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Article

Estimating the age at onset distribution
of the asymptomatic stage of a genetic
disease based on pedigree data

Marianne A Jonker1, Priya Vart1 and Mar Rodriguez Girondo2

Abstract

Information on the age at onset distribution of the asymptomatic stage of a disease can be of paramount importance in

early detection and timely management of that disease. However, accurately estimating this distribution is challenging,

because the asymptomatic stage is difficult to recognize for the patient and is often detected as an incidental finding or in

case of recommended screening; the age at onset is often interval-censored. In this paper, we propose a method for the

estimation of the age at onset distribution of the asymptomatic stage of a genetic disease based on ascertained pedigree

data that take into account the way the data are ascertained to overcome selection bias. Simulation studies show that

the estimates seem to be asymptotically unbiased. Our work is motivated by the analysis of data on facioscapulohumeral

muscular dystrophy, a genetic muscle disorder. In our application, carriers of the genetic causal variant are identified

through genetic screening of the relatives of symptomatic carriers and their disease status is determined by a medical

examination. The estimates reveal an early age at onset of the asymptomatic stage of facioscapulohumeral muscular

dystrophy.
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1. Introduction

A reliable and accurate estimate of the age at onset distribution of a disease is of great importance for optimizing
follow-up protocols of high-risk patients, aiming at early detection of the disease and timely start of treatment.
For most diseases treatment is more effective if it is started in an early stage than at a later moment when the
disease has progressed.

Diseases usually progress in stages. The early stage is typically asymptomatic. In this phase of the disease the
patient is not aware of having the disease, because no symptoms with which the disease is usually associated are
experienced. Diagnosis is most often in the symptomatic stage when symptoms appear. Although the disease is
not apparent during the asymptomatic stage, some pathological changes may be detectable with a medical test.
For common diseases like breast and colon cancer, population screening programs have been set up in many
countries to identify the disease process during this asymptomatic phase so that intervention can be started at an
early stage in the disease process. However, population screening is only offered for a limited scope of diseases,
because of cost-effectiveness and possible profit for the patient. Small-scale screening is performed in high-risk
sub-populations, typically characterized for certain rare genetic variants.1,2
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Since genetic traits aggregate within families, these high-risk sub-populations are often identified via family

members carrying the genetic variant and being affected by the disease. Specifically, families who satisfy certain

ascertainment criteria (i.e. “at least one affected carrier”) are selected and all family members (up to a certain

degree) are invited for a genetic test. Individuals who carry the genetic variant of interest may be then (regularly)

screened for the presence of the disease in the asymptomatic stage. The screening scheme and especially the age at

which screening starts should depend on the risk the carrier will become asymptomatic. To determine this risk, an

estimate of the age at onset distribution for the asymptomatic stage is needed.
Estimation of this age at onset distribution for the asymptomatic stage is challenging, because it should rely

on data of selected families (based on the presence of the disease). Moreover, the exact age at onset is

never observed for any of the individuals in the data-set. Instead, at every moment of screening it is observed

whether an individual has the disease in asymptomatic stage or not; age at onset is interval-censored by the ages at

time of screening. Sometimes, if the disease is not lethal or no treatment is available, individuals are screened

only once. Then, only the age at time of screening is observed, as well as whether or not the individual is

asymptomatic before examination took place. This type of censoring is referred to as interval-censored type I

or current status.3

With interval-censored data, the exact age at onset is never observed for any individual; therefore, this kind of

censoring differs greatly from right censoring. If the data are obtained from a population of independent, non-

selected individuals, for instance with population screening, the distribution of the age at onset of the asymp-

tomatic disease can be estimated with the non-parametric maximum likelihood estimator (NPMLE) (see, e.g.

Zhang and Sun,3 Groeneboom and Wellner,4 Jewell and van der Laan,5 and Witte et al.6). In case of selected

families, one often tries to correct for ascertainment bias by leaving out the index patients and assuming inde-

pendence between the relatives. Under this independence assumption, the NPMLE could be used, but the esti-

mator is still biased because of the suboptimal ascertainment correction (leaving out the index): it does not take

into account the fact that ascertainment is based on the phenotype of all individuals in the pedigree and not on

one particular person. The bias is especially large in data-sets with small pedigrees.7 Moreover, leaving out the

data of the index patients from the analysis, means that valuable information is discarded, what is especially

unfortunate in rare diseases for which data-sets are often small. A more sophisticated analysis has to be performed

to properly correct for ascertainment and to use the data optimally. This could be done by considering an adjusted

likelihood which conditions on the ascertainment event, for instance by maximizing the retrospective likelihood,

the prospective likelihood, or a joint conditional likelihood (e.g. Carayol and Bonaiti-Pellie8 and Kraft and

Thomas9).
In this paper, we propose a maximum likelihood-based method, adjusted for the ascertainment, to estimate the

distribution of the age at onset of the asymptomatic stage of a disease. The likelihood function has a complex

form as it takes into account all the available information: the interval-censored age at onset of the asymptomatic

stage, the (right-censored) age at onset of the symptomatic stage, the ascertainment criteria, and also family

characteristics that may affect the age at onset distributions. Simulation studies are performed to study the

performance of the proposed estimator.
For many rare disease susceptible genetic variants, the number of detected pedigrees with this variant is small,

like for the disorder that motivated this research. This complicates estimation of the age at onset distributions and

hence the proposed statistical model cannot be too large (too many unknown parameters) to overcome overfitting

of the data. A balance has to be found between the complexity of the model and the information in the data. The

proposed model can also be applied if the sample size is small.
This work is motivated by a study on facioscapulohumeral muscular dystrophy (FSHD), a genetic muscle

disorder. In order to learn more about the progression and causes of the disease, a cross-sectional observational

study of families with at least two symptomatic family members was performed. All family members were offered

a genetic test and a physical examination to determine if they had already entered the asymptomatic stage of the

disease. No extra data were collected after the moment of examination. The age at onset for the asymptomatic

stage is hence type I interval-censored. The date of examination was the same for all the participants in the study

(cross-sectional).
The rest of the paper is organized as follows. In the second section, we introduce notation and establish a

general framework for the problem. Ascertained-corrected conditional likelihood estimation is proposed in the

third section. A simulation study is presented in the fourth section, while in the fifth section the methods are

applied to a data-set of familial FSHD in the Netherlands. Main conclusions and a final discussion follow in the

final section.

Jonker et al. 2345



2. Data, notation, and assumptions

In case of genetic diseases, carriers of the disease susceptible variant are often identified via already detected
carriers; relatives of affected carriers are invited for genetic testing. For data analysis and estimation of the age at
onset distribution of the disease, usually only data of the proven carriers from ascertained families are included in
the data-set (and the non-carriers are left out). Below, notation for carriers of the causal variant is introduced.

Let U and T be the ages at onset of the asymptomatic and symptomatic stage, with U � T almost surely. The
age at examination (genetic test and physical examination) is denoted by C which we assume to be independent of
U and T. This is a reasonable assumption in our setting: due to the cross-sectional nature of the study all pedigrees
fulfilling the ascertainment criteria are retrospectively selected and subsequently screened at the same chronolog-
ical time (see also Section 5, the application). Further, define the indicator function D ¼ IðT � CÞ as 1 if T � C
and 0 otherwise. The indicator function R ¼ IðU � CÞ is defined similarly.

The three possible configurations of observations are C<U<T, U � C < T, and U � T � C. In the first
situation, C<U<T, the individual does not have any symptoms of the disease at the time of examination;
U and T might occur after C, but it could also be that they never occur before the death of the individual. In
the second situation, U � C < T, the disease is diagnosed during the examination, but the individual does not
present any symptoms yet; the individual is in the asymptomatic stage. In the third situation, U � T � C, the
individual has the disease and also notices symptoms at the time of examination, the individual is symptomatic.

We assume that all individuals with a positive genetic test for the variant of interest are physically examined
and included in the data-set. For a single carrier, the triple ðR;TD;CÞ is observed. The age at time of onset of
symptoms, T, is only observed if T � C, so if D¼ 1. This means that the age of appearance of symptoms is known
for symptomatic patients only. Further, U is never observed, but the presence or absence of symptoms at exam-
ination allows to observe R, i.e. we can determine if the asymptomatic stage is entered before or after examination.
The age at time of examination, C, is always observed (if an individual is symptomatic at age C, (s)he will not be
examined again, but it is known at what time this should have taken place if the individual was not symptomatic).
The observed data for each of the three situations are represented in Figure 1.

We assume that U and T follow (parametric) distributions, Ujx�Hg;x and Tjx�Fh;x, where x is a vector of
covariates and g and h are unknown parameters. The covariates in Hg;x and Fh;x may differ, but for ease of
notation we use x for both. The distribution for C, the age at time of examination, is denoted by G and is left
unspecified for the moment. An overview of the notation is given in Table 1. The number of pedigrees in the data-
set is denoted as r, the number of carriers in these pedigrees as nj; j ¼ 1; . . . ; r, and the total number of carriers in
the data-set as n ¼

Xr

j¼ 1
nj.

In the paper it is assumed that, conditional on the covariates and the genetic status of the individuals, the ages
at onset of the asymptomatic and the symptomatic stages are independent between individuals.

For tested non-carriers, the ages at time of genetic testing are known (from the records). These data can be used
for estimating the distribution G. This is under the assumption that the distributions of the age at testing are equal
for carriers and non-carriers. This is a reasonable assumption, because carriers and non-carriers do not know their
carrier status when they decide to be genetically tested or not.

3. Ascertained-corrected conditional likelihood estimation

Our main goal is to obtain an accurate estimator of the distribution of the age at onset of the asymptomatic stage
for carriers of the variant, Hg;x. We propose a two-stage approach. The main idea is to first estimate G and h by
maximizing a likelihood function, Lsymp, for the symptomatic data ðTD;CÞ only. These estimates are inserted in
the likelihood function, Lfull, for all data ðR;TD;CÞ and this function is maximized with respect to g.

Figure 1. Presentation of the observations in the three configurations. There are no observations after C and the exact moment U
took place is not indicated, because this is unknown.
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In the derivation of the likelihood functions, we assume that, conditional on the covariates, the observations of

all carriers are independent, notwithstanding the pedigrees they belong to. In the notation, no discrimination with

respect to the pedigrees is necessary and all carriers are identified with a single and unique index i: the variables

ðUi;Ti;Ci;Ri;DiÞ for individual i.
In Appendix 1, a derivation is given of the ascertainment-corrected prospective likelihood functions Lsymp and

Lfull. The likelihood function based on the symptomatic data ðTiDi;CiÞ; i ¼ 1; . . . ; n only, is given by

Lsymp ¼
Yn

i¼ 1
fh;xiðTiÞDið1� Fh;xiðCiÞÞ1�Di gðCiÞYr

j¼ 1
PðAjÞ

(1)

where Aj is the ascertainment event for pedigree j and PðAjÞ the probability this event occurred. The

ascertainment-corrected prospective likelihood function, Lfull, for the full data ðRi;TiDi;CiÞ; i ¼ 1; . . . ; n is

given by

Lfull ¼
Yn

i¼ 1
gðCiÞð1�Hg;xiðCiÞÞð1�RiÞð1�DiÞðHg;xiðCiÞ � Fh;xiðCiÞÞRið1�DiÞfh;xiðTiÞRiDiYr

j¼ 1
PðAjÞ

(2)

Since the pedigrees are not randomly sampled from the population, the likelihood functions are conditional on

the ascertainment events Aj; j ¼ 1; . . . ; r. The exact expression of the probability PðAjÞ in the denominator of the

likelihood functions depends on the ascertainment rules. These rules may vary over studies, depending on the

severity and prevalence of the disease, but are usually based on observations on the symptomatic stage only. As a

consequence, the product
Yr

j¼ 1
PðAjÞ is a function of the distributions G and Fh;x only. As an example, suppose

that a pedigree is ascertained if at least one individual among the carriers is symptomatic at the time of exam-

ination. The probability this ascertainment event occurs for family j, PðAjÞ, equals 1 minus the probability that

none of the carriers was symptomatic. That means that

PðAjÞ ¼ 1�
Z

1� Fh;xdG

� �nj

(3)

In Section 5, we give an explicit expression of PðAjÞ for our real data application based on the ascertainment of

at least two symptomatic carriers at the time of examination.

3.1. Estimation of parameters

From a theoretical perspective the full likelihood, Lfull, could be maximized with respect to all unknown param-

eters to obtain their maximum likelihood estimates. However, in practice we noticed that optimization algorithms

often do not converge to the global maximum, probably because the parameter space is too big and the algorithm

stops at a local and not the global maximum. Therefore, we propose to perform the estimation of the unknown

parameters in the model in two steps. Simulation studies in Section 4 show good performance of this two-step

procedure. The two steps are given by:

1. Distribution G and parameter h are estimated based on the likelihood function Lsymp in equation (1). More

details are given below.

Table 1. Definition of variables and distributions.

Variable Meaning Distribution

T Age at onset of symptomatic disease for a carrier Fh;x; fh;x
U Age at onset of asymptomatic disease for a carrier Hg;x; hg;x
C Age at time of examination/screening for a carrier G, g

D Indicator function D ¼ IðT � CÞ
R Indicator function R ¼ IðU � CÞ
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2. After inserting the estimates Ĝ and Fĥ;x into the likelihood function Lfull in equation (2), it is maximized with
respect to g. If the ascertainment is based on the symptomatic stage only (what is usually the case), this boils
down to maximizing

Yn
i¼ 1

ð1�Hg;xiðCiÞÞð1�RiÞð1�DiÞðHg;xiðCiÞ � Fĥ;xi
ðCiÞÞRið1�DiÞ

with respect to g.
In the first step of the estimation algorithm, G and h are estimated without using data on the asymptomatic

status (R). In principle, this does not affect the unbiasedness of the estimators, but because not all information is
used standard errors might slightly increase. If G is assumed to follow a parametric distribution, G and h can be
estimated by maximizing the likelihood function Lsymp in equation (1). Alternatively, G could be estimated by the
empirical distribution of the ages at time of examination of the relatives with a negative genetic test (non-carriers).
This estimator is asymptotically unbiased. If no data of non-carriers are available, the ages at examination of the
carriers could be used instead. This yields an estimator that is asymptotically slightly biased. An extensive dis-
cussion on this topic, including simulation studies, is given in Jonker et al.7

Our two-step estimation procedure implies that two maximizations are required, but the dimension of the
parameters space in each maximization problem is reduced. This lowers the computational complexity of the
problem. Of course, the likelihood Lfull in equation (2) could also be maximized with respect to all parameters
simultaneously, but, as mentioned before, the two-step procedure shows more stable results (this has been checked
with simulations).

3.2. Variance estimation

Variance estimates of ĝ and ĥ are derived with a parametric bootstrap. A bootstrap resample is obtained as
follows:

1. Randomly select a pedigree from the original data-set. Say pedigree j is selected.
2. For each of the nj family members i of the selected pedigree j, draw U�

i and T�
i from Hĝ;xi and Fĥ;xi

, respectively
as described in Section 4.1.

3. To guarantee that the resulting bootstrap resample is similar to the original data-set in terms of family size and
structure, the previous step is repeated until the simulated phenotypes of the carriers in the pedigree satisfy the
ascertainment condition.

These three steps are repeated until the bootstrap resample contains the same number of pedigrees as the original
data-set. For each bootstrap resample b, we apply the proposed estimation procedure described in Section 3.1. to
obtain bootstrap estimates of the parameters of interest ðĝb; ĥbÞ. This procedure is repeated a large number of times,
B, and the variances of ĝ and ĥ are computed empirically from the B bootstrap resamples. Confidence intervals for
h and g can be constructed based on these variance estimates. Further, pointwise confidence intervals for HgðtÞ and
FhðtÞ can be constructed by their 2.5 and 97.5% quantiles of the bootstrap estimates of HĝbðtÞ and F

ĥ
bðtÞ.

By constructing the confidence intervals for the unknown parameters in this way, the inaccuracy of the
estimators for G and h is reflected in the width of the confidence interval for g.

4. Simulation study

We conduct a simulation study to illustrate the performance of the proposed estimation procedure. The setup and
the results are described below.

4.1. Simulation setup

We assume that the variables for age at onset of the asymptomatic and symptomatic stages, U and T, follow
gamma distributions. Further, inspired by our real data example, we assume that the variable for the age at time
of examination, C, is independent of (U, T). We consider three basic scenarios which resemble relevant situations
in practice. In scenario 1, we assume a situation in which the asymptomatic stage is short; the onset of the
asymptomatic and symptomatic phases of the disease is close to each other. Namely, we assume that the expected
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age at onset of the asymptomatic stage, U, has mean EU ¼ 60 with standard deviation sdðUÞ ¼ 8:5, and that the
expected age at onset of the symptomatic stage, T, is ET ¼ 66 with sdðTÞ ¼ 8:9. Scenario 2 corresponds to a
situation with an average longer time between the onset of the asymptomatic and symptomatic phases.
Specifically, we assume that the expected age at onset of the asymptomatic stage, U, has mean EU ¼ 48 and
sdðUÞ ¼ 7:6, and that the expected age at onset of the symptomatic stage, T, is ET ¼ 72 with sdðTÞ ¼ 9:2.
Scenario 3, which closely resembles our real data application, is characterized by an early expected age at
onset of the asymptomatic phase (EU ¼ 20), large latency period before the onset of the symptomatic phase
(ET ¼ 60), and large variation in the age-of-onset of both the asymptomatic and symptomatic phases (sdðUÞ ¼ 20
and sdðTÞ ¼ 34:6) (see Figure 2 for the curves). In the steps below, the corresponding shape and scale parameters
are given.

We simulate M¼ 1000 Monte Carlo trials, each consisting of m families (m is taken equal to 100, 500, or 1000).
Additionally, in scenario 3 we also considered m¼ 25 to mimic our real data setting with regard to the reduced
number of observed families. m¼ 25 was not considered in scenarios 1 and 2 since it led to extremely low numbers
of observed families so that inference was meaningless.

For each family j, j ¼ 1; . . . ;m, we follow the steps given below:

1. Simulate family size nj. In order to check the impact of the family size on the performance of our method, two
situations are considered: populations composed of “small” families (nj is sampled from f1; 2; 3; 4g with equal
probability) and populations composed of “large” families (nj is sampled from f3; 6; 9; 12g with equal
probability).

2. For each family member i; i ¼ 1; . . . ; nj, simulate Ui from a gamma distribution with shape and scale param-
eters k1 (k1 ¼ 50 in scenario 1, k1 ¼ 40 in scenario 2, k1 ¼ 1 in scenario 3) and h1 (h1 ¼ 1:2 in scenarios 1 and 2,
h1 ¼ 20 in scenario 3).

3. For each family member i, i ¼ 1; . . . ; nj, simulate the time between entering the asymptomatic and the symp-
tomatic stage, ~Ui, from a gamma distribution with shape and scale parameters ~k1 (~k1 ¼ 5 in scenario 1, ~k1 ¼ 20
in scenario 2, ~k1 ¼ 2 in scenario 3) and scale parameter h1 (equal to the scale parameter used to generate Ui).

4. For each family member i, i ¼ 1; . . . ; nj, define Ti ¼ Ui þ ~Ui as the age at onset of the symptomatic stage of the
disease. Since Ui and ~Ui are independent, Ti follows a gamma distribution with shape parameter k1 þ ~k1 and
scale parameter h1 ¼ 1:2 in scenarios 1 and 2 and 20 in scenario 3.

5. For each family member i, i ¼ 1; . . . ; nj, simulate the age at time of examination Ci from a uniform distribution
at the interval [20, 70].

6. If the ascertainment event Aj occurred, the nj carriers of family j are ascertained. In our simulation setting,
families are selected if at least one symptomatic family member is identified (at least one family member with
Ti � Ci).

7. Independently of the simulations in the previous steps, a sample of 1000 observations from the uniform
distribution at [20, 70] is simulated (the same distribution from which was simulated in step 5). The simulated
values represent the ages at time of genetic testing of the individuals who got a negative test result. These data
are used to estimate G (as explained in Section 3.1).

In the simulation study, families are ascertained if at least one family member is symptomatic at the time of
examination, like in the example given earlier. As a result of the ascertainment, the effective sample that is used for
estimation is smaller than m families; the effective sample size is denoted by r. To compute confidence intervals of
the estimators, we set the number of bootstrap resamples equal to B¼ 500.

In practice, often some carriers in an ascertained pedigree do not participate in the study. It is likely that those
carriers do not show symptoms of the disease. To check the impact of this form of informative missing data,
we perform a second simulation study in which every non-symptomatic family member (D¼ 0) is excluded from
the sample with a probability of either 0.20 or 0.50.

All computations are performed using the statistical software R (R Core Team, 2018). The function nlminb R

function is employed to maximize the log-likelihood functions (1) and (2).

4.2. Simulation results

The main results of the simulation study are shown in Figure 2 and in Table 2. In each graphic in Figure 2, the
solid black and gray lines represent the true distributions of Hðk1;h1Þ and Fðk1þ~k1;h1Þ, respectively. The dashed lines
represent the 2.5 and 97.5% estimated pointwise percentile curves across the M¼ 1000 Monte Carlo trials.
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The left graphics in Figure 2 refer to the “small families” situation (nj 2 f1; 2; 3; 4g), whereas the right graphics

refer to the “large families” situation (nj 2 f3; 6; 9; 12g). Top panels refer to scenario 1 with k1 ¼ 50; ~k1 ¼ 5 and

h1 ¼ 1:2, middle panels refer to scenario 2 with k1 ¼ 40; ~k1 ¼ 20 and h1 ¼ 1:2, and the bottom panels refer to

scenario 3 with k1 ¼ 1; ~k1 ¼ 2 and h1 ¼ 20.
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Figure 2. Results of the simulation study with m¼ 500 families. Top: scenario 1 (k1 ¼ 50; ~k1 ¼ 5; h1 ¼ 1:2). Middle: scenario 2
(k1 ¼ 40; ~k1 ¼ 20; h1 ¼ 1:2). Bottom: scenario 3 (k1 ¼ 1; ~k1 ¼ 2; h1 ¼ 20). Left panels: small families (nj 2 f1; 2; 3; 4g). Right panels:
large families (nj 2 f3; 6; 9; 12g). Solid black and gray lines are the true distribution functions Hðk1;h1Þ and Fðk1þ~k1;h1Þ, respectively.
Dashed lines form a band based on estimated pointwise 2.5 and 97.5% percentiles based on M¼ 1000 Monte Carlo trials.
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From these graphics, the proposed estimators seem to be unbiased. The median estimated curves based on the

median parameter estimate along the M¼ 1000 Monte Carlo trials cannot be distinguished from the theoretical
distributions, and the bands formed by the 2.5 and 97.5% Monte Carlo percentiles nicely cover the theoretical
curves in all the studied scenarios. In each Monte Carlo trial, data of m¼ 1000 families are simulated. Since not all
of these m families satisfied the ascertainment criteria, the effective number of families included for analysis in

each Monte Carlo trial, denoted as r, is considerably lower (see Table 2 for details). This might be the reason for
the wide percentile band in the right upper graphic in Figure 2.

Table 2 complements Figure 2 and provides further results of the simulation study. For each of the studied
scenarios, we provide results on mean estimated relative bias (reBias) (defined as the difference between the

Table 2. reBias, standard deviation (SD), and coverage probabilities of the 95% confidence intervals (Cov) for the location and scale
parameters of the age at onset gamma distributions of U (k1, h1) and T (k1 þ ~k1; h2) along 1000 trials for several sample sizes
(m 2 f100; 500; 1000g families) and effective sample sizes, defined as the mean number of ascertained families along the 1000 trials (�r).

Small families Large families

Parameter m �r reBias SD Cov �r reBias SD Cov

Scenario 1

100 26 0.736 – – 58 0.054 10.594 0.921

500 132 0.076 16.088 0.802 289 0.014 4.299 0.917

k1¼ 50 1000 264 0.033 9.791 0.792 579 0.002 3.076 0.896

100 26 0.656 – – 58 �0.013 0.244 0.900

500 132 0.005 0.337 0.937 289 �0.006 0.105 0.926

h1¼ 1.2 1000 264 0.002 0.225 0.956 579 0.002 0.076 0.919

100 26 0.093 – – 58 0.025 8.623 0.962

500 132 0.020 8.000 0.969 289 0.008 3.771 0.958

k1 þ ~k1 ¼ 55 1000 264 0.009 5.656 0.951 579 0.003 2.485 0.960

100 26 0.076 – – 58 0.001 0.201 0.940

500 132 0.003 0.189 0.932 289 �0.002 0.088 0.948

h2¼ 1.2 1000 264 0.003 0.136 0.942 579 �0.001 0.059 0.960

Scenario 2

100 13 1.384 – – 34 0.070 10.464 0.969

500 65 0.186 20.123 0.941 167 0.013 4.288 0.925

k1¼ 40 1000 130 0.067 10.792 0.922 333 0.008 2.836 0.946

100 13 �0.050 – – 34 �0.013 0.268 0.939

500 65 �0.036 0.402 0.904 167 �0.002 0.125 0.939

h1¼ 1.2 1000 130 <0.001 0.279 0.945 333 �0.003 0.084 0.961

100 13 0.389 – – 34 0.041 15.561 0.975

500 65 0.046 15.168 0.971 167 0.007 6.391 0.958

k1 þ ~k1 ¼ 60 1000 130 0.014 10.036 0.961 333 0.005 4.483 0.957

100 13 0.324 – – 34 0.031 0.341 0.937

500 65 0.036 0.400 0.928 167 0.006 0.144 0.944

h2¼ 1.2 1000 130 0.023 0.246 0.946 333 0.001 0.101 0.953

Scenario 3

100 66 0.309 – – 92 0.027 0.332 0.930

500 329 0.046 0.320 0.891 462 0.009 0.139 0.935

k1¼ 1 1000 658 0.015 0.219 0.897 924 0.003 0.097 0.937

100 66 0.552 – – 92 0.061 6.241 0.946

500 329 0.038 5.822 0.958 462 0.009 2.378 0.954

h1¼ 20 1000 658 0.024 3.888 0.966 924 0.005 1.648 0.951

100 66 0.021 – – 92 0.004 0.224 0.953

500 329 0.006 0.186 0.942 462 0.001 0.101 0.944

k1 þ ~k1 ¼ 3 1000 658 0.002 0.017 0.943 924 <0.001 0.068 0.954

100 66 0.015 – – 92 0.005 4.051 0.954

500 329 <0.001 1.786 0.942 462 0.002 0.904 0.949

h2¼ 20 1000 658 0.002 1.310 0.937 924 <0.001 0.624 0.954

For small families and m¼ 100, the SDs are not reliable and left out from the table. reBias: relative bias.
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simulated mean and true parameter value divided by the true value), empirical standard deviation, and coverage

probabilities across the 1000 Monte Carlo trials of the scale and shape parameters of the distribution of Hðk1;h1Þ
and Fðk1þ~k1;h1Þ. The results regarding bias reinforce some of the findings observed in Figure 2. Within the same

scenario, the populations composed of large families provide better results than the populations composed of

small families, as is expected. Results also improve by increasing the sample size, showing lower reBias and less

variability (SD). With regard to the coverage probabilities, we observe that the coverage probabilities are close to

0.95 in all the studied scenarios. This indicates the good performance of our bootstrap approach to estimate the

standard errors.
Special mention deserves scenario 3, large families and m¼ 25 (corresponding to a mean number of ascertained

families along the 1000 trials of �r ¼ 17), since it resembles our real data setting and hence gives valuable infor-

mation about the expected performance of our method in our motivating data-set. In this case, we observe

reasonable values of reBias (0.202 for k1, 0.667 for h1, 0.025 for k1 þ ~k1, and 0.005 for h2) and coverage prob-

abilities close to 0.95. In terms of standard deviation (0.753 for k1, 237 for h1, 0.467 for k1 þ ~k1, and 4.153 for h2),
the results are also reasonable with exception of k1, with a very large value of standard deviation due to extreme

results in some of the 1000 trials. This should be interpreted as symptoms of instability of our method with very

small samples even if the overall performance is reasonably good in this setting.
In the second simulation study, we evaluate the level of introduced bias in our estimates due to informative

missing. For scenario 1 (k1 ¼ 50; ~k1 ¼ 5; h1 ¼ 1:2), and scenario 2 (k1 ¼ 40; ~k1 ¼ 20; h1 ¼ 1:2), and for missing

probabilities 0.20 and 0.50 of non-symptomatic family members, this bias is visualized in Figure 4 in Appendix 3

(scenario 1 in the graphics on the left and scenario 2 on the right). In scenario 1, the distributions of the asymp-

tomatic and symptomatic stages are both overestimated if non-symptomatic family members do not participate in

the study. The bias is smaller for Hðk1;h1Þ than for Fðk1þ~k1;h1Þ, which is interesting since the estimation Hðk1;h1Þ is our
main objective. In scenario 2 this phenomenon is even more pronounced for Fðk1þ~k1;h1Þ and the bias in the esti-

mation of Hðk1;h1Þ is negligible. Also, in general, the reBias is larger if the proportion of missing family members

increases. Assuming a missing probability of 0.20 in scenario 1, the reBias for Fðk1þ~k1;h1Þ is around 13% at 50 and

60 years old, and reduces to 7% at age 70. The reBias for Hðk1;h1Þ is lower at all ages, around 4% at ages 50 and

60 years, and reduces to 2% at age 70. Assuming a missing probability of 0.50, the reBias for Fðk1þ~k1;h1Þ increases to
40% at the ages 50 and 60 years, and to 20% at age 70. The reBias for Hðk1;h1Þ also increases, reaching 10% at ages

50 and 60 years and to 5% at age 70. Similar results are found in scenario 2 in the estimation of Fðk1þ~k1;h1Þ while the
bias in the estimation of Hðk1;h1Þ remains negligible when increasing the proportion of missing individuals.

The small bias in the estimation of Hðk1;h1Þ is likely due to the fact that the missing data mechanism relies on

the indicator D ¼ IðT > CÞ and hence it is only informative about U given its association with T. As a result, less

bias for estimating Hðk1;h1Þ than for Fðk1þ~k1;h1Þ is expected. The association between T and U is larger in scenario 1

than in scenario 2 which explains the lower observed bias in scenario 2. In summary, even if missing members is a

potential problem and it introduces systematic bias, we expect its impact will be limited.

5. Motivating example

This work was motivated by a study on FSHD, a genetic muscle disorder. The severity of this disease is associated

with a specific form of genetic lesion, the loss of repetitions of the D4Z4 unit.10 Individuals without a loss of units

(they have at least 10 units) are considered to be healthy and are not susceptible to develop the muscle disorder.

It is expected that the age at onset of the asymptomatic and the symptomatic stage is also associated with the

number of repetitions of this unit.
The data come from a cross-sectional study in which at a fixed and non-informative calendar time, all affected

pedigrees in the Netherlands with at least one affected member among the first and second degree of the index

patient (the first diagnosed patient in a family) were invited to participate in the study (see Wohlgemuth et al.11 for

details). So, the ascertained families have at least two affected individuals with both a loss of repetitions of the

D4Z4 unit: the index patient and a relative. Data of 10 pedigrees consisting of in total 155 individuals are

available. Of these 155 individuals, 69 present loss of repetitions of the D4Z4 unit at some degree (the so-

called carriers) and 86 have no genetic alteration (the non-carriers). All individuals within a pedigree with a

loss of repetitions have an equal number of repetitions. An overview of the carrier-data is given in Table 3.
We consider two parametric models: the Weibull distribution for both Hg;x and Fh;x and the gamma distribu-

tion for both (see Appendix 2 for details) and covariate x equals an indicator function that indicates whether an

individual has less than 7 or at least 7 (i.e. 7, 8, or 9) repetitions of the D4Z4 unit. (We also included the number of
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repetitions as a continuous variable, but since the linearity assumption does not seem to hold, it is not considered

further.)
For nj the number of individuals in pedigree j in the data-set, the probability the ascertainment event occurs (at

least two symptomatic patients at examination), equals 1 minus the probability that none or only one of the nj
individuals is symptomatic

PðAjÞ ¼ 1�
Z

1� Fh;xdG

� �nj

� nj

Z
1� Fh;xdG

� �nj�1Z
Fh;xdG (4)

where the term

Z
1� Fh;xdG

� �nj

equals the probability that none of the family members has symptoms at the

time of examination and nj

Z
1� Fh;xdG

� �nj�1Z
Fh;xdG equals the probability that exactly one individual has

symptoms at the time of examination. This probability is inserted in the denominators of the likelihood functions

in equations (1) and (2).
We estimate G by the empirical distribution function of the ages at time of examination C of the individuals

with and without a loss of repetitions together. Since the number of observations is low, we chose to combine the

data when estimating G. Next, we follow the estimation procedure as described in Section 3.
Based on the value of the likelihood (or AIC), the gamma model fits slightly better than the Weibull model. The

actual estimates ofHg;x and Fh;x for both models are very similar. Only the estimates of Fh;x for the group with 7–9

units and after the age of 45 seem to diverge; the estimate based on the gamma distribution increases to almost 0.6

at the age of 60, whereas the estimate based on the Weibull distribution reaches 0.4 at this age. This is probably

due to the fact that the data-set is relatively small and most individuals in the data-set have not reached this age at

time of examination. The form of the estimated parametric distributions (i.e. parameters) is therefore mainly

determined by the events before the age of 45 and the curve is extrapolated after the age of 45. As a consequence

one should be careful with drawing conclusions at higher ages. The estimates based on the gamma models are

given in Figure 3. The estimation procedure was repeated for G estimated by the empirical distribution of data of

individuals with no genetic alteration; the results are similar. The pointwise 95% confidence intervals constructed

with the parametric bootstrap method are wide, especially for Hg;x at younger age. This is possibly because no

data of individuals below the age of 20 are available.
The estimates of the age at onset distribution of the asymptomatic and the symptomatic stage of FSHD show

that these functions depend on the covariate repeat size and both increase until late adulthood. These estimates

can be used in counseling and help in understanding progression of the disease over time. However, the number of

individuals on which the estimates are based is low and should be interpreted with care.
R-code for maximizing the log-likelihood functions is provided in Appendix 4.

6. Discussion

In this paper, we have proposed a maximum likelihood-based method for estimating the age at onset distribution

for the asymptomatic stage of a genetic disease using clinically ascertained pedigree data. Simulation studies

showed that as long as the sample is not too small, our estimation method yields accurate results. Estimates of this

distribution are of great importance for setting up follow-up programs in high-risk families, for instance families

with a genetic variant associated with susceptibility of a disease.

Table 3. Overview of data: For every pedigree, the number of units, carriers, and symptomatic and asymptomatic carriers are given.

Pedigree no. 1 2 3 4 5 6 7 8 9 10

No. of D4Z4 units among carriers 4 5 5 6 6 6 7 7 9 9

No. of carriers in the pedigree 5 9 8 5 7 13 5 3 8 6

No. of symptomatic carriers 5 9 7 5 2 3 3 2 2 2

No. of asymptomatic carriers 0 0 1 0 5 6 1 1 2 1

A carrier is defined as an individual with a loss of repetitions of the D4Z4 unit.
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The estimates of the age at onset distribution of the asymptomatic and symptomatic stage of FSHD, found in

the application, can be used to learn more about the progression of the disease. Since there is no treatment

available and the disease is not life threatening, one could argue whether screening is necessary, but eventually this

decision will be made by the family and their medical doctor.
In this paper, we considered the situation of a cross-sectional study which took place at a randomly chosen

moment (set by the researcher), without any follow-up afterwards. However, regular screening of patients with a

high disposition of a slowly developing disease is quite common.1,2 To fit these kind of screening data, the

expressions of the likelihood functions need to be adjusted, but the underlying principle of estimating the age

at onset distributions for the asymptomatic and the symptomatic stage in two steps remains valid.
Measured family characteristics can be included in the model via covariates. To account for unmeasured family

characteristics, a frailty term (random family effect) could be added to the model (see, e.g. Gong et al.,12 Hsu

et al.,13 Hsu and Gorfine,14 and Gorfine et al.15). In a shared frailty model, every family has its own frailty that

describes the susceptibility of the family members to develop the disease compared to the population of interest.

This model could be further generalized to correlated frailty models in which every individual in the family has its

own frailty term, but these terms are correlated within families (and are independent between families). This gives

the model more flexibility. However, for fitting these models sufficient data must be available; the number of

pedigrees and the number of individuals in the pedigrees must be sufficiently large. This is certainly not the case in

our application, but including frailties in the model is an interesting topic for further research.
Since we are considering the distinct stages (healthy, asymptomatic, symptomatic), our data could be modeled

with a multi-state model.16 However, as far as we know, multi-state modeling with data that are ascertained based

on the outcome is still an open problem.
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Figure 3. Solid lines: Estimates of Hg;x (top panels) and Fh;x (bottom panels) for 4, 5, or 6 repetitions of the D4Z4 unit (left) and for 7,
8, or 9 repetitions (right). Dashed lines: corresponding pointwise 95% confidence intervals.
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In this paper, we have assumed that the medical tests at screening moments are fully sensitive and specific. In

population screening programs like breast and colon cancer, the screening tests are often imperfect; the sensitivity

and specificity of the test are below 100%.6 To preclude unnecessary treatment, a screening test is followed by a

confirmative test in case of a positive screening test. The confirmative test is assumed to be 100% sensitive and

specific. In family studies, only high-risk individuals (carriers) are screened. For this purpose usually the most

accurate medical test is applied and an assumption of full sensitivity and specificity is reasonable. Otherwise, the

expression of the likelihood must be adapted, but the methodology will be the same.
To conclude, reliable estimates of the age at onset distribution of the asymptomatic stage are important for

setting up personal follow-up screening in high-risk families. The methodology described in this paper is therefore

of great relevance.

Acknowledgements

We like to thank M. Wohlgemuth and N. Voermans for collecting and making available the FSHD-data that were analyzed in

Section 5. Further, we like to thank the reviewers for their helpful comments.

Declaration of conflicting interests

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of

this article.

30 40 50 60 70 80 90 100

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

age

pr
ob

ab
ili

ty

H(k1, θ1)
F(k1 + k

~
1, θ1)

30 40 50 60 70 80 90 100

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

age

pr
ob

ab
ili

ty

H(k1, θ1)
F(k1 + k

~
1, θ1)

30 40 50 60 70 80 90 100

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

age

pr
ob

ab
ili

ty

H(k1, θ1)
F(k1 + k

~
1, θ1)

30 40 50 60 70 80 90 100

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

age

pr
ob

ab
ili

ty

H(k1, θ1)
F(k1 + k

~
1, θ1)

Figure 4. Results of the simulation study based on populations of families with nj 2 f5; 10; 15; 20g. Left: scenario 1
(k1 ¼ 50; ~k1 ¼ 5; h1 ¼ 1:2). Right: scenario 2 (k1 ¼ 40; ~k1 ¼ 20; h1 ¼ 1:2). Top: exclusion probability of 0.20. Bottom: exclusion
probability of 0.50. Solid black and gray lines are the true distribution functions Hðk1;h1Þ and Fðk1þ~k1 ;h1Þ, respectively. Dashed lines form a
band based on estimated pointwise 2.5 and 97.5% percentiles based on M¼ 1000 Monte Carlo trials.
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Appendix 1

A.1. Derivation of the likelihood functions

In this appendix we derive the likelihood functions Lsymp and Lfull given in equations (1) and (2). An observation

for individual i in pedigree j is denoted with a subscript ij, with j ¼ 1; . . . ; r and i ¼ 1; . . . ; nj with nj the number of

individuals in pedigree j in the data-set. That means that for individual i from pedigree j, the variables are denoted

as ðUij;Tij;Dij;Rij;CijÞ.

A.1.1. Derivation of likelihood Lsymp

Suppose no information on the asymptomatic stage of the disease at the time of examination is present, Rij is not

observed. Then the observations reduce to ðTijDij;CijÞ. Every individual in the data-set is either non-symptomatic

(Tij>Cij) or symptomatic (Tij � Cij) at the time of examination. The corresponding unconditional likelihood

function for pedigree j equals

Ynj
i¼ 1

gðCijÞfh;xijðTijÞDijð1� Fh;xijðCijÞÞ1�Dij

the likelihood in case of right-censoring in which the censoring time Cij is always observed.
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For Aj be the ascertainment event for pedigree j and PðAjÞ its corresponding probability, the conditional

likelihood for pedigree j, given it was ascertained (the event Aj), is given by

Lsymp
j ¼

Ynj

i¼ 1
fh;xijðTijÞDijð1� Fh;xijðCijÞÞ1�Dij gðCijÞ

PðAjÞ

The exact form of PðAjÞ in terms of the distribution functions depends on the ascertainment criteria. Under the

assumption of independence between pedigrees, the conditional likelihood equals

Lsymp ¼
Yr
j¼ 1

Lsymp
j ¼

Yr

j¼ 1

Ynj

i¼ 1
fh;xjðTijÞDijð1� Fh;xjðCijÞÞ1�Dij gðCijÞYr

j¼ 1
PðAjÞ

Under the assumption that the observations of all relatives are independent, conditionally the carrier status and

the covariates in the model, no distinction between the pedigrees has to be made. As a consequence, for all

individuals in the data-set the double index (ij) can be replaced by a single unique index i. This simplifies the

likelihood function to the likelihood in equation (1).

A.1.2. Derivation of the full likelihood Lfull

For individual i in pedigree j, the observation is given by the triple ðTijDij;Rij;CijÞ. For every individual in the data-

set, there are three possible situations (recall Figure 1):

1. Healthy: Cij < Uij < Tij. The observation is ðCij;Rij ¼ Dij ¼ 0Þ and the corresponding likelihood function

equals gðCijÞð1�Hg;xijðCijÞÞ
2. Asymptomatic: Uij � Cij < Tij. The observation is ðCij;Rij ¼ 1;Dij ¼ 0Þ and the corresponding likelihood

equals gðCijÞðHg;xijðCijÞ � Fh;xijðCijÞÞ
3. Symptomatic: Uij � Tij � Cij. The observation is ðCij;Tij;Rij ¼ Dij ¼ 1Þ, with corresponding likelihood

gðCijÞfh;xijðTijÞ

Combining the three gives the conditional likelihood function for pedigree j

L
full
j ¼

Ynj

i¼ 1
gðCijÞð1�Hg;xijðCijÞÞð1�RijÞð1�DijÞðHg;xijðCijÞ � Fh;xijðCijÞÞRijð1�DijÞfh;xijðTijÞRijDij

PðAjÞ

Under the assumption of stochastic independence between the observations of the individuals in different

pedigrees, the conditional likelihood function equals Lfull ¼
Yr

j¼ 1
Lfull
j . Furthermore, conditionally the covariates

in the double index can be replaced by a single unique index for every individual in the data-set. This yields the

likelihood function (2).

Appendix 2

A.2. Parametric models

For analyzing the FSHD data (see Section 5), the Weibull and the gamma distributions are considered. A link

function between the parameters of these distributions and a covariate x is proposed here.
For the Weibull distribution, the shape parameter is denoted as k and the scale parameter is chosen to be of the

form �x ¼ lexpð�ðb=kÞxÞ. The corresponding hazard function is given by

kh;xðtÞ ¼ fh;xðtÞ
1� Fh;xðtÞ ¼

ktk�1

�k
¼ ktk�1

lkexpð�bxÞ ¼
ktk�1

lk
expðbxÞ ¼ k0ðtÞexpðbxÞ
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with parameter h ¼ ðk; l; bÞ and k0ðtÞ ¼ ktk�1=lk, a proportional hazards regression model with a specific para-

metric baseline hazard. The density and the distribution functions for the age at onset distribution for the

asymptomatic stage of the disease are defined similarly.
The gamma distribution with shape (k) and inverse scale (�) parameters has expectation and variance equal to

k=� and k=�2. We assume that k=� ¼ expðb0 þ b1xÞ, with x the covariate.

Appendix 3

A.3. Additional simulation results

In this appendix additional simulation results are presented in case a part of the healthy individuals is missing. The

estimated curves are plotted in Figure 4. The simulation setting is described in the caption of the figure.

Appendix 4

A.4. R-code for maximizing the likelihood

In this appendix we present the R-code that was used for numerical maximization of the log-likelihood functions

Lsymp and Lfull in the application section.

# MloglikFgamma calculates �L^{symp}, given starting values and data.

MloglikFgamma <- function(par,obs) {

scale <- par[1]

shape <- 1/scale * exp(par[2]þpar[3]*obs$unit)

x <- sum(obs$Delta*log(dgamma(obs$T,shape¼shape,scale¼scale))þ
(1�obs$Delta)*log(1�pgamma(obs$C,shape¼shape,scale¼scale)))

z <- 0

for (i in 1:length(obs$pedsize))

{ shapeped <- 1/scale * exp(par[2]þpar[3]*obs$pedunit[i])

intt <- sum(1�pgamma(obs$Crel,shape¼shapeped,scale¼scale))/length(obs$Crel)

intt2 <- obs$pedsize[i] *

(sum(1�pgamma(obs$Crel,shape¼shapeped,scale¼scale))/length(obs$Crel))

^(obs$pedsize[i]�1)

* sum(pgamma(obs$Crel,shape¼shapeped,scale¼scale))/length(obs$Crel)

z <- z þ log(1�intt^obs$pedsize[i]�intt2)

}

�(x � z)

}

# Mloglikgamma calculates -L^{full} given starting values and observed data

Mloglikgamma <- function(par,obs){

scaleu <- par[1]

shapeu <- 1/scaleu * exp(par[2]þpar[3]*obs$unit)

Fscale0 <- obs$Fscale0

Fshape0 <- 1/Fscale0 * exp(obs$Fbeta0þobs$Fbeta1*obs$unit)

# Delta¼0, Sigma¼0

t1 <- log(1�pgamma(obs$C[obs$Sigma¼=0],shape¼shapeu,scale¼scaleu))

L1 <- sum(t1)

# Delta¼0, Sigma¼1

t2 <- pgamma(obs$C[obs$Sigma*(1�obs$Delta)¼=1],shape¼shapeu,scale¼scaleu)

�pgamma(obs$C[obs$Sigma*(1�obs$Delta)¼=1],shape¼Fshape0,scale¼Fscale0)
t2 <- as.numeric(t2>0)*log(t2) þ as.numeric(t2<¼0)*�1000

L2 <- sum(t2)

�(L1þL2)

}
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# EXECUTION #

obsdata <- list(T¼T,C¼C,Crel¼CCall,Sigma¼Sigma,Delta¼Delta,unit¼unitdi,

pedsize¼pedsize,pedunit¼pedunit)

p <- c(5.5, �4.5, 1.5) #Starting values: scale, beta0, beta1.

res1 <- nlminb(start¼p, objective¼MloglikFgamma, obs¼obsdata,control ¼ list(trace¼TRUE))

obsdata$Fscale0 <- res1$par[1]

obsdata$Fbeta0 <- res1$par[2]

obsdata$Fbeta1 <- res1$par[3]

p <- c(22, �6, 1.3) #Starting values.

res2 <- nlminb(start¼p, objective¼Mloglikgamma, obs¼obsdata,control ¼ list(trace¼TRUE))

Remark: the vectors “pedunit” and “pedsize” are defined as the number of units and the pedigree sizes. Their
lengths equal the number of pedigrees in the data-set. The two vectors should be ordered in the same way.
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