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Abstract: Enteric viruses are the leading cause of diarrhea in children globally. Identifying viral
agents and understanding their genetic diversity could help to develop effective preventive measures.
This study aimed to determine the detection rate and genetic diversity of four enteric viruses in
Gabonese children aged below five years. Stool samples from children <5 years with (n = 177) and
without (n = 67) diarrhea were collected from April 2018 to November 2019. Norovirus, astrovirus,
sapovirus, and aichivirus A were identified using PCR techniques followed by sequencing and
phylogenetic analyses. At least one viral agent was identified in 23.2% and 14.9% of the symptomatic
and asymptomatic participants, respectively. Norovirus (14.7%) and astrovirus (7.3%) were the most
prevalent in children with diarrhea, whereas in the healthy group norovirus (9%) followed by the first
reported aichivirus A in Gabon (6%) were predominant. The predominant norovirus genogroup was
GII, consisting mostly of genotype GII.P31-GII.4 Sydney. Phylogenetic analysis of the 3CD region
of the aichivirus A genome revealed the presence of two genotypes (A and C) in the study cohort.
Astrovirus and sapovirus showed a high diversity, with five different astrovirus genotypes and four
sapovirus genotypes, respectively. Our findings give new insights into the circulation and genetic
diversity of enteric viruses in Gabonese children.

Keywords: enteric viruses; children; phylogenetic analysis; diarrhea; Gabon

1. Introduction

Gastroenteritis (GE) remains a major public health issue worldwide, especially among
children [1]. Globally, more than 700 million cases of acute gastroenteritis in children
below 5 years, and 0.8–2 million deaths, per year, have been estimated [2]. GE can have
several causes. Previous studies have identified rotavirus, norovirus, astrovirus, and
adenovirus as major viral etiologies of diarrheal illness [3–6]. In particular, rotavirus
group A (RVA) (family Reoviridae) remains the most important etiological agent of severe
diarrhea in children under five years of age, with an estimated 215,000 deaths recorded
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in 2013 [7,8]. In recent decades, data on the epidemiology and disease burden of RVA
infection have contributed to the implementation of RVA vaccination (the monovalent
Rotarix (GlaxoSmithKline Biologicals, Rixensart, Belgium) and the pentavalent human-
bovine reassortant RotaTeq (Merck, Kenilworth, NJ, USA)). Although recommended by
the World Health Organization (WHO), these two RVA vaccines have demonstrated a low
efficacy in resource-poor countries [9].

Noroviruses (NoVs) are associated with estimated deaths of over 200,000 annually,
with an important proportion occurring in children from developing countries [10,11].
NoVs comprise the Norovirus genus within the Calciviridae family and are small, round
structured viruses, non-enveloped with a positive-sense single-stranded RNA genome
of around 7.5 kb consisting of three open reading frames (ORFs). ORF1 encodes six non-
structural proteins including the viral polymerase. ORF2 and ORF3 encode the major and
minor capsid proteins VP1 and VP2, respectively [12,13]. NoV strains are segregated into
ten genogroups (G), of which genogroups GI, GII, GIV, GVIII, and GIX contain primarily
human viruses linked with GE. Through phylogenetic analyses, at least forty-eight geno-
types infecting humans were identified, with the GII.4 genotype responsible for at least
70% of infections worldwide [14,15].

Other viral agents, including astroviruses (AstV, family Astroviridae), sapoviruses
(SaV, family Caliviridae), and aichiviruses (AiV, family Picornaviridae), are present overall
in much smaller proportions than NoVs and RVA. AstVs, single-stranded RNA viruses, are
an important cause of diarrhea in children. They are classified into ten genotypes, of which
eight are “classic” genotypes (HAstV1–HAstV8), and two have been described only recently
(HAstV-MBL and HAstV-VA/HOM) [16,17]. HAstVs have been identified worldwide and
the overall detection rate among children with acute gastroenteritis ranges between 0% and
20% [18]. Human SaVs were detected in people of all ages in both outbreaks and sporadic
cases worldwide, with a median detection rate of 6.2% (with a range from 0.2% to 39%)
among children <5 years old in low- and middle-income countries [19]. Human SaVs are
classified to seventeen different genotypes belonging to four genogroups (GI, GII, GIV,
and GV) [20]. AiVs were suggested to play a role in GE, especially in outbreaks caused
by contaminated seafood [21]. Human pathogenic AiVs belonging to the genus Kobuvirus
were classified as AiV-1 and are divided into three different genotypes (A-C) [22], with
little information available about their geographical distribution.

In Sub-Saharan Africa and South-East Asia, where over 90% of diarrhea-related deaths
occur among children younger than 5 years [23], routine diagnostic or surveillance for viral
etiology of diarrheal diseases is lacking or limited [24]. A previous epidemiological study
conducted in 2015 in four cities of Gabon reported the predominant proportion of RVA,
followed by human adenovirus (HAdV), NoVs, SaV, and AstV among symptomatic chil-
dren [25]. However, following up these results as part of a national surveillance program
prior to rotavirus vaccination in Gabon is essential to establish a solid evidence base.

In this study, we assessed the genetic diversity of enteric viruses in Gabonese children
younger than 5 years.

2. Materials and Methods
2.1. Sample Collection

In this study, stool samples were collected from children under 5 years of age who
resided in one of Gabon’s main cities (Lambaréné) and its surroundings (a dominantly
rural area without running water and electricity, and reduced access to the health system)
between April 2018 and November 2019. Cases were children presenting at the outpatient
departments of the two main hospitals with diarrhea or history of diarrhea within the last
24 h. Subsequently, stool samples were randomly obtained from healthy children living in
the same neighborhoods and having the same life conditions (source of drinking water,
type of toilet, feeding practice, and material of living house) as those of diarrhea cases.
All controls were gender- and age-matched with children with diarrhea. The biological
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material was immediately transported to the CERMEL laboratory and stored in RNAlater
at −20 ◦C until analysis.

2.2. Viral RNA Extraction

RNA was extracted from 140 µL of the stool suspension in RNAlater spiked with an
internal extraction- and PCR-control (MS-2 phage) using the QIAamp viral RNA Mini Kit
(Qiagen, Hilden, Germany). All steps of the RNA isolation were performed following the
manufacturer’s instructions and the viral RNA was eluted in a total volume of 60 µL and
stored in aliquots at −70 ◦C.

2.3. PCR Detection and Genotyping

The presence of NoV and SaV was first screened using a single-step reverse transcrip-
tion real time PCR as described previously [26,27]. In short, 10 µL mastermix containing
SuperscriptTM III Platinum OneStep RT-qPCR System (Invitrogen, Karlsruhe, Germany)
and 2 µL virus RNA extracted was used for the detection. All NoV positive samples were
subsequently genotyped based on amplification and nucleotide sequencing of the RNA-
dependent RNA polymerase gene (RdRp, ORF1) and the capsid gene (ORF2, P2 region)
as previously described [28]. SaV positive samples by RT-qPCR were characterized by
amplifying a polymerase region of 650 bp using a reverse transcription nested PCR. Briefly,
RT-PCR with the first PCR round were performed using OneStep RT-PCR kit (Qiagen,
Germany) and HotStar Master Mix Kit (Qiagen, Germany) respectively. For the first round,
2 µL of RNA was used in a final reaction volume of 12.5 µL using the SaV 53a+b and SaV
58 primers, and the second round of PCR was performed using the SaV 55a+b and SaV
58 primers. All primers were used at the final concentration of 500 nM (Supplementary
Tables S1 and S2).

For the detection of AiV, a nested RT-PCR was performed amplifying 180 bp of 3CD-
region as previously described [29]. Primers AI1 and AI2 were used with the OneStep
RT-PCR kit (Qiagen, Germany) for the first PCR round and the primers AI3 and AI4 with
the HotStar Master Mix Kit (Qiagen, Germany) for the second PCR round. AiV positive
samples were further genotyped by using a nested RT-PCR amplifying a 520 bp fragment
of the 3CD region. For the first round, 2 µL of RNA was used in a final reaction volume of
12.5 µL by using OneStep RT-PCR kit (Qiagen, Germany) with the AI68 and AI70 primers.
For the second round of PCR, the HotStar Master Mix Kit (Qiagen, Germany) was used
with the AI69 and AI71 primers. All primers were used at the final concentration of 200 nM
(Supplementary Tables S1 and S2).

All samples were screened for AstV infections by a pan-specific AstV semi-nested
RT-PCR using the primers AV89a, AV89b, AV89c, AV90a, AV90b, AV90c, and AV91, as
previously described [27]. The further genotyping of AstV positive samples was done by
reverse transcription nested PCR as previously described [30] using the primers AV91,
AV92a, and AV93 (Supplementary Table S1).

2.4. Nucleotide Sequencing and Phylogenetic Analysis

All PCR products (NoV, SaV, AiV, and HAstV) were submitted to Sanger sequencing
using the corresponding PCR primers (Supplementary Table S1). Phylogenetic analysis
was performed with Geneious prime 11.0.4 and MEGA7.0.26. Norovirus sequences were
submitted to the online Norovirus Tool to assign genotypes (https://www.rivm.nl/mpf/
typingtool/norovirus/) (accessed on 1 December 2020). For phylogenetic analysis, nu-
cleotide sequences were aligned with the MAFFT algorithm in Geneious prime 11.0.4. In
MEGA7.0.26, trees were constructed using the best fit models of substitution pattern with
the lowest BIC score (Bayesian information criterion). The reliability of the branching pat-
tern was tested with bootstrapping (1000 replicates). The nucleotide sequences of the viral
pathogens of this study are available under the following GenBank accession numbers AiV
MW525344-MW525346, HAstV MW525347-MW525357, NoV-GI MW506839-MW506842

https://www.rivm.nl/mpf/typingtool/norovirus/
https://www.rivm.nl/mpf/typingtool/norovirus/
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(ORF1), and MW513431-MW513437 (P2 region); NoV-GII MW513401-MW513421 (ORF1)
and MW506843-MW506861 (P2 region); and SaV MW525358-MW525362.

2.5. Statistical Analysis

Statistical analysis was done by Pearson’s chi-square and Fisher’s exact tests using
GraphPad Prism software version 6.00 for Windows. A p-value < 0.05 was considered to
be statistically significant.

3. Results
3.1. Study Population

A total of 244 stool specimens were collected from participants aged between 0 and
59 months with a median age of 14 months. Of these, 72.5% (177/244) were symptomatic
children between 0 and 59 months of age with a median age of 12 months, whereas the
median age of asymptomatic participants was 24 months. Among children with diarrhea,
57.1% (101/177) were male and 70.1% (124/177) lived in an urban area; compared to the
healthy group in which 41.8% (28/67) were male and 61.2% (41/67) lived in an urban
area (Lambaréné). Overall, 190 children of the study population were aged between 0 and
24 months, with a high proportion of symptomatic participants (81.6%; 155/190).

3.2. Detection Rate of Enteric Viruses in the Study Population

Among 177 stool samples collected from patients with diarrhea symptoms, 41 (23.2%)
were positive for at least one virus, versus 10/67 (14.9%) in the healthy group (p = 0.2).
NoV (14.7%; 26/177) was the most prevalent in symptomatic children, followed by AstV
(7.3%; 13/177). The two remaining viruses (SaV and AiV) were detected at a lower rate
of 3.4% (6/177) and 1.1% (2/177), respectively. The overall detection rate of NoV, AstV,
SaV, and AiV was 9% (6/67), 4.5% (3/67), 1.5% (1/67), and 6% (4/67), respectively, among
controls. Among the NoVs, NoV-GII was the most frequently detected in patients with
diarrhea, whereas the detection rate was similar for NoV-GI and NoV-GII in the control
group. There was no statistical significance between detection rate of enteric viruses in
symptomatic and healthy children (Table 1). Of the 51 study participants who tested
positive for enteric viruses, 17.6% contained more than one virus. Mixed infections were
found in 6 (3.4%) children suffering from diarrhea (NoV-GI+SaV, NoV-GI+AstV, NoV-
GII+AstV (n = 3) and SaV-AstV) and 3 (4.5%) cases in control group (NoV-GI+AiV, NoV
GI+SaV and NoV-GII+AstV).

Table 1. Detection rate of enteric viruses among children with/without diarrhea.

Virus Diarrhea (n = 177) No Diarrhea (n = 67) p-Value Total (n = 244)

NoV 26 (14.7%) 6 (9.0%) 0.2764 32 (13.1%)
NoV GI 6 (3.4%) 3 (4.5%) 1.0000 9 (3.7%)
NoV GII 20 (11.3%) 3 (4.5%) 0.1046 23 (9.4%)

AstV 13(7.3%) 3 (4.5%) 0.5371 16 (6.6%)
SaV 6 (3.4%) 1 (1.5%) 0.6212 7 (2.9%)
AiV 2 (1.1%) 4 (6.0%) 0.1184 6 (2.5%)

Table 2 summarizes the distribution of enteric viruses in children with/without
diarrhea according to age, sex, and living area. Overall, enteric viruses screened were
found only in symptomatic children aged 0 to 24 months, whereas the age group 25 to
59 months was found to be more infected among controls. NoV, particularly NoV-GII, was
the most frequently detected virus within the six first months of life, with 21.3% (10/47) of
children with diarrhea. The age group 7 to 12 months was found to be infected by all four
enteric viruses (NoV, AstV, SaV, and AiV) with detection rates of 17% (8/47), 12.8% (6/47),
2.1% (1/47), and 4.3% (2/47), respectively. No case of any enteric viruses tested in this
study was found in children from 24 to 59 months presenting with diarrhea. In contrast to
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the control group, symptomatic children from surrounding villages and female diarrhea
cases were more infected with gastroenteritis viruses detected in this study.

Table 2. Distribution of enteric viruses in the study population according age, gender, and location.

Diarrhea Cases

NoV n (%) NoV GI n (%) NoV GII n (%) AstV n (%) SaV n (%) AiV n (%)

Age group (Months)
0–6 (n = 47) 11 (23.4) 1 (2.1) 10 (21.3) 4 (8.5) 0 (0) 0 (0)
7–12 (n = 47) 8 (17.0) 3 (6.4) 5 (10.6) 6 (12.8%) 1 (2.1) 2 (4.3)

13–18 (n = 45) 5 (11.1) 2 (4.4) 3 (6.7) 2 (4.4) 2 (4.4) 0 (0)
19–24 (n = 16) 2 (12.5) 0 (0) 2 (12.5) 1 (6.3) 3 (18.8) 0 (0)
25–59 (n = 22) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)

Gender
F (n = 76) 13 (17.1) 2 (2.6) 11 (14.5) 9 (11.8) 4 (5.3) 1 (1.3)

M (n = 101) 13 (12.9) 4 (4.0) 9 (8.9) 4 (4.0) 2 (2.0) 1 (1.0)
Residence

Surrounding villages (n = 53) 10 (18.9) 3 (5.7) 7 (13.2) 3 (5.7) 4 (7.5) 1 (1.9)
Lambaréné (n = 124) 16 (12.9) 3 (2.4) 13 (10.5) 10 (8.1) 2 (1.6) 1 (0.8)

Healthy children

NoV n (%) NoV GI n (%) NoV GII n (%) AstV n (%) SaV n (%) AiV n (%)

Age group (Months)
0–6 (n = 7) 1 (14.3) 0 (0) 1 (14.3) 0 (0) 0 (0) 0 (0)

7–12 (n = 8) 0 (0) 0 (0) 0 (0) 1 (12.5) 0 (0) 0 (0)
13–18 (n = 4) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)

19–24 (n = 16) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 1 (6.3)
25–59 (n = 32) 5 (15.6) 3 (9.4) 2 (6.3) 2 (6.3) 1 (3.1) 3 (9.4)

Gender
F (n = 26) 1 (3.8) 1 (3.8) 0 (0) 1 (3.8) 0 (0) 2 (7.7)
M (n = 41) 5 (12.2) 2 (4.9) 3 (7.3) 2 (4.9) 1 (2.4) 2 (4.9)
Residence

Surrounding villages (n = 39) 3 (7.7) 0 (0) 3 (7.7) 2 (5.1) 0 (0) 3 (7.7)
Lambaréné (n = 28) 3 (10.7) 3 (10.7) 0 (0) 1 (3.6) 1 (3.6) 1 (3.6)

The temporal pattern of enteric viruses detected from symptomatic children during
the study period is shown in Figure 1. NoV, SaV, and AstV were more frequently detected
during the dry season than during the rainy season. There was, however, a significant
difference in NoV occurrence between dry and rainy seasons throughout the sampling
period (dry season (20.4%; 20/98) and rainy season (7.6%; 6/79) p = 0.019), with a notable
peak of NoV infection in July 2018 and August 2019. The two cases of AiV were detected
during the rainy season. The seasonal distribution of enteric viruses from asymptomatic
children is not shown because samples were collected very late in the study period and did
not cover at least one year of sampling.

3.3. Sequence and Phylogenetic Analyses of Gastroenteritis Viruses
3.3.1. Noroviruses

From 32 norovirus positive samples, 31 (96.9%) were genotyped. Of note, norovirus
GII was most frequently detected 71% (22/31) followed by GI at 29% (9/31) (Table 3).
Based on both RdRp and capsid sequences, four genotypes were identified among NoV-GII
including a rare recombinant GII.P31-GII.4 New Orleans strain; for one sample, only the
capsid sequence could be determined (GII.6). Overall, the common recombinant GII.P31-
GII.4 Sydney strain was predominant at 45.2% (14/31). Regarding NoV-GI, four strains
were genotyped on both RNA polymerase and capsid sequences, among which we found
a rare recombinant (GI.P11-GI.2). In addition, four genotypes were only identified based
on the capsid gene.
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Table 3. Norovirus (NoV) polymerase and capsid genotypes obtained from the study population.

Polymerase (RdRp)
Genotype

Capsid (P2 Domain)
Genotype Number (%)

Genogroup I
GI.P3 GI.3 1 (3.2)

GI.5 1 (3.2)
GI.P4 GI.4 1 (3.2)
GI.P5 GI.5 1 (3.2)

GI.3 2 (6.5)
GI. 1 (3.2)

GI.2 1 (3.2)
GI.P11 GI.2 1 (3.2)

Genogroup II
GII.P17 GII.17 3 (9.7)
GII.P17 GII. 1 (3.2)
GII.P31 GII.4 Syd 14 (45.2)

GII.6 1 (3.2)
GII.P31 GII.4 NO 3 (9.7)

Phylogenetic analysis based on RNA polymerase and capsid regions for GI showed
a diversity and clustering among Gabonese strains. The phylogenetic trees obtained in
this study demonstrated that all NoV-GI strains genotyped either from RdRp or capsid
region were grouped in different clades. Interestingly, all of these NoV-GI Gabonese strains
shared a close similarity with recombinants from different geographical areas, indicating
the circulation of closely related strains globally (Figure 2).

The phylogenetic analysis for NoV-GII revealed that NoV-GII Gabonese strains formed
three distinct phylogenetic clusters in the two trees based on RdRp and capsid sequences,
respectively. The polymerase-based tree clearly showed that 17 Gabonese strains were
closely related to the reference strain GII.P31 (JX459907). The other clusters were most
similar to GII.P17 (LC037415). A similarly clustering was observed with the phylogenetic
tree on the capsid region. Of the four sequences which clustered in the ORF1 with the
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reference strain GII.P17 (LC037415), three samples could be amplified in the P2 region.
These three sequences clustered in the P2-phylogenetic tree with the reference sequence
GII.17 (AY502009). Of the 17 GII.P31 sequences, 16 samples could be amplified in the P2
region. Three of these sequences clustered with the reference sequence GII.4 New Orleans
(JN400623), whereas the other sequences were more related to the reference sequence GII.4
Sydney (JX459908) (Figure 3).
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Figure 2. Phylogenetic tree of a 248 bp alignment of ORF1 region of the GI and GII NoV strains
from Gabon and NoV reference sequences (accession nos. are indicated). Samples from symptomatic
patients are marked with a dot and samples from asymptomatic with a rhombus. The tree was
constructed using the neighbor-joining method with bootstrap test (1000 replicates) and the Kimura
2-parameter method available in MEGA7. Bootstrap values above 70 are shown. The bar indicates
the nucleotide substitution per site.
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Figure 3. Phylogenetic tree of a 691 bp alignment of P2 region (ORF2) of the GI and GII NoV strains
from Gabon and NoV reference sequences (accession nos. are indicated). Samples from symptomatic
patients are marked with a dot and samples from asymptomatic patients with a rhombus. The tree
was constructed using the neighbor-joining method with the bootstrap test (1000 replicates) and the
Kimura 2-parameter method available in MEGA7. Bootstrap values above 70 are shown. The bar
indicates the nucleotide substitution per site.
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3.3.2. Astroviruses

This study revealed that 6.6% (16/244) of the participants had AstV infection. Se-
quence and phylogenetic analysis of the positive cases from a partial nucleotide sequence
of ORF1b region confirmed 11 HAstV genotypes. This analysis demonstrated that samples
belonged to five different HAstV genotypes. Classic HAstV were predominant with a
proportion of 63.7% (7/11). Among these, three samples belonged to HAstV-5, three others
belonged to HAstV-4, and the last sample belonged to HAstV-8. Within the newly HAstV,
three samples belonged to HAstV-VA2 and the remaining sample belonged to MLB type 1
(MLB1) (Figure 4).

Viruses 2021, 13, 545 10 of 16 
 

 

rhombus. The tree was constructed using the neighbor-joining method with the bootstrap test 
(1000 replicates) and the Kimura 2-parameter method available in MEGA7. Bootstrap values 
above 70 are shown. The bar indicates the nucleotide substitution per site. 

3.3.2. Astroviruses 
This study revealed that 6.6% (16/244) of the participants had AstV infection. 

Sequence and phylogenetic analysis of the positive cases from a partial nucleotide 
sequence of ORF1b region confirmed 11 HAstV genotypes. This analysis demonstrated 
that samples belonged to five different HAstV genotypes. Classic HAstV were 
predominant with a proportion of 63.7% (7/11). Among these, three samples belonged to 
HAstV-5, three others belonged to HAstV-4, and the last sample belonged to HAstV-8. 
Within the newly HAstV, three samples belonged to HAstV-VA2 and the remaining 
sample belonged to MLB type 1 (MLB1) (Figure 4). 

 
Figure 4. Phylogenetic tree of a 419 bp alignment of ORF1b region of astrovirus strains from 
Gabon and HAstV reference strains (accession nos. are indicated). Samples from symptomatic 
patients are marked with a dot and samples from asymptomatic patients with a rhombus. The tree 
was constructed using the maximum likelihood method with the bootstrap test (1000 replicates) 
and Tamura 3-parameter method available in MEGA7. The bar indicates the nucleotide 
substitution per site. 

3.3.3. Sapoviruses 
In order to characterize SaV strains, the sequence of polymerase (partial nucleotide 

sequence of ORF1) was phylogenetically analyzed (Figure 5). Five of all SaV positive 
samples were successfully genotyped and assigned into two distinct genogroups, GI and 
GII. Three different GI genotypes were found in our study: GI.2 (608), GI.3 (317) and GI.1 
(C021 and 449). The GII strain was classified into GII.4 (524). 

 HAstV5|KF157967

 HAstV5|DQ028633

 HAstV/638/Gabon/ORF1b

 HAstV/680/Gabon/ORF1b

 HAstV/650/Gabon/ORF1b

 HAstV2|KF039911

 HAstV3|GU732187

 HAstV6|GQ901902

 HAstV7|AF248738

 HAstV8|KP862744

 HAstV/C066/Gabon/ORF1b

 HAstV1|Z25771

 HAstV4|DQ344027

 HAstV/637/Gabon/ORF1b

 HAstV/641/Gabon/ORF1b

 HAstV/691/Gabon/ORF1b

classic HAstV

 MLB1|AB823732

 HAstV/442/Gabon/ORF1b

 MLB2|KT224358

 MLB3|JX857870

MLB-HAstV

 VA.1|KJ920197

 VA.2|GQ502193

 HAstV/560/Gabon/ORF1b

 HAstV/675/Gabon/ORF1b

 VA.2|JQ673585

 HAstV/317/Gabon/ORF1b

 VA.3|GQ502196

 VA.4|JX857869

VA-HAstV

 AAstV|AB033998

99

98

100

92

93

100

100

94

98

90

97

83

81

98

99

0.5

Figure 4. Phylogenetic tree of a 419 bp alignment of ORF1b region of astrovirus strains from Gabon
and HAstV reference strains (accession nos. are indicated). Samples from symptomatic patients
are marked with a dot and samples from asymptomatic patients with a rhombus. The tree was
constructed using the maximum likelihood method with the bootstrap test (1000 replicates) and
Tamura 3-parameter method available in MEGA7. The bar indicates the nucleotide substitution
per site.

3.3.3. Sapoviruses

In order to characterize SaV strains, the sequence of polymerase (partial nucleotide
sequence of ORF1) was phylogenetically analyzed (Figure 5). Five of all SaV positive
samples were successfully genotyped and assigned into two distinct genogroups, GI and
GII. Three different GI genotypes were found in our study: GI.2 (608), GI.3 (317) and GI.1
(C021 and 449). The GII strain was classified into GII.4 (524).

3.3.4. Aichiviruses

In this study, six AiV positive samples were found, confirmed by sequencing. To
characterize these samples in more detail we used a prolonged PCR in the same region
(3CD). Our analysis revealed that two samples belonged to genotype A and one sample
belonged to genotype C, which is rare [21] (Figure 6).
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Figure 5. Phylogenetic tree of a 593 bp alignment of polymerase region (ORF1) of sapoviruses
(SaV) strains from Gabon and SaV reference sequences (accession nos. are indicated). Samples
from symptomatic patients are marked with a dot and samples from asymptomatic patients with
a rhombus. The tree was constructed using the neighbor-joining method with the Bootstrap test
(1000 replicates) and the Kimura 2-parameter method available in MEGA7. The bar indicates the
nucleotide substitution per site.
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4. Discussion

The present study describes the detection and characterization of viral agents impli-
cated in gastroenteritis in Gabonese children. Over the duration of the study, at least one
enteric virus was detected in 20.9% of the study population, of which 23.2% (41/177) were
symptomatic cases and 14.9% (10/67) in the control group. Contrary to the previous study
conducted in Gabon in 2015 [25], rotaviruses and adenoviruses were not tested in this study.
In accordance with previous studies, NoV was predominant, followed by HAstV, SaV, and
AiV [25,31]. AiV, reported for the first time in Gabon and in Central Africa, was found
with a lower detection rate in symptomatic cases (1.1%) than in healthy children (6%).
This finding is in line with previous reports, suggesting that AiV may not an important
viral gastroenteritis agent [32]. In our study, more than one virus was detected in 17.6% of
studied children, while higher detection rates of 35.5% were found in Cameroon, in Gabon
(33.7%), and mixed infections rates of 6.7% and 2.8% were respectively reported in Nigeria
and Canada [25,33–35]. In this regard, we clearly noticed a disparity of mixed infections
rate amongst studies, which could be explained by the number of targeted virus species,
sample size, sampling (repeat sampling), storage, and the detection methods [34].

Our findings demonstrated that children were carried enteric viruses implicated
in diarrhea in the 0 to 24 months age group. This is consistent with previous reports
emphasizing that maternal antibodies transmitted during breastfeeding are not sufficient to
protect against gastroenteritis viruses during the first 24 months of life [36,37]. Furthermore,
our results suggest that the presence of viruses in this age group could be due to direct
contact with people who experienced gastroenteritis symptoms, contaminated water, or
food [38]. This could be explained by the fact that at this age, children crawl, are carried by
people, and are likely to touch any contaminated object.

A significant seasonal pattern of NoV was observed in this study with major peaks
during dry seasons. This finding is similar to that reported in Cameroon showing a peak of
NoV in the beginning of wet season [33]. HAstV was detected with a major peak during
the dry season, which is similar to a report from Nigeria [34]. Regarding SaV and AiV,
we observed a relative seasonal distribution throughout the sampling period with a peak
during the dry season for SaV and the occurrence of AiV in April and November. These
findings are in line with the results described in previous studies reporting SaV seasonal
distribution with a peak in the dry season, and high seasonal distribution of AiV infections
in January, February, and December [22,39].

In this study, NoV was the most common virus detected in symptomatic children
(14.7%) and the control group (9%), with a high rate of NoV-GII among participants with
diarrhea (11.3%). This predominance was also reported in other studies showing that NoV
was the second most prevalent virus after rotavirus compared to other enteric viruses. In
addition, our results are comparable to findings in Cameroonian and Burkinabe studies
reporting NoV cases in healthy children, albeit with a considerably lower detection rate
in our study [33,40]. More generally, we found a lower prevalence of NoV in our study
compared to that reported in all previous studies from neighboring countries [33,37]. As
observed elsewhere, GI strains were less frequently detected and had a higher diversity
than GII genogroups [26,30,41]. The predominance of the GII.4 variants in this study may
reinforce the hypothesis and emphasize the need to explore whether new GII.4 variants
possibly arise in Africa where some of the GII.4 variants circulated earlier [24]. Moreover,
the fact that NoV GII.4 was found to be predominant in our study, whereas in various
African countries the GII.17 strain emerged and was mostly detected in Kenya, underlines
that dynamic evolution of NoVs might occur unexpectedly [42,43]. The most prevalent
NoV genotype was GII.P31-GII.4 Sydney, with a 45.2% detection rate. This finding is
consistent with the results reported in Germany, Brazil, and China [26,44,45]. Surprisingly,
we did not find that the emerging recombinant strain GII.P16-GII.4 replaced GII.P31-GII.4
Sydney around the world [46,47].

Our results confirmed that HAstV (7.3%) is less common in children with acute
gastroenteritis compared to NoV. This finding is relatively similar to the detection rate of
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HAstV found in children with diarrhea in Nigeria (6.8%) [30] and Burkina Faso (4.9%) [40].
HAstV showed a high diversity in this study, clustering with newly identified HAstV
(HAstV-VA2 and MLB1) and classic HAstV (HAstV5, HAstV4, and HAstV8). Both HAstV
genotypes (HAstV-VA2 and MLB1) were for the first time reported in Gabon. Interestingly,
we did not find the most common HAstV-1 in this study but only uncommon HAstV-5 and
rare HAstV-8 genotypes were identified.

SaV was found at a low detection rate of 3.4% in children with diarrhea. This is in line
with a previous report revealing a range of 3% to 17% of SaV infections among children
with gastroenteritis in high- and low-income countries [48].This result also shows that SaV
is less detected in gastroenteritis cases than NoV. The circulation of SaV genogroups shows
variability with SaV-GI. Moreover, SaV-GI.1 was detected in two individuals whereas only
one case of each other GI genotypes was detected among the study population. In contrast,
SaV-GII was less frequent in this present study than in Burkinabe children with diarrhea
where SaV-GII appeared to be predominant [40].

A low prevalence of AiV A strains was found in this study with more cases in healthy
children as reported elsewhere [32]. This finding is concordant with several studies that
reported low prevalence of this enteric virus [49,50]. All detected AiV strains belonged
to genotype A and C. In contrast to previous findings reporting the presence of AiV A in
children with gastroenteritis [49,51], the AiVs A detected in our study were from healthy
children. This reinforces the need of further studies to elucidate the full spectrum of clinical
symptoms of AiV. The rare AiV C reported only in Burkina Faso [40] and France [52] from
children with gastroenteritis was also identified in a symptomatic child in our study.

Overall, due to the close relationship between the Gabonese enteric viruses and the
reference strains, our results revealed that the same strains are circulating around the
world. This could be explained by the migration of foreigners that facilitate the importation
of infectious agents [53]. In addition, the relative proportions of viruses reported here
suggests a possible problem of life conditions, such as water or food contamination, or the
sociodemographic level of population. It is therefore important to understand the local
epidemiology of these viruses, which will provide information on the disease transmission
and contribute to the development of vaccines and treatment strategies.

A limitation of our study is the small size of control group. Furthermore, the fact
that the rotavirus and adenovirus were not screened in this study underestimated the
information about virus co-infection. In addition, seasonal distribution of enteric viruses
among asymptomatic children was not shown because of the sampling that started towards
the second year.

5. Conclusions

In conclusion, this study shows an important rate of viral detection (23.2%) among
Gabonese children <5 years with diarrhea. NoV was the predominant virus associated
with diarrhea. To the best of our knowledge, this study provides the first report on the
detection of AiV in Central Africa, particularly in Gabon.

Molecular characterization reported a great diversity of enteric virus strains. Thus, our
data would be useful for better management of preventive strategies such as vaccination.
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