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The many-body theory of interacting electrons poses an intrinsically difficult problem that requires simplifying
assumptions. For the determination of electronic screening properties of the Coulomb interaction, the random
phase approximation (RPA) provides such a simplification. Here we explicitly show that this approximation
is justified for band structures with sizable band gaps. This is when the electronic states responsible for the
screening are energetically far away from the Fermi level, which is equivalent to a short electronic propagation
length of these states. The RPA contains exactly those diagrams in which the classical Coulomb interaction
covers all distances, whereas neglected vertex corrections involve quantum tunneling through the barrier formed
by the band gap. Our analysis of electron-electron interactions provides a real-space analogy to Migdal’s theorem
on the smallness of vertex corrections in electron-phonon problems. An important application is the increasing
use of constrained RPA calculations of effective interactions. We find that their usage of Kohn-Sham energies
accounts for the leading local (excitonic) vertex correction in insulators.
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I. INTRODUCTION

The random phase approximation (RPA) plays an impor-
tant role in condensed matter theory. Introduced by Bohm and
Pines [1-3], it provides a self-consistent microscopic view
on the Coulomb interaction between electrons. Nowadays,
the approximation is used in ab initio methods to calculate
energetics [4], dielectric properties [5], plasmon spectra [6],
the polarizability of molecules [7] and solids, and the effective
interaction strengths [8] in low-energy models of correlated
matter.

The random phase approximation can be derived in several
ways. In the original works [1-3], the approximation was
introduced to decouple momenta in the equation of motion.
A second point of view is as a self-consistent-field approach
to Coulomb screening [9]. Finally, in a diagrammatic inter-
pretation, the random phase approximation corresponds to the
summation of an infinite set of so-called link-chain diagrams.
Gell-Mann and Brueckner showed [10] that this series is dom-
inant in the electron gas at high density, thereby providing a
solid theoretical justification for the use of the RPA.

This proof applies to the limit ry — O with the Wigner-
Seitz radius ry being proportional to the typical electron
distance.! To obtain a dimensionless expression for this limit,
the electronic length scale ry = £ should be compared with
the Thomas-Fermi screening length L = ,/rap, where ap is
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'To be more precise, (47 /3)r? is the volume per electron. Our
interest here is in scaling and we drop all numerical factors for
simplicity.
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the Bohr radius. The RPA limit », — O should then be read
as /L = \/ry/ap < 1, relating the length scales of electronic
propagation and Coulomb interaction in the electron gas.

However, modern applications of the RPA are by no means
restricted to the dense electron gas. Insulators, with no states
at the Fermi level, are very clearly not dense electron gases,
yet the random phase approximation performs admirably [5].
An important application of the RPA to insulators is the usage
of the constrained random phase approximation [8] (cRPA)
to calculate the effective interactions between correlated elec-
trons in a low-energy (or target) subspace of materials such as
transition metal compounds [11-15], graphene [16], cuprate
[17,18] and nickelate [19] superconductors and other materi-
als [20,21]. The target space is subsequently treated with more
accurate methods [22-24] that are able to deal with strong
correlations. In the cRPA, the partially screened interaction
is calculated by excluding from the RPA diagrams all virtual
excitations that occur entirely in the target space, i.e., close
to the Fermi level. Therefore, the properties of the cRPA in a
system with a gapped rest space are very similar to those of the
RPA in a gapped system. In this way, the RPA plays a central
role in the modern understanding of both semiconductors and
strongly correlated materials.

This raises the question if and how the (c)RPA approxi-
mation for screening can actually be justified away from the
dense electron gas limit of Gell-Mann and Brueckner and in
particular in systems with a gap. Particularly worrisome is the
lack of electron-hole binding diagrams in the RPA, since this
attractive interaction creates the excitons that are omnipresent
in semiconductor physics [25]. Can a theory that lacks these
excitonic diagrams properly describe the dielectric properties
of gapped materials?

©2021 American Physical Society
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Here we show that (i) the distance from the Fermi level lo-
calizes the electronic propagator, (ii) the corresponding short
electronic propagation length scale, as compared to the in-
teraction length scale, eliminates nonlocal vertex corrections,
and (iii) the underestimation of the true gap in the Kohn-
Sham system [26] compensates for the lack of local vertex
corrections (in the form of excitonic contributions) in the
RPA. Altogether, this makes the (c)RPA series dominant in
the wide-band-gap limit and when applied based on Kohn-
Sham inputs. This explanation for the smallness of nonlocal
vertex corrections to the (c)RPA can be seen as a real-space
electron-electron analog of Migdal’s theorem [27-29] on the
smallness of vertex corrections in electron-phonon problems.

The paper is structured as follows. In Sec. II we show that
the distance to the Fermi level indeed localizes the electronic
Green’s function. In Sec. III we use this localization to show
the smallness of nonlocal vertex corrections to the screening.
Section IV shows the compensation between local vertex cor-
rections and Kohn-Sham energies used in density functional
theory. This completes our theoretical arguments. In Sec. V
we illustrate the screening length scales in cRPA calculations
of graphene and SrVOs;, using spatial fluctuation diagnostics,
after discussing how our arguments translate to the orbital
basis sets used in actual cRPA calculations. Additional details,
examples, and discussion are available in the Appendixes.

II. ELECTRONIC LENGTH SCALE

We start with the first point: The energy offset of the
screening bands from the Fermi level leads to a short propaga-
tion length for low-energy excitations. For a simple parabolic
band E(K) = Ey + h*k*/(2m), the offset E, acts as a quan-
tum tunneling barrier, m is the (effective) electron mass, and
|k| < 7 /a, with a the lattice constant. We study the Green’s
function G(E,K) in the limit of large Ey, i.e., Ey > E and

Eyp > -, and expand it in (E — Eo)~',
G(E. k) = SO Y U N S,
"V T E—E. E-—E 2m(E — Ep) '
(H
A Fourier transform to real space, G(r)=

L T4 dkcos(k - )G(E, K), gives

w/a

Gr=0)~

72 2

14—+ ... s
E — EO( 6 m(E — Ep)a? )

h2
Gr=nm)~ ———— +---

( ) m(E — Ey)?a*n?

The nonlocal part of G is smaller than the local part by a
factor m <« 1. Beyond nearest neighbors, the Green’s

function decays with |r|.2 For holes, the same argumentation
holds by taking both Ey < 0 and m < 0.

forn>1. (2)

2Usually, for example, also in the tight-binding model discussed
below, the decay is exponential, as expected from Fourier theory.
Here we find only algebraic decay because the direct periodization
of the function k2 is not smooth at the edge of the Brillouin zone,
breaking the mathematical requirement for exponential decay of the
Fourier transform.
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FIG. 1. Free charges (red) in an insulator are screened by
particle-hole excitations (gray). (a) The classical interaction V al-
lows screening over large distances, which is included in the RPA.
(b) On the other hand, the creation of particle-hole pairs is classically
forbidden and their propagation requires tunneling, restricting vertex
corrections to short distances. In the cRPA, the red charges denote the
target band states and the gray excitations are from the rest space.

t
)
’?@
Vertex correction

From a tight-binding perspective, the same short propa-
gation length arises [30] from a small ratio of the hopping
t compared to the on-site potential Ep. As shown in
Appendix A, in this situation the Green’s function decays
exponentially,

GE,r—r)~ E —lEo exp(—|r —r'|/0), 3)

with decay length ¢,
— a 4
i (EE) v

In both examples, the offset Ey creates an energy barrier for
the electrons that can only be traversed via quantum tunnel-
ing, which leads to short-range propagation. This short length
scale of the Green’s function provides a powerful handle on
diagrammatic theories [31] as used in the following.

III. ABSENCE OF NONLOCAL VERTEX CORRECTIONS
TO THE SCREENING

Screening describes the reduction of the bare Coulomb
interaction V (q) between two charge carries in the presence of
further carries, which is quantified by the dielectric function®*
e(q), with e '(q) = 1 + x(q)V(q), where x(q) is the fully
interacting (charge) susceptibility. Computational approaches
need to find good approximations for x or, equivalently, for
the irreducible part (polarization) IT with x (q) = I1(q)/[1 +
V(QT(g)]”

3For the cRPA, we are interested in the effective dielectric function
in the low-energy target space. For the usual RPA, we also restrict
ourselves to static screening. Here and in the following we set w = 0.
The role of frequency is discussed in Appendix F.

“Quantifying the cRPA screening via an effective dielectric con-
stant €(q) is by itself already an approximation since it restricts the
interaction in the effective model to the two-particle level [32,33].
Similar gap- and length-scale-based arguments can be applied to this
approximation.

5In our sign convention, ¥ > 0 and IT > 0. Other conventions exist
in the literature.
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FIG. 2. Screening Feynman diagrams: (a) the lowest-order
(Lindhard) screening process, (b) the second order in the (c)RPA,
and (c) a vertex correction not included in the (c)RPA. On the right,
the numbers of free (#F) and constrained (#C) spatial coordinates
are shown, when considering that the Green’s function (solid line) is
localized.

Several processes that contribute to x are sketched in
Fig. 1. Figure 2 shows the three lowest-order Feynman dia-
grams, where the dashed line stands for the bare interaction
V and the solid lines with arrows are electronic Green’s func-
tions G. The RPA corresponds to IT = x°, where x° is the
susceptibility of a noninteracting system. This creates a series
of link-chain diagrams, with the two lowest orders illustrated
in Figs. 2(a) and 2(b). On the other hand, the vertex correction
in Fig. 2(c) is not included in the RPA. Here we will show that
the electronic propagation length scale £ controls the relative
importance of the diagrams in Figs. 2(b) and 2(c).

The real-space coordinates r; involved in the screening
processes are indicated in Fig. 2 as well. If the electrons are
localized, then any two coordinates connected by an electronic
Green’s function (thick line) should be close together. For
example, in the diagram in Fig. 2(a), after r; has been chosen
freely, r; is constrained by the localization. In the diagram in
Fig. 2(b), the localization of the Green’s function requires that
[r; —r3| and |r, — r4] are small, i.e., not exceeding the scale
of £. There is no electronic constraint on |r3 — ry|. Instead,
the Coulomb interaction sets this length scale, which is long
ranged (as discussed in Appendix B, the relevant Coulomb
matrix elements are dipolar).

The limit of electronic localization can be made more
formal and precise, as is done in Appendix C. For a brief
summary, we consider a Green’s function of the form G(r; —
r;) = Gof(£ — |r, —ry|), where 6 is the Heaviside step func-
tion. This constrains any integral over r, to a sphere with
volume 47 £3 /3 around ry, i.e., the result of such an integral
is proportional to £3 in three dimensions. In this way, the dia-
gram in Fig. 2(a) involves a single spatial constraint (#C = 1)
and a factor £3 and the diagram in Fig. 2(b) has two constraints
(#C = 2) with a corresponding factor £°.

The spatial constraints are essentially different for the cor-
responding vertex correction diagram in Fig. 2(c), since all
four coordinates are connected by electronic Green’s func-
tions, such that [ry —ry| < ¢, |[r3 —ri| < £, and |r; — 3| <
£. With these three constraints #C = 3, the triangle inequal-
ity guarantees |r; — r4| < 3¢, so the final constraint |r, — ry|
does not provide an additional power of £ and only contributes
a factor of order unity. Altogether, the three constrained vari-
ables suggest an overall power £°. In fact, due to the 1/|ry —

r3| magnitude of the Coulomb interaction, the exponent is
lowered to €3 (see Appendix C). Essentially, the electronic
constraints keep the electron and hole close together, which
makes the average magnitude of the Coulomb interaction
larger than if all spatial integrals were entirely free. This effect
lowers the exponent of ¢ by one. Comparing the powers of ¢
of the two diagrams, we arrive at one of our main results:

lim x(@"/x (@"™ = 0. )

ocl?

In the limit of short electronic propagation lengths, i.e., for
wide-gap semiconductors, the RPA series is hence dominant
over nonlocal vertex corrections.

The distinct length scales of vertex correction and RPA dia-
grams originate from the different roles of quantum and classi-
cal physics: In the RPA only the creation of dipole moments as
electron-hole pairs is a quantum process, while the long-range
screening results from the classical electromagnetic (dipolar)
interaction between these quantum fluctuations. On the other
hand, the length scale of the vertex corrections is set by quan-
tum tunneling of electrons and holes (see Sec. II), a process
that is classically forbidden by the band gap and the resulting
screening processes are thereby strongly localized.

The smallness of nonlocal vertex corrections in the RPA
is reminiscent of Migdal’s theorem for electron-phonon in-
teractions, since both arguments are based on the phase
space available for internal coordinates in Feynman diagrams.
Migdal’s theorem is based on a phase space analysis of
the momentum space integrals in Feynman diagrams, which
shows that vertex corrections are small compared to the geo-
metric series of self-energy insertions. The present argument
considers real-space integrals and compares vertex corrections
to the RPA geometric series of Lindhard bubble insertions.
This analogy is discussed in more detail in Appendix D.

IV. LOCAL VERTEX CORRECTIONS

A. Bonding-antibonding model

Having shown that the polarization IT is entirely local in
systems with a (wide) gap, the remaining question is if the
neglect of local vertex corrections in the (c)RPA is problem-
atic. To answer this, we utilize a minimal local model of an
insulator consisting of two states with a bonding (b) and an
antibonding (a) orbital at half filling and with a Hamiltonian
in the single-particle eigenbasis of the form

H = ZEana,a + Ebnb,a + % Z Z Faﬁy&f;af;g’fag/fﬂg'

0,0 afyd

(6)

Hereo,o0’ € {1, |}, aByd € {a, b}, andf;'(b) and f, (» denote
the creation and annihilation operators for the antibonding
(bonding) orbital, respectively. The respective density oper-
ators are ng (p),o = f; () £, by In addition, E, and E; are
the single-particle energies of the antibonding and bonding
orbitals, respectively. Further, I' is the Coulomb interaction
between the orbitals. In a situation without external screening
it is given by the Coulomb integral

Lagys ~ /dr/dr/cbi(r)cbﬂ(r)V(r — g (s (r), (7)
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FIG. 3. Four relevant configurations in the minimal bonding-
antibonding model with their corresponding energies E@), E@), EQ),
and E@), in two different notations. Note that these configurations are
not exact eigenstates of the interacting Hamiltonian (6); the shown
energies are the diagonal elements of the Hamiltonian.

where ¢, (r) is the wave function of the orbital @ and V (r — ')
is the Coulomb interaction. To provide a representative exam-
ple, we will use parameters derived from first principles that
correspond to a single sp? bond in graphene discussed in more
detail in Sec. VD and Appendix G. This model describes the
screening by the graphene sp? orbitals in a constrained fash-
ion, excluding any screening that results from the low-energy
D space.

The two relevant single-particle Kohn-Sham energies are
h, = —13.26 eV and h, = 12.58 eV, resulting in a Kohn-
Sham gap Exs = 25.84 eV. The cRPA® Coulomb interaction
matrix elements are [y = U, = 11.21 eV, Ty = U, =
14.01 eV, Faabb = Vab =11.85 eV, and Fabba = Fabab =
Jup = 2.51 eV and all other nonzero Coulomb elements fol-
low by symmetry. Interactions with an odd number of a or
b labels are forbidden because of the mirror symmetry of
the orbitals. Only J,, leads to off-diagonal elements in the
Hamiltonian. Since J,;, is much smaller than the Kohn-Sham
gap and the other interactions, it is justified to treat the states
of Fig. 3 as approximate eigenstates. This makes the analysis
especially simple: We only need to calculate the energy dif-
ferences between these states.

In the ground state (D), the bonding orbital is completely
filled and the antibonding orbital is empty. The gap E, (also
called the true gap or electronic quasiparticle gap) of the sys-
tem is defined by the difference between electron ionization
and affinity energy, i.e.,

E, = (Ey_1 — Ey) — (Ey — Eny1)
= (E@ —E®) — (E® — EQ)
=Ep +Ep — 2EQ. )

At the bottom of Fig. 3, the energies of these valence and
conduction band states are defined as Evg = E@ — E@) and
Ecg = Eg) — Eq@, respectively.

The cost of a particle-hole excitation is substantially
smaller than the difference of the valence and conduction
energies due to the exciton binding, i.e., due to the attractive
Coulomb interaction between the electron and the hole. We

SHere cRPA refers to taking both the p. and the sp?® orbitals as the
target space. This is discussed in more detail in Sec. V.

find
E@ —E® =Ecg — Evg — Voo +Jap < Ec — Evg.  (9)

With the numbers given above, exciton binding reduces the
energy cost of this excitation by almost 10 eV. This suggests
that the RPA, which does not include exciton binding dia-
grams, could struggle to properly describe screening in this
model.

B. True gap, Kohn-Sham gap, and exciton binding

Above we discussed the difference between the true gap of
the system, as measured by (inverse) photoemission, and the
energy of particle-hole excitations, measurable in optical ex-
periments. The Coulomb interaction, in particular the exciton
binding, is responsible for their difference. To connect an ab
initio calculation to our bonding-antibonding model, we need
to understand how to derive the single-particle model param-
eters £, and E;, from the Kohn-Sham energies %, and h,, that
come from the density functional theory (DFT) calculation.
Formally, the Kohn-Sham energies are auxiliary quantities
without direct physical meaning. In fact, it is well known that
the Kohn-Sham gap Exs differs [26] from the true gap E, by
the derivative discontinuity A,

E, = Exs + A. (10)

In our simple model, both gaps and the derivative dis-
continuity can be calculated. In an auxiliary noninteract-
ing Kohn-Sham system we necessarily have Eés + Eés =

3¢S + e85 = EXS + Eés since the total orbital occupations
on both sides are the same. In reality, however, we need to
take correlation effects into account, yielding a finite (Eg) +
E®) — (Eq + E@) = Vap — Ju» > 0, which we immediately
recognize as the exciton binding energy and which we iden-
tify below as the derivative discontinuity. It accounts for the
energy difference between a particle-hole excitation and the
independent removal and addition of electrons.

1. Determining the derivative discontinuity

Establishing the derivative discontinuity A of the bonding-
antibonding model is a central result of this work. It can
be derived exactly by considering the average energy of an
ensemble of realizations [34] depicted in Fig. 3 and comparing
this to the Kohn-Sham energies €XS_ which are constructed
from a single DFT calculation at fixed integer density, in
this case at N = 2. The average energy is a functional of the
occupations n, and n,, and is given by

E(ng, mp) =nED +neEgy +neEe +n@Ekw, (1)

where the average occupations n; on the right-hand side are
functions of n, and n;, with the constraints n, = n@) + n@,
np = 2n@ + n@ + 2n@ + n@, and N = n, + np,. The Kohn-
Sham energies are defined by €X5 =09E/on, and €5 =
oE /0ny,, where the derivatives are evaluated at the ground-
state densities. Since we are interested in the energy functional
close to this filling, we will write N = 2 4 § for the average
number of electrons in the ensemble.

045134-4
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2. €p
For § < 0 (N < 2) the ground state is given by
no =1+39,
n, =249,

n®=-6, ne =0, n@=0,

n, = 0.
This directly allows us to obtain
€, =0E/0n, =dE/d§ = E® — E@) = Evs.

The equality €, = Eyp is called the ionization potential the-
orem [35]. It states that the energy of the highest occupied
Kohn-Sham level has physical meaning and is called the ion-
ization potential.

3. €

To obtain €, as the derivative with respect to n,, we need
to consider the energy functional to linear order in n,. Here
it will turn out that the sign of § becomes important, in other
words, if we are below or above N = 2. For N < 2 (6 < 0),
the ensemble will contain realizations of state @, so the cheap-
est way to fill orbital a is to replace a single realization of @
by @ in the ensemble, i.e.,

no =1+34,
n,=2+394,

ny=-86—n, ne=0 ng=n,

ng=n, (for§=N-2<0).
This gives the energy functional
E(ng,np) =1+ 8)En — (6 +n,)Eg +0Eg + n. L@
and we obtain
<" = 3E/on, = Eg — E. (12)

We note that this is not equal to Ecg.

Similarly, for § > 0 (N > 2), the ensemble consists en-
tirely of realizations of @ and ®. To determine ¢,, we need
to add particles to orbital a, which can be done by adding
electrons to the system,

nn=1—-n, ne=0ne=n, na@=0,
n, =2, ng,=>3,,
and we get

€% = 3E/dn, = dE/dS = Eg) — E® = Ecs.  (13)

Comparing Egs. (12) and (13), we see that €, has a disconti-
nuity

A=Y= (Eg - Ep) — (Ea — Eo)
= Vab — Jab- (14)

This is the same result that was derived heuristically as the
difference between the noninteracting and interacting systems
before. For an extended discussion of the derivative disconti-
nuity in two-orbital systems, we refer the reader to Ref. [34].
A finite-temperature interpretation of these results is available
in Appendix E.

This derivation of A allows us to determine the Kohn-
Sham gap analytically,

EKS Zha_hszg_A ZECB _EVB _Vab+Jab
=(E; —Ep) — (Up — Vap).

So, given the Kohn-Sham energies s, and #; and the interac-
tion I', both from the ab initio calculation, we have to set £, =
h, — V, and E, = h, — U, to ensure that the Hamiltonian (6)
has the same Kohn-Sham gap as the corresponding DFT cal-
culation. The true gap of Eq. (6) is E, = hy — hy + Vi — Jup.
In other words, the true gap of the model is larger than the gap
in the underlying DFT calculation and the difference is exactly
the exciton binding energy. For the example of graphene sp>
states, the relevant energies are sketched in Fig. 4(a).

C. Screening: Cancellation of local vertex corrections

After considering the effect of the Coulomb interaction on
the single-particle properties of our ab initio derived model
Hamiltonian, we now proceed towards the screening proper-
ties as the central interest of this paper. Screening happens via
particle-hole excitations that leave the total charge constant, so
we should expect excitonic screening effects to be important
and visible in the susceptibility of the system [36].

The exact susceptibility of the bonding-antibonding
Hamiltonian can be calculated using exact diagonalization
[37] (ED) which can be compared to approximations. We
consider the charge susceptibility Y _ . X000 here and re-
strict ourselves to the particle-hole channel. In the interacting
susceptibility, orbital combinations such as xpup OF Xaapp are
also allowed, but they remain an order of magnitude smaller,
since J,;, is small.

The blue dashed line in Fig. 4(b) is the noninteract-
ing susceptibility using the true gap, i.e., xo(i®wn)soo'or =
8o’ Re(Ecg — Evp + iw,)~!, while the orange dashed line
corresponds to the noninteracting susceptibility using the
Kohn-Sham gap. The purple dash-dotted line represents the
exact susceptibility as derived from an exact diagonalization
of our model Hamiltonian, which is between the two bare
susceptibilities.

In addition to the noninteracting and the exact suscep-
tibilities, we also show the interacting charge susceptibili-
ties xrpa (i0n)ooo'or = 2X0(la)n)/[1 + Jap Xo(iw, )] as obtained
within the RPA, with the factor 2 originating in the spin
sum. We have neglected the orbital matrix structure of x
here, which leads to mixing of ., and xupep in the RPA
equations. Since (xo)apap = 0, this effect is however negligi-
ble in the present case. The resulting RPA expression does
not contain V,;,, which is responsible for the exciton bind-
ing, and therefore reduces the susceptibility. Starting from
the true gap yxo, this makes the results worse (green solid
curve). However, starting from the bare susceptibility cal-
culated with the Kohn-Sham gap Exs, xrea-ks(i®n)soo'cr =
2x0.xs(iwp) /11 + Jap X0 ks (iw,)], the triumph of the RPA for
insulators occurs: The red symbols are on top of the exact
result. Apparently, a cancellation occurs between the under-
estimation of the true gap in the Kohn-Sham construction
and the lack of local exciton vertex corrections in the RPA
due to the lack of V,;,. In other words, since the Kohn-Sham
gap and the RPA susceptibility are both calculated within
the charge-neutral system, the reduction of the Kohn-Sham
gap due to excitonic screening renders the explicit diagram-
matic treatment of excitonic screening unnecessary when
calculating the RPA susceptibility starting from Kohn-Sham
states.
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FIG. 4. Minimal bonding-antibonding model (6). (a) Single-particle energies of the bonding-antibonding Hamiltonian. (b) Dynamical
susceptibility on the Matsubara axis. Note that we show the charge susceptibility ;111 + X414y + Xyt + Xyuey- (€) Susceptibilities with
rescaled interaction I' — AT" while keeping the Kohn-Sham gap €, constant.

As stated earlier, the relatively simple picture of the
bonding-antibonding model is applicable as long as the states
of Fig. 3 are a good approximation of the eigenstates of
Eq. (6), which holds if J,, is small. If we change the relative
strength of all interactions by rescaling the Coulomb vertex
I' — AT" while keeping the Kohn-Sham gap Exs fixed, the
susceptibility changes, as shown in Fig. 4(c). While the non-
interacting susceptibility based on the Kohn-Sham gap Eks
does not depend on I' and thus also not on A, the nonin-
teracting susceptibility based on E, changes with A since E,
is affected. The RPA with Egg performs well for all values
shown, although the deviations increase with A. In the ED, this
(slow) breakdown of the occupation number eigenbasis due to
Coulomb interactions is also visible as a finite occupation n,
of the antibonding orbital in the many-body ground state.

Thus, we have shown that the RPA based on the
Kohn-Sham energies gives an accurate description of the po-
larizability of bonding-antibonding states, as long as the gap
is large enough that no appreciable changes in the occupation
numbers n, and n, occur. The neglect of vertex corrections
works so well because the Kohn-Sham gap already contains
the leading vertex correction, namely, the exciton binding
energy.

Finally, we note that the cancellation of vertex corrections
to x in this simple model implies the same for the local vertex
corrections to I, since IT is just the irreducible part of x.
This completes the proof of the applicability of the (c)RPA
for systems with a wide gap.

V. SCREENING AND cRPA EFFECTIVE INTERACTIONS
IN MATERIALS

After these general considerations on electronic screening
in insulators, it is useful to study some examples in detail.
Here we will investigate the cRPA determination of effec-
tive Hubbard interactions in graphene, where we focus on
the screening by sp? states, and in SrVOs, where we study
the screening by O p and V e, states. All ab initio calcu-
lations are performed using the Vienna ab initio simulation
package (VASP) and all technical details can be found in

Appendix G. We use TRIQS [38] and TPRF [39] to further
analyze and manipulate the resulting quantities.

A. Orbital structure of the RPA

Unlike in the homogeneous electron gas, in real materials
we have to take into account the orbital or band structure of
the electrons in our calculations. In that case, the bare and
screened interactions are related by the self-consistent relation

Uab,cd = Vab,cd - Vab,fenef,ghUhg,cd

= VYab,cd — Uah,fenef,ghvhg.cd’ (15)

which is called the two-particle Dyson or Bethe-Salpeter
equation [40]. Here the letters are the combined electronic
orbital and spatial indices and summation over internal orbital
labels is implied. Diagrammatically the equation can be visu-
alized as

N b d
2

where the double (single) snaked line stands for the dressed
interaction U (bare interaction V).

B. Multitiered RPA

The evaluation of the RPA screening can be done in several
steps, generating an intermediate partially dressed interaction
by integrating out some electronic states and then using this
as the bare interaction for the next downfolding step. This
multitiered approach’ is illustrated in Fig. 5, where T'1 (all

"For another multitiered approach, see Ref. [41].
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FIG. 5. (a) Ab initio and (b) Wannierized band structure of
graphene. The T2 subspace consists of the bands with p, character
(purple); the T'1 subspace also includes those with sp, character
(green).
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sp® states) and T2 (just p, states) are two subspaces of the
full electronic structure 2 with 72 C T'1.

The partially screened interaction of a specific tier is cal-
culated by including all screening processes except those that
occur entirely within that tier. Explicitly, we can define U”!
and UT? via

(UT])—I — (V)—l + HTI, (16)

(UTZ)—I — (v)—l + HTZ
— (UTI)—I + (HT2 _ HTI). (17)
—[T1-T2

The involved polarizations are calculated as the difference
between the polarization of the full electronic structure and
the polarization that is entirely within the tier,

HT2 = Z Haﬂyé - Z HaﬂyS» (18)

afyde afydel?2
HT] = Z Haﬂyé - Z Haﬂyés (19)
afydeQ afyseTl

where in the RPA the polarization operator tensor elements
are defined by

Mypys = —GasGpy . (20)

Note that the constrained RPA is usually constructed in this
way [42], by selecting the target space as 72 and setting 71 =
2. Combining the equations, we find the relation

HTI*)TZ = Z naﬁyS - Z naﬂy&- (21)

aByseTl aByseT2

In other words, this polarization includes all excitations that
occur within 7'1 except the ones that fall entirely within the
target space T2. In terms of the band basis of Fig. 5, this
corresponds to the following diagrams:

T1 T2 T1
772 <> <>y
T T1

The latter two diagrams are usually called mixed diagrams. In
the first diagram, both the electron and the hole are far away

™ (22)

from the Fermi level, whereas in the latter two diagrams this
only holds for one of them.

We will use this kind of two-step downfolding to study in
detail how specific bands contribute to the screening and thus
to get a quantitative understanding of all (c)RPA screening
processes. We will do this by explicitly calculating U and
U™? as tensors in orbital space from first principles. We also
calculate TI7'~72 from the band structure. The inversion of
Eq. (17) yields

UT2 — UTl _ UTlnTl%TZuTZ. (23)

Since we have access to all quantities on both sides of the
equation, we can easily evaluate the contributions of various
screening processes. This so-called fluctuation diagnostics
[43] is an efficient tool to identify which components of I1
are most responsible for screening.

C. Orbitals, unit cells, tensors, and basis sets

Before moving on to specific materials, we need to con-
sider another aspect of the many-body theory of materials.
We will consider crystalline materials with a Bravais lattice
{R;}, where capital R; stand for discrete vectors in the Bravais
lattice and small r for continuous coordinates. The relevant
electronic spaces are spanned by a set of orbitals ¢, r; cen-
tered on unit cell R, where a = 1, ..., N is the orbital label
and N the dimension of this electronic space.

Although the orbital Pa.r, is centered on unit cell Rj, it
is not guaranteed that this orbital is entirely contained within
the unit cell, in the sense that ¢(r) = 0 must not hold for r
outside the unit cell. For example, a Wannier construction will
usually [44] yield orbitals ¢, g, which are exponentially de-
caying, i.e., ¢p r,(r) ~ exp(—«|r — R;|) > O for some « > 0
and large |r — R;|.

The susceptibility, polarization, and Coulomb interaction
are two-particle Green’s functions, so they have four orbital
labels and must transform as rank-4 tensors [42] in orbital
space. In the same vein, two-particle Green’s functions gen-
erally involve four spatial coordinates, or three momenta.
In the electron gas, the Coulomb interaction is responsi-
ble for eliminating two coordinates/momenta: The Coulomb
interaction V (ry, 12, 13, r4) = V(|r1 — r4|)8r, r,0r,.r, acts not
between four field operators at ry, r,, r3, and ry but between
two densities n(r;) and n(ry).

This is no longer true when we transform the field opera-
tors to a combined cell/orbital basis if these orbitals are not
entirely localized within the (unit) cell, as it is the case for
realistic Wannier constructions. Thus, after the transformation
to Wannier orbitals, the Coulomb interaction has four spatial
indices V (R, Ry, R3, Ry), or three momenta V(Q, K, K').
We again use capitals (e.g., Q) to denote the Brillouin zone
momentum corresponding to the discrete vectors R.

Since objects with three momenta are computation-
ally inconvenient we will use below the approxima-
tion V(Q,K,K) ~ V(Q) = [dK [dK'V(Q, K, K'), where
a suitable normalization of the integrals is implied. In
real space, this corresponds to V(R;, Ry, R3, Ry) = V(R] —
R4)6R, r,0R;.R,, 1.€., We assume that the pair of orbital op-
erators on either side of the Coulomb interaction line shares
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5

FIG. 6. Wannier orbital bonding-antibonding basis for the sp’
and p, states in graphene. Orbitals 1 and 2 are p, orbitals. Orbitals
3, 4, and 5 are sp? bonding orbitals and orbitals 6, 7, and 8 are sp*
antibonding orbitals.

a unit cell.® In making this approximation, we have to con-
sider that the construction of the orbitals is not unique in
several ways (choice of unit cell, choice of the orbitals, and
placement of the orbitals within the unit cell), as will be
discussed in the case of graphene. The resulting spatial-orbital
structure of V, expressed in terms of discrete unit-cell and
orbital-based coordinates, therefore explicitly depends on the
chosen orbital parametrization. The quality of the approxima-
tion V(Q, K, K') ~ V(Q) can only be quantified within the
context of a specific orbital basis. As this issue is related to
spillage of the orbitals outside the unit cell, the approximation
will perform well for sets of orbitals that are sufficiently
localized within the unit cell. In Appendix H we consider the
benzene molecule, where the computational cell effects can
be seen quantitatively.

D. Orbital basis for graphene

Graphene has two C atoms per unit cell and the lower-
energy electronic structure is determined by their 2s and 2p
electrons (the 1s states are far away). The two p.-like orbitals
generate two Dirac bands that linearly cross the Fermi level,
as depicted in the band structure of Fig. 5. The corresponding
real-space Wannier functions are shown in Fig. 6 (1 and 2).
The sp? orbitals can be classified as fully occupied bonding (3,
4, and 5) and completely empty antibonding (6, 7, and 8) or-
bitals further away from the Fermi level [46]. Their electronic
dispersions are shown in Fig. 5 and their real-space form is
shown in Fig. 6. As indicated in Fig. 5, we define the T'1 space
to consist of all eight orbitals and the T2 space contains just
the two p,-like orbitals. Our cRPA evaluation of the Coulomb
matrix elements is performed using these orbitals.

According to the definition of [T7'~72 in Eq. (21), the mul-
titiered approach involves so-called mixed diagrams, where
some but not all of the labels o8y 4§ lie in T'1. In the present
case, these diagrams do not contribute due to symmetry. The

8Instead of completely ignoring the dependence on K and K’, one
could also consider a form factor expansion [45], but this is beyond
the scope of this work.

p. orbitals are antisymmetric under mirror symmetry in the
plane, whereas the sp? orbitals are symmetric. Selection rules
arise from this difference in symmetry and all quantities with
an odd number of p, labels vanish. In particular, this holds for
Coulomb matrix elements such as V, , , ,,» = 0. This is the
interaction that would couple to the mixed IT in Eq. (23). Asa
result, for the multitiered cRPA in graphene, we only need to
consider the polarization 17 >72 for a, b, ¢, d € sp*.

As discussed above, the labels a, b, ¢, d in Eq. (23) should
be combined orbital and unit-cell labels, in the sense that
R, # R, is allowed if orbitals in different unit cells overlap.
However, in the repeated downfolding, we neglect this addi-
tional dependence, i.e., we assume V (Q, K, K') — V(Q) and
the labels a, b, c,d are now only orbital labels. This is an
approximation that will lead to deviations between the two-
tiered approach and the direct cRPA downfolding. As a result
of the approximation, we consider all objectsas 8 x 8 x 8 x 8
orbital tensors with an additional Q dependence on an 18 x 18
grid, which combines to approximately 1.3 x 10° matrix ele-
ments each for the objects U, V, and I1.

We should note that the placement of orbitals in the unit
cell (Fig. 6) breaks the sublattice symmetry, in the sense
that orbital 2 is surrounded by three bonds within the unit
cell whereas two of the bonds surrounding orbital 1 lie
in neighboring unit cells. Together with the simplification
V(Q,K,K') — V(Q) (i.e., both orbitals on either end of the
Coulomb interaction have to share a unit cell), this results
in different on-site interactions on the two p, orbitals in
the multitiered cRPA. We found that the deviation with the
direct cRPA calculation is smallest for orbital 1 and there-
fore consider the on-site p, interaction on this orbital in the
following.

E. Spatial fluctuation diagnostics for graphene

The exponential electronic localization of the rest space
is directly visible in 0a (R). Figure 7(a) shows the sum of
absolute values of all orbital elements of IT*”. The exponen-
tial decay occurs with a decay length of less than 1 A. This
scale is well approximated by the expression (Appendix A)
a/ In(EZ /t?), with Ey ~ 12 eV the distance of the sp? bands to
the Fermi level (half the gap) and # & 3 eV the hopping in the
sp* manifold. The polarization in the target p. (red crosses)
space is notably different and does not decay exponentially.
The p, bands cross the Fermi surface, which leads to a long-
range polarization.

For the fluctuation diagnostics of Eq. (23), our interest
is to find the typical length scales involved in screening. To
this end we write Eq. (23) as a convolution in real space and
concentrate on the on-site interaction in the final downfolded
model,

T2 __ T1 T1 T1—>T2 y7T2
Urly = Ur—p — Z Ug, Mg, " "Ulg,_g,» (29
R, Ry

where all objects are tensors in orbital space. In terms of the
notation of Eq. (15), the labels a, b, ¢, and d correspond to a
single p. orbital at R = 0, e and f are sp” orbitals at R;, and
h and g are sp? orbitals at R,.
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FIG. 7. Spatial analysis of screening in graphene. (a) The sp® polarization is exponentially localized, whereas the p. polarization is not.
(b) Spatial fluctuation diagnostics in graphene according to Egs. (26) and (25). These are the contributions to the fully screened on-site p,
interaction. In total, in the 71 — T2 downfolding, the sp? states screen the interaction down from U”! = 12.59 eV to UT%ndireet = 10.25 eV
(AU = 2.70 eV). (c) and (d) Fluctuation diagnostics in real space. The color of every square shows the magnitude of the screening contribution

AU coming from a specific unit-cell displacement R.

In the following we perform the distance fluctuation diag-
nostics on IT and on V via

2 1 1
UI{:O = 11:0 - § AUg, = UI{:O - E :AURI’
Rz R]

with

AUr, =) Ug! TR 72U g, (25)
R

AUg, = Z Ug! TIRT2UTR &) (26)
R,

Figures 7(b)—7(d)show the results of these distance fluctuation
diagnostics. The screening contribution decays exponentially
as a function of the distance covered by the propagating
electron-hole pair R, [orange squares in Figs. 7(b) and 7(d)]
and all contributions except for R, = 0 are negligible. Thus,
the electron-hole excitation in the screening process is lo-
calized, i.e., it does not propagate. On the other hand, the
decay with respect to the Coulomb distance R is relatively
mild [blue circles in Figs. 7(b) and 7(c)]. Hence, all neces-
sary perquisites needed for cRPA evaluation of the Coulomb
matrix elements to perform well based on Kohn-Sham band
structures are fulfilled, so it can safely be applied here.

F. SI‘VO3

SrVO; is a strongly correlated material for which Coulomb
matrix elements are frequently evaluated from first principles
using the cRPA [13,42,47-49]. So far the validity of the latter
has not been discussed in detail. Figure 8(a) shows the band

(@) SrVO; = target + rest
6
4 - -
] _ 1 /=]
2 I NSPUT sy
5 2] ] ]
—4 7 ] 1 5ev I
_6 - - -
_8 I 1 1 1 1 1 1 1 1
r MXT R r MXT R
(b)
z 10t 4@
B
HN 102
Q‘T rest, A=1.3
< 105 4 X  target
= € mixed, A=15
[N 0 5 10 15
R, (4)

FIG. 8. SrVO;. (a) Band structure with target space (red) and rest
space (gray). The rest space has a gap of 3 eV which leads to an
exponential localization of the rest-space electrons, justifying the use
of the cRPA. (b) This exponential localization is visible in the rest
and mixed polarization IT.
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structure including the relevant energy scales. We consider a
target space consisting of three V t,, orbitals per unit cell and
arest space of nine O p and two V e, states per unit cell.

The rest space has a 3-eV gap and as a result the rest-
space polarization IT decays exponentially as a function of
R [Fig. 8(b)] with a decay constant of A ~ 1.3 A, which
is substantially smaller than the lattice constant a &~ 3.9 A.
The decay constant matches qualitatively with an analytical
estimate based only on the energies of the bands, A ~ 0.84 A
(see Appendix A).

Unlike in graphene, in SrVO; the so-called mixed po-
larization, with one rest-space and one target-space Green’s
function, also plays a role in the screening. The localization
argument applies only to the rest-space Green’s function. As
a result, the mixed polarization operator is still localized, al-
though the corresponding decay length is longer, as discussed
in Appendix A. In contrast to the rest space, the polarization
operator of the low-energy bands displays slow decay [see
Fig. 8(b)]. In addition to the slow decay of the absolute value,
the sign of the individual matrix elements of the rest-space
polarization shows oscillations similar to Friedel oscillations
and the Ruderman-Kittel-Kasuya-Yosida interaction, which
originate in the presence of a Fermi surface.

This example illustrates that the electronic localization, as
well as the resulting absence of nonlocal vertex corrections,
is also applicable to the mixed diagrams that appear in the
constrained RPA.

VI. CONCLUSION

We conclude that the RPA diagrams are dominant over
vertex corrections if the gap is large so that the RPA will
accurately describe the dielectric function of these wide-gap
systems, at least at low frequency (see Appendix F). This
relation between the size of the gap and the applicability of
the RPA diagrams is borne out by the comparison with ex-
perimental dielectric constants € by Shishkin and Kresse [5]:
Good agreement between the RPA and experiment is found in
wide-gap systems (MgO, C, and LiF) and the largest disagree-
ments occur for systems with a small gap (ZnO, GaAs, ZnS,
and CdS). Good agreement has also been found between the
RPA and experimental molecular polarizabilities in aromatic
molecules [7] (cf. Appendix H), which also have a substantial
gap.

Furthermore, we have shown that the construction of the
model Hamiltonian plays an important role in the applicability
of the (c)RPA. Ab initio (c)RPA calculations based on the
Kohn-Sham states and the Kohn-Sham gap Exs, are blessed
by a cancellation of the simplest local exciton binding vertex
correction. Using the true gap E, in combination with the
RPA leads, however, to poor results, as discussed in detail
in Sec. IV. Previous benchmarks of the (¢)RPA [50,51] used
double-counting corrections to fix the positions of the bands
in the single-particle spectrum (see, in particular, Appendix A
of Ref. [50]), i.e., the true gap E,.

Demonstrating the applicability of the (c)RPA to screening
in real materials is especially timely since recent investi-
gations [50-53] have (numerically) identified models where
vertex corrections to the cCRPA are necessary. These examples
involved a Hubbard model for the rest space with intrinsically

short-range interactions. Therefore, in those models the crite-
rion that the propagation length is shorter than the interaction
length cannot be fulfilled and nonlocal vertex corrections can-
not be ignored compared to nonlocal Coulomb interactions.
As we have shown, the assumption of local Hubbard interac-
tions in the rest space is insufficient to understand screening
in real materials.

We have shown that the cRPA is applicable to rest-space
bands far away from the Fermi level. A question that remains
open is how to deal with rest-space bands that are close to
or even crossing the Fermi level. One important example is
nickel [11,47,54-59], where the s band, which crosses the
Fermi level, is often excluded from the low-energy model (see
Fig. 1 of Ref. [11]) and its screening is taken into account
via the cRPA. Our present work does not directly justify this
approach. Further detailed investigation into the role of vertex
corrections in this kind of system is warranted.

We should also mention a special example where the
RPA is known to be (surprisingly) close to numerically ex-
act results, even though neither the dense-electron-gas limit
nor the large-band-gap limit applies. This is the electrostatic
screening by p, electrons in undoped graphene [60]. The
Dirac nature of the p, electrons could play a role here and
length scale arguments similar to those presented in this
work might provide a way to understand this computational
result.

To summarize, we have proven that the (constrained) ran-
dom phase approximation is applicable to gapped systems and
that vertex corrections vanish as the gap becomes large. Due
to the gap, the propagation length of electrons/holes is small
compared to the length scale of the interaction responsible for
the screening. The vertex corrections require quantum tunnel-
ing of particles and holes, with the gap acting as the tunneling
barrier. The (c)RPA diagrams, on the other hand, involve only
classical interactions between quantum fluctuations in the
electronic density and can therefore screen over much larger
length scales. The correspondingly larger phase space of the
RPA processes means that nonlocal vertex corrections can be
neglected, similar to Migdal’s theorem for electron-phonon
systems. Finally, in gapped systems the most important lo-
cal vertex corrections correspond to exciton binding. These
effects are effectively included when using the Kohn-Sham
states and Kohn-Sham gap in the (c)RPA calculation.

In addition to providing a justification for the use of the
cRPA to calculate effective interactions, our work shows how
to establish a criterion for when to stop downfolding: The sim-
ple energetic picture of Fig. 3 breaks down when the orbital
exchange interactions between valence and conduction states
approach the magnitude of the gap (Fig. 4).

ACKNOWLEDGMENTS

The authors acknowledge useful discussions with Andy
Millis and thank Merzuk Kaltak for sharing his cRPA routines
with us. Financial support from the Zentrale Forschungs-
forderung of the Universitidt Bremen and the DFG via Grant
No. RTG 2247 QM? is acknowledged. The work of M.LK.
was supported by European Research Council via Synergy
Grant No. 8§54843-FASTCORR.

045134-10



RANDOM PHASE APPROXIMATION FOR GAPPED ...

PHYSICAL REVIEW B 104, 045134 (2021)

\/ -
FIG. 9. Tight-binding model with a gap A = 2E;, — W.

APPENDIX A: LENGTH AND ENERGY SCALES IN A
TIGHT-BINDING MODEL

We now perform an explicit calculation of the length scales
in a one-dimensional two-band tight-binding model (Fig. 9)
with hopping # > 0 and on-site energy £Ej, with |Ey| > .
The bandwidth is W = 2¢ and the gap is 2Ey — W.

1. Green’s function in real space

In real space, the matrix Hamiltonian is tridiagonal:

0
0 t Ey t 0
H= 0 t Ey ¢ 0
0 t K t
0o -
= Eoll +1B. (A1)

The Green’s function is also a matrix in real space,
GE)=(ET-)"!
1 f

TE-Ef- B

1 t t 2
N . B B4
E—&i’*E—% *(5_5) * ]

resulting in an exponential decay

1 ¢ (r—r")/a
GE,r—r)=~ , A3
E,r=r) E—E0<E—Eo> (43)
with decay length ¢,
t
o) =| ,
exp(—a/t) E_E
a
= ————. (A4)
E—E,
In (|55

2. Green’s function in momentum space

The same result can obtained starting from the dispersion
and Green’s function in momentum space,

Eyx = Ey + 2t cos ak,

G(E.k) = (AS)

E—E

The electronic propagation length is determined by the real-
space Green’s function, so we perform a Fourier transform

and expand in ¢ /(E — Ej),

a w/a
GE,r)= E/ dk G(E, k) cos kr

—/a
1 a [T cos kr
CE-E 2w ) 5. 1-— —EE’EO cosak’
1
GE,r=0)~ ,
E—E
1 t
GE,r=a)~ _—,
E—-EE—-E
¢ r/a
GE,r)~ , A6
(E.r) E_%<E_%> (A6)
as found before. The exponential decay is typical for tunneling

processes.

The origin of this spatial decay is the offset £ — E; be-
tween the argument of the Green’s function and the band
energy. If we instead consider G(E = Ej, r), we find

GE =Ep, r) = — f g cosTk (A7)
= , V) = — o E—
0 27 J_nja  2tcosak
1 1 if r=02n+ 1)a
——xl-1 ifr=Qn+3)a (A3
2 Lo if r=Qn)a, n#0.

Note that the integral is divergent at » = 0, but we are inter-
ested in the behavior at large r, where this expression does not
decay in magnitude at all. Thus, the localization of the Green’s
function G(E, r) can only be considered once the energy
argument E is fixed, the localization occurs for particles that
are off-shell, in quantum field theory terms. In particular, as a
concept the localization of the Green’s function is somewhat
distinct from the localization of Wannier functions [44], since
this example shows that the latter is not a sufficient criterion
for the former.

3. Lindhard polarization

We now consider a d-dimensional hypercubic lattice with
lattice constant @ and two bands £ (k) and £_ (k). Both bands
have the same bandwidth W = 4d¢, where ¢ is the hopping
and the two bands have on-site energy +E (this is the energy
offset with respect to the Fermi level). Here 2E) is the energy
difference between the center of the two bands and the band
gap is A = 2E, — W. Explicitly, the dispersion relation is

d
Es(k) = +Ey+2t )y cosak; = +Ey + W f(ak). (A9)
i=1

Here the + stands for the conduction band and the — for the
valence band and we have introduced the dimensionless func-
tion of order unity f = ﬁ 25‘1:1 cos ak;, with [ dk f(ak) = 0.
We again assume ¢ < Ey, in other words, hopping smaller
than the on-site energy.

We determine the exponential decay length of the polariza-
tion IT, using Lindhard’s formula. For notational convenience,
we set a = 1 and normalize [ dk by the Brillouin zone vol-
ume. Note that we do not include a spin factor 2 in the
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definition of ITI. The only allowed excitations (at zero tem-
perature) are particle-hole pairs, i.e., the combination I, _:

1
My (q,w=0) = /dkE+(k+q)—E_(k) (A10)
_ / dk !
2E0 +WIf(k+q) — f(k)]
(A11)
1 1
= — [ dk W
2Ey I+ f(k+q) — f(K)]
(A12)
wxA 1 w
~ 2—&)—@ dk[f(k + q) — f(K)]
w? )
+8—Eg/dk[f(k+q)—f(k)] 4o
(A13)
1 VV2 1 d . qi 2
= 2_Eb+0+873ﬁ§snl<5)’
(A14)
II(r) = qu [1(q)cosq - r, (A15)
Mr=0) ~ ZLEO (A16)
W2
Nr=1) =~ m (A17)

The nearest-neighbor part of IT is smaller than the local part
by a factor W2/16d*E; = t?/EZ. This is the square of the de-
cay of the Green’s function (A3) since I1 is the product of two
Green’s functions. As a result, I1 decays exponentially with
decay length A = £/2. That IT is largely local (momentum in-
dependent) was also observed in model studies by Honerkamp
[33]. Note that we have set a = 1 and w = 0 from the start in
the calculation of IT. Expressing X in terms of W and d gives

) —
M(r) ~ exp <7r) — exp (Tr) (A18)
a

J

For SrVOs, a~3.8A, d =3, W~ 5eV, and Ey = (A +
W)/2 ~ 4 eV, resulting in A = £/2 = 0.84 A. Here we used
the bandwidth of the filled set of target bands, using W = 4 eV
results in A = 0.8 A, a rather similar result.

For the Green’s function G(E, r), localization occurred if
the energy E was entirely off-shell. For the polarization, w =
0 is the total energy carried by the particle-hole pair. Since w
is small compared to the gap, the particle and the hole cannot
be simultaneously on-shell and this guarantees the decay of
the polarization.

In this calculation, the second term in Eq. (A13) vanished.
This cancellation will occur for any dispersion relation f with
[ dk f(k) = 0, as long as Ey is sufficiently large to guarantee
that the band does not cross the Fermi surface: In that case the
integral is always carried out over the entire Brillouin zone.

This evaluation of the polarization was done in the band
basis, since Lindhard’s formula can be used there. In calcula-
tions based on ab initio bands, as presented in the main text,
additional orbital overlap matrix elements of order unity play
a role, but exponential decay is retained. The details of the
dispersions of these bands determine the precise value of A;
the simple estimate given here based only on the energy scales
provides the correct order of magnitude. For more details
about transforming polarizations between band and orbitals
basis sets, we refer the reader to Ref. [42].

4. RPA and vertex correction in the tight-binding model

The two second-order diagrams are shown in Fig. 2. The
second-order RPA diagram can be calculated directly in mo-
mentum space,

v,
X ~ L

, A20
4E¢ (A20)

RPA2

which implies that the real-space structure of x is deter-

mined by V (7).

We now explicitly calculate the second-order vertex cor-
rection diagram for the tight-binding model, directly applying
a lowest-order series expansion in W/Ey. We use that the
interaction V is instantaneous, i.e., independent of transferred
energy:

AR CESIEDY / dE / dE2G(rs — 11, ENG(r3 — 11, ENG(ry — 14, E)G(r3 — 13, E))V (14 — 13),

r3,ry

lri—rdl

tIr-nil

tlra—r2| ¢Ir2—rs]

VXC2
X Z_/dEl /dE2 (E| + Ep)Ini—rsl+l (E| — Ep)Its—ril+1 (B, + Ep)lta—r2l+1 (E, — Ej)ir2—r31+1

r3,rg

V(r=0)

tz
VXC2
X (ry —rp) ~ 4E§ 8r,—ry +0<Eg>+"'

V(rs —r3),

(A21)

Comparing explicitly Egs. (A20) and (A21), using ¢ /Ey & 0, the ratio of the second-order vertex correction and RPA diagrams

is

VX2

RPA2
X

(r=0)

1/E<1
—

1, (A22)
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r#£0)"=%

‘ VX2

RPA2
X

Equation (A23) shows that as long as V (r) # 0, nonlocal ver-
tex corrections are small compared to nonlocal RPA diagrams
in the large band-gap limit.

It is important to state that electronic localization does not
mean that the susceptibility is short ranged. Indeed, Eq. (A20)
is long ranged. Instead, only the irreducible part IT is short
ranged. This is somewhat similar to the dynamical mean-field
theory limit [61], where the single-particle self-energy X (also
an irreducible object) becomes entirely local.

5. Mixed polarization

In the previous argument, both bands were far away from
the Fermi level. The cRPA also considers the so-called rest-
target polarization. In that case, one Green’s function is close
to the Fermi level and one is far away. We introduce an
additional band that crosses the Fermi level, with dispersion

ho = W fo(k), (A24)

where fy is a dimensionless function of order unity with
f dk fo(k) =0, and calculate the rest-target polarization,
where we now have to take account of the range of the mo-
mentum integration,

M.o(q) = f dk
€0(k)<0

1
= dk
/fo(k)<o Ey+W[f(k+q)— fo(k)]
1 1
k—
1+ zf(k+q) — fo(k)]

1
E,(k+q) — ho(k)

Eo Jrao<o

1 14
= —(1-= dK[f (K +q)— foK)]+--- ).
E0< Eo om0 [f(k+q)— fo(k)] )
(A25)

As in the rest-rest polarization, the leading order in the
rest-target polarization is local (independent of q). However,
unlike in Eq. (A13), the first-order term now does not vanish
since the integral is no longer over the entire Brillouin zone.
As a result, the nonlocal part is suppressed by a factor W/E
only, instead of the (W/E;)? found in the rest space. Note that
here we also assumed that W < E, i.e., the bandwidth of the
target space is also small compared to the gap.

APPENDIX B: DIPOLAR NATURE OF SCREENING

Charge fluctuations are suppressed in gapped systems. As
a result, the screening is not chargelike, as it would be in a
metal. Instead, screening occurs via the excitation of particle-
hole pairs, with the particle existing in the conduction bands
and the hole in the valence band. We perform a multipole ex-
pansion to show that the interaction between two particle-hole
pairs is a dipole-dipole interaction.

Let R be a lattice vector with R = Rﬁ, i.e., R is the mag-
nitude of R and R is a unit vector. The RPA uses interactions

1/Eo<] 10 i B
V) \E

(A23)

(

between particles and holes, i.e., between bonding and anti-
bonding orbitals, so we have a # b and ¢ # d and calculate
the matrix element

Vab,cd (R)

2
/ drdy —— W (D)wy ()W (r ywa ()
Ir —r' — R|

& —— R =L =
— lalb)(eld) +—5 - ((alr|b) {cld) = (alb) (clr|d))

%

62 3ﬁlﬁ — 5,"
- ﬁ#uamw (c|rjld)

+{alr;|b)(c|r;|d)] + OR™™). (B1)

Here, for compactness, we have not written the vanishing
terms containing (a|b) = 0 in the quadrupole term. If we
now take a = d and b = ¢ and define cosa = R - (a|r|b), we
obtain

C,
Vibsa(R) = ﬁ(l —3cos’ ), (B2)

with Czq = €*|(a|r|b)|?. In other words, the interaction be-
tween two particle-hole pairs is a dipole-dipole interaction as
long as the separation between the two pairs is large. This
interaction decays slowly as a function of R. In fact, the
Fourier transform of the interaction between two dipoles with
the same orientation d is [62]

ya-dr(Q) = Cua( cos” arg — %)’ (B3)

where «q is the angle between Qu and (a|r|b). Notably, the
magnitude of the dipole-dipole interaction is independent of
the absolute value of q; it only depends on the angle. The
interaction stays finite close to q = 0, but the angle «q q varies
rapidly as one travels around q = 0.

APPENDIX C: VERTEX CORRECTION VERSUS THE RPA
FOR ELECTRONS WITH SHORT PROPAGATION LENGTH

The lowest-order diagrams are given in Fig. 2. Previously,
we compared these two diagrams for a specific tight-binding
model. Here we perform a comparison of the two diagrams in
a continuum model, with the assumption that the electrons are
strongly localized on a scale £. We simplify the situation by
taking G(r) = O for |r| > £ and G(r) constant for |r| < £ so
that fdr G(r) = G(0)S,, with Sy = %7%3 the volume of the
sphere with radius .

‘We start with the vertex correction. At short distances, the
dominant contribution is the particle-hole density-density in-
teraction, with a contribution 1/|r3 — r4| and a corresponding
integral over r3 and ry.

To perform the spatial integrals, we first set r; =0 by
translation symmetry so that three integrals remain. If we
further set r4 ~ ry, then any point r; within distance ¢ of r)
is also within distance £ of r4, so the second constraint can
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be dropped. For r4 # r;, the value of the integral is always
smaller, since the additional constraint reduces the integration
volume, and the integrand has a definite sign.

This makes the spatial integrals tractable; it now comes
down to the geometric problem of finding the average value
of 1/|r, — r3| for two random points in the unit sphere, which
has g as the answer. Inserting the appropriate units, we find

X2y, ry) < X, vy =11)

B {65—3?04(0)55 ~ 0 for|r —ry| <20
0 otherwise,

6¢?
x Q)" ~ §G4(0)Sg252z ~ 68, (&)

where the final equation is obtained by Fourier transformation,
which involves the integration over the variable r4 — r;, which
has to lie in Sy,.

The simplest way to understand this result is that all three
spatial integrals are restricted by ¢, giving £33, and one
internal interaction line provides £~! for a total of £3. Any
additional Coulomb vertex inserted provides two spatial inte-
grals (£2*3) and at best one Coulomb interaction (£~!) for an
addition overall factor £°.

The previous diagram is only relevant when r; and r4 are
close together, on the scale £. On the other hand, the RPA dia-
gram is relevant for large distances: r; and r3 can be far apart
since the interaction is long ranged. We immediately go to
momentum space since both the bubble and the dipole-dipole
interaction (Appendix B) are diagonal in q and evaluate the
RPA correction with the same number of vertices and Green’s
functions,

X" (q) = TI(q)* V¥ (q), (C2)
with
_[-G*©0) for|r| < ¢
1) = {O otherwise, ’ €3
1(q) ~ G*(0)S, fortg < 1, (C4)
xP2(Q) ~ CuaG*(0)S7 (cos” ag — §). (C5)

The contribution scales overall as XRPA2 ~ % In general,

every higher order in the RPA involves one interaction and
one bubble and contributes

CaaG*(0)S(cos® aqa — 3). (C6)

The comparison of powers of £ shows that RPA bubbles are
leading over the vertex correction in the limit £ — 0. Every
bubble contributes £> and every vertex correction £°.

1. Proper limit £ — 0

Naively, the formulas above imply no screening in the limit
¢ — 0. To obtain a nontrivial limit, one needs to use the
normalization condition

f dr G(r)G(—r) ~ G(0)2S, = const. (C7)

In that case, all orders in the RPA are independent of ¢ and the
vertex correction vanishes as £2.

FIG. 10. (a) Migdal’s theorem is based on the fact that the en-
ergies €(k;) and e€(k;) = €(k; + q) have to be close to the Fermi
level. This restricts the phase space for the momentum space integral
f dk;. (b) Our theory is based on the smallness of R; — R; and
R, — R3, which restricts the phase space of the real-space integrals
JdR,.

APPENDIX D: RELATION TO MIGDAL’S THEOREM

The following is a convenient statement of Migdal’s the-
orem [27,28]: Due to the large difference in mass between
the electron and the nuclei (i.e., the fact that v,/v, is small),
energy transfer between electrons and phonons is inefficient,
so all internal electronic propagators in diagrams need to have
an energy close to the Fermi level. Here the scale for being
close in energy is set by the phonon properties, i.e., by the
sound velocity vy (or the phonon frequency wy). The theorem
applies to metals, so it is natural to consider the implications
of this in momentum space. A vertex correction is shown in
Fig. 10. The momenta k; and k; both need to be close to
the Fermi level in energy; this restricts the integrals over the
internal momenta to a small region around the Fermi surface
and suppresses the relative correction of the vertex correction
diagram by a factor wp/EF.

Here, in a low-energy description of wide-band-gap sys-
tems, w, W < §, energy transfer via the Coulomb interaction
is inefficient, so electronic excitations again need to involve a
small energy transfer. If an electron starts at location R, then
the end point of the propagator needs to be close to R; as
well. This restricts the integrals over real space in the vertex
correction and suppresses their relative magnitude.

There are also differences. First, in momentum space, there
are many k with the same energy (e.g., the Fermi surface), so
it is possible to change k without changing € (k). Second, the
Green’s function is diagonal in momentum space (both end
points have the same momentum k) and the proof of Migdal’s
theorem proceeds entirely in momentum space. The Green’s
function is not diagonal in real space and in analyzing the RPA
it is useful to regularly switch between real and momentum
space. Third, a subtle aspect is the nature of the Coulomb
interaction, since it has divergences as a function of r or gq.
This favors diagrams where electrons are close together in
real space, like the vertex correction diagram. For d = 3, this
effect lowers the scaling by one power of ¢, resulting in a
scaling £° instead of £° per vertex correction.

APPENDIX E: KOHN-SHAM STATES
AND FINITE TEMPERATURE

The way of fixing E, and E}, and the determination of the
Kohn-Sham gap can also be understood in the framework
of a small finite temperate. For convenience, we once again
ignore the pair-hopping interaction I' ., SO the states shown
in Fig. 3 are the exact eigenstates.
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Lbox

e

FIG. 11. Finite simulation box size effects in the benzene
molecule (not to scale). The red box is the simulation box and the
blue box is one of its periodic images. Since VASP calculations use
periodic boundary conditions, matrix elements between, e.g., atoms
1 and 2 include unphysical contributions between periodic images
(dashed line). This fictitious effect vanishes in the limit Ly, — co.

There will be a finite thermal occupation of the a orbital.
At low temperature, this density (n,)ermal 1S determined en-
tirely by the energy difference between the zero-temperature
ground state O and the lowest-lying excited state with fi-
nite n,, which is state @. The auxiliary Kohn-Sham system
H®S =" hun,o + hpnp» has the correct density (m,)ermal
by construction and therefore needs to have the same energy
difference EC%S — EXS = E@ — Eq. This fixes E, and £}, up
to an overall additive constant.

APPENDIX F: ROLE OF FREQUENCY IN SCREENING

Our attention has been focused on static screening, i.e.,
o = 0. In the cRPA, the screened interaction is in general
retarded (a function of frequency) [8] and a relevant question
is how well the cRPA works at finite frequency w > 0. A
physical interpretation of the frequency is easiest when we
consider € and x as response functions; in that case w is the
frequency of the external field (photon energy).

In a gapped system, w = 0 implies that the particle-hole
pair cannot be entirely on-shell. However, once w reaches
the magnitude of the gap, the external field can excite on-
shell particle-hole pairs away from the Fermi level and out of
the classically forbidden zone and the present argumentation

breaks down. The Kohn-Sham gap Exs is the relevant physical
energy scale for the creation of particle-hole pairs and the RPA
is expected to break down as w ~ Fxs.

When applied to downfolding, we should stress that it is
not just the constrained random phase approximation that
breaks down. Instead, the entire concept of downfolding is
less applicable when the driving frequency w is large. The
high-energy properties of a system cannot be described by a
low-energy downfolded model. For example, any downfolded
model is unlikely to accurately describe the electron-energy-
loss spectrum of the material at large w, since transition
between higher-energy states are explicitly relevant in that
case. However, the goal of cRPA’s U(w) is to describe the
feedback of (high-energy) excitations on the (low-energy)
electronic spectrum and downfolding is suitable for that pur-
pose.

APPENDIX G: vase CALCULATIONS

All first-principles calculations are performed within
VASP [63,64] using a projector augmented wave basis set
[65] and a generalized gradient approximation (Perdew-
Burke-Ernzerhof) exchange correlation functional [66]. All
projections to localized Wannier orbitals are performed with
the WANNIER9O package [67] and all RPA and cRPA eval-
uations are done using a recent implementation by Kaltak
within VASP [42]. For the cRPA calculations we mostly use
the projection-constraining scheme by Kaltak [42] utilizing
block-diagonalized projectors U(k). The latter are defined as
the rotation matrices transforming Kohn-Sham states W, (k) to
Wannier states ¢, (k) according to

Pa(k) =D Una(k) W, (k) (G1)

and are the results from the Wannierization procedure [46].
For graphene and SrVO; we separately construct three
different projections U'-23(k) for the valence, target, and con-
duction states and combine them afterward.

1. Graphene

The graphene calculations are performed using an in-plane
lattice constant of ay = 2.468 A, a supercell height of 20 A
applying an energy cutoff of about 515 eV, and 18 x 18 x
1 k/q grids. The three distinct Wannier constructions for the

TABLE 1. On-site, nearest-neighbor, next-nearest-neighbor, and third-nearest-neighbor matrix elements in benzene in eV. The three
numbers denote the direct VASP RPA calculation, the two-tiered approach, and their difference, respectively. Here Ly is the in-plane length of
the computational cell in angstroms; the out-of-plane size of the box is held constant at 9.8 A. In addition, Np is the number of bands in the

calculation.
Uy U, U, Us

Lyox Np VASP Two-tiered Difference VASP Two-tiered Difference VASP Two-tiered Difference VASP Two-tiered Difference
7.25 64 7.7277 8.0523 —0.3246 5.6403  6.0021 —0.3618 4.9622 5.3835 —0.4214 49777 5.4296 —0.4519
10.9 64 8.0312 8.1272 —0.0960 5.8787  6.0000 —0.1213 5.1709  5.3288 —0.1579 5.2207 5.3977 —0.1770
10.9 128 7.7102  7.7850 —0.0747 5.7685 5.8681 —0.0996 5.1064 5.2428 —0.1364 5.1119 5.2675 —0.1556
145 64 8.6224  8.6552 —0.0328 6.1178 6.1713 —0.0536 5.3252 5.4026 —0.0774 5.4208 5.5109 —0.0900
14.5 128 8.1995 8.2165 —0.0170 5.9253 5.9630 —0.0378 5.1934 5.2562 —0.0629 5.2370 5.3132 —0.0762
14.5 192 8.0334 8.0478 —0.0144 5.8817 5.9163 —0.0347 5.1767 5.2363 —0.0596 5.1972 5.2701 —0.0729
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bonding/antibonding and the p, states were performed indi-
vidually using different initial projections and Wannierization
windows. The bonding orbitals b were constructed from three
initial s-shaped orbitals localized at the C-C bond center and
using a “frozen” (inner) Wannierization window including
all Kohn-Sham states between —20 and —2.4 eV below the
Fermi level. The p, orbitals were constructed using p, initial
projections centered on each C atom and using a frozen win-
dow from —2.6 to 1.6 eV. The antibonding orbitals a were
constructed from initial in-plane p, and p, orbitals positioned
at the C-C bond centers. Due to the entanglement of these
states with other rest and the p, states (see Fig. 5), we cannot
use a frozen window and just restricted the Wannierization
to an outer window spanning from 2.6 to 25.5 eV above the
Fermi level. All Wannier constructions were maximally local-
ized. For all cRPA calculations we used in total 192 bands
with energies up to about 82 eV above the Fermi level.

From these three individual Wannier constructions we gain
three distinct projections (rotation matrices) U?7-%(k) which
we use to construct three individual Wannier Hamiltonians
H"P-¢ From the latter we construct all needed noninter-
acting polarizations for the various subspaces and with the
combined U(k) (from all three U??=%) we can calculate U’
and U”? from first principles within VASP. For the minimal
localized bonding/antibonding model from Sec. IV A we use
local on-site energies h, = Hj (R = 0) and h, = Hi (R =
0) of a single bonding/antibonding orbital pair and define
Uy=UL, (R=0),U,=ULl (R=0), Vs =ULl (R=0),
and J,, = UL, (R = 0) with a and b corresponding the Wan-
nier orbitals 3 and 6 depicted in Fig. 6.

2. SI‘VO;;

For SrVO; we use the structure from Ref. [68] with a
cubic cell and a lattice constant of ay ~ 3.9 A. The DFT
calculations are performed using a 5 x 5 x 5 k grid and an
energy cutoff of 500 eV. As in the case of graphene, we
construct the polarization from a block-diagonalized tight-
binding Hamiltonian which we gain from three individual
Wannier constructions for the predominantly O p valence
band (—2 to —7 eV below the Fermi level), the metallic V
f band (=1 to 1 eV around the Fermi level), and the V e,
conduction band (1 to 5 eV above the Fermi level). While the
O p and V tp, bands are not entangled with other Kohn-Sham
states, the V e, bands overlap with some higher rest bands.
Thus, in the latter case we cannot use a full frozen Wannier
window and restrict it from 1.4 to 3.6 eV above the Fermi
level. All Wannier functions are maximally localized and we
use 64 bands with energies up to about 40 eV above the Fermi
level to evaluate the background screening.

3. Benzene

We set the C-C distance to 1.395 A and relax the C-H dis-
tance yielding a separation of 1.086 A. For all calculation we
use an energy cutoff of about 517 eV and utilize just a single k
point. The supercell box size is varied as indicated in Sec. H.
We define the correlated subspace as those six Kohn-Sham
states with the strongest C p, character around the Fermi level.
Correspondingly, we construct the localized Wannier orbitals

TABLE II. Coulomb matrix elements in benzene. All numbers
are in eV. Matrix elements with a deviation greater than 0.01 eV
between the two-tiered RPA and direct VASP RPA are highlighted in
bold font. Only distinct matrix elements are shown. All other orbital
combinations can be recovered by symmetry. These data correspond
to Loy = 10.9 A and Ny = 128 (see also Table I).

i j k I VvASPcRPA vAspRPA Two-tiered RPA  Difference
0000 9.3826 7.7102 7.7850 —-0.0747
0001 -03177 —0.2611 —0.2597 —0.0015
0003 0.5317 0.3987 0.3954 0.0033
0005 0.2408 0.2221 0.2219 0.0001
0011 4.7005 5.1064 5.2428 —0.1364
0012 —00654 —0.1271 —0.1296 0.0025
0013 0.1483 0.1865 0.1866 —0.0001
001 4 0.1477 0.1570 0.1571 —0.0001
0015 0.0874 0.1821 0.1853 —0.0032
0033 6.1192 5.7685 5.8681 —0.0996
0034 -02076 —0.2210 —0.2187 —0.0024
0035 —01009 —0.1499 —0.1512 0.0014
0055 42522 5.1119 5.2675 —0.1556
0101 0.0385 0.0319 0.0318 0.0002
0102 0.0184 0.0191 0.0192 —0.0001
0103 —0.0421 —0.0351 —0.0349 —0.0002
0104 -00187 —0.0178 —0.0178 —0.0000
0105 —-00198 —0.0195 —0.0195 —0.0000
0123 -0015 —0.0160 —0.0160 0.0000
0124 -00103 —0.0182 —0.0184 0.0002
0134 0.0207 0.0203 0.0202 0.0001
0145 0.0101 0.0162 0.0164 —0.0002
0303 0.1758 0.1512 0.1509 0.0003
0304 0.0179 0.0160 0.0159 0.0002
0305 0.0265 0.0253 0.0253 0.0000
0314 0.0197 0.0221 0.0221 —0.0000
0315 0.0213 0.0288 0.0289 —0.0002
0325 0.0155 0.0289 0.0292 —0.0003
0505 0.0221 0.0209 0.0209 0.0000
0514 0.0152 0.0158 0.0158 —0.0000

using p, orbitals on the C sites as initial projections, which
we maximally localized. The frozen window is including all
states between —3.5 and 5.0 eV around the Fermi level. Here
we use for the cRPA calculations the weighted constraining
scheme by Sasioglu et al. [12].

APPENDIX H: BENZENE AS A BENCHMARK

In the two-tiered downfolding, for computational reasons
we have to make the approximation that the Coulomb interac-
tion depends only on a single momentum, i.e., V(Q, K, K') &~
V(Q). In this way, some matrix elements with orbitals in
different unit cells are neglected. In solids, the quality of this
approximation depends on the particular Wannier construc-
tion and how much spillage it has.

When simulating a single molecule, on the other hand,
there should formally not be any spillage since there is only
a single unit cell. In practical VASP calculations, however,
a finite simulation box of size Ly,x with periodic boundary
conditions is used, as in Fig. 11. In our two-tiered RPA, this
lead to deviations between the direct VASP RPA calculation
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and the two-tiered approach. This error is controlled by the
parameter Ly,.x. Below we study this effect quantitatively.

As in the main text, we compare a two-tiered approach
to a direct calculation of screened Coulomb matrix elements
between p, orbitals. In this case, tier 1 corresponds to a
cRPA calculation with all six p, orbitals frozen, i.e., in the
target space. Tier 2 represents a full RPA calculation without
any frozen orbitals (no target space). We compare the matrix
elements between the p, orbitals, which are numbered as in
Fig. 11. In Table I we show the density-density elements for
several sets of computational parameters. As the box becomes
larger, the deviation between the direct and the two-tiered
calculations becomes smaller, as anticipated. Similarly, in-

creasing the number of Kohn-Sham states Np reduces the
deviation. In Table II we show all Coulomb matrix elements
for Lyox = 10.9A and Np = 128, showing that the density-
density elements are largest in magnitude and also feature the
largest deviation. In fact, the largest deviation occurs for the
interaction between opposite sides of the molecule (orbitals 0
and 5), since the atom in the next periodic image is relatively
close in that case. The tables show that the deviations can be
decreased by improving the computational parameters and the
deviations are substantially smaller than the relevant matrix
elements. In Table II we should also point out that several
RPA matrix elements are larger in magnitude than their cRPA
counterparts, i.e., antiscreening occurs.
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