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Abstract

Gray matter connectivity can be described in terms of its topographical organization,

but the differential role of white matter connections underlying that organization is

often unknown. In this study, we propose a method for unveiling principles of organi-

zation of both gray and white matter based on white matter connectivity as assessed

using diffusion magnetic ressonance imaging (MRI) tractography with spectral

embedding gradient mapping. A key feature of the proposed approach is its capacity

to project the individual connectivity gradients it reveals back onto its input data in

the form of projection images, allowing one to assess the contributions of specific

white matter tracts to the observed gradients. We demonstrate the ability of our

proposed pipeline to identify connectivity gradients in prefrontal and occipital gray

matter. Finally, leveraging the use of tractography, we demonstrate that it is possible

to observe gradients within the white matter bundles themselves. Together, the pro-

posed framework presents a generalized way to assess both the topographical orga-

nization of structural brain connectivity and the anatomical features driving it.
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1 | INTRODUCTION

The function of a given brain region is defined by its internal aspects—

cytoarchitectonical and cytochemical features but also by the afferent

and efferent projections it has from and to other parts of the brain,

respectively (Mars, Passingham, & Jbabdi, 2018; Passingham, Step-

han, & Kötter, 2002; Saygin et al., 2016). More specifically, these

connectivity patterns give rise to networks and the dynamic balance

between these networks characterizes function and, consequently,

behavior (Jbabdi, Sotiropoulos, & Behrens, 2013; Peer, Nitzan, Bick,

Levin, & Arzy, 2017).

While most descriptions of the connections between brain areas

have focused on a region-to-region map, it is increasingly apparent

that there is useful information in the topographic organization of

connections within and across such regions (Haak & Beckmann, 2020;

Jbabdi et al., 2013). For instance, regions organized in a rostral–caudal

fashion in the frontal lobe connect to regions in a caudal–rostral fash-

ion in the parietal lobule, mirroring this principle of organization across

different parts of the brain (Vijayakumar et al., 2018). Most sensory

networks also rely on topographically disposed connections being

conserved from the sensory input site all the way to the cortex, all-

owing them to maintain effectiveness in case of a lesion in the path-

way (Kaas, 1997). Global gradients also exist across species and

reflect a hierarchies in the cognitive landscape, with multimodalChristian F. Beckmann and Rogier B. Mars are shared last authors.
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regions corresponding to hubs of the default-mode network sitting at

one extreme and primary sensory regions such as primary visual area

V1 being at the other (Margulies et al., 2016; Xu et al., 2020).

Yet, despite the expanding body of evidence pointing toward

principles of topographic organization and preservation of connec-

tions, the overwhelming majority of models for distributed processing

are predicated on the notion of homogeneous, piecewise constant

connection signatures within discrete brain regions (Eichert et al.,

2018). Topographic organizational principles of connectivity are diffi-

cult to establish with most current parcellation techniques that aim to

separate the brain into distinct parcels based on their shared within-

area connectivity and distinct between-area connectivity profiles

(Eickhoff et al., 2015; Klein et al., 2007; Neubert, Mars, Thomas,

Sallet, & Rushworth, 2014), and thereby ignore fundamental principles

of topographically organized heterogeneity within areas (Haak &

Beckmann, 2020). Further, this difficulty is exacerbated by the possi-

ble presence of connectional multiplicity, that is, the presence of

multiple overlapping connection topographies caused by differential

spatial patterns of all afferent projections (Haak & Beckmann, 2020;

Haak, Marquand, & Beckmann, 2017). These allow for the computa-

tion of complex functions using relatively simple spatial rules and their

disentanglement may provide important primers for computational

models of high order brain functions (Jbabdi et al., 2013).

From a computational standpoint, the topographic disposition of

connections can increase the efficiency of communication between

regions since neurons that are more likely to interact are situated

closer together which, in turn, can reduce wiring costs. This type of

organization has now been shown to not only be present in many

parts of the brain and across vertebrates—suggesting that there is an

evolutionary advantage to it—but also to have functional relevance

for behavior (Marquand, Haak, & Beckmann, 2017; Tinsley, 2009).

The topographic regularity of the connections themselves has also

seen a recent surge of interest, with studies showing that the axons

connecting topographical maps conserve the same spatial pattern

along their entire trajectory (Aydogan & Shi, 2016, 2018; Wang,

Aydogan, Varma, Toga, & Shi, 2018).

Haak et al. (2017) recently proposed a method aimed at quantify-

ing topographic patterns by finding the underlying, dominant directions

of connectivity change within a brain region. This method was based

on earlier work using Laplacian Eigenmaps (LE) proposed by Cerliani

et al. (2012). Focusing on resting state fMRI, Haak and colleagues pres-

ented a pipeline for revealing these connectopic topographies—con-

nectopies—and, importantly, provided a principled statistical framework

for comparing connectopies from different subjects and to test for

associations with secondary measurements such as demographics and

behavior. This approach has been successful in demonstrating con-

nectopic organization in the primary visual and motor cortices, but also

in revealing behaviorally relevant topographies in the striatum

(Marquand et al., 2017), across the hippocampus (Prze�zdzik, Faber,

Fernández, Beckmann, & Haak, 2019; Vos de Wael et al., 2018), ento-

rhinal cortex (Navarro Schröder, Haak, Zaragoza Jimenez, Beckmann, &

Doeller, 2015) insula (Tian & Zalesky, 2018), and the anterior temporal

lobe (Faber, Prze�zdzik, Fernández, Haak, & Beckmann, 2020).

While resting state MRI-based functional connectivity gradients

capture subject-specific, biologically relevant information, they rely on

BOLD signal suffering from the same limitations as any rsfMRI con-

nectivity measures such as a high dependence of subject state

(e.g., eyes open vs. eyes closed; Cole et al., 2010). Furthermore, if connec-

tivity gradients are to be used as the basis for biology-based models of

brain function, the physical implementation and evolution of these gradi-

ents must be investigated in addition to their functional consequences.

Moreover, focusing on functional activation precludes the application of

this technique in ex-vivo samples, which would open up the possibility to

use this framework in samples that can be directly validated against histo-

logical investigations and comparative studies using post-mortem tissues.

Finally, as structural connectivity is constituted by a discrete set of com-

mon elements (white matter tracts), we are able to back-project the gradi-

ents onto our input space, revealing its contribution to the observed

graded connectivity pattern changes. As such, it is crucial to map gradi-

ents in structural brain connectivity in order to resolve how they have

been driving the observed functional heterogeneity and multiplicity. Here,

we demonstrate both principles using diffusion MRI data, opening up the

way to a better understanding of this new way to understand the physical

architecture underlying neural computations.

This article shows that white matter pathways exhibit multiple

overlapping, topographically organized modes of connectivity. We

outline a technique (a schematic can be found in Figure 1) based on

the connectopic mapping approach introduced in Haak et al. (2017)

for resting-state functional connectivity, but adopted to use in the

context of diffusion weighted imaging (DWI) data and probabilistic

tractography for generating gradually changing white matter connec-

tivity estimates. This technique extends previous applications of the

LE approach on DWI data (Bajada et al., 2017; Cerliani et al., 2012) by

characterizing the modes of change within the white-matter tracts

themselves rather than their projections onto the cortical surface, and

was recently used to uncover three overlapping modes of connectiv-

ity in the temporal lobe, associated these modes with specific white

matter contributions and assigned them as principles of functional

organization of the temporal lobe (Blazquez Freches et al., 2020).

Here, we show that these modes of structural connectivity exhibit

high levels of reproducibility, recapitulate known anatomical bound-

aries between cortical regions and tract subdivisions, and represent

different features of the underlying white matter connectome. Specif-

ically, and through application in model systems (language and vision),

we show that the underlying white matter tracts contribute differ-

ently across systems, hemispheres and modes of connectivity. Addi-

tionally, we demonstrate through an example tract (optic radiation)

that gradual connectivity changes are conserved along the connecting

white matter fibers themselves, adding a different layer of complexity

to the study of connectivity topographies (connectopies).

2 | METHODS

All analysis was performed on both Sessions 1 and 2 of the test–retest

cohort in the Human Connectome Project (HCP; Van Essen
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et al., 2013) dataset. A different subset of subjects from this dataset

was used for direct comparison with an earlier study (Jakobsen

et al., 2016). Numerical results are reported for both sessions and fig-

ures refer to results from Session 1 unless indicated otherwise. The

corresponding figures for Session 2 can be found in the Supporting

Information figures section.

2.1 | Data

Forty-four subjects (28 females, 4 left handed, aged 22–35 years) of

the HCP test–retest cohort were selected. These subjects were

scanned in two different sessions (referred to as Session 1 and Ses-

sion 2). A second subset of the HCP dataset was selected to match

the one studied by Jakobsen et al. for direct comparison of results.

(Jakobsen et al., 2016; 101 subjects, 59 females, aged 22–35 years).

Within both subsets of subjects, no subsequent preprocessing steps

were employed other than the ones already performed by the HCP

minimal preprocessing pipeline (Glasser et al., 2013; Sotiropoulos

et al., 2013). Importantly, posterior distributions of fiber orientations

for probabilistic tractography were generated using FMRIB software

library (FSL's) BEDPOSTX (Behrens, Berg, Jbabdi, Rushworth, &

Woolrich, 2007; Jbabdi, Sotiropoulos, Savio, Graña, & Behrens, 2012).

The data spatial resolution was 1.25 mm isotropic.

2.2 | Pipeline summary

The proposed pipeline is illustrated in Figure 1. Probabilistic

tractography is run from seed region to the rest of the hemisphere

(for simplicity a stop mask was put at the midsagittal section in order

to ignore inter hemispheric crossings—these may continue tracking

after reaching their tract endpoint, inducing spurious connections).

The resulting connectivity matrix is then transformed into a similarity

matrix, that is used to compute the adjacency graph (in our case, we

computed the minimum number of neighbors needed to make a con-

nected graph). Finally, the graph's Laplacian is decomposed into its eigen-

vectors that correspond to the connectopic maps of the seed region.

F IGURE 1 Schematic overview of the proposed connectopic-mapping framework. Probabilistic tractography is run from either a surface or a
volume seed region. The resulting connectivity matrix (A) go through dimensionality reduction via Singular Value Decomposition (SVD), resulting
in matrix B. Matrix B is then transformed into a similarity matrix (S), which is used to compute the similarity graph. Finally, the graph's Laplacian is
decomposed into its eigenvectors that correspond to the connectopic maps of the seed region. Their corresponding projections in target space
(projection images) are then computed by populating the thresholded connectivity matrix with the values coming from the corresponding
connectopic maps. We discuss each step in more detail in Section 2
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Their corresponding projections in target space (projection images) are

then computed by populating the thresholded connectivity matrix with

the values coming from the corresponding connectopic maps.

2.3 | Region of interest selection—surfaces

Group region of interest (ROI)'s for each hemispheres were created by

defining a 95% consensus mask across all subjects' Brodmann maps

(Fischl et al., 2008). The consensus mask would contain a specific

vertex if that vertex were assigned to the corresponding Brodmann

area in at least 84 of the 88 data points (44 subjects scanned twice).

For our study, two regions were selected: Brodmann areas 44 and

45 merged (BA 44/45—association cortex) and 17 (V1—primary

cortex). These two regions were analyzed in both hemispheres. An

identical approach was followed in order to create 50% agreement

and 1 subject agreement (where the consensus mask contained all the

vertices that were classified as belonging to Brodmann area 44/45 in

half the subjects of at least in one subject respectively) masks for

Brodmann areas 44/45. Finally, in 101 subjects of the full HCP cohort

(of which six belonged to the 44 test–retest cohort taken originally),

manually delineated BA 44/45 masks (Jakobsen et al., 2016) on the

left hemisphere were used. In FSL, these surfaces were used directly

as the seeds for tractography, by transforming them from surface

space (in mm) to voxel space (in voxel coordinates) using the caret

convention.

2.4 | Region of interest selection—volume

Individualized white matter tract thresholded tractograms were

obtained using FSL's XTRACT (Warrington et al., 2020) following the

procedure described in (Mars et al., 2018). In our study, the optic radi-

ation in both hemispheres was selected. These individualized tracts

were then intersected with a coronal plane at y = �58.5 (where all

subjects had voxels pertaining to the optic radiation) in MNI space to

produce individual optic radiation cross sections.

2.5 | Probabilistic tractography

The first step in the pipeline was to run probabilistic tractography seeding

from the chosen ROI at the individual mid-thickness surface level

towards the whole hemisphere (when seeding from the surface) or from

the volumetric cross section to the rest of the tract (when seeding from

a tract cross section in volume space). Surface seeds were warped to

volume space and removed from the target hemisphere so that self-

connectivity effects would be mitigated. Stop masks were placed at the

pial surface and at the mid-sagittal plane so that streamlines would not

leave the brain or cross hemispheres. FSL's PROBTRACKX was used

with the following settings: 10,000 streamlines per voxel, maximum path

length of 2,000 steps, step size of 0.5 mm, and the “matrix2” mode (thus

saving the result of the probabilistic tractography in a connectivity matrix

corresponding to the visitation counts of every seed voxel to each target

voxel). This yielded a seed � hemisphere matrix that corresponds to A in

Figure 1.

2.6 | Dimensionality reduction

To reduce computation, matrix A's dimensionality was reduced using

SVD resulting in Matrix B (Figure 1) describing the connectivity finger-

print of each vertex in the seed which each of a set of spatially

uncorrelated components. Matrix B is thus of size seed � components.

2.7 | Similarity matrix

To compute the between-vertex similarity between seed vertices, a

similarity function was applied to matrix B. In this pipeline, the η2

coefficient was chosen (Cohen et al., 2008). This coefficient expresses

similarity between connectivity fingerprints by how much explained

variance one accounts on the other with the following formula η2 ¼
SSfingerprint
SStotal

where SSfingerprint represents how much variance of the finger-

print being compared is explained by the target fingerprint and SStotal

represents the total variance in the fingerprint under comparison. The

result of this step is matrix S (Figure 1) of size seed � seed. The values

in matrix S range from 0 (completely dissimilar) to 1 (equal).

2.8 | Graph construction

The similarity matrix S was transformed into a weighted graph by

means of a k-nearest neighbors approach with the number of neigh-

bors being the minimum necessary so that the resulting graph only

contained one connected component.

2.9 | Dimensionality estimation

A dimensionality estimation approach was used to limit our group

analysis to the minimum common number of dimensions across all

subjects. This was done by estimating the dimensionality of each indi-

vidual network graph using Maximum Likelihood Estimation (MLE) of

intrinsic dimensionality (Levina & Bickel, 2004) and choosing the mini-

mum common subset across subjects. In all cases, the common num-

ber of estimated dimensions was 2.

2.10 | Laplacian Eigenmaps

The selected regions' LE was obtained by performing the generalized

Eigen decomposition of the graph Laplacian, after discarding the first

eigenvector (0-valued eigenvalue; (von Luxburg, 2007). In this study, the

two eigenvectors (normalized between 1 and 10) associated with first

two nonzero eigenvalues were investigated (These eigenvectors are
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referred throughout this article as connectopic topographies or “con-
nectopies.” When overlaid on an anatomical image, the connectopic

topographies are referred to as connectopic maps. Group-level con-

nectopic maps were obtained by averaging all subjects' connectopic maps

within a dataset (test or retest). Averaging subjects' matrix2 incoming

from FSL's PROBTRACKX was not possible since the self-connectivity

exclusion masks were slightly different from subject to subject.

2.11 | Projection images

To investigate how the connectopic topographies for a given gray matter

area are related to connections with underlying white matter, we created

tract projection images. First, we created a projection skeleton in volume

space, showing for each voxel in the target hemisphere how often a

streamline from seed had reached it. This projection skeleton was cre-

ated by thresholding (such that only voxels visited by at least 1% of

streamlines or a given seed vertex were considered) and binarizing matrix

A. Second, we populated each voxel of the projection skeleton with the

weighted average connectopy value of the top three vertices which

streamlines hit that target voxel the most, thereby producing the projec-

tion images. Each connectopic map will have one projection image asso-

ciated with it. Figure 1 shows one example of a projection image.

2.12 | Tract skeletons

To identify the tracts that contributed to the observed connectopies, we

next determined which parts of the projection images were composed of

specific white matter tracts. In order to achieve this, every projection

skeleton was multiplied with individualized white matter tract

thresholded tractograms obtained using FSL's XTRACT (Warrington

et al., 2020) following the procedure described in (Mars, Sotiropoulos,

et al., 2018). We refer to the resulting images as tract skeletons.

2.13 | Tract projections

In order to separate the contributions of each white matter tract to

the overall connectome, every projection image was multiplied with

the previously obtained individualized white matter tracts. We refer

to the resulting images as tract projections. The process is illustrated

in Figure 2. For clarity, a given subject for which two connectopic

maps are calculated will have two projection images and 78 tract pro-

jections (one for each tract*connectopic map combination).

2.14 | BA44/45 parcellation

Brodmann areas 44 and 45 were merged in one single ROI for this study.

To investigate if the first connectopy of BA 44/45 could parcellate this

single ROI into its two separate components reliably, the k-means++

algorithm (Arthur & Vassilvitskii, 2007) was used (with two centroids) to

create predicted BA44 and BA45 masks that served as a target for vali-

dation. The resulting predicted masks were compared with the initial BA

44 and BA 45 masks using the Dice coefficient (DC; Dice, 1945), where

DC¼ 2 X \ Yj j
Xj jþ Yj j ; where jXj and jYj represent the number of elements in

each set and X \ Y represents the common elements for both sets.

Dice similarity results were defined as the bootstrapped 95% confi-

dence interval of the mean result and the bootstrap was made with

10,000 samples. Additionally, and in order to evaluate the influence of

the presence of outliers on the ROI, the 50 and 1% agreement BA

44/45 masks were subjected to the same procedure. Finally, and to

compare the accuracy of the parcellation between manual and algo-

rithm made labels, manually delineated and merged BA 44/45 (left

hemisphere only) masks from (Jakobsen et al., 2016) were also ana-

lyzed in a similar fashion. In this last case, the DC was calculated

between the intersection of the manual masks and the 95% agree-

ment BA 44/45 predicted masks as two avoid lower scores caused by

mismatches of the initial masks.

2.15 | Cross-subject and cross-session
reproducibility

In order to assess cross-subject and cross-session reliability of the con-

nectopic maps (the procedure was the same for cortical seeds and

white matter seeds), the intra-class correlation coefficient case 2.1

(Shrout & Fleiss, 1979) with k = 2 for both cross-subject and cross-

session ICC where ICC¼ BMS�EMSð Þ
BMSþ k�1ð ÞEMSþk JMS�EMSð Þ

n

, where n is the number of

“targets” (here voxels in our ROI), BMS is the between targets mean

square, EMS is the error mean square, and JMS is the between

“judges” mean square (here sessions or subjects). Both cross-subject

ICC and cross-session ICC were defined as the bootstrapped 95%

confidence interval of the means of their respective definitions. The

bootstrap was made with 10,000 samples.

2.16 | Mate-based retrieval rate

To further investigate the reliability and uniqueness of connectopic

maps, a mate-based retrieval rate experiment was performed. An

F IGURE 2 Illustration of the creation of tract projections. A
representative projection image (first connectopy) is multiplied with
39 individualized white matter tract masks obtained with FSL's autoPTX
to create tract projections. FMA, forceps major; OR, optic radiation
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exact matching criterion was employed meaning that a match was

considered successful if the connectopy based on the first session run

attained maximal correlation with the corresponding connectopy in

the second session. The matching accuracy was then the sum of

matches divided by the total number of subjects. This approached

was used both in surface seeds (BA 44/45 and V1) and white matter

(OR cross-section).

2.17 | Projection skeleton—Lateralization

Tract skeletons (39 white matter individual tract masks multiplied by

the projection skeletons) were compared in terms of lateralization

index (Thiebaut de Schotten et al., 2011). Lateralization index was

defined as: Pright�Pleft
PrightþPleft

, where P is the proportion of volume of a given

tract to the full projection image volume. For any ROI considered, only

tracts that represented at least 3% of the total projection image were

considered and kept for tract projection. Every tracts' lateralization

index was classified as left lateralized, right lateralized or non-

lateralized as the result of a one sample t-test (Bonferroni corrected)

across all subjects on each session.

2.18 | Projection image—Tract projection

To establish whether the information present in projection images was

sufficient for separating the contributions of different white matter tracts

in different connectopies, the bootstrapped 95% confidence interval of

the mean value was calculated in each relevant tract projection after

multiplication with a white matter mask to minimize effects from gyral

biases and cortical terminations in every subjects' projection images.

2.19 | Tract cross-sectional gradient—Gradient
profiles

As every individual had slightly different optic radiation tract inter-

section coordinates, at y= �58.5, an additional step towards normalizing

the z coordinate was made. In every subject, the range of values along

the z coordinate was upsampled using linear interpolation to 100 data

points between 0 (most ventral coordinate for a given subject) and

1 (most dorsal coordinate for that given subject). Finally, every subject's

gradient profile along the z axis was calculated by averaging all values

along the x direction (medial to lateral) for every normalized z coordinate.

This data manipulation produced an array of dimensions 1 � 100 (inter-

polated size of the z dimension) for every subject, representing the aver-

age projection image value at y = 58.5 for any normalized z coordinate.

2.20 | Tract cross-sectional gradient—Projection
image profiles

Projection image values on g1 were calculated by normalizing the

z coordinates in the same fashion as had been done with gradient

images. An additional step was made, which was to average along the

y-coordinate from the posterior end of the projection images up to

y = �58.5. Thus, in this case, each individual 1 � 100 array represents

the average projection image value from y = �58.5 until its most pos-

terior point, at every normalized z-coordinate point.

The projection image values on g2 were obtained similarly, by

only switching dimensions y and z. Values were averaged across the z-

coordinate and normalized in the y-axis.

3 | RESULTS

We investigated the potential of the connectopic mapping approach

to unravel overlapping modes of brain organization using diffusion

MRI tractography data. First, we demonstrate the method's ability to

find overlapping modes of organization of brain areas based on their

long-range connectivity and validate the robustness of the results

across subjects and sessions. Second, we show that these principles

recapitulate and characterize organizational principles shown with

other methods while further giving insights on their origin. Finally, we

demonstrate how the method can elucidate the organization of the

white matter itself, demonstrating its potential in particular in

tractography data. All tables represent data from both cohorts.

Figures represent data from the test cohort, with the corresponding

retest cohort being represented in Supporting Information section.

3.1 | Connectopic mapping show biologically
meaningful maps at a group level

Group connectopic maps were created in order to unravel the global com-

mon modes of connectivity of selected cortical regions as follows.

Tractography was performed from selected ROIs toward the whole hemi-

sphere and the resulting individual tractograms were submitted to the con-

nectivity gradient pipeline of Figure 1. Finally, the connectopic maps were

averaged across subjects. In both case studies, our pipeline recommended

the analysis of the first two dimensions of the data, from herein referred as

dominant mode and second dominant mode of connectivity. This dimen-

sionality estimation was performed using MLE (Levina & Bickel, 2004).

In the case of Brodmann's areas 44/45, we found that the domi-

nant mode of connectivity (Figure 3—top row) showed a bilateral

anterior–posterior gradient consistent with the anterior–posterior

division between BA44 and BA45 as previously demonstrated using

connectivity-based parcellations (Anwander, Tittgemeyer, von

Cramon, Friederici, & Knosche, 2006; Friederici, 2009; Glasser &

Rilling, 2008) and their functional segregation (Friederici et al., 2013;

Hagoort, 2013; Jakobsen et al., 2016).

The second dominant mode of connectivity (Figure 3—bottom

row) revealed a ventral-dorsal connectivity gradient consistent with

the dual pathway model for language processing (Friederici et al.,

2013; Hickok & Poeppel, 2007; Saur et al., 2008). Taken together,

these results suggest that, as rsfMRI, DWI-based connectopic map-

ping is able to disentangle biologically meaningful, overlapping modes

of connectivity present within a ROI.
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Likewise, Brodmann area 17 (referred as V1), has been shown

to map eccentricity in the visual field along the calcarine sulcus

from the posterior to the anterior parts (Dougherty et al., 2003;

Wandell, Dumoulin, & Brewer, 2007). More specifically, the poste-

rior end of this mapping is assigned to the fovea, giving large num-

bers of neurons the task of processing information from this small

region of the visual field and thus enabling the fine spatial resolu-

tion near the center of the visual field (Azzopardi & Cowey, 1993;

Daniel & Whitteridge, 1961; Duncan & Boynton, 2003). The group

dominant connectivity mode of V1 (Figure 4—top row) presented a

similar posterior–anterior gradient, in agreement with the previous

study by Haak et al. (2017) using resting state fMRI instead of

tractography. In contrast to the fMRI results of the previously

study, however, the MLE dimensionality estimator did not indicate

evidence of more than one gradient in the diffusion data. Indeed,

the second dominant connectopy (Figure 4—bottom row) showed a

radial component that did not match previous functional mappings found

in this region of the cortex.

3.2 | Individual level connectivity gradients
capture subject-specific information

The method's capacity for mapping connectivity gradients at the indi-

vidual level was accessed by analyzing the same connectivity gradi-

ents of BA44/45 and V1 at the individual subject level. We used

44 participants for whom both test and retest data were available,

meaning that for every participant we had two sets of results—one for

each session. The robustness of these maps was evaluated across ses-

sions and across subjects using the intra-class correlation coefficient—

ICC (case 2,1); see Section 2 (Shrout & Fleiss, 1979). Results are sum-

marized in Table 1.

For both in the BA 44/45 and V1 masks, the reproducibility

between sessions and between subjects decreases as we move from

the first gradient—dominant mode of connectivity (g1) to the second

gradient - second dominant mode of connectivity (g2). This indicates

that dominant connectivity modes are more similar across subjects

(between subjects ICC) and more robust (between sessions ICC). The

between subjects ICC is always lower (in either session) than the

between session ICC, indicating that individual connectopies retain

subject-specific information.

Interestingly, we observed an asymmetry effect on the first gradi-

ent (g1) of BA 44/45 whereas in V1 there is symmetry across

gradients for the between subjects and between sessions ICC. In the

principal gradient of BA 44/45, the ICC is significantly higher in

the left hemisphere for both between session and between subjects

ICC. This indicates that the dominant connectivity mode of BA 44/45

is both more reproducible and more homogenous between subjects in

the left hemisphere. This asymmetry effect disappears when the sec-

ond dominant connectivity mode is analyzed.

On the basis of observing that both V1 and BA 44/45 had a

high between session ICC indicating the robustness of their respec-

tive dominant connectivity modes, we hypothesized that despite

these similar results, the dominant gradients of BA44/45 would be

more subject-specific than the dominant gradients of V1. To test

F IGURE 3 Group connectopic maps of BA 44/45 overlaid on an
inflated cortical surface (test cohort). The top row shows the
connectopic maps for the dominant connectivity mode (g1). The
bottom row shows the connectopic for the second dominant
connectivity mode (g2). The L R labels refer to the left and right
hemisphere, respectively

F IGURE 4 Group connectopic maps of V1 (occipital pole plane-
dashed line) overlaid on an inflated cortical surface (test cohort). The
top row shows the connectopic maps for the dominant connectivity
mode (g1). The bottom row shows the connectopic for the second
dominant connectivity mode (g2)—deemed unreliable by the
dimensionality estimation algorithm. The L R labels refer to the left
and right hemisphere, respectively
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this hypothesis, we performed a mate-based retrieval rate analysis.

For each connectivity mode, we computed how often the connec-

tivity mode of a given subject based on the first session attained

maximal correlation with its corresponding connectivity mode in

the second session (compared to all others). The results are dis-

played in Table 2.

The first and second gradients in both BA 44/45 (15–25 times

above chance level) and V1 (5–9 times above chance level) had a

mate-based retrieval rate above chance level (1/N where N is the

number of subjects—2.3%) meaning that they all explained substantial

subject-specific variability. There was again an asymmetry effect in

BA 44/45 with the left hemisphere being more subject-specific than

the right hemisphere for the dominant connectopy, with this effect

disappearing in the second gradient. In general, mate-based retrieval

rates were higher for BA 44/45 than for V1 (despite having similar

cross session ICC's), indicating that this region of the association cor-

tex has a subject-specific connectivity fingerprint whereas V1 has less

variability in its white matter connections and follows a more stan-

dardized blueprint. Finally, the second gradient in V1 had a higher

mate-based retrieval rate than the first gradient. Given that the

between session ICC relationship goes in the opposite direction, it is

possible that the second dominant connectopy is merely explaining

some of the variability not yet explained by g1 and thus is more

subject-specific.

3.3 | Connectopic mapping accurately predicts the
border between BA44 and BA45

The ICC analysis indicated that the individual connectopic maps were

indeed subjected specific. Given that BA44/45 is generally taken to

consist of distinct areas based on cytoarchitecture, neurotransmitter

receptors, and indeed connectivity (Amunts & Zilles, 2012), we inves-

tigated whether the principal gradient of connectivity could be used

to describe the border between the posterior BA44 and the anterior

BA45 as commonly described using traditional connectivity-based

clustering (Anwander et al., 2006; Klein et al., 2007; Neubert

et al., 2014). The individual dominant connectopic maps of BA44/45

were segregated into two clusters using k-means ++ (Arthur &

Vassilvitskii, 2007) in order to ascertain if this region's dominant mode

of connectivity (g1) accurately predicted each individual's BA44 and

BA45 masks—obtained from the HCP Broadmann parcelation (Fischl

et al., 2008). Additionally, the effect of outliers in the data was investi-

gated by using dilated masks of the ROI in consideration. In all other

experiments, a 95% agreement mask (created by assigning every

vertex that belonged to the target ROI in at least 95% of the subjects

was used). Two dilated masks were used (50% agreement and

individual—assigning to the target ROI every vertex that was labeled

in that ROI in at least one subject). The results are summarized in

Figure 5.

TABLE 1 Reproducibility of connectopic mapping at the single-subject level

ICC BA 44/45 (g1) BA 44/45 (g2) V1 (g1) V1 (g2)

Between sessions L—0.918 [0.884–0.936] L—0.651 [0.522–0.736] L—0.863 [0.831–0.895] L—0.581 [0.463–0.657]

R—0.769 [0.670–0.837] R—0.602 [0.454–0.703] R—0.840 [0.756–0.880] R—0.553 [0.462–0.627]

Between subjects

Session 1 L—0.810 [0.801–0.817] L—0.423 [0.405–0.451] L—0.844 [0.836–0.850] L—0.482 [0.461–0.502]

R—0.618 [0.599–0.634] R—0.470 [0.444–0.494] R—0.825 [0.815–0.833] R—0.550 [0.534–0.564]

Session 2 L—0.813 [0.803–0.822] L—0.383 [0.356–0.402] L—0.800 [0.792–0.809] L—0.520 [0.507–0.535]

R—0.611 [0.594–0.626] R—0.479 [0.455–0.502] R—0.746 [0.731–0.761] R—0.451 [0.433–0.466]

Note: Results are compared between sessions from the same subject in both sessions and between pairs of subjects within a session. Reported values

represent the average intra-class correlation coefficient across same subject pairs in different sessions (between sessions) or different subject pairs in the

same session (between subjects). Values between square brackets indicate the lower and upper bounds of the bootstrapped 95% confidence interval with

10,000 samples, respectively.

Abbreviations: L, left hemisphere gradient; R, right hemisphere gradient.

TABLE 2 Mate-based retrieval rate for first and second dominant connectopies for BA 44/45 and V1

Mate-based retrieval rate BA 44/45 (g1) BA 44/45 (g2) V1 (g1) V1 (g2)

Between sessions L—59.1% (65.9%) L—36.4% (50%) L—13.6% (31.8%) L—22.7% (34.1%)

R—43.2% (52.3%) R—38.6%

(43.2%)

R—15.9% (25%) R—20.5% (29.5%)

Note: Reported values represent the percentage of subjects, for which the connectopy in one session was maximally correlated to the corresponding

connectopy in the other session. Values in brackets represents the same measure, but allowing for the correspondent connectopy to be in the top three

matches.

Abbreviations: L, left hemisphere; R, right hemisphere.
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Figure 5 shows that when a clustering algorithm is applied to the

dominant connectivity mode of a mask containing distinct anatomical

subunits, the individual components can be recovered with high accuracy.

These results are in agreement with a previous study by Marquand

et al. (2017) where the researchers mapped the connectivity modes of

the striatum and highlighted that the principal mode recapitulated the

anatomical boundaries between caudate, putamen, and nucleus

accumbens. Additionally, DCs are on par with previously proposed

parcellation methods of BA 44/45 using resting state fMRI (Jakobsen

et al., 2016, 2018), and diffusion tractography (Klein et al., 2007) and are

stable across sessions. There is a noticeable asymmetry in the results—the

left hemisphere is consistently better parcellated than the right. Several

studies have reported hemispheric differences in white matter pathways

(mainly driven by the arcuate fascicle) with terminations in BA 44/45

(Catani et al., 2007; Eichert et al., 2018; Fernández-Miranda et al., 2015;

Vernooij et al., 2007) with the left hemisphere consistently containing

increased streamline counts which may influence the algorithm's ability to

accurately draw borders between these two anatomical regions.

Outliers in the mask (i.e., vertices from the 95% consensus mask that

were not classified as BA 44 or BA 45) in a given individual were shown

to have little influence in the final result. There is an overall increase in

the average DC in the 50% agreement mask case, in relation to the

benchmark (95% agreement mask) due to the increase of overall masks

size and a slight decrease of the DC when the individual consensus mask

is used. In this last case, there are enough outliers to drive down the Dice

similarity in most cases (especially in the lower ends of the bootstrap

confidence intervals) but still within the range found in previous studies

aiming at parcellating this area of the inferior frontal gyrus.

Finally, we were interested in comparing our parcellation scheme to

a manually labeled dataset, as the HCP Broadmann parcellation is also

automatic. To this end, we ran our pipeline on an additional subset of

101 subjects from the HCP cohort corresponding to the subjects in pre-

sent in a study by Jacobsen et al. (Jakobsen et al., 2016). In this study,

the authors produced manually delineated masks for BA 44 and BA

45 on the left hemisphere based on sulcal markers.

The DC of the predicted masks for BA 44/45 and the manually

drawn masks in the Jakobsen et al. study (Jakobsen et al., 2016)

showed (Figure 6) that this metric holds similar performance for a dif-

ferent cohort (different subject subset in the HCP dataset).

Taken together, these results indicate that while not its primary

goal, our pipeline is suitable for finding biologically meaningful clusters

derived from differences in structural connectivity between parcels.

3.4 | Projection images reveal the origins of the
observed connectivity gradients

In the previous section, we uncovered overlapping connectivity gradi-

ents in two regions of the brain, established their reproducibility and

robustness, and linked them to connectivity parcellations. A key fea-

ture of the proposed pipeline is its capacity to project the individual

F IGURE 5 Average Dice coefficient between predicted BA44 and BA45 masks and the ground truth on the 95% agreement ROI, 50%
agreement masks, and individual agreement mask in Session 1 (LEFT) and Session 2 (RIGHT). Error bars represent the 95% bootstrapped
confidence interval with 10,000 samples. L, left hemisphere; R, right hemisphere

F IGURE 6 Average Dice coefficient between predicted BA44 and
BA45 masks on the 95% agreement mask and the manually
delineated BA 44/45 masks on the left hemisphere (Jakobsen
et al., 2016) . Error bars represent the 95% bootstrapped confidence
interval with 10,000 samples. L, left hemisphere
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connectivity gradient maps it reveals back onto its input data, in the

form of projection images. These present a distinct advantage of using

tractography data to create connectopies, as they allow one to sum-

marize them along know tracts and thereby assess their contributions

to the global connection topography of the region.

3.5 | Projection skeletons retain known tract
properties

Since these gradients can be projected back into the input space in the

form of projection images, it is worth asking if the projections also main-

tain some of the anatomical features known of these tracts (before ana-

lyzing them further). One of the best described features of the tracts

present in these projection images is their hemispheric lateralization.

In short, before projecting the gradients back onto the input space

(seed � target tractography), we binarize this input space and intersect it

with the tracts coming from the tract tracing software (Warrington

et al., 2020). We deem a tract to be relevant toward the connectivity gra-

dient of a given ROI if that tract intersects the tractography input space

by more than 5% of its (the input space) size.

We found that the gradients in BA44/45 were driven by the third

branch of the superior longitudinal fascicle (SLF3), arcuate fascicle,

frontal aslant, and Inferior fronto-occipital fascicle (IFOF). The laterali-

zation index of these tracts was defined by a ratio between the tract

volume in the left and right hemisphere (Thiebaut de Schotten

et al., 2011). The lateralization index of the tracts involved in

BA44/45 connectivity signature can be found in Figure 7, which

shows that the frontal aslant and the arcuate fascicle are left

lateralized, whereas the SLF3 and the IFOF are right lateralized. These

results reflect those of previous studies on the frontal aslant (Catani

et al., 2012), arcuate fascicle (Catani et al., 2007), SLF3 (Howells

et al., 2018), and IFOF (Hau et al., 2016).

We found that the gradients in V1 were driven by the optic radia-

tion, forceps major, and IFOF. Figure 8 shows that there is no signifi-

cant lateralization of the forceps major or the optic radiation (the

optic radiation was significantly left lateralized in the retest cohort—

Supporting Information) and that the IFOF is right lateralized. These

results corroborate previous studies on the forceps major (Johnson

et al., 2014), optic radiation (Bürgel, Schormann, Schleicher, &

Zilles, 1999), and IFOF (Hau et al., 2016).

The results presented in Figures 7 and 8 indicate that the input to the

proposed connectopic mapping pipeline preserves previously reported

anatomical properties of the underlying white matter connectome.

3.6 | Projection images and tract projections
separate the contributions of each tract to the
connectivity signature

In the previous section, we evaluated if the tracts found in projection

images retained known anatomical features. Here, Figures 9 and 10

show the distribution of values in each tract projection within the

F IGURE 7 (Top) One example of each of the analyzed tracts. 1—
Frontal aslant, 2—Arcuate fascicle, 3—Superior longitudinal fascicle III,
4—Inferior fronto-occipital fascicle. (Bottom) Laterality index of
relevant tracts for BA44/45's projection images. Value represents the
average laterality across all subjects with brackets representing the
95% confidence interval of the mean. *** p < .0005, *p < .05 after
Bonferroni correction (one sample t-test)

F IGURE 8 (Top) Illustration or one example of each of the
analyzed tracts. 1—Forceps major, 2—Optic radiation, 3—Inferior
fronto-occipital fascicle. (Bottom) Laterality index of relevant tracts
for V1's projection images. Value represents the average laterality
across all subjects with brackets representing the 95% confidence
interval of the mean. ***p < .0005, *p < .05 after Bonferroni
correction (one sample t-test)

10 BLAZQUEZ FRECHES ET AL.



projection images resulting from the two dominant connectivity

modes of BA 44/45 and V1 respectively. It should be noted the all

connectopic maps are normalized between 1 and 10 (the original scale

is between �3E-3 to 3E-3—normalization was necessary for plotting

and alignment between subjects), which then is reflected in the scaling

of the projection images.

Figure 9 highlights the contributions of each tract to the underly-

ing connectome of BA 44/45. There is asymmetry in the tract projec-

tions themselves (the same tract in different hemisphere does not

project in similar positions in this projection space) and where they

are separable (the left hemisphere tracts are spread along the first

dimension whereas the right hemisphere tracts lay across the second

dimension). This is in agreement with the results presented in

Figure 7, highlighting the lateralization of all tracts in the connectome

of BA 44/45 and presents more evidence to the already extensively

studied hemispherical differences in anatomy (Uylings, Jacobsen,

Zilles, & Amunts, 2006), connectivity (Tomasi & Volkow, 2012) and

function (Binder et al., 1997) of BA 44/45.

The posterior end of the dominant gradient (x axis) most strongly

maps on to the frontal aslant, the arcuate fascicle, and SLF3 projec-

tions. In the left hemisphere, these posterior tract projections are sep-

arable in the gradient (meaning that there is minimal overlap between

the 95% confidence interval of the tract projection means in this axis)

and the arcuate occupies a position anterior to both the SLF3 and the

frontal aslant. This is congruent with the notion that the SLF3

(Friederici, 2009) and the frontal aslant (Catani et al., 2012) have ter-

minations in BA44 (posterior end of BA 44/45) and that the Arcuate

Fascicle innervates both BA 44 and BA 45 (Anwander et al., 2006;

Eichert et al., 2018). Still in the left hemisphere, the anterior end of

the dominant gradient is occupied by the Inferior fronto occipital fas-

cicle projection, confirming earlier work that located IFOF termina-

tions in pars triangularis (Anwander et al., 2006). In the right

hemisphere, this disposition is repeated with the exception that the

more anterior tracts (arcuate fascicle, IFOF, and SLF) are no longer

separable; suggesting a larger intersection of the terminations of these

tracts in BA 44 on the right hemisphere consistent with the lower

F IGURE 9 (Top) Average value of BA 44/45's examined white
matter tract projections. Error bars represent the bootstrapped 95%
confidence interval of the mean. X axis—Value along the projection
image of the dominant connectivity mode (g1). For clarity of
interpretation, the direction of the corresponding gradient is indicated
under the axis; Y axis—Value along the projection image the second
dominant connectivity mode (g2). For clarity of interpretation, the
direction of the corresponding gradient is indicated to the left of the
axis. (Bottom) Projection images for a representative subject. L and R
denote left and right hemispheres, respectively

F IGURE 10 (Top) Average value of V1's examined white matter
tract projections. Error bars represent the bootstrapped 95%
confidence interval of the mean. X axis—Value along the projection
image of the dominant connectivity mode (g1). For clarity of
interpretation, the direction of the corresponding gradient is indicated
under the axis; Y axis—Value along the projection image the second
dominant connectivity mode (g2). For clarity of interpretation, the
direction of the corresponding gradient is indicated to the left of the
axis. (Bottom) Projection images for a representative subject. L and R
denote left and right hemispheres, respectively
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DCs of BA 44 compared to BA 45 on the right hemisphere dominant

BA44/45 gradient (Tables 3 and 4).

The second dominant gradient (y axis in Figure 9) also separates

the frontal aslant, arcuate fascicle, and SLF3 projections from the

IFOF. However, inspection of the second dominant connectopic map

reveals that this dimension is separating tract projections in terms of

their placement on a ventral to dorsal axis. One key hemispheric

difference of the tract projections in the second dominant gradient is

visible on the arcuate fascicle. In the left hemisphere, this tract projec-

tion lies more dorsally and is separable from the IFOF tract projection

whereas in the right hemisphere, this difference is attenuated by a

more ventral disposition of the arcuate regarding its projection.

Overall, these results taken together with the BA 44/45 group

connectopic maps in Figure 3 suggest that BA 44/45 contains at least

two overlapping modes of structural connectivity change resulting

from its topographically organized white matter connections.

The dominant mode of connectivity is a posterior–anterior gradient

with a sharp connectivity change around the border of these two

Brodmann areas. BA 44 includes the frontal aslant, and SLF while the

arcuate fascicle innervates both areas 44 and 45 with the IFOF

projecting to mainly area 45. Functionally, this gradient of connectivity

overlaps with a task gradient in the same space where semantic unifica-

tion recruits BA45, syntactic unification is spread through BA45 and

BA44 and phonological processes activate BA44 (Hagoort, 2013).

The second dominant mode of connectivity represents a ventral-

dorsal gradient of connectivity separating ventral from dorsal tracts.

This disposition is consistent with theories proposing a dual pathway

model (ventral and dorsal) for language processing in the brain linking

BA 44/45 to temporal lobe language areas. Dorsally, the SLF3 and

arcuate fascicle have an important role in speech repetition and com-

plex syntactic processes respectively and more ventrally, the IFOF has

a key role in semantic processing (Friederici et al., 2013).

Figure 10 paints a different picture for the tract projections

resulting from the connectopic maps in primary visual cortex. Com-

pared to BA 44/45, these tract projections present greater symmetry,

meaning that the corresponding tract projections from different hemi-

spheres cluster together. This means that the contributions of white

matter tracts to the primary visual cortex connectome are similar in

both hemispheres, a key feature of the symmetric vision function

in the brain (Haak et al., 2017; Rokem et al., 2017; Wu & Wu, 2017)

which was also shown in Figure 8, with only the IFOF presenting sig-

nificant volume lateralization.

The dominant connectivity mode places the tract projections of

the optic radiation in a more posterior part of V1 with the tract pro-

jections from the IFOF and the Forceps Major lying in a more anterior

position. There is a striking correspondence between the projection of

these tracts along the dominant connectivity mode of V1 and its role

in eccentricity mapping (Haak et al., 2017). The optic radiation, which

receives input from the contralateral optic nerve, projects preferen-

tially to the posterior end of V1, in the foveal end of the retinotopic

eccentricity map (Daniel & Whitteridge, 1961; Duncan &

Boynton, 2003) while the opposite extreme, the more anterior regions

of V1 and, correspondingly more peripheral positions in the eccentric-

ity map, is projected onto by the Forceps Major which connects the

two visual fields (Saenz & Fine, 2010). These results are in agreement

with earlier studies of white matter connectivity in the occipital cortex

and particularly, in V1 (Rokem et al., 2017; Takemura et al., 2017).

As indicated above, the second gradient did not explain significant

additional variance and this is also reflected in the results from the

ICC analysis and the mate-based retrieval test. It is also reflected in its

projection image. As can be seen in the y-axis in Figure 10, it does not

TABLE 3 Reproducibility of
connectopic mapping of the OR at the
single-subject level

ICC OR (g1) OR (g2)

Between sessions L—0.696 [0.599–0.770] L—0.294 [0.159–0.415]

R—0.569 [0.424–0.667] R—0.161 [0.074–0.307]

Between subjects

Session 1 L—0.704 [0.687–0.720] L—0.287 [0.260–0.315]

R—0.612 [0.594–0.628] R—0.200 [0.173–0.226}

Session 2 L—0.650 [0.630–0.670] L—0.159 [0.131–0.186]

R—0.379 [0.349–0.409] R—0.071 [0.041–0.099]

Note: Results are compared between sessions from the same subject in both sessions and between pairs

of subjects within a session. Reported values represent the average intra-class correlation coefficient

across same subject pairs in different sessions (between sessions) or different subject pairs in the same

session (between subjects). Values between square brackets indicate the lower and upper bounds of the

bootstrapped 95% confidence interval with 10,000 samples, respectively.

Abbreviations: L, left hemisphere gradient; R, right hemisphere gradient.

TABLE 4 Mate-Based retrieval rate for first and second dominant
connectopies for the OR

Mate-based retrieval rate OR (g1) OR (g2)

Between sessions L—6.8% (13.6%) L—4.5% (11.3%)

R—4.5% (11.4%) R—13.6% (20.5%)

Note: Reported values represent the percentage of subjects, for which the

connectopy in one session was maximally correlated to the corresponding

connectopy in the other session. Values in brackets represents the same

measure, but allowing for the correspondent connectopy to be in the top

three matches.

Abbreviations: L, left hemisphere; R, right hemisphere.

12 BLAZQUEZ FRECHES ET AL.



contribute for further separation of white matter tract contributions;

collapsing these tract projections onto the y axis would make them

indistinguishable from each other.

3.7 | Connectopic mapping on the optic radiation
cross section reveals its own topographic disposition

Thus far, we have applied connectopic mapping to connectivity of spe-

cific parts of the gray matter. However, the major white matter fibers

of the brain itself have some topographical organization. The clearest

case of this is the organization of the corpus callosum which is topo-

graphically organized in the anterior posterior axis, connecting specific

parts of the cortex with their contralateral homolog (Genç, 2011), but

overlapping gradients of connectivity have also been observed in coro-

nal cross sections of the optic radiation (Aydogan & Shi, 2016;

Aydogan & Shi, 2018; Kammen, Law, Tjan, Toga, & Shi, 2016). The

optic radiation plays a key role in the retinofugal pathway that connects

the retina to the primary visual cortex (V1) through the lateral genicu-

late nucleus (LGN). The LGN is connected to V1 via the optic radiation

and, as previous work has shown, its terminations in V1 are

topographically organized (Aydogan & Shi, 2018), providing an anatomi-

cal basis for the eccentricity and polar angle modes of this primary cor-

tex region. We therefore investigated the method's capability of

identifying these connection topographies and how they projected

onto the full tract. In essence, after tracking the optic radiation for each

subject, we performed connectopic mapping on a cross-section of this

tract along the y axis (rostral–caudal), using the cross-section itself as a

seed, and the remainder of the tract as the target.

The results are summarized in Figures 11 and 12 where the first

two gradients of the optic radiation cross section are averaged across

subjects along their normalized z coordinate going from ventral to

dorsal. The correspondent projection images of these gradients are

also shown, where the polar angle and eccentricity modes of the optic

radiation are highlighted.

The dominant mode of connectivity (g1) in Figure 11 shows a

bilateral linear ventral to dorsal gradient, similar to what had been

observed in polar angle mode topography (Aydogan & Shi, 2018). The

corresponding projection images show a ventral to dorsal gradient

across the entirety of the tract, with ventral portions of it connecting

to ventral areas of V1 and dorsal portions of the tract connecting to

dorsal areas of V1.

F IGURE 11 Top—(Left) Representative subjects' left seed gradient cross section (Graph) mean value of gradient g1 (dominant connectivity
mode) along the z-axis on the left optic radiation cross section. (Right) Representative subjects' right seed gradient cross section (Graph) mean
value of gradient g1 (dominant connectivity mode) along the z-axis on the right optic radiation cross section. Gradient values are normalized

between 1 and 10 and the normalized z coordinate represents the range of coordinates of each subject's optic radiation cross section up sampled
to 100 data points. The dashed line represents the 95% confidence interval. Bottom—(Left) Representative subjects' left projection image cross
section (Graph) Mean value of projection image g1 (projected dominant connectivity mode values to the target space) along the z-axis on the left
optic radiation.(Right) Representative subjects' right projection image cross section (Graph) mean value of projection image g1 (projected
dominant connectivity mode values to the target space) along the z axis on the right optic radiation. Projection image values are normalized
between 1 and 10 and the normalized z coordinate represents the range of coordinates of each subject's optic radiation up sampled to 100 data
points. The dashed line represents the 95% confidence interval
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The second dominant mode of connectivity (g2) in Figure 12

assumes an inverted U-shape reinforcing the claim that the eccentric-

ity of the fiber tracks and their coordinates on the optic radiation

cross-section should follow a U-shape relation (Aydogan & Shi, 2016;

Wärntges & Michelson, 2014). Their respective projection images

confirm this topographical organization of the tract with high gradient

values corresponding to fibers reaching V1 more posteriorly and low

gradient values corresponding to fibers reaching V1 in a more anterior

fashion.

Finally, and to evaluate the reliability of these results, an ICC analysis

was made on the OR profiles, and the between-subject ICC and

between-session ICC was computed. Additionally, a mate-based retrieval

analysis was performed, in order to access how subject specific these OR

profiles were. The results are summarized in Tables 3 and 4.

Table 3 shows that there are good ICC scores between subjects

and sessions for the left and right OR for gradient 1. At the session

level, there is no separation between the left and right OR, which

agrees with the findings highlighted in Table 1, giving more evidence

for symmetric gradients in the visual system. The overall score drop

for g2 is concerning and suggests there is a lot of variance within the

overall trends observed for these gradients and projection images.

There is also a marked difference for g2 in the right hemisphere in

Session 2 either comparing it with its contralateral counterpart or with

the same gradient and hemisphere in session one. This should be

investigated further in a follow-up study to determine if different

noise conditions were present in this session.

Table 4 shows the same paradoxical results found in Table 2: the

higher the ICC between subjects, the lower the mate-based retrieval

scores. This is caused because a higher ICC indicates a more common

blueprint for that ROI, and hence, reduced identifiability. For g2, this

trend is confirmed, as the mate retrieval scores increase threefold for

the right hemisphere, possibly reflecting a structured noise compo-

nent that is subject specific. One encouraging observation is that all

values are well above chance level.

4 | DISCUSSION

In the previous section, we demonstrated that biologically relevant,

overlapping, robust, and individual connectopies can be mapped using

LE of Diffusion MRI tractography data. The technique unravels over-

lapping modes of connectivity in a cortical ROI and tracts themselves,

with its projection images highlighting each associated white matter

tracts' contribution to the global connectome.

F IGURE 12 Top—(Left) Representative subjects' left seed gradient cross section (Graph) mean value of gradient g2 (second dominant

connectivity mode) along the z-axis on the left optic radiation cross section. (Right) Representative subjects' right seed gradient cross
section (Graph) mean value of gradient g2 (second dominant connectivity mode) along the z-axis on the right optic radiation cross section.
Gradient values are normalized between 1 and 10 and the normalized z coordinate represents the range of coordinates of each subject's optic
radiation cross section up sampled to 100 data points. The dashed line represents the 95% confidence interval. Bottom—(Left) Representative
subjects' left projection image cross section (Graph) mean value of projection image g2 (projected second dominant connectivity mode values to
the target space) along the z-axis on the left optic radiation.(Right) Representative subjects' right projection image cross section (Graph) mean
value of projection image g2 (projected second dominant connectivity mode values to the target space) along the z-axis on the right optic
radiation. Projection image values are normalized between 1 and 10 and the normalized z coordinate represents the range of coordinates of each
subject's optic radiation up sampled to 100 data points. The dashed line represents the 95% confidence interval
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The pipeline extends previous work by Cerliani et al. (2012) and

Haak et al. (2017) and was tested on 44 subjects of the Human

Connectome Project. In BA 44/45 (Figure 2), two connectopies were

unveiled: its dominant mode of connectivity (g1)—with a gradual

change from posterior to more anterior regions and a sharper transi-

tion at the BA 44/BA 45 border area. The second dominant mode of

connectivity (g2) revealed a ventral to dorsal gradient, matching the

termination areas of the tracts involved in the dual pathway for lan-

guage (Friederici, 2009). In V1, (Figure 3) the dominant mode of con-

nectivity showed a posterior to anterior mapping, replicating the

results obtained by applying connectopic mapping in the same region

with resting state data (Haak et al., 2017) and eccentricity maps

(Dougherty et al., 2003), while the second dominant mode of connec-

tivity was shown by subsequent analysis (Table 1, Table 2 and

Figure 10) to not describe any known connectivity topographies. This

is a limitation of our work since at least the optic radiation

(Aydogan & Shi, 2018) and the corpus callosum (Saenz & Fine, 2010)

have been shown to have at least two overlapping topographically

organized terminations in the primary visual cortex.. This shortcoming

of the pipeline—failing to identify the polar angle representation in V1

according to its global connectome can be explained by a number of

factors: First, this topography exists in the tracts themselves (namely,

the optic radiation) but it is masked when applying the pipeline on the

global connectivity matrix of the ROI. Second, the geometry of

the cortical region in question may present its own special challenges

in terms of precise topographic mapping of projections: The calcarine

fissure splits V1's inferior superior axis into inferior and superior por-

tions, pushing its upper and lower bank against each other which

could throw off the estimation of fiber orientation. (Rokem

et al., 2017). This is exacerbated by the presence of unmyelinated

(Kirilina et al., 2020) u-fibers that can additionally impede accurate

tract end points (Rokem et al., 2017). Finally, it is possible that inter-

hemispheric connections (through the Forceps major) play a major

role on the polar angle (inferior–superior) mode (Saenz & Fine, 2010),

but that that contribution was neglected by our decision to exclude

these types of connections.

Still, these connectopic maps were shown to contain individual-

ized, lateralized, and robust information by analysis summarized in

Tables 1 and 2. Of particular interest, there is a marked leftwards lat-

eralization of the ICC scores and mate based retrieval of the dominant

connectivity mode for BA 44/45, which is in line with the notion of a

common yet highly subject specific human blueprint for left-

lateralized language circuitry (Hagoort, 2014). This asymmetry effect

disappears in the second dominant connectivity mode, suggesting the

variability in the underlying connectome that explains the asymmetry

effect is captured by the dominant connectivity mode. This is an inter-

esting in the light of a new study that has proposed a unified ventral

tract system (Weiller et al., 2021). The separation between this unified

ventral tract system and the dorsal tracts projecting to BA 44/45

might be relatively symmetrical (or even rightward lateralized), causing

the asymmetry effect to disappear. Projection images and their tract

projections (Figures 9 and 10) are shown to reveal the separate contri-

butions of different white matter tracts to the connectivity fingerprint

and the input to the pipeline was shown to be biological coherent by

performing laterality tests (Figures 4 and 5) on the white matter tracts

contained in the thresholded outputs of probtrackx with all relevant

white matter tracts showing lateralizations in agreement with earlier

studies.

Overall, this work presents an additional solid argument for the

advent of connectopic mapping. It should be noted that the results

we present in Figures 4–6 are merely indicative of the fact that

dimensionality reduction through LE is only a first step toward spec-

tral clustering. We do not claim that our clustering method is more

precise than any others, but rather that refraining from clustering in

this connectivity reduced subspace yields relevant insights into its

principles. Here and in the case of BA 44/45 for example, our pipeline

shows two overlapping principles of connectivity (gradients): The first

one recapitulates the anatomical borders of these two regions but the

second one gives additional clues on how white matter projects

there—a clear ventral-dorsal pattern separating the dorsal and ventral

pathways for language processing. In this specific case, merely cluster-

ing the connectivity matrix yields, in our view, a correct, yet incom-

plete view of the connectivity landscape.

The application of the pipeline onto the white matter itself using

the optic radiation as case study unveiled its potential to track topo-

graphical regularities in white matter tracts. The dominant mode of

connectivity (g1) and its corresponding projection images (Figure 8)

were both being dominated by a linear transition system where ven-

tral fibers on the chosen cross section projected to ventral portions of

V1 and the dorsal fibers projected to dorsal V1.The second dominant

of connectivity (g2) (Figure 9) showed an U-shaped curve on the cross

section of the optic radiation, as had previous studies tracking the

eccentricity of the optic radiation (Aydogan & Shi, 2018). The

corresponding projection images (Figure 9) confirmed this eccentricity

mode of the optic radiation by corresponding higher values on g2 to

posterior regions of V1 and lower values of g2 to anterior regions of

V1. It is worth pointing out that there is a reversal of the order of the

gradients when considering only the optic radiation (eccentricity mode

appearing only on the second gradient), or V1 projections as a whole

(the eccentricity mode is the main direction of connectivity switch).

This seems to confirm previous findings suggesting the main direction

of connectivity change in the optic radiation is indeed the dorsal-

ventral axis (Alvarez, Schwarzkopf, & Clark, 2015). The low ICC values

for g2 (Table 3) warrant further investigation into this second domi-

nant mode of connectivity for the optic radiation. The overall trends

for g2 projection images should be accessed against their V1 termina-

tions to be able to determine with more certainty their correspon-

dence with the eccentricity mode of the primary visual cortex.

The possibility of mapping white matter dependent cortical con-

nectopies provides a cortical window into white matter organization.

When parameterized using trend surface modeling (Haak et al., 2017),

these maps may provide a biomarker for disease or behavior

(Marquand et al., 2017). Potentially, overlapping modes of connectiv-

ity would be differently affected by certain conditions and these

changes would map onto symptom presence and severity. Changes of

structural connectivity modes across lifetime would also be able to
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model in developing (Catani & Bambini, 2014) and aging populations.

Another prospect derives from the flexibility of the pipeline: con-

nectopies can be mapped not only from a cortical ROI to the rest of

the brain, but also from cortical ROI to another cortical ROI

(Vijayakumar et al., 2018), from subcortical structures to the cortex

(Lambert, Simon, Colman, & Barrick, 2017; Phillips et al., 2019), and

from white matter itself (in this article).

One interesting feature resulting from the segregation of tracts

projections in projection images is the possibility of using projection

images as the input for data driven tract separation. Some techniques

have been proposed toward this end with moderate success

(O'Donnell & Westin, 2007), given its importance when looking at

white matter organization in species where the white matter blueprint

is still unknown. Additionally, individualized projection images could

provide insight on the influence of white matter organization on func-

tional lateralization of language in the brain as these phenomena have

been shown to vary with age (Szaflarski, Holland, Schmithorst, &

Byars, 2006).

Cross species comparison possibilities are one of the key advan-

tages of connectopic mapping using diffusion MRI over rsfMRI since it

enables the usage of post-mortem tissue and allows for validation

with histological data. In terms of evolution, one key question to

answer would be how the overlay of connectopic maps changes in

homologous regions across species, and the consequences of those

changes to cognitive abilities (Thivierge & Marcus, 2007). Brain func-

tion modeling would also benefit from comparative connectopic map-

ping as the structural connectivity topography changes across species

would be promising novel experimental parameters for models of

functional consequences of brain evolution. (Jbabdi et al., 2013).

Yet, while our pipeline opens the way for novel cross-species

comparisons, the fact that it makes use of diffusion tractography to

unveil topographic connections in the brain should be addressed. The

capability of tractography algorithms to map accurately end-to-end

connections is still under contention due to limitations such as gyral

bias and kissing and fanning fibers (Assaf, Johansen-Berg, & Thiebaut

De Schotten, 2017; Jbabdi & Johansen-Berg, 2011). Additionally,

despite the advantages of using dMRI datasets described in the intro-

duction section, an important limitation of this type of data arises in

the context of gradient analysis. As dMRI data describes monosynap-

tic connections, gradient analysis will not uncover gradual contribu-

tions of different networks as is possible with rsfMRI (Margulies

et al., 2016). Future analysis should investigate the coupling of func-

tional and structural connectivity gradients of connectivity especially

in the light of recent evidence showing that microstructural and func-

tional gradients are increasingly untethered in higher order cortices

(Paquola et al., 2019).

While it is important to disentangle the overlapping connectivity

patterns that drive connectopies, it is essential to assign a biological

meaning to them(Haak & Beckmann, 2020). In the case of this pipe-

line, the resulting connectopic maps are back-projected onto the input

skeleton in a similar fashion employed by Haak et al. (2017). Since the

input is diffusion tractography data, the ensuing projection images

represent an approximation of the manifold values in the input space

and reliably separate tracts in the input space. While this was evidenced

in the tract projections, there is still a notable reduction of the amplitude

of values in projection images given that they are formed by averaging

gradient values. One possible consequence of this limitation of the cur-

rent model is highlighted on the projection images for the second domi-

nant connectopy of the optic radiation, where the already low amplitude

of gradient values were even more restricted on the projection images.

Future developments of the pipeline will focus in further refining the

back-projection step, with some studies already tackling this issue

(Friedrich, Forkel, & de Schotten, 2020).
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