reduction pipeline
used by the EHT. Additionally, we simulated observations at 230, 557, and 690 GHz with the Event Horizon Imager (EHI) Space
VLBI concept. Using one of the EHT parameter estimation pipelines, we fit the GRMHD library images to the synthetic data and
investigated how the black hole parameter estimations are affected by different arrays and repeated observations.
Results. Repeated observations play an important role in constraining black hole and accretion parameters as the varying source
structure is averaged out. A modest expansion of the EHT already leads to stronger parameter constraints in our simulations. High-
frequency observations from space with the EHI rule out all but ∼15% of the GRMHD models in our library, strongly constraining the
magnetic flux and black hole spin. The 1σ constraints on the black hole mass improve by a factor of five with repeated high-frequency
space array observations as compared to observations with the current ground array. If the black hole spin, magnetization, and electron
temperature distribution can be independently constrained, the shadow size for a given black hole mass can be tested to ∼0.5% with
the EHI space array, which allows tests of deviations from general relativity. With such a measurement, high-precision tests of the
Kerr metric become within reach from observations of the Galactic Center black hole Sagittarius A*.

Key words. galaxies: nuclei – black hole physics – telescopes – atmospheric effects – techniques: high angular resolution –
techniques: interferometric

1. Introduction

The Event Horizon Telescope (EHT) is a millimeter very long
baseline interferometry (VLBI) array imaging supermassive
black holes on event horizon scales (Event Horizon Telescope
Collaboration 2019b). In April 2019, the Event Horizon Tele-
scope Collaboration (EHTC) published its first results from
230 GHz observations of the supermassive black hole in M 87
conducted in 2017 (Event Horizon Telescope Collaboration
2019a,b,c,d,e,f). The source was imaged as an asymmetric ring
with a diameter of 42 ± 3 µas that is brighter in the south than
in the north. This ring structure is interpreted as the black hole
“shadow” (Falcke et al. 2000), which is formed by gravitational

lensing of synchrotron photons emitted by the near-horizon
accretion flow plasma or relativistic jet. The observed shadow
is largely dominated by properties of the black hole itself, but
also affected by the astrophysics of the emitting region. Hence,
simulations are used to disentangle these effects. The structure
is asymmetric due to Doppler boosting of emission from plasma
moving toward us on the southern side of the ring, which is in
agreement with the orientation of the jet seen on larger scales for
a clockwise rotation of the accretion flow. Through the combi-
nation of fitting a library of general relativistic magnetohydrody-
namics (GRMHD) simulations and a crescent model to the inter-
ferometric data, and fitting a ring to the reconstructed images, a
mass measurement of M = 6.5±0.2|stat±0.7|sys×109 M� could be
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made, which is consistent with earlier measurements from stellar
dynamics in M 87 (Gebhardt et al. 2011).

Constraining black hole and accretion parameters is impor-
tant for several reasons. Accurate measurements of the mass and
spin of the black hole would together determine the Kerr met-
ric, describing the spacetime near the black hole in general rel-
ativity. In the Kerr metric, the size and shape of the black hole
shadow are completely determined by the mass and spin com-
bined with the distance to the source. If an independent mass
measurement is made, the accuracy of deriving the black hole
mass from VLBI imaging data can be used as a proxy for testing
general relativity. Especially high-resolution VLBI observations
of the Galactic Center black hole Sagittarius A* (Sgr A*) could
provide a unique opportunity to test the Kerr metric (e.g., Psaltis
et al. 2015), since its mass is known accurately (at the sub-
percent level) and independently from monitoring stellar orbits.
The mass of Sgr A* was measured to be (4.148±0.014)×106 M�
by Do et al. (2019) and (3.964 ± 0.047stat ± 0.0264sys) × 106 M�
by GRAVITY Collaboration (2019). With an expected shadow
size of 51 µas, Sgr A* is the other important target for black hole
imaging by the EHT.

Apart from measuring and testing the Kerr metric, high-
resolution VLBI observations also provide the opportunity
to establish the near-horizon plasma properties and behavior.
Potentially measurable quantities include the plasma magneti-
zation and the electron temperature distribution. The black hole
spin is important here as well, as it determines the plasma
orbits. The black hole spin and plasma properties play an
important role in the launching and collimation of relativistic
jets as seen in M 87 and potentially in Sgr A*, which is cur-
rently not clearly understood. For instance, in the Blandford-
Znajek mechanism (Blandford & Znajek 1977), the jet launching
energy is extracted from the black hole as its spin twists mag-
netic field lines; whereas, in the Blandford-Payne mechanism
(Blandford & Payne 1982), the accretion disk is the dominant
source of jet launching energy. While the black hole spin, plasma
magnetization, and electron temperature distribution could not
be determined from the analysis by Event Horizon Telescope
Collaboration (2019a,b,c,d,e,f), an enhanced EHT array may
provide the necessary resolution and fidelity to start con-
straining these parameters. Analysis of the 2017 polarization
data strongly favors magnetically arrested disks (Event Horizon
Telescope Collaboration 2021a,b, see also Sect. 2.1).

Apart from extensions of the EHT on the ground, several
studies have been done on the employment of space-based anten-
nas for high-resolution observations. The baseline lengths attain-
able from Earth are limited by its size. Also, a ground-based
imaging array at frequencies higher than about 345 GHz is
extremely challenging due to strong attenuation and turbulence
introduced by water vapor in the troposphere. A space-based
array could overcome these limitations and potentially increase
the array resolution by an order of magnitude (Roelofs et al.
2019; Fish et al. 2020), or provide fast uv-coverage suitable for
dynamical imaging of variable sources such as Sgr A* (Palumbo
et al. 2019). For this work, we consider the Event Horizon
Imager (EHI) concept (Martin-Neira et al. 2017; Kudriashov
et al. 2019; Roelofs et al. 2019), which is a purely space-based
interferometer consisting of two or three satellites in medium
Earth orbits. It is suitable for high-resolution (with a nominal
beam size down to about 4 µas) and high-fidelity imaging at high
frequencies up to ∼690 GHz (see Roelofs et al. 2019; for EHI
imaging simulations of Sgr A*).

Synthetic data tools have been developed and used to predict
the imaging performance of the EHT (e.g., Fish & Doeleman
2010; Falcke et al. 2010; Lu et al. 2014, 2016; Chael et al. 2016,
2018; Johnson et al. 2017; Bouman et al. 2018; Roelofs et al.
2020) and Space VLBI arrays (Roelofs et al. 2019; Palumbo
et al. 2019; Fish et al. 2020). However, image comparisons
are challenging to quantify except for simple metrics evaluat-
ing pixel-by-pixel differences or cross-correlations, which do not
always match a quality assessment by eye where a person looks
at the reconstruction of certain model features, such as a pho-
ton ring or extended jet. Furthermore, because of the sparsely
sampled uv-plane, image reconstruction generally requires addi-
tional assumptions in the form of, for example, regularization
by image smoothness or sparsity (Event Horizon Telescope
Collaboration 2019d). In this work, we aim to overcome both
of these limitations by evaluating the current and future EHT
and EHI array performance based on model parameters that are
estimated from synthetic visibility data directly.

There are two main motivations for testing array perfor-
mance under varying observational circumstances. For the near
future, studies such as these are required for setting a set of
triggering requirements for the EHT. During an EHT campaign,
which typically lasts two weeks, a few observing nights can be
triggered based on the technical readiness of the telescopes and
weather conditions at the different sites. These triggering deci-
sions could be optimized by quantifying the effect of losing cer-
tain stations or varying weather conditions on the science output.

The second motivation for this project and main focus of this
paper is for the longer term: By adding new stations to the syn-
thetic observations at different sites, their effect on the science
output can be measured directly. Such a procedure can help to
optimize the design of the future EHT and other VLBI arrays,
and establish how accurately parameters can be measured and
ultimately how accurately general relativity and models for black
hole accretion and jet launching can be tested.

In this paper, we investigate the potential of current and
future EHT and EHI arrays to constrain black hole and accre-
tion parameters. To this end, we employed the GRMHD
library model fitting framework of Event Horizon Telescope
Collaboration (2019e,f) to fit the black hole mass and spin,
electron temperature distribution, plasma magnetization, and sky
orientation for a suite of realistic EHT and EHI synthetic data
sets. In Sect. 2, we present our model image generation, syn-
thetic data generation, and model fitting framework. In Sect. 3,
we show how the recovered parameter constraints are affected by
the array and observing strategy used. We summarize and pro-
vide suggestions for next steps in Sect. 4.

2. Simulation and parameter estimation methods

2.1. Model image generation

2.1.1. The EHT GRMHD model image library

The data and images from the EHT 2017 campaign were com-
pared to a library of ray-traced GRMHD simulations (Event
Horizon Telescope Collaboration 2019e,f). In a GRMHD sim-
ulation, the plasma dynamics near the event horizon are sim-
ulated from a set of initial conditions by evolving the plasma
according to the laws of magnetohydrodynamics embedded in,
for example, the Kerr metric as described by general relativ-
ity (e.g., Gammie et al. 2003; Mościbrodzka et al. 2009; Porth
et al. 2017, 2019). The resulting plasma quantities, such as the
density, magnetic field, and temperature, are then used to calcu-
late synchrotron emissivities and absorptivities, and photons are
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ray-traced along the geodesics through the simulation domain to
a distant observer to form an image at a specific frequency.

The images in the EHT M 87 GRMHD library depend on
several parameters. At the GRMHD stage, there is a distinction
between standard and normal evolution (SANE, Narayan et al.
2012; Sądowski et al. 2013) models, which have a relatively low
magnetic flux crossing a hemisphere of the event horizon, and
magnetically arrested disk (MAD, Igumenshchev et al. 2003;
Narayan et al. 2003) models, which are characterized by a high
magnetic flux. Intermediate magnetic fluxes (INSANE) are pos-
sible as well, but these were not included in the analysis by Event
Horizon Telescope Collaboration (2019e,f). The dimensionless
black hole spin parameter a∗ can be set to values between −1
and 1, where negative and positive values represent a retrograde
and prograde spin, respectively, with respect to the rotation of
the outer large-scale accretion flow.

At the ray-tracing stage, a choice needs to be made
for the ratio of the ion temperature Ti, which follows from
the GRMHD simulations, and the electron temperature Te,
which characterizes the emission. In Event Horizon Telescope
Collaboration (2019e), the model from Mościbrodzka et al.
(2016) was adopted, where

Ti

Te
= Rhigh

β2
p

1 + β2
p

+
1

1 + β2
p
· (1)

Here, βp is the gas-to-magnetic pressure ratio, which is large
in the disk and small in the strongly magnetized jet. It follows
from the GRMHD simulation, so that the free parameter Rhigh
fixes the electron temperature. An increased value of Rhigh rep-
resents a larger ion-to-electron temperature ratio in the disk, so
that emission in that region is suppressed and the resulting ray-
traced image becomes more jet-dominated. A thermal electron
temperature parametrization is justified here, as the inclusion of
nonthermal particles is mostly relevant for high-energy emis-
sion. The appearance of the black hole shadow depends only
weakly on the inclusion of nonthermal particles (Davelaar et al.
2019). Other ray-tracing parameters that need to be set are the
inclination angle of the line of sight with respect to the black
hole spin axis, the plasma mass unit, which sets the average total
flux density of the model, the black hole mass, and the emission
frequency.

2.1.2. GRMHD images used in this work

Our ray-traced images, which were used as input for the syn-
thetic data generation and for fitting the synthetic data against,
were generated from the BHAC (Porth et al. 2017) EHT GRMHD
library using the general-relativistic ray-tracing radiative trans-
fer code BHOSS (Younsi et al. 2012, 2016, and in prep.). We
used MAD and SANE models with spins −0.94, −0.5, 0, 0.5,
0.94 (MAD), and 0.97 (SANE). Once the accretion rate had
reached a steady state at t > 6000 GM/c3 for SANE models and
at t > 12 000 GM/c3 for MAD models, we computed the emis-
sion. Following Event Horizon Telescope Collaboration (2019e),
Rhigh was set to 1, 10, 20, 40, 80, or 160. During the radiative
transfer calculations, we excluded regions in the GRMHD simu-
lations with magnetization (ratio of magnetic and kinetic energy
density) σ > 1. These regions, mainly found in the funnel, are
typically subject to numerical uncertainties which could lead to
spurious features in the final images. We use a black hole mass
6.2×109 M� and a distance of 16.9 Mpc. For the flux density nor-
malization, we selected the last GRMHD snapshot of each model
and iterated the accretion rate until a flux density of 0.8 Jy at

230 GHz was obtained. The inclination angle was fixed at 163◦,
as motivated by the large-scale orientation of the M 87 jet and
the fact that the 230 GHz data favor an image that is brighter
in the south1 (Walker et al. 2018; Event Horizon Telescope
Collaboration 2019d,e). If the inclination angle is not known
a priori from other measurements, which is the case for Sgr A*,
it should be added as an additional GRMHD parameter.

For each combination of magnetic flux, spin, and Rhigh, 100
frames were generated at a cadence of 10 GM/c3, at frequencies
of 230, 557, and 690 GHz. The image field of view was set to
160 µas, with a pixel size of 1 µas. At the higher frequencies,
the emission is optically thin and the average total flux density
decreases from 0.8 Jy at 230 GHz to 0.42 and 0.33 Jy at 557 and
690 GHz, respectively.

2.2. Synthetic data generation

2.2.1. EHT simulations

The EHT synthetic data generation for this work was per-
formed with SYMBA (Roelofs et al. 2020). This pipeline mimics
the full VLBI observation process, including realistic observa-
tion and calibration effects. Raw frequency-resolved synthetic
data are generated following real observation schedules with
MeqSilhouette (Blecher et al. 2017; Natarajan et al., in prep.).
Added data corruptions include an atmospheric model which
introduces delays, phase turbulence, amplitude attenuation, and
sky noise. Furthermore, the effects of antenna pointing off-
sets due to atmospheric seeing, wind wobbling the dish, and
inaccurate pointing solutions are simulated. Fixed antenna gain
offsets and polarimetric leakage are added as well. The raw
synthetic data is then passed through the VLBI data calibra-
tion pipeline rPICARD (Janssen et al. 2019), which is used
to calibrate real EHT data as well (Event Horizon Telescope
Collaboration 2019c). The calibrated data sets can then be
used for further analysis, such as image reconstruction or param-
eter estimation.

The synthetic data generation setup, which includes the loca-
tions and properties of the antennas and the local weather con-
ditions during the observations, was set equal to the setup used
for the EHT2017 and EHT2020 arrays in Roelofs et al. (2020),
where the latter was renamed to the EHT2021 array as the 2020
observations were cancelled. The EHT2017 coverage is iden-
tical to that of 11 April, where scans that were scheduled but
not observed were flagged. For the simulation of atmospheric
corruptions, SYMBA takes the ground pressure, ground tempera-
ture, precipitable water vapor, and coherence time at each site
as input. The input antenna and weather parameters were based
on site measurements taken during the EHT2017 campaign or
estimated from the EHT2017 data. For new stations that did not
participate in 2017, weather parameters were estimated using cli-
matological modeling (Paine 2019), assuming decent observing
conditions in April. See Roelofs et al. (2020) for more details
and the values used for the different observation parameters.

We also simulated an array configuration with six additional
stations added to the EHT2021 array. These are the Africa Mil-
limeter Telescope, which is planned to be built on the Gamsberg
in Namibia (Backes et al. 2016), the Haystack Observatory in
Massachusetts, and potential new sites on the summit of the

1 Due to frame dragging, the plasma in the innermost accretion flow is
forced to rotate with the black hole spin, even if the orbits are retrograde
further out. Given that the approaching jet of M 87 extends toward the
northwest, the Doppler-boosted bright region in the south thus implies
that the black hole spin axis is pointed away from us.
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Fig. 1. uv-coverage for the scan-averaged ground-based simulations
with different EHT arrays. The EHT2021 coverage includes the points
labeled as EHT2017, and the EHT2021+ coverage includes the points
labeled as EHT2021 and EHT2017.
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Fig. 2. uv-coverage for the space-based simulations with the three-
satellite EHI at different frequencies. The spacing between the points
was set by the uv-smearing limit (Thompson et al. 2017; Roelofs et al.
2019).

Greenland ice sheet, in La Palma in Spain, in Río Negra in
Argentina, and on Pikes Peak in Colorado. These sites would
be suitable for M 87 observations based on the uv-coverage they
add to the array, taking station dropouts into account due to bad
weather conditions as simulated in a Monte Carlo analysis by
Raymond et al. (2021). This expanded array is referred to as
EHT2021+. There are no plans to build this particular array:
It is included in this work as a preliminary example. An effort
to investigate the possibilities of a more strongly expanded and
enhanced array is ongoing in the context of the next-generation
EHT (ngEHT, Doeleman et al. 2019). The uv-coverage of the
EHT2017 array and the additional EHT2021 and EHT2021+
baselines are shown in Fig. 1.

2.2.2. EHI simulations

The EHI Space VLBI mission concept consists of two or three
satellites in circular polar orbits around Earth, with radii of
∼14 000 km (Martin-Neira et al. 2017; Kudriashov et al. 2019;
Roelofs et al. 2019). Because of a small difference in the orbit

radii, the inner satellite orbits faster than the outer one, and the
baseline between them slowly grows as the satellites move from
their initial positions that are aligned with the center of the Earth.
This setup then results in dense spiral-shaped uv-coverage. For
the orbit radius difference of 21 km adopted for the simulations
in Roelofs et al. (2019) and in this work, it takes 29 days to reach
the longest baseline of 25 000 km. At this distance, the intersatel-
lite laser link, which is required for on-board data correlation and
intersatellite distance measurements, is obscured by the Earth’s
atmosphere. Longer baselines have thus not been included in
the simulations, even though the satellites can be further apart
in these orbits. For synthetic data generated for this work, we
adopted the three-satellite setup with 4 m antenna diameters and
system noise parameters from Roelofs et al. (2019). The model
visibilities were calculated with the eht-imaging library (Chael
et al. 2016, 2018). The uv-coverage of the EHI at 230, 557, and
690 GHz is shown in Fig. 2.

2.3. Parameter estimation

2.3.1. The EHT GRMHD library parameter estimation
framework

In Event Horizon Telescope Collaboration (2019e,f), the
GRMHD library was scored against the EHT 2017 data by
rotating and scaling (in size and total flux density) each model
image frame to provide the best possible fit to the EHT data.
The size scaling is of particular importance here since it sets
the angular size of one gravitational radius GM/Dc2. Com-
bined with distance measurements of M 87, the size scaling
then gives a best-fit black hole mass for each model frame.
The scoring was performed and vetted with two independent
pipelines: the MCMC parameter estimation framework Themis
(Broderick et al. 2020a) and the genetic algorithm GENA (Fromm
et al. 2019), which is used in this work.

Due to variability from plasma orbits and turbulence,
different GRMHD frames of the same movie may appear sig-
nificantly different on the scales probed by the EHT. Therefore,
synthetic EHT data generated from a frame of that model do
not necessarily give a formally acceptable fit (χ2 ≈ 1) to the
other movie frames. To account for this model variance,
Event Horizon Telescope Collaboration (2019e,f) developed the
method of average image scoring (AIS). In this procedure, syn-
thetic EHT data generated from the average image of a GRMHD
movie are scored against the individual frames of the same
model. The resulting χ2 distribution is then compared to the χ2

obtained from fitting the average model image to the observed
data. A p-value is then computed as

pAIS(M|D) =
N>|χ2−χ2

med |

N
· (2)

Here, M is a GRMHD model, D is the observed data, and N
is the number of frames in the model; N>|χ2−χ2

med |
is the num-

ber of frames in the model for which the difference between
the reduced χ2 of the frame scored against synthetic data from
the average model and the median χ2 of all frames is larger
than the difference between the reduced χ2 of the average model
scored against the observed data and the median χ2 of the aver-
age model. Equation (2) is effectively computing a two-sided
p-value (see for details Event Horizon Telescope Collaboration
2019f). The model is rejected when pAIS < 0.01.

Using this method, MAD models with a∗ = −0.94 formed
the only class of models that could be ruled out based on the
EHT2017 data alone. With the addition of other criteria, such as
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the X-ray flux and jet power as predicted by the models com-
pared to other observational data, the number of fitting mod-
els was reduced significantly. The remaining models, combined
with a distance measurement of D = 16.8+0.8

−0.7 Mpc and mass
estimates from a crescent model fit to the data and from a
ring fit to the reconstructed image, gave the measured mass of
M = 6.5 ± 0.2|stat ± 0.7|sys × 109 M�.

2.3.2. GENA pipeline description

In the following, we provide a short description of the mathe-
matical and numerical methods used within GENA, which is the
genetic algorithm pipeline we used for the fitting of the GRMHD
model library to our input synthetic data.

Constrained nonlinear optimization. The extraction of phys-
ical parameters from observational data via numerical, semi-
analytical, or geometrical models can be considered as a
constrained non-linear optimization problem. Its mathematical
formulation is given by the following:

minimize f (x)
subject to g j(x) ≤ 0, j = 1, . . . , n,

xL,i ≤ xi ≤ xR,i, i = 1, . . . ,m,
(3)

where x is an m-dimensional vector including the model param-
eters, f (x) is the cost function (also objective or minimization
function), g j(x) are the constraints, and xL,i and xR,i are lower
and upper boundaries for the model parameters.

The cost function and the constraints should be constructed
in such a way that key properties of the data and prior knowledge
of the source, such as the mass of the black hole, are used to
guide and speed up the convergence of the optimization process.

Optimization algorithm. The above stated optimization prob-
lem can be solved by several kinds of algorithms: gradient-
based, gradient-free, or MCMC algorithms (see Themis, Broder-
ick et al. 2020a). Given the high computational effort in scoring
the GRRT images, which includes Fourier transforms and gain
optimizations, as well as the fast convergence of gradient-free
in contrast to gradient-based algorithms (a gradient-based algo-
rithm requires a lot of computational resources for mapping out
the gradient with sufficient resolution), we decided to apply a
gradient-free search algorithm in the form of a population-based
evolutionary algorithm. The basic idea and steps of an evolution-
ary algorithm (EA) are described in the next paragraph.

Evolutionary algorithm (EA). EAs are motivated by biolog-
ical evolution and follow the principle of survival of the fittest.
The main steps of EAs are selection, crossover (mating), and
mutation of the individuals for several generations. An individ-
ual can be seen as a set of parameters, in our case the orien-
tation of the image in the sky, φ, the flux scaling, f , and the
mass of the black hole, M. We note that x can thus be written as
x = [φ, f ,M]T. Each entry, for example, φ, is typically labeled as
a gene. During the initial step, N random individuals are created
in such a way that they cover the parameter space (e.g., using the
latin hypercube sampling), and their fitness is computed using
f (x).

For the creation of the next generation, offsprings are cre-
ated from the current population, including random mutations to
ensure diversity in the population so that the algorithm does not
get stuck in local minima. The details of this step depend on the
implementation of the EA. In this work, we use the Non Sorting

Genetic Algorithm II (NSGA2; Deb et al. 2002) and the differen-
tial evolution algorithm following Storn & Price (1997). In this
algorithm, one member of the population, x1, is selected together
with three additional randomly selected population members
labeled xr1, xr2, and xr3. From these three random members,
a new member is created, which is referred to as the mutated
member xmut = xr1 + F(xr2 − xr3), where F is a constant fac-
tor in the interval [0,2]. A new trial population member xtrial is
then created from crossover between x1 and xmut. During the
crossover, a random number in the interval [0,1] is drawn for
each component (φ, f and M). If this number is larger than the
crossover probability, the component from xmut is copied over
to xtrial. If not, the component from x1 is taken as a new compo-
nent for xtrial. After the crossover step, xtrial thus includes compo-
nents from the initial member x1 and from the mutated member
xmut. In the last step, xtrial is evaluated with respect to the cost
function f (x). If f (xtrial) < f (x1), x1 is replaced by xtrial. If not,
x1 is kept in the next generation. This procedure is repeated for
each member of the population so that finally a new generation
is created.

New generations are created up to a maximum number of
iterations or until a convergence criterion is reached, that is when
the standard deviation σf of f (x) across the population is smaller
than a specified fraction of the mean f (x). The final fitted param-
eters are then the components of the x for which f (x) is smallest.
In this work, we use a population size of 20, a crossover prob-
ability of 0.6, we varied F randomly between different gener-
ations in the interval [0.7,1] (a process called dithering, which
speeds up the convergence), and the process was stopped after
100 generations or until σf < 0.02 f (x).

Application to VLBI observations. Here, we apply the
concept of numerical optimization via EAs to the fitting of
radio astronomical observations obtained via VLBI. Interferom-
eters sample the brightness distribution I(l,m) of an astronom-
ical object in Fourier-space via its projected baseline between
antenna i and antenna j. The observed visibilities Vi j can be writ-
ten as

Vi j(l,m) =

∫ ∫
dldmI(l,m)e−2πı(ul+vm), (4)

where l and m are angular coordinates on the sky, and u and v
are the projected baseline components measured in wavelengths,
which act like spatial frequencies. The complex visibility can
be converted into the visibility amplitude

∣∣∣Vi j

∣∣∣ and the visibility
phase Φi j. The latter is severely affected by atmospheric fluctu-
ations. The number of complex visibility data points of an inter-
ferometer is given by N(N−1)/2, where N is the total number of
antennas forming the interferometer, assuming that they are all
able to observe the source at the same time.

A secondary observable quantity is the so-called closure
phase Φi jk computed as the sum of the visibility phases on a
closed triangle of baselines (Jennison 1958; Rogers et al. 1974).
The advantage of closure phases is that station-dependent phase
variations cancel out. Closure phases are thus of great impor-
tance to measure the structure of the observed source. The
total number of independent closure phases computed from an
interferometer consisting of N individual antennas is given by
(N − 1)(N − 2)/2 (Thompson et al. 2017). If prior information
about the station gain phases is available, the dependence on clo-
sure phases comes with a loss of information as fewer data are
available. If no prior information about the gain phases is avail-
able, as is usually the case for our observations, the information
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content of the visibility phases and closure phases is the same
(Blackburn et al. 2020).

Throughout this paper, we use the visibility amplitude
∣∣∣Vi j

∣∣∣
and the closure phase Φi jk to fit models to VLBI observations.
The visibility amplitude may still be corrupted by, for example,
gain offsets due to antenna mispointings that cannot be calibrated
a priori. However, these gains are usually limited to approxi-
mately a few tens of percent, while the visibility phases are ran-
domized due to the atmospheric corruptions. We note that there
are additional quantities which could be computed from the com-
plex visibilities, such as the closure amplitudes (e.g., Thompson
et al. 2017), which are also free of station-based gain errors. For
the minimization function, we use the least squares computed
from the visibility amplitudes, χ2

VA, and the closure phase, χ2
CP,

(we follow the convention given in Chael et al. 2018, for the cal-
culation of the χ2). Finally, the cost function for the optimization
process can be written as:

f (x) = χ2
VA + wχ2

CP, (5)

where w is a weighting factor. The information on the structure
of the source is mostly encoded in the closure phases. Moreover,
these quantities are free of gain corruptions and therefore they
are more reliable than visibility amplitudes. Using a weighting
factor w < 1 enforces the optimization to prioritize the reduction
of the χ2

CP. This setup typically increases the convergence of the
optimization procedure.

Station-dependent gain factors. In addition to the free
parameters of our model (φ, f , and M), the antenna gains gi can
be considered as free parameters (see Thompson et al. 2017).
Within GENA, we used a numerical minimization as implemented
in eht-imaging to obtain the antenna gains following Chael
et al. (2018) and Themis (Broderick et al. 2020a) in a self-
calibration procedure minimizing∑
time

∑
i, j

(
Vi j, obs − gig

?
j Vi j,model

)2
. (6)

During the minimization of Eq. (6), we assumed that the gains
were constant during a scan, which sped up the calculations. To
avoid compensation of large χ2 on the visibility amplitude and/or
closure phase by strong gain variations, we included a flat prior
on the individual antenna gains gi, disfavoring station gain solu-
tions larger than 0.2 (see below).

2.3.3. Changes made to GENA

For this work, several changes were made to the GENA pipeline
as compared to the version used in Event Horizon Telescope
Collaboration (2019e,f). First, self calibration, which solves for
the station gains due to, for example, unknown pointing off-
sets, has been included in the process of optimizing the rota-
tion and scaling for each frame. Previously, self calibration was
only performed for the best fitting rotation and scaling parame-
ters at the end of the optimization process to determine the even-
tual goodness-of-fit. Because the station gains can be significant,
they strongly increase the χ2

VA of non self-calibrated data. In the
optimization process, the weight w of the χ2

VA therefore needed
to be set low (∼0.01) with respect to the weight of the χ2

CP for
the optimization to converge.

However, the visibility amplitudes contain valuable informa-
tion on the source morphology that can be included in the opti-
mization process. We found that including self calibration in the
optimization process and setting w to 0.1 resulted in a better

goodness-of-fit and narrower (by ∼10%) mass distributions in
the end. A w larger than 0.1 gave a small but significant increase
in the best-fit χ2

CP. Since the closure phase remains the most reli-
able data product because of its robustness against station gains,
we adopted w = 0.1, which is still significantly larger than the
w = 0.01 that needed to be set previously when self calibration
was not included in the optimization process. In order to prevent
the self calibration from overfitting the visibility amplitudes, sta-
tion gain offset solutions larger than 0.2 were disfavored. Due
to low signal-to-noise ratio (S/N) decoherence and randomized
pointing offsets, the gain offsets may exceed this value in some
cases despite the fact that the input station gain offsets did not
exceed 0.1. Including self calibration in the optimization process
increases the runtime of GENA by a factor of ∼10−20. In order to
mitigate this effect, we performed self calibration only when the
closure phase fit was reasonable, that is χ2

CP < 10.
The second change in the GENA pipeline is the treatment of

stations with intra-site baselines. For the current EHT, these are
ALMA and APEX in Chile and JCMT and SMA in Hawaii.
If the total flux density of the source is known, gains of these
stations can be solved for by fixing the visibility amplitudes
on the intra-site baselines and comparing the amplitudes on
the baselines to a third station (network calibration, Blackburn
et al. 2019), and no further self calibration is required. In the
EHT2017 model fitting, these stations were included in the self
calibration nevertheless because the total compact flux density
was uncertain due to a lack of short baselines, and the contribu-
tion of the large-scale (jet) structure to the intra-baseline ampli-
tudes was not strongly constrained. Since there is no large-scale
jet component in the GRMHD library from which we took our
input models, and the input total flux density is known, our input
synthetic data were network-calibrated using the implementa-
tion in eht-imaging (Chael et al. 2016, 2018; Blackburn et al.
2019), and the gains for ALMA, APEX, JCMT, and SMA were
fixed throughout the fitting procedure.

3. Parameter estimation results

In this section, we show our scoring results for a range of observ-
ing conditions. We start by investigating the best fit parame-
ter distributions as a function of stations included in the past,
current, and potential future EHT array. We also include results
from simulating Space VLBI observations of the Event Horizon
Imager (EHI), and investigate the effect of repeated observations
of the same source with a fixed array.

As the input model for our synthetic observations, we used
the 20th frame of the SANE model with a∗ = 0.5 and Rhigh = 80,
shown in Fig. 3. Fits to the EHT2017 data were not consid-
ered when choosing this particular model, but it was chosen
because its appearance is fairly representative for most library
frames in that it has no strong jet footprint or emission far from
the horizon. No specific preference was involved when choos-
ing the 20th frame as the input model for our simulated ground
truth data. The typical correlation time between GRRT images
created from BHAC data is around 50M. Thus, images sepa-
rated by five frames can be regarded as uncorrelated and inde-
pendent realizations of the variability. The model was observed
with SYMBA and the EHI simulator using the setups described
in Sect. 2.2.

3.1. General trends

Figure 3 shows the visibility amplitude and closure phase fits
for four different library frames that were fit to the EHT2017
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Fig. 3. Four example fits to visibility amplitudes (upper panels) and closure phases (middle panels) of the EHT2017 synthetic data generated
from frame 20 of the SANE model with a∗ = 0.5 and Rhigh = 80. Lower panels: model frames that were scaled and rotated by the best-fit values
indicated in the upper panels, without (left) and with (right) blurring by a 20 µas Gaussian beam.

synthetic data. The best fit parameters (mass, amplitude, and sky
orientation) for the input model frame (top left) were recovered
approximately at the percent level. As illustrated by the fit to
a different frame from the same model (top right), the best fit
parameters and goodness-of-fit can indeed vary considerably due
to the variability within the model (model variance).

Larger variations in mass estimates may occur where the
image is not dominated by the flux on or close to the photon

ring. The bottom row of Fig. 3 shows two examples. On the left
is a model with strong emission from the jet footprint, which
appears as a small ring in front of the shadow. To optimally fit
the EHT data, the model was scaled up in size, resulting in a
large mass estimate of 10.38 × 109 M�. On the right is a model
dominated by emission further away from the photon ring, which
was scaled down in size to fit the data, resulting in a small mass
estimate of 3.07 × 109 M�.
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Fig. 4. Mass distributions with best-fit values of all SANE model frames fit to the EHT2017 (blue) and EHT2021 (orange) synthetic data generated
from frame 20 of the SANE model with a∗ = 0.5 and Rhigh = 80. The six panels correspond to the six values of Rhigh in the model library, and the
black hole spin is on the horizontal axis. The red dashed line indicates the true mass of the input model (encircled). The models corresponding to
the distributions with annotation “ACC” and “REJ” were accepted and rejected, respectively, by the average image scoring procedure.

Figure 4 shows the best fit masses for all SANE models for
synthetic data generated with the EHT2017 (left, blue distri-
butions) and EHT2021 (right, orange distributions) arrays. All
model frames have been included in the distributions, that is to
say no selection was made based on the goodness-of-fit. The
plotted curves were generated with a kernel density estimator.
The annotation below each distribution indicates whether the
model was accepted of rejected based on the average image scor-
ing procedure. See Appendix A for an analysis and discussion on
the validity of the mass scaling in the context of this work.

The estimated mass is generally lower than the true value for
models with low Rhigh and/or retrograde spin. The models with
Rhigh = 1 are disk-dominated, resulting in emission further away
from the horizon as the observer is looking down the jet and
viewing the disk face-on (see also Fig. 3, bottom right panel). A
retrograde spin pushes the orbits further out, resulting in lower
mass estimates. The models with high prograde spin (a∗ = 0.97)
and Rhigh ≥ 10 show a strong jet footprint in front of the shadow
(see also Fig. 3, bottom left panel), and they result in a large
mass estimate. Similar trends were observed in the comparison
of the real EHT2017 data to the GRMHD image library (Event
Horizon Telescope Collaboration 2019e).

The inclusion of the GLT, KP, and PDB in the EHT2021
array generally narrows the individual mass distributions. Some
models with mass estimates that are substantially lower (most
Rhigh = 1 models) or higher (the Rhigh = 40, a∗ = 0.97 model)
were accepted when observed with the EHT2017 array but
rejected when observed with the EHT2021 array, indicating an
increased ability to constrain the black hole mass when more
stations are added to the array.

A few models with retrograde spin are rejected with the
EHT2017 array but accepted with the EHT2021 array (the a∗ =
−0.94 models with Rhigh = 10−40, and the a∗ = −0.5 model
with Rhigh = 160), which is counter-intuitive. This effect can be

understood from the average image scoring procedure and inves-
tigating the χ2 distributions obtained for these cases. For exam-
ple, the median χ2

CP from fitting the model frames to synthetic
data from the average frame of the same model increases from
5.5 to 15 for the SANE, a∗ = −0.94, Rhigh = 20 model between
EHT2017 and EHT2021, and the standard deviation increases
from to 3.9 to 8.3. The overall fit quality thus decreases and the
spread across the frames increases as more baselines are added,
which is indeed plausible if there are large variations between
the different model frames. The additional and longer baselines,
which allow one to see more detail in the source structure, make
it more difficult for GENA to fit the varying substructure to data
obtained from the average model, where the detailed structure
has been washed out. In other words, the additional baselines of
the EHT2021 array make the model variance more apparent. In
the average image scoring procedure, the acceptance of a model
is determined by the goodness-of-fit of the average model image
to the input synthetic data, which is generated from a frame of a
different model, as compared to the goodness-of-fit of the model
frames to synthetic data generated from the average image of
the same model. The χ2

CP for the former decreases from 32 to
29 between EHT2017 and EHT2021 for the SANE, a∗ = −0.94,
Rhigh = 20 model, where the input synthetic data were generated
from our fixed SANE, a∗ = −0.94, Rhigh = 80, frame 20 input
model. So, the average of the model can be fit slightly better to
the input synthetic data when more baselines are added, although
the overall fit quality remains poor; whereas the χ2 variations
become larger within the model due to its strong variability, and
some χ2-values now exceed that for the average model image
fit to the input synthetic data. The rejection criterion was thus
reached for EHT2017, but not for EHT2021. This phenomenon
is thus a consequence of not setting an absolute χ2 criterion for
the acceptance of a model, but comparing the fit to the model
variance. It is not expected to occur for models which do not
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Fig. 5. Same as Fig. 4, but for the best-fit sky orientations.

show strong variability and fit the input synthetic data well, as
the additional baselines will then allow the fits to improve. It
should not occur for the true input model as the input synthetic
data are then from a sample of the model variance. Once rejected
for a particular array, it should therefore in principle be safe to
consider the model rejected for other arrays as well, provided
that the model variance is well sampled by the model frames.

Apart from the mass, the sky orientation φ is optimized for
each frame in the fitting procedure as well. Figure 5 shows the
recovered distribution in φ for all SANE models. Just like the
mass, these distributions show a general trend with the black
hole spin. The sky orientation is near the true value for mod-
els that, similar to the input model from which synthetic data
were generated, have a prograde spin. However, the preferred
orientation flips when the spin changes direction. The plasma
is forced to rotate with the black hole spin due to frame drag-
ging, and it gets boosted in the opposite direction when the spin
changes sign, hence changing the image asymmetry. The width
of the distributions is generally smaller for models with a high
prograde spin, which appear most asymmetric. For the more jet-
dominated models (Rhigh ≥ 10), many retrograde models show a
particularly wide distribution, most of which are rejected by the
average image scoring procedure. These models indeed appear
symmetric, with most emission outside the black hole shadow.
For jet-dominated models (Rhigh = 40−160) with strongly retro-
grade spins (a∗ = −0.94), Doppler boosting becomes significant
and the images appear asymmetric, which can be made consis-
tent with the input model synthetic data by rotating the image by
∼180◦.

For the MAD models (not plotted), the results are different in
that the optimal mass is less dependent on the spin and usually
lower than the true mass as the emission is mostly outside the
black hole shadow. The trends in φ are similar to those of the
SANE models.

3.2. Recovered parameters for different observing conditions

In this section, we show how the recovered mass and sky orienta-
tion distributions and model selection by average image scoring
are affected by the observation setup.

3.2.1. Multi-epoch observations and fitting

The synthetic data were either generated with a single obser-
vation of a single frame (designation “1 frame”), or with ten
observations from ten randomly selected frames from the same
model (designation “10 frames”). The latter case represents a sit-
uation where repeated observations of the same source take place
with a fixed array, which could become an operational mode for
the future EHT. The visibilities with equal uv-coordinates were
coherently averaged after the network calibration step for the
ten observations generated with independent data corruption and
calibration realizations. For the EHI simulations, the source was
set to remain static over the uv-spiral completion time of 29 days
because of the limited number of movie frames available. In real-
ity, more realizations of the variability would be sampled within
an EHI observation. Since the Fourier transform is linear, the
average of ten observations of different frames corresponds to
an observation of the average frame (modulo observational data
corruptions).

The effect of averaging on the visibility data is illustrated in
Fig. 6, which shows comparisons between the fast Fourier trans-
form (FFT) of the average image of ten frames, an EHT2021
observation of this average image, and an average of ten inde-
pendent EHT2021 observations of the ten different frames. The
scatter in the visibility amplitudes and closure phases reduces as
the visibilities are averaged. The amplitude gain offsets between
the single and averaged observation are comparable. The closure
phases of a single observation have no offset from the true value,
but a small offset from the FFT of the average image caused
by averaging the data with gain offsets included occurs for the
averaged ten-epoch observation of ten different frames. How-
ever, this offset mostly remains within the noise. On the ALMA-
LMT-SMT triangle, which has the sensitive ALMA-LMT base-
line and large gain variations on the SMT-LMT baseline, a sys-
tematic offset beyond the noise can be observed, but it is limited
to ∼3◦. This offset is not enough to cause significant biases in
the fits as all recovered mass and sky orientation distributions
have the true value within 1σ (see next subsections). The varia-
tion between model frames and other observational uncertainties
(e.g., the limited baseline length) are dominant over this effect.
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Fig. 6. Visibility data from a single observation of an average image of ten randomly selected frames of the SANE, a∗ = 0.5, Rhigh = 80 model
(blue), and from an average of ten observations of these ten frames (orange), compared to the FFT of the average image (black). Top left panel:
visibility amplitudes as a function of baseline length. Top right, bottom left, and bottom right panels: closure phases as a function of time on the
GLT-SMT-APEX, APEX-LMT-SMT, and ALMA-LMT-SMT triangles, respectively.

For the average image scoring, the models were also aver-
aged down to ten frames which are the averages of ten
randomly selected model frames. In order to capture the vari-
ability between ten-frame averages, each 100-frame GRMHD
movie was randomly divided into ten ten-frame averages ten
times, so that a total of 100 ten-frame averages were created for
each model. The data generated from the average model images
should be generated in the same way as the data generated from
the ground truth input model, so that the χ2 can be compared.
The average image of each model was therefore observed ten
times with independent data corruption and calibration realiza-
tions, and these observations were averaged as well. The fitting
and average image scoring procedure was then executed exactly
as described in the preceding sections.

As the models were averaged down to ten frames, the vari-
able small-scale turbulent structure was averaged out and the
images became more dominated by the lensed photon ring and
overall size and shape of the emitting region (Fig. 7). The model
variance was therefore reduced. Combined with the decreased
scatter in the averaged data, we show below that this effect
results in significantly narrower best-fit mass and sky orienta-
tion distributions and an increased ability to rule out models that
do not correspond to the observed input model.

3.2.2. Recovered mass and orientation for the input
model

First, we investigate the recovered mass and sky orientation dis-
tributions by fitting synthetic data to the frames of the input
model (SANE, a∗ = 0.5, Rhigh = 80) as shown in Fig. 8. As
a measure for the width of the distributions, Table 1 shows the
standard deviations σM and σφ for the best fit mass and orienta-
tion values, respectively, where σφ is the circular standard devi-
ation accounting for wraps around 360◦.

The recovered mass distribution clearly narrows and peaks
closer to the true value as the array improves. The signifi-
cant improvement as multiple observations were combined espe-
cially stands out. Repeated observations with the 2021 array
even recover the mass better than a single observation with
the EHI Space VLBI concept (σM of 0.092 × 109 M� and
0.217 × 109 M�, respectively), because the model variance is
significantly reduced and the lensed photon ring becomes more
prominent (Fig. 7), allowing for a sharper determination of the
mass scaling. A potential explanation for the increase in mass
estimates as the array improves is that GRMHD models gen-
erally show more emission outside the photon ring than inside,
causing a tendency for frames with more large-scale emission
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Fig. 7. Upper row: ten single-frame images from the input model (SANE, a∗ = 0.5, Rhigh = 80). Lower row: example images obtained after
averaging different numbers of randomly chosen frames of this model. The images are plotted on a square-root scale.

than the input model to be scaled down, leading to an underes-
timate of the mass. However, it should be noted that the peak
offsets are within ∼1σ, and this could depend on the input
model.

Adding in the six EHT2021+ stations marginally improved
the mass and position angle measurements here. The precision
obtained with EHT2021 coverage in combination with using
multiple epochs already seems to be approaching a plateau
within the maximum baseline length. The widths of the distribu-
tions are thus likely not dominated by uncertainties due to gaps
in the uv-plane, but by the variation in the different model frames
and by the maximum baseline length (resolution), which is set
to the Earth’s size and observing frequency. We only see a large
improvement beyond EHT2021 here when we go to long space
baselines. Repeated observations with the EHI further sharpen
the distribution. The 230 GHz distribution peaks at a slightly
lower mass here, but it is still about 1σ from the true value.
The mass determination is not as sharp for 690 GHz observa-
tions compared to 557 GHz observations (σM of 0.049× 109 M�
and 0.039× 109 M�, respectively), which may be a consequence
of the lower S/N as the total flux density decreases as a function
of the observing frequency.

The recovered sky orientation does not improve much as the
array is improved when only single observations are considered.
Going from the EHT2017 array to the EHT2021 or EHI array,
the peak even moves away from the true input value, although
that is not much more than a 1σ offset. This trend may reflect the
variability of the source model becoming more apparent to the
array as it is improved (see also Sect. 3.1). The offset disappears
when multiple epochs are combined and much of the variabil-
ity is averaged out. The position angle measurement improves
substantially with high-frequency EHI observations compared to
230 GHz, reaching 1-degree precision.

The distributions in Fig. 8 show the mass and sky orienta-
tion recovery where the synthetic data were fit to the model from
which it was generated. The width of the distributions was set
by the combined effects of the model variance and the ability of
the array to resolve the source structure. However, as we show
in the next section and as is already apparent from Figs. 4 and 5,
a substantially larger uncertainty in recovered mass and posi-
tion angle results from the array’s limited ability to distinguish
between models with different magnetic flux, spin, and electron
temperature distributions.

3.2.3. Recovered library model parameters

In this section, we investigate how enhancements of the array
could improve the ability to rule out models from the GRMHD
library. Table 2 shows the average image scoring results of fit-
ting synthetic data from the SANE model with a∗ = 0.5 and
Rhigh = 80 to the GRMHD models for different arrays (Sect. 2.2).
As the observation configuration improves, the accepted mod-
els converge toward the parameters of the input model (bold).
The percentage of accepted models generally decreases as the
array improves or multiple observations are combined in the
columns from left to right. An exception is the single EHT2021
observation compared to the single EHT2017 observation, where
more models are accepted for the former. As for the SANE
models (see Sect. 3.1), the MAD models that were rejected for
EHT2017 but accepted for EHT2021 have a large model vari-
ance that becomes more apparent with the EHT2021 coverage.
These models are all rejected with repeated observations and
with further improvements of the array. For the EHT2021+ and
high-frequency EHI observations, the model acceptance for the
repeated EHT2021 observations and 230 GHz EHI observations
was respectively used as a filter, resulting in the additional rejec-
tion of a few models.

Figure 9 shows the distribution of accepted models between
MAD and SANE models for each array configuration in Table 2.
The magnetic flux is challenging to recover with ground-based
observations: The ratio between accepted MAD and SANE mod-
els is close to 1:1. A clear preference for SANE models becomes
apparent with EHI observations. For the 690 GHz EHI obser-
vations, all accepted models are SANE models, which indeed
corresponds to the ground truth input model.

The black hole spin distribution (Fig. 10) is close to flat for
the single EHT2017 and EHT2021 observations, although retro-
grade spins are slightly disfavored compared to prograde spins.
With repeated EHT2021+ observations, the a∗ = 0.94 models
are disfavored more strongly. With EHI observations, the true
input spin of 0.5 is strongly favored. In this case, the a∗ = −0.5
and a∗ = 0.94 models are completely ruled out with 230 GHz
observations. Only a∗ = 0 and a∗ = 0.5 models remain with
high-frequency EHI observations.

The most difficult parameter to measure is Rhigh (Fig. 11). Its
distribution remains relatively flat, with little changes between
the observing configurations. Only EHI observations rule out the
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Fig. 8. Best-fit mass (top) and sky orientation (bottom) distributions from fitting the frames or averages of ten frames of the input model (SANE,
a∗ = 0.5, Rhigh = 80) to synthetic data generated either from frame 20 of this model or a random selection of ten frames from this model, using
a ground (left) or space-based (right) array. The blue and orange line in the top left panel correspond to the distributions in the red ellipse in
Fig. 4, and the blue and orange line in the bottom left panel correspond to the distributions in the red ellipse in Fig. 5. The true input mass and sky
orientations are indicated with a red dashed line.

Table 1. 1σ width of the mass and orientation distributions in Fig. 8.

EHT2017 EHT2021 EHT2021 EHT2021+ EHI, 230 GHz EHI, 230 GHz EHI, 557 GHz EHI, 690 GHz
1 frame 1 frame 10 frames 10 frames 1 frame 10 frames 10 frames 10 frames

σM (109 M�) 0.534 0.320 0.092 0.087 0.217 0.063 0.039 0.049
σM (%) 8.61 5.15 1.48 1.41 3.51 1.03 0.63 0.79
σφ (deg) 15.7 12.9 3.7 3.5 12.2 3.0 1.2 1.0
σφ (%) 4.35 3.58 1.02 0.96 3.40 0.84 0.33 0.28

Notes. The percentages are relative to the true input mass of 6.2 × 109 M� and the full 360◦ circle for σM and σφ, respectively.

disk-dominated (Rhigh = 1) models. Low Rhigh-values seem to be
favored over the true value of 80, although it should be noted
that only five to eight of the GRMHD models are accepted for
the EHI observations (see Table 2). The result that Rhigh is more
difficult to constrain than, for example, the black hole spin can
be understood from the fact that, when the magnetic flux and
black hole spin are fixed, it typically does not have a large influ-
ence on the model images. This can also be seen in Figs. 4 and 5:
While varying the spin can change the fitted mass by a factor of
2 or more due to, for example, the appearance of a jet footprint
and the changing plasma orbits for high spins (Fig. 3), the differ-
ences between the panels with different Rhigh is small. An excep-

tion is the Rhigh = 1 panel. These models are disk-dominated,
resulting in more emission outside the black hole shadow and
a lower mass estimate (Fig. 3). The Rhigh = 10−160 models all
show more of the jet emission, resulting in a similar morphol-
ogy. Tighter constraints on Rhigh may therefore require multi-
wavelength observations and spectral fitting.

3.2.4. Recovered mass and orientation for the library
models

Figure 12 shows the mass and sky orientation distributions for
the accepted models after average image scoring (Table 2).
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Table 2. GRMHD library model acceptance (ACC) and rejection (REJ) by the average image scoring procedure for different arrays.

Magn. a∗ Rhigh EHT2017 EHT2021 EHT2021 EHT2021+ EHI, 230 GHz EHI, 557 GHz EHI, 690 GHz
1 frame 1 frame 10 frames 10 frames 10 frames 10 frames 10 frames

MAD −0.94 1 ACC ACC REJ REJ REJ REJ REJ
MAD −0.94 10 ACC ACC ACC ACC REJ REJ REJ
MAD −0.94 20 ACC ACC ACC ACC REJ REJ REJ
MAD −0.94 40 ACC ACC ACC ACC REJ REJ REJ
MAD −0.94 80 ACC ACC ACC ACC REJ REJ REJ
MAD −0.94 160 ACC ACC ACC ACC ACC ACC REJ
MAD −0.5 1 ACC ACC REJ REJ REJ REJ REJ
MAD −0.5 10 REJ ACC ACC ACC REJ REJ REJ
MAD −0.5 20 REJ ACC ACC ACC REJ REJ REJ
MAD −0.5 40 REJ ACC REJ REJ REJ REJ REJ
MAD −0.5 80 ACC ACC REJ REJ REJ REJ REJ
MAD −0.5 160 ACC ACC REJ REJ REJ REJ REJ
MAD 0.0 1 ACC ACC ACC ACC REJ REJ REJ
MAD 0.0 10 ACC ACC REJ REJ REJ REJ REJ
MAD 0.0 20 ACC ACC REJ REJ REJ REJ REJ
MAD 0.0 40 ACC ACC REJ REJ REJ REJ REJ
MAD 0.0 80 ACC ACC REJ REJ REJ REJ REJ
MAD 0.0 160 ACC ACC ACC ACC REJ REJ REJ
MAD 0.5 1 ACC ACC REJ REJ REJ REJ REJ
MAD 0.5 10 ACC ACC ACC REJ REJ REJ REJ
MAD 0.5 20 ACC ACC REJ REJ REJ REJ REJ
MAD 0.5 40 ACC ACC REJ REJ REJ REJ REJ
MAD 0.5 80 ACC ACC REJ REJ REJ REJ REJ
MAD 0.5 160 ACC ACC REJ REJ REJ REJ REJ
MAD 0.94 1 ACC ACC REJ REJ REJ REJ REJ
MAD 0.94 10 ACC ACC ACC ACC REJ REJ REJ
MAD 0.94 20 ACC ACC ACC REJ REJ REJ REJ
MAD 0.94 40 ACC ACC ACC REJ REJ REJ REJ
MAD 0.94 80 ACC ACC ACC ACC REJ REJ REJ
MAD 0.94 160 ACC ACC ACC ACC REJ REJ REJ
SANE −0.94 1 ACC REJ ACC ACC REJ REJ REJ
SANE −0.94 10 REJ ACC REJ REJ REJ REJ REJ
SANE −0.94 20 REJ ACC REJ REJ REJ REJ REJ
SANE −0.94 40 REJ ACC REJ REJ REJ REJ REJ
SANE −0.94 80 ACC ACC REJ REJ REJ REJ REJ
SANE −0.94 160 ACC ACC REJ REJ REJ REJ REJ
SANE −0.5 1 ACC REJ ACC ACC REJ REJ REJ
SANE −0.5 10 ACC ACC REJ REJ REJ REJ REJ
SANE −0.5 20 ACC ACC REJ REJ REJ REJ REJ
SANE −0.5 40 REJ REJ REJ REJ REJ REJ REJ
SANE −0.5 80 REJ REJ REJ REJ REJ REJ REJ
SANE −0.5 160 REJ ACC REJ REJ REJ REJ REJ
SANE 0.0 1 ACC ACC ACC ACC REJ REJ REJ
SANE 0.0 10 ACC ACC ACC ACC ACC ACC ACC
SANE 0.0 20 ACC ACC ACC ACC ACC ACC ACC
SANE 0.0 40 ACC ACC ACC ACC ACC REJ REJ
SANE 0.0 80 ACC ACC ACC ACC REJ REJ REJ
SANE 0.0 160 ACC ACC REJ REJ REJ REJ REJ
SANE 0.5 1 ACC ACC ACC ACC REJ REJ REJ
SANE 0.5 10 ACC ACC ACC ACC ACC ACC ACC
SANE 0.5 20 ACC ACC ACC ACC ACC ACC ACC
SANE 0.5 40 ACC ACC ACC ACC ACC ACC ACC
SANE 0.5 80 ACC ACC ACC ACC ACC ACC ACC
SANE 0.5 160 ACC ACC ACC ACC ACC ACC ACC
SANE 0.97 1 ACC REJ REJ REJ REJ REJ REJ
SANE 0.97 10 ACC ACC REJ REJ REJ REJ REJ
SANE 0.97 20 ACC ACC REJ REJ REJ REJ REJ
SANE 0.97 40 ACC REJ REJ REJ REJ REJ REJ
SANE 0.97 80 ACC ACC REJ REJ REJ REJ REJ
SANE 0.97 160 ACC ACC REJ REJ REJ REJ REJ
% ACC 85 90 47 42 15 13 12

Notes. The model used for the input synthetic data generation is indicated in boldface.

Table 3 shows the standard deviations σM and σφ for the best
fit mass and orientation values, respectively. The σ values from
Tables 1 and 3 are displayed in Fig. 13 as well. The distributions
from fitting to the full GRMHD library are significantly broader
than those from the fit to the input model only (Fig. 4), indi-
cating that the uncertainties in recovered mass and orientation

are dominated by the array’s ability to rule out GRMHD models
with different parameters.

The EHT2017 and EHT2021 single observation mass dis-
tributions are similar, where the EHT2021 distribution peaks
slightly higher and closer to the true value due to the rejec-
tion of some SANE models with offset best-fit masses (Fig. 4
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Fig. 9. Distribution over the magnetic flux of the accepted models in
Table 2. The true input magnetic flux (SANE) is indicated in boldface.
The lacking MAD bar for the 690 GHz EHI observation indicates that
none of the accepted models for this dataset were MAD models.
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Fig. 10. Distribution over black hole spin of the accepted models in
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and Sect. 3.1). The σM of 1.50 × 109 M� for the single obser-
vation with the EHT2017 array is substantially larger than the
error of 0.7 × 109 M� measured from the real 2017 data (Event
Horizon Telescope Collaboration 2019a,f); this is because that
measurement was made from data on four different days using a
combination of three different methods, and most models were
rejected based on constraints other than those from the EHT data.
Repeated observations with the EHT2021 array sharpen the dis-
tribution more significantly as, for example, the high mass esti-
mates for the SANE models with a∗ = 0.94 (Fig. 4) are rejected.
The six EHT2021+ stations reduce the number of accepted mod-
els by 11% compared to EHT2021 (Table 2), but the mass distri-
butions are similar (σM is even slightly larger for EHT2021+).
The models that were additionally rejected with the ten-epoch
EHT2021+ observation were thus not at the tail of the mass dis-
tribution for the ten-epoch EHT2021 observation. If the large-
scale jet emission is taken into account in the fitting, EHT2021+
observations are expected to be able to rule out a larger part
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Fig. 11. Distribution over Rhigh of the accepted models in Table 2. The
true input Rhigh (80) is indicated in boldface.

of the GRMHD parameter space (see also Sect. 4). The single
observation with the EHI lacks S/N for a sharp peak, but repeated
observations show a sharp bimodal distribution as only a few
models are still accepted (Table 2). High-frequency EHI obser-
vations bring the distributions closer to the true value with a
smaller width. The repeated 557 GHz observations give the low-
estσM of 0.27×109 M�, corresponding to an uncertainty of 4.4%
with respect to the true input mass.

The sky orientation distribution shows similar trends.
Especially the high-frequency EHI observations substantially
improve the position angle constraints from a σφ of 13.5◦ with
repeated EHI observations at 230 GHz and a σφ of 5.0◦ and 5.1◦
at 557 and 690 GHz, respectively.

3.2.5. MAD input model

The above analysis was done using a single model (SANE, a∗ =
0.5, Rhigh = 80) as input. The parameter estimates obtained for
the different arrays may depend on the input model. In order to
get a rough idea of this input model dependence of the parameter
estimates, here, we repeat the analysis performed above using a
MAD, a∗ = 0.5, Rhigh = 80 input model. MAD models are gen-
erally less variable than SANE models. As the parameter estima-
tion procedure is computationally expensive, we only focus on
the single and ten-epoch EHT2021 and ten-epoch 557 GHz EHI
observations here.

With this input model, the number of accepted models after
the single and ten-epoch EHT2021 and ten-epoch 557 GHz
EHI observations are 87%, 63%, and 18%, respectively. Hence,
slightly more models are accepted after repeated ground-based
and space-based observations, but the overall trend is similar
to using a SANE input model (Table 2). Figure 14 shows the
distribution over magnetic flux, spin, and Rhigh after average
image scoring. The true input magnetic flux (MAD, left panel)
is favored more strongly for the ground-based array, but the dis-
tribution becomes flatter again for the space-based array as some
MAD models with a different spin and Rhigh-values are rejected.
This is also visible in the middle and right panels. As for the
SANE input model (Fig. 10), the spin distribution remains rel-
atively flat with ground-based arrays, but the true input spin
of 0.5 is favored with the space-based array. Finally, the Rhigh
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Fig. 12. Best-fit mass (top) and sky orientation (bottom) distributions of the accepted models in Table 2 after average image scoring for synthetic
data generated with different observing configurations of ground (left) and space-based (right) arrays. The true input mass and sky orientations are
indicated with a red dashed line. The sky orientations for models with retrograde spin were shifted by 180◦.

Table 3. 1σ width of the mass and orientation distributions in Fig. 12.

EHT2017 EHT2021 EHT2021 EHT2021+ EHI, 230 GHz EHI, 230 GHz EHI, 557 GHz EHI, 690 GHz
1 frame 1 frame 10 frames 10 frames 1 frame 10 frames 10 frames 10 frames

σM (109 M�) 1.50 1.30 0.93 0.97 1.38 0.36 0.27 0.36
σM (%) 24.2 21.0 14.9 15.6 22.3 5.7 4.4 5.7
σφ (deg) 60.0 61.0 53.0 56.5 53.9 13.5 5.0 5.1
σφ (%) 16.6 16.9 14.7 15.7 15.0 3.7 1.4 1.4

Notes. The percentages are relative to the true input mass of 6.2 × 109 M� and the full 360◦ circle for σM and σφ, respectively.

distributions are also similar to those for the SANE input model
(Fig. 11), where the space-based array only rules out the disk-
dominated (Rhigh = 1) models and the distributions are relatively
flat otherwise.

Figure 15 shows the widths of the mass distributions (σM)
when fitting to the input model only and to the full GRMHD
library after average image scoring. Here, we see similar num-
bers and trends as when using the SANE input model (Fig. 12).
There is less of an effect of repeated observations here. The sin-
gle EHT2021 observation of the MAD model already ruled out
both the high-spin and disk-dominated SANE models, which
caused the mass distribution to be wide when using the SANE
input model. When fitting to the input model only, the single
EHT2021 observation also gives a smaller σM when using the

MAD model as input, which could be due to weaker variability
in MAD compared to SANE. The repeated EHT2021 observa-
tions give similar σM for the MAD and SANE models. The high-
frequency EHI observations constrain the mass to 0.4% when
fitting to the MAD input model, compared to 0.6% when fitting
to the SANE input model.

4. Summary and outlook

In this paper, we use the methods developed in Event Horizon
Telescope Collaboration (2019e,f) to investigate the potential
black hole and accretion parameter estimation capabilities of
the current and future Event Horizon Telescope and the Event
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Fig. 13. σM (left panel) and σφ (right panel) values and percentages from fitting synthetic data from different observations to the input model
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Fig. 14. Left to right: same as Figs. 9–11, respectively, but using a MAD, a∗ = 0.5, Rhigh = 80 input model.
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Fig. 15. Same as Fig. 12, left panel, but using a MAD, a∗ = 0.5, Rhigh =
80 input model.

Horizon Imager Space VLBI concept. We use synthetic data
from two single input models (MAD+SANE, a∗ = 0.5, Rhigh =
80) fit to a GRMHD image library at 230, 557, and 690 GHz.
We find that the percentage of models rejected from the library
and the ability to measure the black hole mass and black hole
spin axis sky orientation increases significantly when observa-
tions from multiple epochs are combined. By averaging multiple

model frames and epochs, the variance within the models is
reduced, leaving images of the quiescent source structure, which
has a more prominent photon ring than the individual frames and
can therefore be fit more precisely to the observed data.

When the array is extended or a Space VLBI array is
employed, the parameter constraints improve as well. Multi-
epoch observations with the EHT2021 array improve the mass
constraint by 38% compared to a single EHT2017 observation.
The Event Horizon Imager, with potential maximum baseline
lengths of 19 to 57 Gλ depending on frequency, significantly
reduces the GRMHD model parameter space: It strongly favors
models with the correct input magnetic flux, rules out retro-
grade and strongly prograde spin models when using our SANE
input model, and rules out disk-dominated (Rhigh = 1) mod-
els when using both input models. We note that Rhigh is diffi-
cult to constrain further: Once the emission is jet-dominated, the
results are only weakly dependent on the microphysics of par-
ticle heating. The 1σ black hole mass constraint is 4 to 5% for
EHI observations at 557 GHz. This constraint is still limited by
the array’s ability to rule out different GRMHD models: When
only the input model is fit to the data, it is 0.4 to 0.6%. The
mass and sky orientation constraints from fitting to the input
model only are about an order of magnitude better than those
from fitting to the full GRMHD library for all synthetic obser-
vations (Fig. 13). With, for example, multiwavelength obser-
vations, lightcurve analysis, or polarization measurements and
modeling, the library of acceptable models could be signifi-
cantly reduced beyond those ruled out by high-frequency VLBI
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observations only, leading to better constraints. Multiwavelength
constraints were used to rule out 32 of the 60 library models in
Event Horizon Telescope Collaboration (2019e) in addition to
the nine that were ruled out based on the EHT data only. With
the 2017 M 87 polarization data, all SANE models in the EHT
GRMHD library could be ruled out (Event Horizon Telescope
Collaboration 2021a,b).

Assuming that the mass estimation results are, at least in
order of magnitude, applicable to observations of Sgr A* as well,
they provide an estimate of the precision with which general rel-
ativity can be tested. This precision is limited by the ∼0.5% mass
measurement uncertainty from fitting the input model to the ten-
epoch 557 GHz synthetic EHI data. This uncertainty is compara-
ble to the current uncertainty in the Sgr A* mass measurements
by Do et al. (2019) and GRAVITY Collaboration (2019). If, in
the coming decades, we indeed manage to independently con-
strain the GRMHD plasma parameters and potentially get a spin
measurement from further Gravity observations of stellar orbits
and infrared flares in the Galactic Center (e.g., Eisenhauer et al.
2011) or from timing measurements of a pulsar in the Galactic
Center (Liu et al. 2012; Goddi et al. 2017), this means a poten-
tial null hypothesis test of the Kerr metric (Psaltis et al. 2015;
Johannsen et al. 2016) at sub-percent level with high-frequency
Space VLBI. Additionally, such a measurement could poten-
tially strongly constrain non-Kerr alternatives, such as boson
stars (Olivares et al. 2020), dilaton black holes (Mizuno et al.
2018), and axion models (Chen et al. 2020).

All parameter estimates presented in this paper were derived
from two representative input models. They could be investi-
gated for more input models for a more complete picture as dif-
ferent input models could result in different constraints on the
fitted parameters. For both the EHT2021+ array and the EHI,
only one out of many potential array configurations was sim-
ulated here. The simulations give a rough idea of the parame-
ter estimation potential, but the framework used in this paper
can now be used to optimize these future array concepts to pro-
vide the best possible parameter constraints. For the EHT2021+
array, the amount and locations of new antennas can be varied,
and simulations at 345 GHz could be considered as well. For the
EHI, the system noise is a limiting factor, and it could be varied
to formulate the system requirements more robustly. Combined
arrays with space and ground stations (Palumbo et al. 2019; Fish
et al. 2020; Andrianov et al. 2021) could be investigated as well.

Analyses such as these are not only useful for investigating
the science potential of future VLBI arrays, but they can also
be used to optimize observing strategies with current arrays. A
future study on the effects of weather, antenna pointing offsets,
station dropouts, and scheduling on the parameter estimations
could help formulate a set of trigger requirements for the array.

The GRMHD model library is limited in that it has only a
few discrete parameter values for the magnetization, black hole
spin, and electron temperature distributions. Apart from increas-
ing the number of discrete values, one could think about ways to
interpolate between these using, for example, machine learning
techniques (van der Gucht et al. 2020; Yao-Yu Lin et al. 2020) or
fit to semi-analytic models (e.g., Broderick et al. 2016). The vari-
ability within the GRMHD models was found to be an impor-
tant limitation for constraining black hole parameters, as attested
by, for example, the small difference in recovered parameters
between the EHT2021 and EHT2021+ arrays. The analysis
pipeline may be extended to include a characterization of the
source variability as part of the model selection process (e.g.,
Kim et al. 2016; Roelofs et al. 2017; Medeiros et al. 2017, 2018;
Johnson et al. 2017; Bouman et al. 2018; Wielgus et al. 2020),

which could improve the constraining power beyond the aver-
aging method introduced here. EHT expansions are expected
to make the large-scale jet visible in reconstructed images of
the black hole shadow due to an increased dynamic range
(Doeleman et al. 2019; Roelofs et al. 2020; Raymond et al.
2021). This connection between event-horizon scales and
the extended jet has not been taken into account in the
parameter estimation framework used here, as the GRMHD
library images have a small field of view (160 µas). With
the development of GRMHD simulations that have the abil-
ity to connect large (e.g., Fromm et al. 2017, 2018, 2019;
Liska et al. 2018; Chatterjee et al. 2019) and small scales
at different wavelengths and of an extended fitting frame-
work, the constraining power is expected to improve espe-
cially for EHT extensions and space arrays. For a mass
measurement, feature extraction techniques such as a ring fit
(Event Horizon Telescope Collaboration 2019d,f) may be used,
potentially in combination with fitting the more extended (vari-
able) structure (Broderick et al. 2020b). Models and analysis
techniques for Sgr A* and polarization could be considered as
well. These possible avenues for further simulation and fitting
framework development mean that the parameter constraints
presented in this paper should not be interpreted as set limits
on the constraining power of the considered arrays. Rather, they
show what is achievable with the current state of the art.

While the analysis can indeed be extended, this work already
provides some directions for steps to take in the future. Repeated
observations with a modestly extended array (EHT2021) already
improve black hole and accretion parameter estimates signifi-
cantly. Repeated observations seem more important than large
array expansions, at least within the current fitting framework.
Order of magnitude improvements become possible with a
small Space VLBI array, and even stronger constraints may be
attainable with a larger and more sensitive Space VLBI array,
involving more and larger dishes and longer baselines. Mul-
tiwavelength and possibly also polarization data can help to
constrain the model parameter space, allowing precise mass
measurements and hence tests of general relativity. In the long
term, we have the machinery and tools to make high-precision
tests of the physics and astrophysics of black holes a reality.
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Appendix A: Black hole mass scaling

During the optimization process, we allowed the black hole mass
M to vary and we rescaled the pixel size of the images accord-
ingly. The obtained range of black hole masses within our work
varies between about 2 × 109 M� and 12 × 109 M� (see Figs. 4
and 12). In order to test the applicability and the uncertainties
introduced by the black hole mass scaling, we performed the
radiative transfer calculations for our reference model (SANE,
a∗ = 0.5, Rhigh = 80, M = 6.2 × 109 M�) using several black
hole masses (2, 3, . . . , 12 × 109 M�) and compared them to the
rescaled reference model. The comparison was computed in the
image plane via the mean square error (MSE) and in the Fourier
plane using the visibility amplitude (VA).

During the radiative transfer calculations, we fixed the field
of view to 160 µas, used a resolution of 1 pixel per µas, and
iterated the mass accretion rate until a total flux of 0.8 Jy was
obtained. In Fig. A.1, we show the GRRT images for several dif-
ferent black hole masses using Rhigh = 80. The GRRT images
using a black hole mass >4 × 109 M� show very similar struc-
tures: a prominent photon ring and the foot point of the jet as
an inner smaller ring. While we decreased the black hole mass
keeping the field of view fixed to 160 µas, more jet structures
moved into the field of view (see for example the first panel
for M = 2 × 109 M�). More importantly, for smaller black hole
masses, we needed to increase the mass accretion rate to obtain
a total flux density of 0.8 Jy. Connected to the increase of the
accretion rate, the opacity of the plasma orbiting the black hole
increases. The density in the disk is typically higher than in
the jet, and thus the disk turns optically thick and the emitting
regions are shifted into the jet.

In the next step, we rescaled our standard SANE model and
compared it to the SANE model computed with different black
hole masses. The result of this analysis can be seen in Fig. A.2.
For M < 4 × 109 M�, the largest difference comes from the jet
and secondly from the optically thick regions in the disk. For

larger black hole masses, the differences are minor and mainly
occur from slightly better resolved arcs in the highest mass cases.
The MSE between the images computed from the different black
hole masses and the rescaled one reflects the abovementioned
behavior and increases faster for the lower masses than for the
higher masses. In Fig. A.3 we present the evolution of the MSE
(top) and the largest differences in the visibility amplitude (VA)
using the EHT2017 coverage (bottom) for a SANE a∗ = 0.5
(left) and a MAD a∗ = 0.5 model (right) with different values
for Rhigh. Both models show the same behavior: Up-scaling the
images to larger black hole masses than used in the radiative
transfer introduces smaller errors than down-scaling the images
to smaller black hole masses2. The comparison across the accre-
tion model (SANE or MAD) shows that rescaling MAD models
introduces smaller errors than rescaling SANE models. A possi-
ble explanation for this behavior could be the less variable and
more compact emission structure seen in the MAD models.

Inspecting the images (Figs. A.1 and A.2), the structure starts
to change significantly around M = 4×109 M�. From the bottom
panels of Fig. A.3, the VA error is then limited to about 0.1 Jy.
Up-scaling the black hole mass does not introduce VA errors
larger than 0.1 Jy (see bottom panels in Fig. A.3). Based on this
analysis, images using a black hole mass of 6.2× 109 M� during
the radiative transfer should not be down-scaled to black hole
masses smaller than 4 × 109 M�, while up-scaling them leads to
less serious issues. Since for this work the GRMHD models were
ray-traced at 6.2× 109 M� and the input synthetic data were also
generated from a 6.2 × 109 M� model, the mass scaling did not
lead to serious errors in this work. Some library models had a
best-fit mass below 4 × 109 M� (Fig. 4), but most of these were
rejected by the average image scoring procedure, so that the final
mass distributions (Fig. 12) hardly extend below 4 × 109 M�.
When fitting to real data, it is recommended to perform a similar
analysis as presented in this appendix and redo the ray-tracing
if a significant fraction of the fitted masses is in the problematic
regions.
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Fig. A.1. Reference model (SANE, a∗ = 0.5, Rhigh = 80, i = 163◦) using a different black hole mass during the radiative transfer calculations, with
masses of 2 × 109 M� to 12 × 109 M� increasing from left to right. The black hole mass used is indicated at the top of each panel.

2 Assuming a fixed field of view and constant flux of 0.8 Jy.
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Fig. A.2. Pixel differences between the rescaled reference model (SANE, a∗ = 0.5, i = 163◦, using M = 6.2×109 M�) and images using a different
black hole mass during the radiative transfer calculations from left to right 2 × 109 M� to 12 × 109 M�.
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Fig. A.3. Result of the mass scaling analysis for SANE (left) and MAD
(right) model with a∗ = 0.5 for different Rhigh values. Top panels:
MSE and the bottom ones show the maximal difference in the visibility
amplitude.
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