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ARTICLE

Circulating mucosal-associated invariant T cells
identify patients responding to anti-PD-1 therapy
Sara De Biasi 1,9✉, Lara Gibellini 1,9, Domenico Lo Tartaro 1,9, Simone Puccio 2, Claudio Rabacchi1,

Emilia M. C. Mazza 2, Jolanda Brummelman2, Brandon Williams3, Kelly Kaihara3, Mattia Forcato4,

Silvio Bicciato 4, Marcello Pinti4, Roberta Depenni5, Roberto Sabbatini5, Caterina Longo6,

Massimo Dominici 1,5, Giovanni Pellacani 1, Enrico Lugli 2,7,10 & Andrea Cossarizza 1,8,10

Immune checkpoint inhibitors are used for treating patients with metastatic melanoma. Since

the response to treatment is variable, biomarkers are urgently needed to identify patients

who may benefit from such therapy. Here, we combine single-cell RNA-sequencing and

multiparameter flow cytometry to assess changes in circulating CD8+ T cells in 28 patients

with metastatic melanoma starting anti-PD-1 therapy, followed for 6 months: 17 responded to

therapy, whilst 11 did not. Proportions of activated and proliferating CD8+ T cells and of

mucosal-associated invariant T (MAIT) cells are significantly higher in responders, prior to

and throughout therapy duration. MAIT cells from responders express higher level of CXCR4

and produce more granzyme B. In silico analysis support MAIT presence in the tumor

microenvironment. Finally, patients with >1.7% of MAIT among peripheral CD8+ population

show a better response to treatment. Our results thus suggest that MAIT cells may be

considered a biomarker for patients responding to anti-PD-1 therapy.
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CD8+ T cells can drive adaptive immune responses against
several types of human malignancies, in particular those
with higher mutational burden and neoantigen load1.

These cells are activated by tumoral antigens, undergo expansion,
and can localize and kill infected or cancer cells. However, pro-
longed exposure to cognate antigens often contracts the effector
capacity of T cells and attenuates their therapeutic potential. This
process, collectively known as T-cell exhaustion, is characterized
by limited proliferation, cytokine production and effector capa-
city, metabolic rearrangement, increased inhibitory receptors
expression and genome-wide accumulation of epigenetic mod-
ifications at effector and memory-related gene loci2. Among
inhibitory receptors, programmed death-1 (PD-1) has been
extensively studied, and is now targeted by therapies with
monoclonal antibodies that are capable to reinvigorate T cells in
several cancer settings. However, immune checkpoint inhibitors
(ICI) mediate tumor regression only in a subset of patients, and
the mechanisms at the basis of therapeutic resistance are poorly
known3. A number of studies have initially focused on the
mutational load of the tumor as well as on quality of the cells
infiltrating the tumor microenvironment, and revealed that
increased mutational burden and the presence of CD8+ T cells
with stem-like qualities4,5, among others, can predict the response
to ICI6–10. However, tumoral tissue may not be always accessible,
thereby making the quest of circulating biomarkers an absolute
need. In this regard, recent studies have shown that responding
patients have larger clones (those occupying >0.5% of repertoire)
post-treatment than non-responding patients or controls, and
this correlates with effector memory T-cell percentage11, sug-
gesting that peripheral T-cell expansion could predict tumor
infiltration and clinical response12.

Over the last decade, a pressing need to deeply interrogate
immune cells either in the tumor microenvironment and/or in
blood has led investigators to integrate data obtained from tra-
ditional approaches with those obtained with new, more
advanced, single-cell technologies, capable to define character-
istics of immune cells at an unprecedented degree of resolution13.

Using single-cell RNA sequencing (scRNA-seq) and high-
dimensional flow cytometry, here we show that mucosal-
associated invariant T (MAIT) cells are increased in patients
with metastatic melanoma who respond to anti-PD-1 therapy.
The identification of MAIT cells as biomarkers for patients
responding to such treatment could represent an useful tool to
tumor immunotherapy and to maximize patient’s benefit from
this treatment.

Results
A higher proportion of activated effector memory CD8+

T cells in responders. We initially used high-dimensional flow
cytometry to longitudinally define the characteristics of T cells
upon PD-1 blockade in melanoma patients (Supplementary
Fig. 1). Computational analysis of aggregated data from multiple
patients and time points identified 28 clusters (individually
labeled as C) among CD8+ T cells, resolving a broad spectrum of
T-cell states, including maturation, activation and exhaustion.
C21, C22, C26 display phenotypic identity proper of subsets of
naive T cells, characterized by expression of CD45RA, CCR7,
CD27, CD28, negligible expression of CD25 and ICOS, and
absence of additional markers14 (Fig. 1A). C28 represents recently
activated T cells characterized by expression of CD38 and ICOS,
but no expression of the late activation marker HLA-DR. T stem-
cell memory cells are identified in C10, and their phenotype is
similar to that of naive T cells, and includes the expression of
CD955,15. C1, C20, and C27 represent CCR7+CD45RA− central
memory T cells characterized by high expression of CD28, CD27,
BTLA, CD194, CD25, CD95 and ICOS. C1 displays high levels of

CD194, CD28, CD95 while C20 represents a cluster of T central
memory (TCM) cells that expresses high level of CD39. C6, C17,
C11, C2, C24, and C5 represent terminally differentiated T cells,
being characterized by the expression of CD45RA, but not of
CCR7, CD27, or CD28, and high levels of CD244, CD57 and T-
bet. These cells also lacked granulysin expression.

C15, C4, C25, C14, C9, C13, C12, C19, and C16 represent
effector memory T-cell subsets characterized by the lack of
expression of CD45RA, CCR7, and expression of CD25 and
CD9516. Among these, C14 expressed PD-1 and CD57, and T-bet
at intermediate levels, thereby suggesting the identification of
replicative senescent cells17. C9, C13, C12 are transitional effector
memory T cells as they express intermediate levels of CD28 and
CD2718. C9 expresses CXCR6, identifying effector memory cells
with the capability to migrate to metastasis19, while C12 is a
cytotoxic T-cell subset displaying high level of granulysin. C19
display high levels of CD127, CD39, and CD25, identifying not
only metabolically activated, but also tumor-reactive cells20. C16
is a cluster of activated and proliferating effector memory T cells
characterized by high level of expression of Ki67, ICOS, CD95,
HLA-DR, CD71, CD98, CXCR6, granulysin, CD38, intermediate
expression of CD127, CD39, CD25, CD28, CD194, CD27, BTLA,
T-bet and CD244; as shown in Fig. 1B, this cluster was much
more represented in responder patients if compared to non-
responders.

Longitudinal analysis did not identify obvious differences in the
dynamics of these immune populations between responders and
non-responders to anti-PD-1 therapy (Supplementary Fig. 2). Cross-
sectional analysis identified C16, highly proliferating Ki67+CD71+

effector cells equipped for cytotoxicity (GNLY+), whose relative
proportion was higher in responder before starting therapy (p <
0.001) (Fig. 1B). This difference remained stable also after treatment
(p < 0.01) (Fig. 1B).

MAIT cells are more abundant in responders as revealed by
scRNA-seq. To further define the dynamics of T cells potentially
involved in therapeutic response, we performed scRNA-seq of
isolated CD3+CD8+ T cells from a total of 20 patients at T0, T1,
and T2 after anti-PD-1. After quality control (see Methods),
56,142 cells were deemed suitable for analysis. Contaminating
4210 NK and 231 monocytes cells, expressing TYROBP, FCGR3A,
KLRB1, and LYZ, respectively, were removed from the analysis.
We obtained a total of 51,701 purified CD8+ T cells. Using a cTP-
net, a deep neural network trained on multi-omics data, we
imputed surface protein abundances within the scRNA-seq data
to confirm T-cell phenotype21 (Supplementary Fig. 3).

Computational analysis identified eight different cell clusters
on the basis of gene expression profiles (Fig. 2A, B; see also
Source File). Naive T cells were identified by expression of LEF1,
SELL, TCF7 genes while terminally differentiated effector
memory cells, with cytotoxic properties were characterized by
the expression of GZMB, GNLY, NKG7, EFHD2, and CXCR322.
Two different clusters of effector memory cells were recognizable:
one cluster of transitional effector memory (characterized by the
expression of GZMK and LYAR) and one of more mature and
activated phenotype with homing properties (expression of
TNFAIP3, CXCR4, CREM, CD69)23. Two clusters of recently
activated naive T cells have been characterized: one expressed
GATA3 and IL7R, the other FOS and JUN. Activated and
replicating effector memory T-cell clusters were identified by the
expression of HLADRA, HLADRB1, CD74, GZMA, PCNA,
MKI67, TOP2A, MCM4, MCM. Finally, mucosal-associated
invariant T (MAIT) cells with homing properties were identified
they expressed high level of KLRB1, SLC4A10, MAF, and
CXCR410,24.
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Fig. 1 High-dimensional single-cell analysis of CD8+ T cells identifies higher proportion of activated effector memory T cells in responders. A Heatmap
showing the iMFI of specific markers in discrete Phenograph clusters. Ballons indicate the median frequency of each cluster amongst responders and non-
responders. Statistical analysis by two-sided Mann–Whitney nonparametric test, Bonferroni’s multiple comparisons test, *p= 0.046. B Proportion of cell
within each cluster for each individual. Data represent individual values, mean (center bar) ± SEM (upper and lower bars). Statistical analysis by two-sided
Mann–Whitney nonparametric test, Bonferroni’s multiple comparisons test; T0, ***p < 0.0001; T1, *p= 0.046; T2 p= 0.037. T0= before therapy, T1=
after 1 cycle of therapy, T2= after two cycles of therapy. Individual measurements of NR= 9, R= 8. Source data are provided as a Source Data file.
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Pseudotime analysis revealed that the differentiation process
started from naive T cells towards terminally differentiated T cells
passing through activated naive T cells, transitional effector
memory T cells and effector memory T cells (Supplementary
Fig. 4). In this process, the transcriptionally distinct MAIT cells
belong to a different branch of the Pseudotime trajectory

compared to the rest of the T cells, albeit mapping close to
effector memory T cells, in line with their shared phenotypic
identity25.

No main differences were found between R and NR in the
proportion of naive, cytotoxic terminally differentiated and
activated naive T cells, both before and after therapy, as revealed
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by analysis of gene expression profiles by scRNA-seq (Supple-
mentary Fig. 5). The proportion of activated effector memory
T cells, reminiscent of C16 as defined by flow cytometry, was
higher after two cycles of therapy in R compared to NR (Fig. 2C,
left panel). At the same time, activated effector memory T cells
from R expressed higher levels of genes indicating activation
(FOS, DUSP1, FGFBP2, HLAC) and cytotoxic behavior (GNLY,
GZMH), thereby suggesting heightened functional capacity in R
(Fig. 2C, right panels).

The proportion of MAIT cells was higher in R before therapy
and after the first cycle of therapy (Fig. 2D, left panel). This trend
was visible also after the second cycle of therapy. Similarly to EM
T cells, also MAIT cells showed overexpression of genes related to
cell activation in R compared to NR before (TNFAIP3, NKG7,
NFKBIA, JUND, ZNF331, RGCC) or after the first (ZFP36L2,
BTG1, ARL4C, CXCR4, ID2, FOS, ZFP36) or the second cycle
(DUSP1, FOS, TNFAIP3, GZMK, JUND) of anti-PD-1 therapy
(Fig. 2D, right panels), overall suggesting a dynamic regulation of
MAIT cell activation over time.

Activated MAIT cells with homing properties are more abun-
dant in responders. We further subclustered MAIT cells before
and after therapy to gain more insights into the cellular dynamics
of these cells during the anti-tumor immune response. Our
approach identified two different types of MAIT cells with dif-
ferential expression of genes related to T-cell activation or effector
functions DUSP1, ZFP36, TNFAIP3, ZFP36L2, FOS, CXCR4,
NFKBIA, CD69, TSC22D3, BHLHE40 and JUN, thereby suggest-
ing the identification of quiescent and activated subsets of cells
(Fig. 3A, B). In line with previous data, R showed a significantly
higher proportion of activated MAIT compared to NR not only
before therapy, but also after the first and the second cycle
(Fig. 3C).

We next used polychromatic flow cytometry to confirm these
findings also at the protein level. In this regard, we analyzed the
proportion and phenotype of MAIT cells, identified as CD3+CD8+

T cells that expressed TCRα7.2 and CD161 (Fig. 4A, left), and
found marked expansion of these cells in the circulation of R
patients when compared to NR before therapy (Fig. 4A, right).
This difference waned after therapy introduction in line with
scRNA-seq data.

Moreover, we found that the proportion of MAIT cells
expressing the homing receptor CXCR4 increased after two
cycles of therapy in R, but not in NR, that had a relevant
variability (Supplementary Fig. 6).

To confirm the presence of MAIT cells in the metastasis and
primary tumor site we analyzed a public dataset available on
Gene Expression Omnibus (GSE148190)26. This dataset con-
tains single-cell RNA and TCR sequencing of PBMCs and
tumor-infiltrating lymphocytes from untreated patients with
metastatic melanoma. We used the scRNAseq data of blood (B),

lymph nodes metastasis (LN), and Tumor (T) from patients
K383, K409, and K411. A total of 26,757 cells have been
analyzed (11,614 of B, 12,915 of LN, and 2170 of T). About 3%
of cells in LN and T were identified as MAIT cells expressing
CXCR4 gene, suggesting their ability to home the inflamed
tissue (Fig. 4B and Supplementary Fig. 7, top). In addition, by
analyzing a public dataset of CD8 T cells obtained by melanoma
patients treated with ICI (see “Methods”)10, we found that
MAIT cells increased in the metastatic lesions regressing after
ICI compared to those that did not regress compared to
baseline, thereby suggesting the potential recruitment of
CXCR4-expressing MAIT cells expanding in the circulation
(Supplementary Fig. 7, bottom).

We next analyzed the effector functional capacity of the
MAIT cells following in vitro stimulation with IL-12, IL-18, CD3/
CD28 followed by the detection of the effector molecules GRZM-
B, IFN-γ, and TNF (Supplementary Fig. 8). The overall quality of
the response of MAIT cells, as assessed by combinatorial cytokine
production, was largely similar between R and NR at different
time points, where the majority of cells were capable to
simultaneously produce GRZM-B, IFN-γ, and TNF. Moreover,
R were characterized by higher proportion of cells producing
IFN-γ and GRZM-B if compared to NR (Fig. 4C). Nevertheless,
before therapy, the proportion of cells able to produce only
GRZM-B was higher in R if compared to NR (Fig. 4D), thereby
corroborating previous evidence that MAIT cells show prefer-
ential effector propensity.

Level of MAIT cells before therapy identifies responder
patients. We next evaluated the prognostic significance of the
levels of MAIT cells in the circulation as predictive biomarker of
the response to anti-PD-1 therapy. Flow cytometric analysis
revealed that, within CD8+ T cells, the median level of MAIT in
the population of patients with metastatic melanoma was 1.7%,
thus this value was used as a cutoff to stratify patients. Figure 5
reports that patients with a frequency of MAIT cells >1.7% had an
increased probability to respond than those patient with
MAIT cells <1.7% (p= 0.0363, Log-rank Mantel-Cox test).

Discussion
The main finding of our study is that patients who respond to ICI
are characterized by a different composition of T-cell sub-
populations compared to those who do not respond, that are
detectable before therapy initiation. The most relevant of these
differences is at the level of MAIT cells, an innate population of
CD3+ T cells previously involved in early immunity against
infections in peripheral tissue. Although the direct role of MAIT
in mediating anti-tumor immune responses in melanoma is still
under scrutiny, our data suggest that investigating MAIT cell
frequency in the peripheral blood could be considered a possible

Fig. 2 MAIT cells are more abundant in responders as revealed by scRNA-seq. A UMAP plot depicting CD8+ T-cell heterogeneity. Cells are colored
according to the eight clusters defined in an unsupervised manner. B Heatmap displaying scaled-expression values of discriminative gene set per cluster
related to CD3+CD8+ T cells that passed quality control. A list of the most representative genes is shown per each cluster (left). N, naive; EMRA, effector
memory expressing CD45RA; TM, transitional memory; M, memory; EM, effector memory; MAIT, mucosal-associated invariant T cells. C Proportion of
activated effector memory (EM) CD8+ T cells at different time points (left) and differential gene expression in this cluster between responders and non-
responders at T2 (right). p-values of the differential expression analyses are reported in source tables. Only genes differentially expressed are reported in
the figure. Statistical analysis by Mann–Whitney nonparametric test, Bonferroni’s multiple comparisons test; *p= 0.046. D Proportion of MAIT cells and
differential gene expression of this cluster between responders and non-responders at T0, T1, and T2 (right). p-values of the differential expression
analyses are reported in source tables. Only genes differentially expressed are reported in the figure. Data represent individual values, mean (center bar) ±
SEM (upper and lower bars). Statistical analysis by two-sided Mann–Whitney nonparametric test, Bonferroni’s multiple comparisons test; if not indicated,
p-value is not significant. *p= 0.023; **p= 0.0012. Source data are provided as a Source Data file. T0= before therapy, T1= after 1 cycle of therapy, T2=
after two cycles of therapy. Individual measurements of NR= 8, R= 11.
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predictive marker of successful therapy. Following introduction of
ICI, R show different proportions of T cells compared to NR,
involving the expansion of activated effector memory cells
showing features of immune activation, proliferation and effector
differentiation, as previously reported by other groups27.

During the last decade, the immune response mediated by
T cells in cancer patients assuming ICI has been deeply investi-
gated by analyzing both tumor-infiltrating lymphocytes and cir-
culating T cells. Patients with melanoma or non-small cell lung
cancer are characterized by an exhausted T-cell phenotype along

with impaired proliferation and low metabolic activation, and a
high oligoclonal repertoire28–30. Activation of CD8+ T cells has
been considered a hallmark of response to therapy, and indeed
after one cycle of therapy, Ki67 (a marker of cell proliferation)
increases among effector memory cells27,31.

We show here that even if before treatment R and NR were
characterized by similar clinical characteristic in terms of tumor
burden and LDH level, activated effector memory T cells were
more abundant in R, which can reflect a more activated CD8+

T-cell compartment. This was particularly evident in MAIT cells.

Fig. 3 Activated MAIT cells with homing properties are more abundant in responders. A UMAP plot of MAIT cells. Not activated MAIT are in salmon
and activated ones are in light blue. B Heatmap displaying scaled-expression values of discriminative gene set per each cluster of MAIT cells. A list of
representative genes is shown on the left. C Left part: UMAP plot representing two clusters of MAIT cells between R and NR at T0, T1, T2. Right part:
Proportion of activated MAIT cells between R and NR at T0, T1, T2. *p= 0.04; T1, **p= 0.005; T2, **p= 0.007. Statistical analysis by two-sided
Mann–Whitney nonparametric test, Bonferroni’s multiple comparisons test. T0= before therapy, T1= after 1 cycle of therapy, T2= after two cycles of
therapy. Individual measurements of NR= 8, R= 11. Source data are provided as a Source Data file.
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Fig. 4 MAIT polyfunctionality evaluated after in vitro stimulation in PBMC of melanoma patients. A Left and center panels: representative dot plots of
MAIT cells, identified as TCR 7.2+ and CD161+within CD8+ T cells of one R and one NR at T0. Right part: proportion of MAIT cells in R and NR at T0, T1,
T2. Data represent individual values, mean (center bar) ± SEM (upper and lower bars). Statistical analysis by two-sided Mann–Whitney nonparametric test,
Bonferroni’s multiple comparisons test. *p= 0.016. NR= 4, R= 8. B Left panel: UMAP representation of PBMC or tumor-infiltrating lymphocytes from
patients with metastatic melanoma. Expression of KLRB1, CD69, and CXCR4 MAIT cells in blood (B), lymph nodes metastasis (LN), and Tumor (T) from
the K383, K409, and K411 patients (Gene Expression Omnibus, GSE148190). Right panel: UMAP representation with the distribution of cells of B, LN and T,
and proportion of MAIT in blood (B), lymphnode (LN) and tumor (T). C Left and central panels: pie charts representing the proportion of MAIT cells
producing different combinations of GRZM-B, IFNγ, and TNF after stimulation at T0. Frequencies were corrected by background subtraction as determined
in unstimulated controls; permutation tests (10,000 number of permutations), using SPICE software, show no difference between R and NR. Right panel:
frequency of MAIT cells expressing and producing different combinations of GRZM-B, IFN-γ, and TNF after stimulation at T0. Statistical analysis by
Wilcoxon rank test; *p= 0.041. In the figure, error bars (median value) and upper whiskers (whisker range, SEM) are represented. Individual
measurements of NR= 4, R= 6. D Left and central panels: dot plots show the difference between a R and a NR in the proportion of cells that produce IFN-γ
and GRZM-B at T0. Right part, proportion of MAIT cells producing GRZM-B at different time points. Data represent individual values, mean (center bar) ±
SEM (upper and lower bars). *p= 0.028, Statistical analysis by Mann–Whitney nonparametric test, Bonferroni’s multiple comparisons test. Individual
measurements of NR= 4, R= 6. Source data are provided as a Source Data file.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-21928-4 ARTICLE

NATURE COMMUNICATIONS |         (2021) 12:1669 | https://doi.org/10.1038/s41467-021-21928-4 |www.nature.com/naturecommunications 7

www.nature.com/naturecommunications
www.nature.com/naturecommunications


Circulating MAIT cells are a pro-inflammatory and cytotoxic
population within effector memory T cells32 and can represent up
to 10% of peripheral CD8+ T cells. They recognize microbial
proteins presented by non-polymorphic MHC class I related-
molecule (MR1) and display homing properties, as they express
different homing and cytokine receptors. Furthermore,
MAIT cells are deeply involved in patrolling mucosae and
orchestrating the immune response in this environment33.

The role of MAIT cells in cancer has been widely analyzed.
However, few studies have investigated their role during therapy
with ICI. It was found that MAIT cells were decreased in blood
and displayed an altered cytokine production in patients with
cervical, colorectal, gastric, hepatocellular carcinoma, lung cancer,
and multiple myeloma. Moreover, controversial data exist on the
prognostic benefit of MAIT cells in the tumor microenvironment,
as in the case of hepatocellular carcinoma33. Recent studies also
show that MAIT cells promote tumor initiation, growth and
metastases via tumor MR134.

To the best of our knowledge, these are the first data that
characterize MAIT cells in the peripheral blood of patients treated
with anti-PD-1. We found that in R compared to NR, at baseline
and after therapy introduction, (i) the proportion of MAIT cells
was higher; (ii) MAIT cells displayed enhanced expression of
genes related to immune activation and effector functions; (iii)
the proportion of MAIT cells expressing CXCR4 was higher in R
after two cycles of therapy.

CXCR4-CXCL12 axis plays an important role in the interac-
tions between cancer cells and their microenvironment. This axis
modulates the traffic of tumor cells to metastasis, and mediates
invasiveness, vasculogenesis, and angiogenesis. However, pre-
clinical melanoma models reported that this pathway can be
influenced by anti-cancer treatments35. Hence, it is possible to
hypothesize that, among other activities, the increased expression
of CXCR4 on MAIT cells induced by anti-PD-1 therapy could
facilitate their migration towards metastases, where they could
exert a pro-inflammatory and cytotoxic activity. In line with this
hypothesis, we observed that MAIT cells from R expressed CD69,
which is not only an activation marker, but also a constitutively
expressed marker of tissue residency. In immunotherapy-naive
melanoma patients, the intratumoral presence of CD8+CD103+

CD69+ T cells that are able to significantly increase during anti-
PD-1 therapy has been associated with improved survival36.
Accordingly, we have found an increased relative proportion of
MAIT cells in melanoma lesions responding to ICI compared to
those that did not respond, possibly suggesting the migration of

circulating MAIT cells to the tumor site, as it has been observed
for conventional CD8+ T cells27. Future studies investigating the
clonal composition of MAIT cells from the blood and the tumor
will be required to confirm this hypothesis.

Recently, a rare population of MR1-restricted T cells belonging
to the family of MAIT cells (defined “MR1” T cells) has been
described as a rare population capable to respond to a variety of
tumor cells of different tissue origin, but not to microbial
antigens37. Thanks to its ability to kill several cancer cell lines
expressing low levels of MR1 while remaining inert towards
noncancerous cells, this population represents a subset with a
great potential for cell therapy approaches in several
malignancies38,39.

While we acknowledge some limitations associated with this
study, such as the relatively low number of patients enrolled in
the study and the lack of a possible mechanism responsible of a
better prognosis, nevertheless we provide evidence of the asso-
ciation between the frequency and the effector functions of
MAIT cells and the response to ICI in melanoma, thereby sug-
gesting that the circulating levels of MAIT cells in the peripheral
blood could serve as a useful, non-invasive biomarker. Thus,
further studies will be needed not only to confirm the utility of
MAIT as biomarkers, but also to demonstrate their therapeutic
potential or to provide actionable information about tumor’s
biology, which together holds great promise with respect to rea-
lizing “personalized” treatment of melanoma. In conclusion, we
provide evidence of the association between the frequency and
the effector functions of MAIT cells and the response to ICI in
melanoma, thereby suggesting that the circulating levels of
MAIT cells in the peripheral blood could serve as a useful, non-
invasive biomarker. Future studies are also needed to assess
whether MAIT cells are directly involved in mediating tumor
regression that can be further amplified by targeting PD-1 or
alternate immune checkpoints.

Methods
Patients. The study was conducted on 28 patients with metastatic melanoma
treated with standard-of-care nivolumab or pembrolizumab. According to the
RECIST, responders (n= 17) were defined as patients with complete response
(CR), partial response (PR), stable disease (SD), or mixed response (MR) of
>6 months with no progression, and non-responders (n= 11) as patients with
progressive disease (PD). In particular, among responders, 41.2% had CR, 35.3%
had a PR, 17.6% had SD, and 5.9% (which corresponds to one patient) had a MR.
The clinicopathologic characteristics of patients are reported in Table 1. The mean
age of the total cohort was 71 ± 12 years and plasma lactate dehydrogenase (LDH)
level was 418.7 ± 134.7. No patient had previously received other therapies.

Fig. 5 Level of MAIT cells before therapy can predict initial response to
therapy. Analysis of the cohort patients with metastatic melanoma
indicates that patients with MAIT cells >1.7% of CD3+CD8+ T
lymphocytes showed a better response to therapy compared to those with
MAIT < 1.7% (p= 0.0363, Log-rank Mantel-Cox test). N < 1.7%= 4; N >
1.7%= 8.

Table 1 Clinical characteristics of patients.

Variable Non-responder (NR)
(N= 11)

Responder (R)
(N= 17)

Total
(N= 28)

Mean
age (year)

71.0 ± 12.3 70.0 ± 12.4 71.0 ± 12.1

Sex (%M) 45.4 76.4 64.3
M stage (%)

M1a 27.3 23.5 25.0
M1b 27.3 35.3 32.1
M1c 18.2 29.4 25.0
M1d 27.3 11.8 17.8

LDH level
(U/L)

423.9 ± 150.0 401.2 ± 124.1 418.7 ± 134.7

Previous
therapy (%)

0 0 0

Tumor burden
(cm, range)

10.5 (2.1–43.6) 10.5 (1.5–37.8) 10.4 (1.5–43.6)
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Blood collection. All human blood samples (up to 30 mL) were obtained via
informed consent through the Azienda Ospedaliero Universitaria di Modena and
Reggio Emilia. Approval of study protocols was obtained by the ethical committee
(Prot AOU 0005400/18). Blood was obtained before therapy (hereafter indicated as
T0), after the first and the second cycle of therapy (hereafter indicated as T1 and
T2, respectively), just before the drug infusion. Peripheral blood mononuclear cells
(PBMC) were isolated according to standard procedures and stored in liquid
nitrogen until use40. The whole experimental procedure is represented in Sup-
plementary Fig. 1.

Polychromatic flow cytometry. A 30-parameter/28-color flow cytometry panel
was optimized to broadly characterize T-cell differentiation and activation along
with markers that are target or are involved in immunotherapy response (CD3,
CD4, CD8, CD45RA, CD197, CD28, CD27, CD127, CD95, CD98, CD71, CD25,
HLA-DR, CD38, CD39, CXCR6, CCR4, Ki67, T-bet, granulysin, PD-1, BTLA,
CD244, and ICOS). Moreover, the panel was optimized to identify the expression
of PD-1 in T cells isolated from patients treated with anti-PD-1 (either nivolumab
or pembrolizumab) as anti-IgG4 was used to recognize the anti-PD-1 bound
to PD-127.

Briefly, cryopreserved samples were thawed in R10 medium, i.e., RPMI
supplemented with 10% fetal bovine serum (FBS), 100 U/mL penicillin, 100 μg/mL
streptavidin, 2 mM L-glutamine, 20 mM HEPES (ThermoFisher, Eugene, OR) and
20 μg/mL DNase I from bovine pancreas (Sigma-Aldrich, St. Louis, MO). After
washing with phosphate buffer saline (PBS), cells were stained immediately with
the Zombie Aqua Fixable Viability kit (BioLegend, San Diego, CA) for 15 min at
room temperature. Then, cells were washed and stained with the combination of
monoclonal antibodies (mAbs) purchased from either Becton Dickinson
Biosciences (BD, San José, CA), BioLegend, or eBioscience/ThermoFisher (Eugene,
OR), as listed in Supplementary Table 1, that reports also the fluorochromes bound
to the different monoclonal mAbs, that had been previously titrated to define the
optimal concentration. Chemokine receptors were stained for 20 min at 37 °C, for
20 min at room temperature. Intracellular detection of Ki67, granulysin and T-bet
was performed following fixation of cells with the FoxP3 transcription factor
staining buffer set (eBioscience/ThermoFisher) according to manufacturer’s
instructions and by incubating with specific mAbs for 30 min at 4 °C. Samples were
acquired on a FACS Symphony A5 flow cytometer (BD Biosciences) equipped
with five lasers (UV, 350 nm; violet, 405 nm; blue, 488; yellow/green, 561 nm; red,
640 nm) and capable to detect 30 parameters. Flow cytometry data were
compensated in FlowJo by using single stained controls (BD Compbeads incubated
with fluorochrome-conjugated antibodies)41. Gating strategy is shown in
Supplementary Fig. 1.

A 18-parameter/16-color flow cytometry panel was then optimized to broadly
investigate mucosal invariant associated T (MAIT) cell phenotype, including CD3,
CD8, TCR Vα7.2, CD161, CD45RO, CD197, CD28, CD27, CD127, CD95, CD25,
HLA-DR, CD38, CXCR4, Ki67, granulysin, CD69. Briefly, cryopreserved samples
were thawed and stained immediately with PromoFluor-840, viability probe
(PromoCell - PromoKine) for 20 min at room temperature. Then, cells were
washed and stained with the combination of mAbs purchased from either BD
Biosciences, BioLegend, or eBioscience, as listed in Supplementary Table 2. mAbs
were previously titrated to define the optimal concentration. Chemokine receptors
were stained for 20 min at 37 °C, whereas all the other markers were stained for
20 min at room temperature. Intracellular detection of Ki67 and granulysin was
performed following fixation of cells with the FoxP3/ transcription factor staining
buffer set (eBioscience, ThermoFisher) according to manufacturer’s instructions
and by incubating with specific mAbs for 30 min at 4 °C. Samples were acquired on
a Cytoflex LX flow cytometer (Beckman Coulter, Hialeah, FL) equipped with six
lasers (UV, 355 nm; violet, 405 nm; blue, 488; yellow/green, 561 nm; red, 638 nm;
IR, 808 nm) and capable to detect 21 parameters. Flow cytometry data were
compensated in FlowJo by using single stained controls, as above41. Gating strategy
is shown in Supplementary Fig. 6.

In parallel, thawed PBMC were rested for 4 h at 37 °C and then in vitro
stimulated with anti-CD3/CD28 (1 μg/mL) (Miltenyi, Bergisch Gladbach,
Germany) and suboptimal concentration of IL-12 (2 ng/mL) (Miltenyi) and IL-18
(50 ng/mL) (R&D System, Minneapolis, MN) and a combination of those25. A 11
parameter/10-color flow cytometer panel was optimized to identify MAIT cells
producing Granzyme (GRZM)-A, GRZM-B, TNF and IFN-γ that were detected
after 16 h of incubation (Supplementary Table 3). For the quantification of
intracellular cytokines, cells were fixed with BD Cytofix/Cytoperm Fixation/
Permeabilization Solution kit (BD Biosciences) according to the manufacturer’s
instructions. Samples were acquired on an Attune NxT acoustic flow cytometer
(ThermoFisher) equipped with four lasers (violet, 405 nm; blue, 488; yellow/green,
561 nm; red, 640 nm) and capable to detect 14 parameters. Flow cytometry data
were compensated in FlowJo by using single stained controls as above. Gating
strategy is shown in Supplementary Fig. 1.

High-dimensional flow cytometry data analysis. Flow Cytometry Standard
(FCS) 3.0 files were analyzed using FlowJo software version 9.6. Aggregates and
dead cells were removed from the analyses and identify CD3+CD8+ T cells were
gated. 10,000 CD8+ T cells per sample were exported and biexponentially trans-
formed in FlowJo version 10. Further analyses were performed by a custom-made

script that makes use of Bioconductor libraries and R statistical packages4. Data
were analyzed using the Phenograph algorithm coded in the Cytofkit package
(version 1.6.5;42) in R (version 3.3.3). Parameter K was set at 60. Phenograph
clusters were visualized using tSNE. Clusters representing <0.5% were not analyzed
in subsequent analysis. New FCS files (one for each cluster), originated from
Phenograph analyses, were imported and analyzed in FlowJo to determine the
frequency of positive cells for each marker and the corresponding median fluor-
escence intensity (MFI). These values were multiplied to derive the integrated MFI
(iMFI, rescaled to values from 0 to 100). gplots R package was used to generate the
heat map, showing the iMFI of each marker per cluster4,43.

Cell Sorting and single-cell RNA-sequencing (scRNA-seq) library preparation.
Cryopreserved samples were thawed in R10 supplemented with 20 μg/mL DNase I
from bovine pancreas (Sigma-Aldrich). After washing with phosphate buffer saline
(PBS), cells were stained with the Red Live Dead Fixable Viability kit (Thermo-
Fisher) for 15 min at room temperature. PBMC were washed with PBS and stained
with mAb anti-CD3-PE and -CD8-FITC. Viable CD3+CD8+ T cells were sorted by
using eS3 sorter (Bio-Rad Laboratories, Hercules, CA) equipped with two lasers
(blue, 488; yellow/green, 561 nm; all tuned at 100 mW). Cell sorting was performed
with 96-99% purity. Sorted CD3+CD8+ T cells were immediately loaded on
ddSEQ single-cell isolator (Bio-Rad Laboratories) to isolate single cells and barcode
single cells. sc-RNA-seq libraries were prepared by using the Illumina Bio-Rad
SureCell WTA 3’ Library Prep Kit (Illumina, San Diego, CA, manufactured for Bio-
Rad) following manufacturer’s instructions. Briefly, after barcoding, RNA was
reverse transcribed and cleaned up. Then, second strand cDNA was synthesized
and tagmented. Tagmented DNA was amplified and final indexed libraries were
quantified by using the high sensitivity DNA kit (Agilent, Santa Clara, CA) on a
bioanalyzer (Agilent). Sequenced libraries were loaded on an Illumina NextSeq 550.

scRNA-seq analysis. A total of 74,404 single cells were obtained from 20 patients
(9 NR and 11 R at T0, T1, T2 therapy cycles) after SureCell RNA Single-Cell (v
1.1.0) pre-processing and UMI quantification. Downstream analysis was performed
in R using Seurat v3.044. A Seurat object containing all 74,404 was created, then the
dataset was split in three subsets T0, T1, T2. For each subset, unwanted cells were
filtered out. In particular, cells that express >10% of mitochondrial genes, cells
having <130 or >1500 detected genes, cells having >2500 UMI count and cells in
which ribosomal protein-coding genes represented >65% of gene content, were
removed. Next, feature expression-measured were normalized by dividing them by
the total expression in each cell and multiplying by a factor of 10,000 (Log-
Normalize). To promote the identification of common cell types and enable
comparative analyses, the three datasets were integrated using IntegrateData
function yielding an expression matrix of 56,142 cells by 17,745 genes45.

Principal components were selected using the jackstraw and Elbow methods.
The dimensional reduction was performed using Uniform Manifold
Approximation and Projection (UMAP) on the previously selected principal
components. Unsupervised clustering was performed by finding the K-nearest
neighbors (KNN) and then, to group the cells, a modularity optimization-based
algorithm was applied. A cluster of 231 cells featuring genes related to the myeloid
lineage (expressing LYZ) and 4210 Natural Killer cells (expressing TYROBP) was
excluded from the analysis for a final matrix of 51,701 cells. The resolution was
selected using clustree package46. Differentially expressed genes were identified
using the FindAllMarkers function, and the top 15 genes for each cluster were
visualized in a heatmap. Differential expression analysis was performed between
each cluster and all other cells using a Wilcoxon rank-sum test. Genes were selected
to be significant as logFC > 0.3 and adjusted p-value < 0.05. Cells from a single
cluster were selected and re-clustered to identify the presence of subpopulation.
Comparative analyses across conditions inside of each cluster was performed
using FindMarkers, genes were considered as significant with logFC > 0.3 and
adjusted p-value < 0.05. Furthermore, a random subset was performed on all
51,701 cells selecting 4000 cells and then a trajectory analysis was performed using
Monocle v247.

cTP-net analysis. The surface protein imputation was performed using a pre-
trained deep neural network (cTP-net) trained on PBMC processed using multi-
omics approach (CITE-seq and REAP-seq)21. cTP-net predict the following list of
surface proteins: CD3, CD4, CD45RA, CD45RO, CD16, CD14, CD11c, CD19,
CD8, CD34, CD56, CD57, CD2, CD11a, CD123, CD127-IL7Ra, CD161, CD27,
CD278-ICOS, CD28, CD38, CD69, CD79b and HLA-DR. The imputation of
surface proteins on our dataset was performed using integrated and
normalized data.

In silico analysis. The scRNAseq data were retrieved from the Gene Expression
Omnibus (GSE) 148190. The analysis was restricted to K383, K409 and
K411 samples containing blood (B), lymph nodes metastasis (LN) or Tumor (T)
data. The dataset used were GSM4455931, GSM4455932, GSM4455933,
GSM4455935, GSM4455937 and GSM4455938. Data from each dataset were
cleaned selecting the cells expressing <10% of mitochondrial genes, read counts of
at least 200 genes and <3000 genes. Then all dataset were integrated and nor-
malized yielding a total of 26,757 (11,614 of B, 12,915 of LN and 2170 of T).
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We performed clustering and dimensional reduction using UMAP (see methods)
finding ten clusters at the resolution of 0.3. Signature of each cluster was obtained
by using “FindConservedMarkers” function coded in the Seurat R package. MAIT
signature was confirmed by using GeneOverlap48.

CD8+ T cells derived from 48 human melanoma samples (accession number
GSE120575)10 were re-analyzed using python-based Scanpy (version 1.6.0)50. The
top 1200 variable genes were selected based on normalized dispersion. The log-
transformed, TPM-normalized output matrix was used for dimensionality
reduction and clustering analysis. Instead, all genes were used for testing
differential expression. A single-cell neighborhood graph was computed on the 50
first principal components that sufficiently explain the variation in the data using
ten nearest neighbors. Resulting data were visualized using UMAP. For clustering,
louvain clustering51 at 0.6 resolution was used and cell types were annotated based
on the expression of known marker genes. Characteristic gene signatures were
identified by testing for differential expression of a subgroup against all other cells
using a Wilcoxon rank-sum. p-values were corrected with “Benjamini–Hochberg”
method implemented in the tl.rank_genes_groups function. Overlap score between
signatures was computed with sc.tl.marker_gene_overlap function using method
= “overlap_count” and normalize= “reference”. Results from the analysis is
reported in Source Data File and Supplementary Fig. 1.

Statistical analysis. Statistical analyses were performed using GraphPad Prism
version 6 (GraphPad Software Inc., La Jolla, USA), unless specified otherwise.
Significance of differences for the frequency of single Phenograph clusters was
determined using two-way ANOVA with Bonferroni post-hoc test. To compare
distributions of manually gated subsets significance was determined by paired
Wilcoxon t-test, unless otherwise specified in the figure legends. Simplified Pre-
sentation of Incredibly Complex Evaluation (SPICE) software (version 6, kindly
provided by Dr. Mario Roederer, Vaccine Research Center, NIAID, NIH, Bethesda,
MD, USA) was used to analyze flow cytometry data on T-cell polyfunctionality49.
Comparison of the curves of response to therapy was performed by Log-Rank
(Mantel-Cox) test and p-value was considered significant <0.05. Finally, dividing
patients by gender did not result in any statistical difference.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Original.fcs files concerning cytofluorimetric analysis (Figs. 1 and 4) are deposited at the
flowrepository.org in the following folders: FR-FCM-Z36A; for MAIT cells: FR-FCM-
Z36B The scRNA-seq data have been deposited in GEO under the accession code
GSE166181. Source data are provided with this paper.

Code availability
https://github.com/DomenicoSkyWalker89/CD8-T-lymphocytes-MAIT
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