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Abstract: Inborn errors of metabolism (IEM) are inherited conditions caused by genetic defects
in enzymes or cofactors. These defects result in a specific metabolic fingerprint in patient body
fluids, showing accumulation of substrate or lack of an end-product of the defective enzymatic step.
Untargeted metabolomics has evolved as a high throughput methodology offering a comprehensive
readout of this metabolic fingerprint. This makes it a promising tool for diagnostic screening of
IEM patients. However, the size and complexity of metabolomics data have posed a challenge
in translating this avalanche of information into knowledge, particularly for clinical application.
We have previously established next-generation metabolic screening (NGMS) as a metabolomics-
based diagnostic tool for analyzing plasma of individual IEM-suspected patients. To fully exploit
the clinical potential of NGMS, we present a computational pipeline to streamline the analysis of
untargeted metabolomics data. This pipeline allows for time-efficient and reproducible data analysis,
compatible with ISO:15189 accredited clinical diagnostics. The pipeline implements a combination of
tools embedded in a workflow environment for large-scale clinical metabolomics data analysis. The
accompanying graphical user interface aids end-users from a diagnostic laboratory for efficient data
interpretation and reporting. We also demonstrate the application of this pipeline with a case study
and discuss future prospects.

Keywords: untargeted metabolomics; next-generation metabolic screening; inherited metabolic
diseases; data analysis; mass spectrometry; bioinformatics pipeline; clinical application; biomarkers

1. Introduction

Inborn errors of metabolism (IEMs) are genetically determined biochemical disorders
that have severe clinical consequences, which mostly present at neonatal or childhood age,
but also milder presentations are known in adult patients. These disorders are caused
by the dysfunction of enzymes or cofactors, leading to disruption of a given biochemical
pathway and accumulation of toxic compounds and/or abnormal energy metabolism. If
left undiagnosed and untreated, IEMs can result in irreversible intellectual and physical
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disability, neurological damage and can even be fatal. Early detection and accurate diag-
nosis are crucial to be able to initiate personalized therapy as soon as possible to achieve
optimal patient outcome. A limited selection of treatable IEMs with a relatively high
incidence is covered in newborn screening [1]. For those IEMs not covered in newborn
screening, biochemical diagnostics are offered at metabolic laboratories, which traditionally
involves a selection of targeted metabolite assays based on the clinical phenotype of the
patient. Although this approach has proven itself useful over the years, it faces the problem
of false-negative diagnosis when the clinical phenotype is incomplete. Additionally, yet
unknown metabolic deviations cannot be detected [2]. This issue can be overcome by
performing unbiased metabolic profiling to provide a true metabolic fingerprint of an
individual suspected to have an IEM.

High-resolution mass spectrometry (MS)-based untargeted metabolomics is being
increasingly used for metabolic profiling [3–6]. Metabolomics is defined as the systematic
measurement and analysis of small molecules, called metabolites, present in biological
samples [7]. In contrast to targeted metabolomics, where only a limited panel of known
analytes is measured, untargeted metabolomics is holistic in nature and aims to measure as
many metabolites as possible in a biological sample, generating a metabolic fingerprint
representative of a biochemical phenotype. The broad metabolome coverage offered by
untargeted metabolomics offers an unprecedented opportunity for diagnostic screening
of individual patients suspected of an IEM. This approach also holds great promise for
biomarker discovery for IEMs as well as the identification of novel metabolic disorders [8,9].
We recently demonstrated the application of untargeted metabolomics for diagnostic screen-
ing for IEM, an approach we termed next-generation metabolic screening (NGMS) [10].
This approach uses ultra-high-performance liquid chromatography quadrupole time-of-
flight mass spectrometry (UHPLC-QTOF-MS) for holistic metabolic profiling in the plasma
of individual IEM-suspected patients. The NGMS approach was thoroughly validated for
use in ISO:15189-accredited diagnostics, including testing of plasma samples from patients
with 46 distinct IEMs [10]. From July 2020 on, NGMS has been used as a first-tier test
for diagnostic screening for IEMs in our laboratory, and over 600 diagnostic reports have
been generated.

As is typical with untargeted metabolomics, this approach generates large volumes
of data, and tens of thousands of mass features are detected at a high level of sensitiv-
ity and resolution, raising the need for computational tools that can help in processing
and interpreting this data. A growing number of software tools have been developed
for metabolomics data processing and analysis that are widely accepted and used in the
scientific community [11–13]. Most often, it is essential to apply a sequential combination of
these tools at different stages, such as data conversion and preparation, peak detection from
every sample data file, retention time alignment across multiple sample data files, statistical
analysis and finally data interpretation to create a fully functional computational pipeline.
In this article, we introduce our automated bioinformatics pipeline for metabolomics data
analysis, its software architecture, and the user interface that complements the NGMS
analytical workflow for application in the diagnostic screening of IEMs. We demonstrate
its application in a case study of an IEM diagnosed patient, shedding light on the complete
process from sample measurement until interpretation, and how this workflow enables
laboratory specialists to perform data processing and analysis in a highly efficient, repro-
ducible, and traceable manner, adhering to ISO:15189 regulations. We also highlight the
need for and importance of a robust bioinformatics pipeline design that is reproducible
and easy to modify and extend, specifically in the context of use in diagnostics. The focus
of this article does not include details on the NGMS analytical approach, data processing
algorithms and statistical methods in the context of our workflow; for details on such
information, please see [10].
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2. Pipeline Design and Architecture

The NGMS procedure can be broadly categorized into four steps: data acquisition,
quality control, data processing, and data interpretation. This is schematically represented
in Figure 1.
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Figure 1. Schematic overview of the NGMS procedure and different tools embedded in the NGMS
computational pipeline.

High-resolution untargeted metabolomics data are acquired in vendor-specific *.d file
format using an Agilent (Santa Clara, CA, USA) 1290 UHPLC coupled to an Agilent 6540
or 6545 QTOF mass spectrometer. A worklist, in *.wkl format, is generated using Agilent
MassHunter™ Acquisition (version 10.1 Build 10.1.48) software, and contains information
about the analytical run, samples, and datafiles.

Several quality control steps are necessary to ensure the quality of the acquired raw
data is up to diagnostic standards. The QC reporting tool assists in this process and is
described in detail in Section 4.

The data processing phase of the NGMS pipeline consists of mass feature alignment,
metabolite annotation and statistical selection steps, as displayed in Figure 2. For more
details on these processing steps, please see [10]. Three components are responsible for
managing the data processing and are used in a sequential order—the storage tool, the
workflow starter, and the workflow engine.
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Figure 2. Flow chart of the steps performed by the Workflow engine once a new session is initiated
by the user for data processing using the Workflow starter. Input data are colored in blue, the various
data processing steps in the pipeline are colored in green, and output data are colored in red. Arrows
identify the path of the workflow at each step of the pipeline. There are multiple external tools used
in different steps to perform the data preprocessing and annotation like the XCMS R package [14],
CAMERA R package [15] and the Human Metabolome Database (HMDB) [16].

2.1. Storage Tool

The storage tool transfers the *.d format raw data files from the computer connected
to the mass spectrometer to a read-only storage system. The worklist file is stored to-
gether with the measurement data. The tool also converts the raw data files to a vendor-
independent *.mzML generic file format using msConvert [17]. The storage tool also verifies
the integrity of the worklist and verifies data transfer using checksums. A screenshot of
the Storage tool is displayed in Figure 3a.
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2.2. Workflow Starter

The workflow starter is an interactive application that allows a user to initiate process-
ing of the acquired data by the workflow engine. The user needs to select the measurement
data for positive and/or negative ion mode and specify all parameters required by the
workflow. This information is saved in a read-only file in *.json format for traceability and
reproducibility. A screenshot of the Workflow starter displaying the main window with all
the existing sessions and a second window with the necessary parameters to start a new
session is displayed in Figure 3b.

2.3. Workflow Engine

The data processing steps in Figure 2 are executed consecutively by an in-house
developed workflow engine on a high-performance computing (HPC) cluster. The principal
design objective of the workflow engine is to dispatch job steps securely and efficiently
across centrally managed compute and storage resources. The workflow engine also tightly
integrates with HPC when managed by a SLURM job scheduler [18].

The workflow engine itself is a containerized suite of tools, designed for both scal-
ability and reproducibility, and allows containerized as well as conventional workflow
components to be declared in user-defined job specifications. All software components in
the NGMS pipeline are containerized using Singularity [19]. These containers encapsulate
both the individual software components as well as their dependencies to ensure portability
and reproducibility. All processing data are stored on a read-only storage system.

3. Data Interpretation

The interpretation tool enables users to interactively and concurrently browse the
mass features detected during the data processing stage. The main purpose of the tool is
to allow technicians and laboratory specialists to identify features that are likely clinically
relevant for the patient. Technicians will manually validate clinically relevant features in
the raw data, to control for false-positive results caused by artifacts during data processing
automation. A screenshot of the interpretation tool graphical user interface is displayed in
Figure 4, along with the case study in Section 5.
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The interpretation tool supports filtering of the detected mass features based on
the mass-features-related properties such as retention time, m/z, p-value, fold change,
metabolite annotations, etc., determining which features are displayed and how they are
ordered. For application in diagnostics, a filter preset is used based on pre-configured
parameters and a panel of 340 known diagnostic metabolites—please refer to [10] for
the composition of this panel. However, in a research setting, users can opt for different
filtering parameters, or no filtering at all, to leverage fully the untargeted metabolomics
approach, or ‘open the metabolome’, in analogy to exome panel analysis followed by
open exome evaluation. Retention times on our UHPLC-QTOF-MS setup are only known
for metabolites in our diagnostic metabolite panel. Therefore, metabolites outside the
diagnostic panel are annotated with lower confidence, based solely on m/z.

The tool includes the following features for interpretation:

• A list of measured patient samples available to the current session;
• A comprehensive per sample feature table;

# Concatenating positive and negative ion mode results;
# Including mass spectrometry data, statistical metrics, and links to third party

metabolite and pathway databases;
# With unmodifiable result columns, to safeguard result integrity;
# Users can add per-feature annotations describing diagnostic relevance based

on assigned user roles (i.e., data analyst, clinical laboratory specialist) and the
changes are logged in an audit trail;

• Bar plot-based visualization for comparing the detected sample features against qual-
ity control, validation, or other patient samples;

• A collaborative review and approval process of each sample for patient diagnosis
based on configurable user roles; and

• Real-time updates to each sample’s status as users collaboratively browse, annotate
and review features.
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4. Validation and Quality Control

By setting up extensive validation and quality control protocols, both the analytical
and bioinformatic workflows for NGMS have acquired ISO 15189 accreditation through
the Dutch Accreditation Council (RvA, M090, 2021). The exact analytical quality control
procedure is described in [10]; below, we address the partial automation of the analytical
quality control procedure and the validation of the automation itself.

4.1. Quality Control of Data

To ensure satisfactory quality of metabolomics data for diagnostic use, it is crucial to
incorporate various quality control checks in the NGMS workflow. We have implemented
quality control both at the analytical level as well as for the data processing. Through
this strategy, both the UHPLC-QTOF-MS performance, as well as the NGMS pipeline
performance are thoroughly monitored.

Before the acquisition data is processed by the NGMS pipeline, analytical quality
control is performed, the actual compounds that are monitored are elaborately described
in [10]. A part of the analytical QC procedure is automated by the QC Reporting tool.
The FindByFormula functionality implemented in the Agilent MassHunter Qualitative
Analysis software (version 10.0 Build 10.0.10305.0) is applied to the raw data to detect the
external standards in the analytical quality control samples, and the internal standards in
each patient sample. The exact internal and external standards and their required recovery
thresholds are fully described in [10]. MassHunter generates a compound list containing the
retrieved internal and external standards. The QC Reporting tool subsequently generates an
excel-based report that enables efficient and traceable evaluation of the following analytical
quality control aspects:

a. Repeatability of retention time;
b. Repeatability of response;
c. Mass accuracy.

A screenshot of the QC reporting tool is provided in Figure 5.
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4.2. Validation of Data Processing

For data processing quality control, a sample termed ‘validation plasma’ in which
several IEM-related metabolites have been spiked in diagnostic concentrations is processed
in identical manner to patient samples. This is a new quality control step that has been
added for data processing to the NGMS workflow [10]. During data processing, several
plots are generated including a PCA plot, extracted ion chromatograms and a retention
time alignment plot. After data processing, the diagnostic output of the validation plasma
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should include all spiked metabolites as significantly increased. The validation plasma
report, containing information on the presence or absence of the spiked metabolites, is
automatically generated as an output with every NGMS session. The spiked metabolites
included in this report are displayed in Table 1. Only when both analytical as well as
data processing quality control have rendered a satisfactory outcome can a diagnostic
interpretation session be started.

Table 1. Table of spiked metabolites as reported for the validation plasma described in Section 4.2.

Name Feature
Mass

Retention Time
Delta %

Mean Intensity
Patient ESI− ESI+

Dihydrouracil 115.0501 4.716981 6,865,418 - ↑
Ornithine 133.0973 0.990099 3,652,369.5 - ↑
Xanthine 153.0407 6.122449 14,056,124.5 - ↑
Ornithine 155.079 0.990099 426,197.5 - ↑

Pimelic acid 161.0808 2.523659 1,699,250.5 - ↑
L-Phenylalanine 167.0892 2.506964 25,365,509 - ↑

Xanthine 175.0227 6.122449 616,580 - ↑
L-Tyrosine 183.0842 3.317535 8,101,318.5 - ↑

Pimelic acid 184.0662 2.523659 1,089,222 - ↑
L-Phenylalanine 188.0678 2.506964 2,532,136.5 - ↑
L-Phenylalanine 189.0713 2.506964 268,255 - ↑

N-Acetylmannosamine 244.0796 1.470588 9,803,499 - ↑
gamma-Glutamylphenylalanine 296.1308 2.763385 20,148,682.5 - ↑

L-Palmitoylcarnitine 400.3423 0 19,211,216.5 - ↑
L-Palmitoylcarnitine 401.3458 0 5,606,300 - ↑
L-Palmitoylcarnitine 422.3247 0 270,923.5 - ↑

Mesaconic acid 129.0194 6.329114 19,645,695.5 ↑ -

Xanthine 151.026 3.255814 22,174,103 ↑ -

Xanthine 152.0289 3.255814 1,288,583 ↑ -

Pimelic acid 159.0661 0.770416 28,452,947 ↑ -

Pimelic acid 160.0697 0.770416 7,346,168 ↑ -

L-Phenylalanine 164.0714 6.376812 4,407,907 ↑ -

L-Phenylalanine 165.0751 2.608696 9,234,293.5 ↑ -

L-Tyrosine 180.0664 5.294118 33,613,076 ↑ -

L-Tyrosine 180.0661 8.823529 462,782.5 ↑ -

N-Acetylmannosamine 256.0597 1.470588 5,667,181.5 ↑ -

gamma-Glutamylphenylalanine 293.1141 3.971119 47,200,428 ↑ -

gamma-Glutamylphenylalanine 294.1174 3.971119 7,670,664 ↑ -

4.3. Validation of Pipeline Releases

To allow for accurate and reproducible patient results, both bioinformatic and clinical
validation are performed every time new features are added to the NGMS pipeline and
released for use in the form of a major or minor release. Within our software develop-
ment process, we perform unit, integration, component, and workflow testing which is
subsequently reported with every release. For clinical validation, data acquired from a
complete analytical run including patient samples is reprocessed with the newer version of
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the NGMS pipeline and patient results and clinical interpretation thereof are compared to
the previous pipeline version. The criterion for a successful clinical validation is that no
crucial metabolites should differ which would lead to a false positive or a false negative
IEM diagnosis. Additionally, processing of data from the validation plasma samples should
always render the spiked metabolites as significantly increased.

5. Case Study: Very Long-Chain acyl-CoA Dehydrogenase Deficiency in an
Adult Patient

A 40-year-old male was referred to our adult metabolic clinic because of a history of
myopathy, exercise-induced muscle cramps, exercise intolerance, and intermittent rhab-
domyolysis. NGMS was performed on a plasma sample as diagnostic screening for a
possible inborn error of metabolism. The analytical run generated raw data files (*.d format)
for positive and negative ion mode each being 42.8 GB and 26.7 GB in size, respectively.
The NGMS computational pipeline detected 18,028 mass features in the positive mode and
17,567 features in the negative mode. Out of these the mass features found to be altered
were 712 in the positive mode and 681 in the negative mode. A total of 42 altered mass
features were annotated as metabolites from our diagnostic metabolite panel, based on
m/z and retention time. In all, 595 altered mass features were associated with one or more
metabolites present in HMDB based on m/z. Processing of the data by the pipeline took
1 h 40 min.

Upon evaluation of results in the interpretation tool, it was immediately apparent
that all carnitine ester species of long-chain fatty acids were significantly increased in our
patient. This profile is indicative of a diagnosis of late onset very long-chain acyl-CoA
dehydrogenase (VLCAD) deficiency (OMIM 201475). VLCAD catalyzes the initial step of
mitochondrial β-oxidation of long-chain fatty acids with a chain length of 12 to 20 carbon
atoms. Figure 4. shows a screenshot of results in the interpretation tool for this patient, in
which the feature of tetradecenoyl/C14:1-carnitine, a commonly used VLCADD marker, is
highlight ed, which was significantly increased as M + H+ adduct with a fold change of
~400. To calculate the fold change, we first take the average of each duplicate measurement
and subsequently the median intensity across all other patients in the batch.

Upon selection of a specific feature, a bar plot is displayed that visualizes the intensity
of that feature across all samples measured in the batch as in Figure 6a, where the signal for
tetradecenoyl/C14:1-carnitine in the patient is shown in red compared to other individuals
in the analytical run in grey, and to the plasma QC pool in blue. Apart from the tetrade-
cenoyl/C14:1, several other metabolites were significantly increased, with fold changes
ranging from 20–1200. All the observed perturbed compounds are listed in Table 2 and
their corresponding bar plots are displayed in Figure 6b–i.

Table 2. List of carnitine esters observed to be perturbed after processing and analyzing the acquired patient sample data using the
NGMS computational pipeline.

Bar Plot Feature Name m/z Retention
Time (min) Adduct HMDB ID Fold Change

(a) Tetradecenoyl/C14:1 370.295 13.37 M + H HMDB0002014 407.936

(b) Dodecanoyl/C12:0 367.264 12.24 M + Na HMDB0002250 51.387

(c) Tetradecadienyl/C14:2 368.279 12.82 M + H HMDB0013331 156.804

(d) Tetradecenoyl/C14:0 372.311 13.82 M + H HMDB0005066 354.890

(e) Hexadecenoyl/C16:1 398.326 14.08 M + H HMDB0013207 1227.147

(f) Palmitoyl/C16:0 401.345 14.52 M + H HMDB0000222 59.362

(g) Linoleyl/C18:2 424.342 14.32 M + H HMDB0006469 66.594

(h) Octadecenyl/C18:1 426.357 14.69 M + H HMDB0013338 74.586

(i) Stearoyl/C18:0 428.373 15.08 M + H HMDB0000848 29.269
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Figure 6. Bar plots for diagnostically relevant mass features corresponding to carnitine ester species of long-chain fatty
acids. Patient is shown in red, other patients measured this analytical run in grey, plasma QC pools are shown in blue and
validation plasma samples are displayed in green.

These findings were reproduced in a quantitative targeted acylcarnitine assay, and
the diagnosis was further confirmed on the enzymatic and genetic level (compound het-
erozygous variants in ACADVL, c.1244C > T p.(Ala415Val) and c.1322G > A p.(Gly441Asp).
The patient was referred to a physician specialized in inborn errors of metabolism and was
counseled to prevent fasting, avoid ketogenic and high-fat diets, and use medium-chain
triglyceride supplementation preceding endurance-type exercise. A supplementary video
file demonstrating all the steps of the NGMS computational pipeline is included in the
supplementary files of this article.

6. Discussion

We describe our bioinformatics approach for embedding untargeted metabolomics
in the clinical diagnostic process of our metabolic laboratory in an efficient and robust
manner. We detail the pipeline software architecture and the first graphical user interface
for clinical interpretation of untargeted metabolomics data for screening of IEMs. We also
demonstrate the utility of this pipeline by presenting a case study from the clinic.

In a clinical diagnostic laboratory, all analyses are performed under ISO:15189 accredi-
tation for medical laboratories [20]. This encompasses strict regulations regarding trace-
ability and reproducibility of test results, and thorough validation of analytical processes
including software and bioinformatics pipelines. Therefore, for diagnostic application of
metabolomics, a reproducible and well-documented data processing and analysis pipeline
is crucial, which also incorporates necessary quality checks as well as logging of clinical
interpretation of results. Automating the data processing steps in the analysis workflow
also reduces manual errors contributing to data integrity.
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We further envision the inclusion of additional modules in the NGMS computational
pipeline that can improve diagnostic interpretation and reduce the current time required
for clinical interpretation. This includes developing machine-learning-based classifiers to
screen patient data for an accurate diagnosis of IEM, without needing a panel of known
metabolites, but using the full potential of the untargeted metabolomics data, the so-called
‘open the metabolome’ approach. The classifiers will determine the most discriminant and
highly correlated features, characteristic to the condition and would be trained to minimize
the number of false-negative and false-positive cases. This can in turn support clinical
decision making and help to find novel biomarkers for known IEMs and not yet known
IEMs in untargeted metabolomics data.

Currently, efforts are put into developing a database that includes records on aberrant
mass features detected in patients analyzed previously, along with frequently encountered
deviations due to medication and other exogenous influences. We suspect that identifying
features that are rarely aberrant might help to us find relevant biomarkers, analogous
to evaluating the incidence of genetic variants of unknown significance in the general
population through databases such as the genome aggregation database (gnomAD) [21].
Including filters based on information from such a mass feature database to the interpre-
tation tool will further automate the interpretation of mass features outside the panel of
known IEM-related metabolites.

In conclusion, we here showcase a robust, reproducible pipeline for application of
untargeted metabolomics data in clinical diagnostics of IEM. The software architecture and
validation aspects described here can assist other clinical diagnostic laboratories in shaping
their design and setup of bioinformatics pipelines.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/1
0.3390/metabo11090568/s1, Video S1: NGMS pipeline video tutorial.

Author Contributions: Conceptualization, P.K. and K.L.M.C.; methodology, P.K., A.Z., A.G., and
B.H.; software, A.Z., AG., P.K., B.H., S.C., and M.v.d.V.; validation, K.L.M.C., L.A.J.K., M.C.D.G.H.,
and U.F.H.E.; writing—original draft preparation, writing—review and editing, R.A.W.; P.K., K.L.M.C.,
A.Z., and AG.; writing—review and editing, all authors; visualization, P.K.; supervision, P.K.; fund-
ing acquisition, A.J.v.G. and C.G. All authors have read and agreed to the published version of
the manuscript.

Funding: This research made use of metabolomics infrastructure that is part of the NWO-funded
Netherlands X-omics initiative, project 184.034.019 (to A.J.v.G.). This project was also partly funded
by The Netherlands Organization for Scientific Research (917-17-353 to C.G.)

Institutional Review Board Statement: All patients and control subjects (or their guardians) regis-
tered their informed consent for the possible use of their left-over body fluid samples from clinical
diagnostics for laboratory method validation purposes in their electronic patient record. The study
was conducted in accordance with the Declaration of Helsinki, and following national (Dutch WMO
(Medical Research Involving Human Subjects Act), article 7:467) and institutional legislation (CMO
Radboudumc Nijmegen) on the use of left-over material from clinical diagnostics.

Informed Consent Statement: All procedures followed were in accordance with the ethical standards
of the responsible committee on human experimentation (institutional and national) and with the
Helsinki Declaration of 1975, as revised in 2000. Informed consent was obtained from all patients (or
their legal guardians) for being included in the study.

Data Availability Statement: The data presented in this study are available upon reasonable request
from the corresponding author. Data are not publicly available due to the terms of the ethical approval.

Acknowledgments: We are indebted to Siebolt de Boer, Joris Reintjes and Ed van der Heeft for
technical assistance in metabolomics measurements.

Conflicts of Interest: The authors declare no conflict of interest.

https://www.mdpi.com/article/10.3390/metabo11090568/s1
https://www.mdpi.com/article/10.3390/metabo11090568/s1


Metabolites 2021, 11, 568 12 of 12

References
1. Almontashiri, N.A.M.; Zha, L.; Young, K.; Law, T.; Kellogg, M.D.; Bodamer, O.A.; Peake, R.W.A. Clinical Validation of Targeted

and Untargeted Metabolomics Testing for Genetic Disorders: A 3 Year Comparative Study. Sci. Rep. 2020, 10, 9382. [CrossRef]
[PubMed]

2. Ismail, I.T.; Showalter, M.R.; Fiehn, O. Inborn Errors of Metabolism in the Era of Untargeted Metabolomics and Lipidomics.
Metabolites 2019, 9, 242. [CrossRef] [PubMed]

3. Miller, M.J.; Kennedy, A.D.; Eckhart, A.D.; Burrage, L.C.; Wulff, J.E.; Miller, L.A.D.; Milburn, M.V.; Ryals, J.A.; Beaudet, A.L.; Sun,
Q.; et al. Untargeted Metabolomic Analysis for the Clinical Screening of Inborn Errors of Metabolism. J. Inherit. Metab. Dis. 2015,
38, 1029–1039. [CrossRef] [PubMed]

4. Bonte, R.; Bongaerts, M.; Demirdas, S.; Langendonk, J.G.; Huidekoper, H.H.; Williams, M.; Onkenhout, W.; Jacobs, E.H.; Blom,
H.J.; Ruijter, G.J.G. Untargeted Metabolomics-Based Screening Method for Inborn Errors of Metabolism Using Semi-Automatic
Sample Preparation with an UHPLC-Orbitrap-MS Platform. Metabolites 2019, 9, 289. [CrossRef] [PubMed]

5. Tebani, A.; Abily-Donval, L.; Afonso, C.; Marret, S.; Bekri, S. Clinical Metabolomics: The New Metabolic Window for Inborn
Errors of Metabolism Investigations in the Post-Genomic Era. Int. J. Mol. Sci. 2016, 17, 1167. [CrossRef] [PubMed]

6. Tebani, A.; Afonso, C.; Marret, S.; Bekri, S. Omics-Based Strategies in Precision Medicine: Toward a Paradigm Shift in Inborn
Errors of Metabolism Investigations. Int. J. Mol. Sci. 2016, 17, 1555. [CrossRef] [PubMed]

7. Kennedy, A.D.; Wittmann, B.M.; Evans, A.M.; Miller, L.A.D.; Toal, D.R.; Lonergan, S.; Elsea, S.H.; Pappan, K.L. Metabolomics in
the Clinic: A Review of the Shared and Unique Features of Untargeted Metabolomics for Clinical Research and Clinical Testing. J.
Mass Spectrom. 2018, 53, 1143–1154. [CrossRef] [PubMed]

8. van Outersterp, R.E.; Moons, S.J.; Engelke, U.F.H.; Bentlage, H.; Peters, T.M.A.; van Rooij, A.; Huigen, M.C.D.G.; de Boer, S.; van
der Heeft, E.; Kluijtmans, L.A.J.; et al. Amadori Rearrangement Products as Potential Biomarkers for Inborn Errors of Amino-Acid
Metabolism. Commun. Biol. 2021, 4, 367. [CrossRef] [PubMed]

9. Engelke, U.F.G.; van Outersterp, R.E.; Merx, J.; van Geenen, F.A.M.G.; van Rooij, A.; Berden, G.; Huigen, M.C.D.G.; Kluijtmans,
L.A.J.; Peters, T.M.A.; Al-Shekaili, H.H.; et al. Untargeted Metabolomics and Infrared Ion Spectroscopy Identify Biomarkers for
Pyridoxine-Dependent Epilepsy. J. Clin. Investig. 2021, 131. [CrossRef]

10. Coene, K.L.M.; Kluijtmans, L.A.J.; van der Heeft, E.; Engelke, U.F.H.; de Boer, S.; Hoegen, B.; Kwast, H.J.T.; van de Vorst, M.;
Huigen, M.C.D.G.; Keularts, I.M.L.W.; et al. Next-Generation Metabolic Screening: Targeted and Untargeted Metabolomics for
the Diagnosis of Inborn Errors of Metabolism in Individual Patients. J. Inherit. Metab. Dis. 2018, 41, 337–353. [CrossRef] [PubMed]

11. Misra, B.B.; Mohapatra, S. Tools and Resources for Metabolomics Research Community: A 2017–2018 Update. Electrophoresis
2019, 40, 227–246. [CrossRef] [PubMed]

12. Misra, B.B. New Software Tools, Databases, and Resources in Metabolomics: Updates from 2020. Metabolomics 2021, 17, 49.
[CrossRef] [PubMed]

13. Spicer, R.; Salek, R.M.; Moreno, P.; Cañueto, D.; Steinbeck, C. Navigating Freely-Available Software Tools for Metabolomics
Analysis. Metabolomics 2017, 13, 106. [CrossRef] [PubMed]

14. Smith, C.A.; Want, E.J.; O’Maille, G.; Abagyan, R.; Siuzdak, G. XCMS: Processing Mass Spectrometry Data for Metabolite Profiling
Using Nonlinear Peak Alignment, Matching, and Identification. Anal. Chem. 2006, 78, 779–787. [CrossRef] [PubMed]

15. Kuhl, C.; Tautenhahn, R.; Böttcher, C.; Larson, T.R.; Neumann, S. CAMERA: An Integrated Strategy for Compound Spectra
Extraction and Annotation of Liquid Chromatography/Mass Spectrometry Data Sets. Anal Chem 2012, 84, 283–289. [CrossRef]
[PubMed]

16. Wishart, D.S.; Tzur, D.; Knox, C.; Eisner, R.; Guo, A.C.; Young, N.; Cheng, D.; Jewell, K.; Arndt, D.; Sawhney, S.; et al. HMDB: The
Human Metabolome Database. Nucleic Acids Res. 2007, 35 (Suppl. 1), 521–526. [CrossRef] [PubMed]

17. Adusumilli, R.; Mallick, P. Data Conversion with {ProteoWizard} MsConvert. Methods Mol. Biol. 2017, 1550, 339–368. [PubMed]
18. Yoo, A.B.; Jette, M.A.; Grondona, M. SLURM: Simple Linux Utility for Resource Management. In Job Scheduling Strategies for

Parallel Processing; Feitelson, D.; Rudolph, L.; Schwiegelshohn, U., Eds.; Springer: Berlin/Heidelberg, Germany, 2003; pp. 44–60.
19. Kurtzer, G.M.; Sochat, V.; Bauer, M.W. Singularity: Scientific Containers for Mobility of Compute. PLoS ONE 2017, 12, e0177459.

[CrossRef] [PubMed]
20. Schneider, F.; Maurer, C.; Friedberg, R.C. International Organization for Standardization (ISO) 15189. Ann. Lab. Med. 2017, 37,

365–370. [CrossRef] [PubMed]
21. Karczewski, K.J.; Francioli, L.C.; Tiao, G.; Cummings, B.B.; Alföldi, J.; Wang, Q.; Collins, R.L.; Laricchia, K.M.; Ganna, A.;

Birnbaum, D.P.; et al. The Mutational Constraint Spectrum Quantified from Variation in 141,456 Humans. Nature 2020, 581,
434–443. [CrossRef] [PubMed]

http://doi.org/10.1038/s41598-020-66401-2
http://www.ncbi.nlm.nih.gov/pubmed/32523032
http://doi.org/10.3390/metabo9100242
http://www.ncbi.nlm.nih.gov/pubmed/31640247
http://doi.org/10.1007/s10545-015-9843-7
http://www.ncbi.nlm.nih.gov/pubmed/25875217
http://doi.org/10.3390/metabo9120289
http://www.ncbi.nlm.nih.gov/pubmed/31779119
http://doi.org/10.3390/ijms17071167
http://www.ncbi.nlm.nih.gov/pubmed/27447622
http://doi.org/10.3390/ijms17091555
http://www.ncbi.nlm.nih.gov/pubmed/27649151
http://doi.org/10.1002/jms.4292
http://www.ncbi.nlm.nih.gov/pubmed/30242936
http://doi.org/10.1038/s42003-021-01909-5
http://www.ncbi.nlm.nih.gov/pubmed/33742102
http://doi.org/10.1172/JCI148272
http://doi.org/10.1007/s10545-017-0131-6
http://www.ncbi.nlm.nih.gov/pubmed/29453510
http://doi.org/10.1002/elps.201800428
http://www.ncbi.nlm.nih.gov/pubmed/30443919
http://doi.org/10.1007/s11306-021-01796-1
http://www.ncbi.nlm.nih.gov/pubmed/33977389
http://doi.org/10.1007/s11306-017-1242-7
http://www.ncbi.nlm.nih.gov/pubmed/28890673
http://doi.org/10.1021/ac051437y
http://www.ncbi.nlm.nih.gov/pubmed/16448051
http://doi.org/10.1021/ac202450g
http://www.ncbi.nlm.nih.gov/pubmed/22111785
http://doi.org/10.1093/nar/gkl923
http://www.ncbi.nlm.nih.gov/pubmed/17202168
http://www.ncbi.nlm.nih.gov/pubmed/28188540
http://doi.org/10.1371/journal.pone.0177459
http://www.ncbi.nlm.nih.gov/pubmed/28494014
http://doi.org/10.3343/alm.2017.37.5.365
http://www.ncbi.nlm.nih.gov/pubmed/28643484
http://doi.org/10.1038/s41586-020-2308-7
http://www.ncbi.nlm.nih.gov/pubmed/32461654

	Introduction 
	Pipeline Design and Architecture 
	Storage Tool 
	Workflow Starter 
	Workflow Engine 

	Data Interpretation 
	Validation and Quality Control 
	Quality Control of Data 
	Validation of Data Processing 
	Validation of Pipeline Releases 

	Case Study: Very Long-Chain acyl-CoA Dehydrogenase Deficiency in an Adult Patient 
	Discussion 
	References

