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a b s t r a c t 

Adversarial attacks are considered a potentially serious security threat for machine learning systems. 

Medical image analysis (MedIA) systems have recently been argued to be vulnerable to adversarial at- 

tacks due to strong financial incentives and the associated technological infrastructure. 

In this paper, we study previously unexplored factors affecting adversarial attack vulnerability of deep 

learning MedIA systems in three medical domains: ophthalmology, radiology, and pathology. We focus 

on adversarial black-box settings, in which the attacker does not have full access to the target model 

and usually uses another model, commonly referred to as surrogate model, to craft adversarial exam- 

ples that are then transferred to the target model. We consider this to be the most realistic scenario for 

MedIA systems. Firstly, we study the effect of weight initialization (pre-training on ImageNet or random 

initialization) on the transferability of adversarial attacks from the surrogate model to the target model, 

i.e., how effective attacks crafted using the surrogate model are on the target model. Secondly, we study 

the influence of differences in development (training and validation) data between target and surrogate 

models. We further study the interaction of weight initialization and data differences with differences 

in model architecture. All experiments were done with a perturbation degree tuned to ensure maximal 

transferability at minimal visual perceptibility of the attacks. 

Our experiments show that pre-training may dramatically increase the transferability of adversarial ex- 

amples, even when the target and surrogate’s architectures are different: the larger the performance gain 

using pre-training, the larger the transferability. Differences in the development data between target and 

surrogate models considerably decrease the performance of the attack; this decrease is further amplified 

by difference in the model architecture. We believe these factors should be considered when developing 

security-critical MedIA systems planned to be deployed in clinical practice. We recommend avoiding us- 

ing only standard components, such as pre-trained architectures and publicly available datasets, as well 

as disclosure of design specifications, in addition to using adversarial defense methods. When evaluating 

the vulnerability of MedIA systems to adversarial attacks, various attack scenarios and target-surrogate 

differences should be simulated to achieve realistic robustness estimates. The code and all trained mod- 

els used in our experiments are publicly available. 3 
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1. Introduction 

Deep learning (DL) has been shown to achieve close or even su- 

perior performance to that of experts in many medical image anal- 

ysis (MedIA) applications, including in ophthalmology ( Gulshan 

et al., 2016; Ting et al., 2017 ), radiology ( Rajpurkar et al., 2017 ), and 

pathology ( Bejnordi et al., 2017; Bulten et al., 2020; Wetstein et al., 

2020 ). This has created an opportunity to automate certain medical 

tasks and integrate DL systems in clinical settings ( Abràmoff et al., 

2018; Murphy et al., 2020; GE Reports, 2019 ). However, a threat to 

DL systems is posed by so-called adversarial attacks ( Szegedy et al., 

2013 ). Such attacks apply a carefully engineered, subtle perturba- 

tion to the input of the target model to cause misclassification. 

Those perturbed inputs, referred to as adversarial examples , have 

been shown effective in forcing state-of-the-art systems to produce 

incorrect predictions ( Goodfellow et al., 2014; Madry et al., 2017 ). 3 

Adversarial attacks are not the only kind of malicious manipu- 

lation of input to DL models that changes their predictions. Adver- 

sarial attacks are manipulations that aim to preserve the seman- 

tic contents of a given image, e.g., whether it is healthy or dis- 

eased, while changing the prediction of the network for the im- 

age. Apart from this type of attack, images can also be manipu- 

lated to change their content: for example, signs of disease can 

be removed from a diseased image or added to a healthy image 

( Xia et al., 2020; Sun et al., 2020; Baumgartner et al., 2018; Becker 

et al., 2019 ), which, in turn, can change network predictions. How- 

ever, developing these synthetically changed images remains chal- 

lenging ( Xia et al., 2020 ), as it is hard to guarantee they look re- 

alistic, hard to control which image structures are changed, and 

these algorithms may be difficult to train and require large train- 

ing datasets. In contrast, adversarial examples generated by adding 

noise of bounded, small magnitude are guaranteed to look real- 

istic and do not induce any unpredictable changes in the image. 

Therefore, we consider adversarial attacks to be a more feasible, 

and thus more likely type of attack on MedIA systems, which is 

why we have limited our scope to adversarial attacks. 

1.1. Context of adversarial attacks in MedIA 

A recent market report has predicted that through 2022, 30% 

of all cyberattacks against systems powered by artificial intelli- 

gence (AI) will leverage training-data poisoning, AI model theft, 

or adversarial examples ( Cearley et al., 2019 ). This results espe- 

cially alarming for the healthcare industry, considering that it is 

predicted to suffer two to three times more cyberattacks than the 

average amount for other industries ( Cisco and Cybersecurity Ven- 

tures, 2019, 2019 ). Limited resources and fragmented governance 

on cybersecurity ( Martin et al., 2017; Ghafur et al., 2019 ), and 

larger consequences at both financial ( IBM, 2020 ) and human lev- 

els ( Martin et al., 2017 ) make healthcare particularly vulnerable to 

cyberattacks. 

Adversarial attacks may therefore pose a large threat in the 

medical domain ( Finlayson et al., 2019; 2018 ). This is due to two 

main factors: financial interests and technical sources of vulnera- 

bility. 

Firstly, some parties involved in healthcare systems have a fi- 

nancial interest in manipulating patient diagnosis and prognosis. 

Healthcare fraud has been shown to be committed by large com- 

panies as well as individuals ( Rudman et al., 2009; Kalb, 1999 ). 

When expressed as a proportion of the global healthcare expen- 

diture estimated by the World Health Organisation in 2013 ($7.35 

trillion or € 5.65 trillion), the global average healthcare fraud and 

3 https://github.com/Gerda92/adversarial _ transfer _ factors , https://doi.org/10.5281/ 

zenodo.4792375 

error loss equates to 6.19% ($455 billion or € 350 billion) ( Gee and 

Button, 2015 ). In the future, adversarial attacks could be used as a 

tool to manipulate MedIA systems supporting insurance, clinical, or 

drug/device approval decisions. Adversarial attacks can boost exist- 

ing fraudulent behavior in fee-for-service healthcare systems, such 

as the one in the United States, where healthcare providers and 

insurance companies manipulate diagnostic codes of patients to 

affect reimbursement decisions. Fraudulent behavior involving ad- 

versarial attacks could potentially be more difficult to detect com- 

pared to manipulating diagnostic codes directly. Adversarial attacks 

can also be used to bias patient diagnosis towards false referrals 

or unnecessary prescriptions of medication or treatment. Similarly, 

companies could bias trial outcomes and gain the favor of regu- 

latory bodies, such as the United States Food and Drug Adminis- 

tration, by showing the desired effect of a drug/device to be ap- 

proved. It is important to emphasize that these attacks would be 

facilitated because the attacker would be already inside the health- 

care infrastructure. These situations can result in deteriorated qual- 

ity of healthcare, financial loss, decreased trust in MedIA systems 

and hence impediments to their integration into clinical practice. 

The second factor that may facilitate adversarial attacks in the 

medical domain concerns technical sources of vulnerability. These 

include domain-specific characteristics of medical images, such as 

highly-standardized image acquisition protocols, and the security 

of technological infrastructure into which MedIA systems will be 

embedded ( Ma et al., 2021; Finlayson et al., 2019 ). In this case, 

the attacks would be performed most commonly from outside the 

healthcare infrastructure, by means of a breach. In a recent inves- 

tigation, more than 45 million medical images and their patient 

metadata were found to be exposed and freely accessible, without 

hacking tools required, on over 2,0 0 0 unprotected medical servers 

across 67 countries, including the United States, United Kingdom, 

France, and Germany ( CybelAngel, 2020 ). A survey from 2017 re- 

vealed that healthcare data breaches have affected one in four con- 

sumers in the United States ( Accenture, 2017 ). The security risks of 

such breaches include blackmail and ransomware ( Forbes, 2021 ), as 

well as malicious data manipulation. Among deployed connected 

medical devices, imaging systems (including systems for image ac- 

quisition, viewers, workstations, and servers) have been found to 

have the most security issues, mainly derived from user practice 

and outdated infrastructure ( Healthcare Innovation, 2018 ). This last 

aspect is strongly related to widely used software and protocols, 

such as DICOM, which were developed before cybersecurity was 

a concern and leave serious security gaps ( Eichelberg et al., 2020; 

Stites and Pianykh, 2016 ). 

1.2. Adversarial attacks and defenses 

Multiple methods to generate adversarial attacks have been 

proposed in the literature and can be categorized following dif- 

ferent taxonomies ( Yuan et al., 2019; Akhtar and Mian, 2018; Big- 

gio and Roli, 2018 ). As an example, some methods perform one- 

shot attacks ( Szegedy et al., 2013; Goodfellow et al., 2014 ), whereas 

other methods optimize the attack in an iterative way ( Madry 

et al., 2017; Kurakin et al., 2016; Papernot et al., 2016b; Moosavi- 

Dezfooli et al., 2016; Carlini and Wagner, 2017b; Su et al., 2019; 

Moosavi-Dezfooli et al., 2017 ). Similarly, there are methods that 

generate a specific perturbation for each input ( Szegedy et al., 

2013; Goodfellow et al., 2014; Madry et al., 2017; Kurakin et al., 

2016; Papernot et al., 2016b; Moosavi-Dezfooli et al., 2016; Car- 

lini and Wagner, 2017b; Su et al., 2019 ) and methods that generate 

universal perturbations that can be applied to any image ( Moosavi- 

Dezfooli et al., 2017; Brown et al., 2017 ). 

Furthermore, adversarial attack methods can be applied in sce- 

narios with different degrees of knowledge of the target system: 

from having full knowledge ( white-box attacks ) ( Goodfellow et al., 
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2014 ) to being agnostic to the (hyper)parameters of the target 

model ( black-box attacks ) ( Papernot et al., 2017 ). The latter usually 

use another model, commonly referred to as surrogate model , to 

craft adversarial examples that are then transferred to the target 

model. The effectiveness of a black-box attack is determined by its 

transferability between the surrogate model and the target model 

( Papernot et al., 2017 ). 

Several studies have investigated the impact of adversarial 

attacks on MedIA systems specifically. This has been studied 

for classification and segmentation problems in different imag- 

ing modalities, including color fundus imaging ( Finlayson et al., 

2018; Ma et al., 2021; Ozbulak et al., 2019 ), chest X-ray ( Finlayson 

et al., 2018; Taghanaki et al., 2018; Ma et al., 2021 ), dermoscopy 

( Finlayson et al., 2018; Ma et al., 2021; Paschali et al., 2018; Ozbu- 

lak et al., 2019 ), and brain MRI ( Paschali et al., 2018 ). In these stud- 

ies, adversarial attacks were proven effective in both white- and 

black-box settings. 

Correspondingly, numerous defense methods ( Yuan et al., 2019; 

Papernot et al., 2017; Biggio and Roli, 2018 ) have been proposed to 

protect DL systems from adversarial attacks by training networks 

so as to robustify them against adversarial attacks ( Goodfellow 

et al., 2014; Papernot et al., 2016c ) or by detecting adversarial ex- 

amples or neutralizing adversarial noise ( Lu et al., 2017; Song et al., 

2017 ). Defense methods have also been considered to protect Me- 

dIA systems from adversarial attacks ( Ma et al., 2021 ). Neverthe- 

less, almost all proposed countermeasures have been shown to be 

only effective against some attacks ( Yuan et al., 2019 ), hardly work 

against infinitesimal perturbations ( Papernot et al., 2017 ), or can 

easily be made ineffective if the attacker is aware of them ( Uesato 

et al., 2018; Athalye et al., 2018; Carlini and Wagner, 2017a ). 

1.3. Adversarial vulnerability of MedIA systems 

A better understanding of factors affecting the vulnerability of 

MedIA systems is therefore crucial to inform and improve the eval- 

uation of their robustness against adversarial attacks, as well as 

the design of new MedIA systems. There are several factors related 

to the design of the target model, such as network architecture 

( Szegedy et al., 2013; Su et al., 2018 ), and the attack scenario, such 

as disparity in the development data, i.e., difference in the data 

used for training and validation, between the target and the at- 

tacker ( Szegedy et al., 2013 ), that affect the transferability of adver- 

sarial attacks and thus the vulnerability of the systems. Although 

factors such as network architecture disparity (i.e. having different 

network architectures) ( Paschali et al., 2018; Taghanaki et al., 2018 ) 

are sometimes considered when evaluating vulnerability of MedIA 

systems against adversarial attacks, the impact of other crucial as- 

pects of real-world MedIA scenarios has not been explored yet. 

In this paper, we focus on two unexplored factors that can po- 

tentially influence adversarial attack transferability in MedIA sys- 

tems: ImageNet pre-training and development data disparity. The 

key contributions of our paper are: 

• We study the effect of ImageNet pre-training on adversarial at- 

tack transferability. Since systems pre-trained on natural im- 

ages have shown to achieve improved performance in shorter 

training times in several medical applications ( Gulshan et al., 

2016; Wang et al., 2017 ), pre-training on ImageNet has become 

a common design choice for development of MedIA systems 

( Litjens et al., 2017 ). Pre-trained models may be more similar 

to each other compared to randomly initialized models due to 

retaining information learned from ImageNet. However, to the 

best of our knowledge, no studies (of MedIA or any other DL 

systems) have compared transferability of adversarial attacks 

between pre-trained models to that between randomly initial- 

ized models. 

• We study the effect of disparity in the data used for develop- 

ment of the target and surrogate models. With increasing avail- 

ability of high-quality, large public datasets, it becomes more 

likely that MedIA systems will, at least partly, rely on these eas- 

ily accessible data in order to fulfill the requirement of large 

datasets for DL development. Simultaneously, MedIA systems in 

the deployment stage might also make use of larger amounts 

of private data ( Abràmoff et al., 2016; González-Gonzalo et al., 

2020; Murphy et al., 2020 ). Comparing adversarial transfer- 

ability in scenarios of development data parity and disparity 

may provide further insight on how vulnerable MedIA systems 

are. Additionally, we study adversarial robustness of ImageNet 

pre-trained and randomly initialized networks trained using 

smaller development sets under an attack scenario of data dis- 

parity, simulating target models developed with small, private 

datasets. 
• We investigate these factors in three popular medical applica- 

tions: detection of referable diabetic retinopathy in color fundus 

images, classification of pathologies in chest X-Ray, and breast 

cancer metastasis detection in histological lymph node sections. 

We used the following methodology to study the effect of Im- 

ageNet pre-training and development data disparity on adversarial 

transferability. We implemented different adversarial attack meth- 

ods and applied them to different state-of-the-art network archi- 

tectures, which allows us to additionally evaluate the effect of net- 

work architecture disparity: i.e., the effect of target and surrogate 

models having a different architecture as compared to them hav- 

ing the same architecture. We perform our experiments in varying 

black-box settings, which we consider to be the most realistic at- 

tack scenario for MedIA systems. In contrast to previous studies, 

we analyze and adjust the perturbation degree used in our experi- 

ments so as to ensure optimal transferability at minimal visual per- 

ceptibility of the adversarial attacks, considering human input is 

often required in MedIA settings. We thoroughly examine the im- 

plications of our results on the design of MedIA systems, as well as 

provide recommendations for evaluating their robustness against 

adversarial attacks. 

2. Related work 

Black-box attacks can have varying degrees of interaction with 

the target model: from having no interaction at all to unlim- 

ited querying of the model and using its predictions in craft- 

ing adversarial perturbations (for example, one-pixel attacks by 

Su et al. (2019) , or oracle attacks such as the one proposed by 

Papernot et al. (2016a) ). The non-query-based type of black-box at- 

tacks is the focus of this work and is, perhaps, the most commonly 

studied ( Akhtar and Mian, 2018; Yuan et al., 2019 ), including in the 

MedIA field ( Finlayson et al., 2018; Paschali et al., 2018; Taghanaki 

et al., 2018 ). 

Black-box attacks that do not allow querying the target model 

typically rely on the transferability of adversarial perturbations 

from a surrogate model to the target model. Adversarial examples 

have been shown to be transferable between highly distinct mod- 

els ( Szegedy et al., 2013; Liu et al., 2016; Moosavi-Dezfooli et al., 

2017 ). The transferability of adversarial examples between different 

models can be explained by the similarity of their decision bound- 

aries ( Tramèr et al., 2017b ) and depends on how similar their de- 

sign and training are ( Uesato et al., 2018 ). Perhaps, the most well- 

studied factor affecting adversarial transferability is disparity in 

model architecture ( Su et al., 2018 ). Relatively few studies have in- 

vestigated the influence of other kinds of target-surrogate differ- 

ences on the success of adversarial attacks: most studies trained 

their target and surrogate models on exactly the same subset of 

the same dataset, and use the same pre-processing, data augmen- 
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tation, weight initialization, training loss function, and other train- 

ing parameters. 

In this study, we focus on the effects of two previously unex- 

plored factors in MedIA settings on the transferability of black- 

box attacks: pre-training on ImageNet and disparity in the devel- 

opment data between target and surrogate models. We also study 

the interaction of both factors with network architecture disparity. 

Below we provide an overview of the literature related to these 

factors: 

Pre-training on ImageNet. In the MedIA field, DL methods 

commonly use pre-training on natural images to improve perfor- 

mance ( Litjens et al., 2017 ). Pre-trained networks have also often 

been used in studies on adversarial robustness ( Finlayson et al., 

2018; Paschali et al., 2018; Ma et al., 2021 ). However, all studies 

either considered target and surrogate models that were both pre- 

trained or both randomly initialized. To our knowledge, no studies 

have compared adversarial attack transferability between DL net- 

works pre-trained on ImageNet (or any other dataset used for per- 

formance boosting) to that between randomly initialized networks. 

We hypothesize that the transferability of adversarial examples be- 

tween pre-trained target and surrogate models may be larger than 

that between randomly initialized models, since pre-training might 

increase the similarity between models due to retaining informa- 

tion learned from ImageNet. 

Although the effect of ImageNet pre-training was not studied 

in the black-box attack scenario, its effect on white-box adversar- 

ial robustness was studied by Hendrycks et al. (2019) for networks 

that were adversarially fine-tuned: i.e., trained using adversarial 

training ( Madry et al., 2017 ) on the target data after pre-training. 

In their study, regular ImageNet pre-training had no positive ef- 

fect on the white-box robustness of networks adversarially fine- 

tuned on CIFAR. However, adversarial ImageNet pre-training in- 

creased the robustness substantially. The effect on robustness of 

adversarial pre-training for networks that are fine-tuned normally 

(not adversarially) was not reported by Hendrycks et al. (2019) or 

others. 

Disparity in development data. Szegedy et al. (2013) reported 

that adversarial examples crafted using a surrogate model trained 

on a different (similarly sized) data subset as the target model are 

substantially less transferable than those crafted using the same 

training data for the target and surrogate model. However, they 

only demonstrated this for simple fully-connected models trained 

on MNIST. No further studies have focused on the effect of training 

data disparity, including in the MedIA field: all studies of black-box 

attacks on MedIA DL assumed perfect data parity ( Finlayson et al., 

2018; Paschali et al., 2018; Taghanaki et al., 2018 ). This factor is 

particularly important to study in the context of MedIA systems, 

where some systems are trained on easily accessible public data, 

whereas others rely on private data. In the case of using only pub- 

lic data for development, we can assume that surrogate models can 

be trained with the same dataset as the target (data parity), while 

in the case of using private data, this is not possible (data dispar- 

ity). We believe it is important to consider these different scenar- 

ios and study the influence of data (dis)parity on transferability of 

adversarial examples in MedIA systems. 

Disparity in model architecture. Su et al. (2018) studied the 

adversarial robustness of 18 well-known image classification mod- 

els trained on ImageNet. Their findings suggest that adversarial ex- 

amples crafted from one model can only be transferred within the 

same family (e.g. VGGs or Densenets). They also found that deeper 

models within the same family are slightly more robust than shal- 

lower models, but differences in model architecture were found 

to affect transferability more than differences in model size. There 

have been no similarly comprehensive studies on architecture dis- 

parity or adversarial example transferability between different ar- 

chitectures for MedIA systems. However, some studies reported 

attack performance under both architecture parity and disparity 

( Paschali et al., 2018 ) or under disparity only ( Taghanaki et al., 

2018 ). Szegedy et al. (2013) found that having architecture dis- 

parity in addition to development data disparity further reduced 

the transferability of attacks. In this study, we investigate the in- 

teraction of architecture (dis)parity with weight initialization (pre- 

training on ImageNet or random initialization) and development 

data (dis)parity. 

3. Methods 

3.1. Threat model 

The security of any system is measured in relation to the capa- 

bilities and goals of its potential adversaries. The limits to the at- 

tackers capabilities, including their knowledge, and their goals are 

captured by the concept of a threat model . In the context of evalu- 

ating adversarial robustness of machine learning systems, explicitly 

specifying the considered threat model helps to clearly delineate 

the scope of attacks against which robustness is studied and thus 

allows for falsifiable claims ( Carlini et al., 2019 ). The threat model 

considered in this study is the following: 

Goal. We assume the attackers goal is to cause general misclas- 

sification, which is usually called an untargeted adversarial attack. 

In an untargeted adversarial attack the goal is to modify the input 

in a way that it will be classified as any class but the ground-truth 

class, whereas in a targeted adversarial attack the goal is to modify 

the input in a way that it will be classified as a specific class. 

Capability. We assume the attacker’s capabilities are: 

• The attacker can only manipulate the input to the target sys- 

tem (we assume this input is directly fed into DL networks) and 

only at inference time. 
• The attacker is allowed to modify the input images in a way 

that appears very subtle or even imperceptible to the human 

eye. 
• The attacker cannot query the target model. 

Knowledge. We simulate scenarios of the attacker lacking 

knowledge of the following features of the target model: weight 

initialization (pre-trained on ImageNet or randomly initialized), 

data used for development, and network architecture. The weights 

of the target model cannot be accessed by the attacker in all attack 

scenarios we consider. 

3.2. Adversarial attacks 

In this study, we used two adversarial attack methods that were 

most commonly and effectively used in the literature: fast gradient 

sign method (FGSM) ( Goodfellow et al., 2014 ) and projected gradi- 

ent descent (PGD) ( Madry et al., 2017 ). 

Fast gradient sign method. FGSM is a one-shot attack method 

in which the adversarial perturbation is computed as the sign of 

the gradient of the loss with respect to the input image. The sign 

of the gradient in every pixel determines whether ε, the parame- 

ter regulating the maximum amount of perturbation, is added or 

subtracted from every pixel in the target image x to create an ad- 

versarial example: 

x adv = x + ε · sign 

(∇ x L ( f (x ; θ ) , y ) 
)
, (1) 

where L represents the loss, f the selected network architecture, 

θ the corresponding parameters, and y the image label. 

Projected gradient descent. PGD is an iterative version of 

FGSM, in which several steps for computing the perturbation and 

adding it to the input are performed: 

x (i +1) 
adv = clip εx 

{
x (i ) + α · sign 

(∇ x L ( f (x (i ) ; θ ) , y ) 
)}

, (2) 

4 
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Table 1 

Size of development and testing subsets for each dataset. In order to study the effect of development data disparity on adversarial attack transferability, development 

sets were divided into two equal-sized parts: d1 and d2; d1 was subsequently subsampled to obtain small datasets which contained 10% of the data d1/10; d2 was 

subsequently subsampled to obtain a half-sized subset d2/2 . 

Ophthalmology Radiology Pathology 

Development d1 79,058 (88%) 39,030 86,524 (80%) 43,657 294,912 (90%) 147,456 

d2 39,028 42,867 147,456 

d1/10 3,906 3,989 14,892 

d2/2 19,514 23,666 73,728 

Test 10,644 (12%) 25,596 (20%) 32,768 (10%) 

Total 88,702 (100%) 112,120 (100%) 327,680 (100%) 

where α controls the step size; ε is the parameter regulating the 

maximum degree of perturbation added to every pixel; clip εx func- 

tion clips its input so that it does not deviate from x more than ε
as measured by � ∞ 

norm. 

In the black-box setting, f ′ (·, θ ′ ) , where f ′ is the surrogate net- 

work architecture and θ ′ are the corresponding parameters, is used 

to compute the attack, which is then transferred to the target 

model. 

3.3. Network architectures, training, and data 

We selected Inception-v3 ( Szegedy et al., 2016 ) and Densenet- 

121 ( Huang et al., 2017 ) as the base architectures for our experi- 

ments. Both architectures were previously applied in the selected 

medical applications and achieved good performance ( Gulshan 

et al., 2016; Rajpurkar et al., 2017; Guendel et al., 2018; Veeling 

et al., 2018 ). All networks were trained until convergence on a val- 

idation set using Adam optimization with learning rate decay and 

binary cross-entropy loss. 

For the dataset used in each application, a development and 

a test set were defined. The development set was used for train- 

ing and validation. The independent test set was used to measure 

the performance of each model on clean and adversarial exam- 

ples. We randomly divided all development sets, at patient-level, 

into two non-overlapping, equal-sized parts — d1 and d2 — to be 

able to study the influence of data parity on attack transferability. 

Two more sets, d2/2 and d1/10 , were created by randomly sam- 

pling at patient level half of d2 and 10% of d1 , respectively. This 

was done to study the influence of dataset size. The description 

of each dataset and dataset-specific network parameters is stated 

below. Table 1 provides an overview of data partitioning for each 

dataset. 

Ophthalmology. We used the Kaggle dataset for diabetic 

retinopathy detection ( Kaggle, 2015 ), which contains 88,702 color 

fundus images with manually-labeled diabetic retinopathy severity. 

In order to have more images available for development, as pro- 

posed in Finlayson et al. ( Finlayson et al., 2018 ), we merged the 

original training (35,126 images) and test sets (53,576 images) and 

split the images randomly at patient-level subsets for development 

(88%) and testing (12%). 

Pre-processing included extracting the field of view and rescal- 

ing to 512 × 512 pixels. The networks were trained to distin- 

guish between non-referable (stages 0 to 1) and referable diabetic 

retinopathy (stages 2 to 4) using batch class balancing. For data 

augmentation, we used flipping and rotation. 

Radiology. We used the ChestX-Ray14 dataset ( Wang et al., 

2017 ), consisting of 112,120 frontal-view X-rays annotated with 

14 non-mutually-exclusive pathology labels. The official data split 

(80%-20%) was used to define our development and test sets. 

Pre-processing included downsampling images to 256 × 256 

resolution. The architectures were trained using binary cross- 

entropy loss to predict 14 pathology classes and one “no finding”

class. For data augmentation, we used translation and horizontal 

flipping. 

Pathology. We used the PatchCamelyon (PCam) ( Veeling et al., 

2018 ) dataset, which contains 327,680 patches extracted from 

histopathology whole-slide images of lymph node sections. The of- 

ficial data split (90%-10%) was used to define our development and 

test sets. 

The networks were trained to distinguish between the presence 

or absence of metastatic tissue in the patch center. For data aug- 

mentation, we used horizontal and vertical flipping and random 

color augmentations. 

4. Experimental setup 

In all experimental setups, the performance of the target mod- 

els on the test set of each dataset was measured using the area un- 

der the receiver operating characteristic curve (AUC) or mean AUC 

for the multi-class case. 

4.1. Perturbation degree 

Firstly, we analyzed the effect of perturbation degree on the ad- 

versarial attacks to ensure maximal transferability at minimal vi- 

sual perceptibility in further experiments. To our knowledge, only 

one study has systematically analyzed the effect of perturbation 

degree in MedIA settings ( Ma et al., 2021 ), although it was only 

done for white-box attacks. We believe perturbation degree is a 

parameter that should be further investigated to yield more accu- 

rate estimations of robustness against adversarial attacks. In this 

study, we analyzed the performance of FGSM and PGD attacks and 

the visual perceptibility under different degrees of perturbation, 

controlled by ε: 0.01, 0.02, 0.03, 0.04, 0.05, and 0.06. These val- 

ues were applied to image intensities rescaled between -1 and 1. 

We assessed visual perceptibility of attacks bounded by different 

epsilons in two different ways. Firstly, the first authors used their 

own visual perception to judge how subtle adversarial perturba- 

tions appear when adversarial and original images were viewed in 

juxtaposition. Due to impracticality of assessing every adversarial 

input to our models, this was evaluated in a subset of images of 

each modality and for each epsilon. Secondly, we computed mean 

Structural Similarity Index Measure (SSIM) ( Wang et al., 2004 ) 

between adversarial and original versions of all images for each 

modality and epsilon. SSIM is based on a hypothesized character- 

istic of the human visual system to be sensitive to structural infor- 

mation in images and was previously shown to be a robust mea- 

sure of perceptual quality of images ( Wang et al., 2004 ). 

For the PGD attacks, we used step size α = 0 . 01 and 20 itera- 

tions. In this experiment, all models were randomly initialized and 

trained on the same partition of the development set, d1 . 

To ensure that the decrease in target model performance after 

an adversarial attack is due to the adversarial nature of the per- 

turbation and not solely due to added noise, we additionally com- 

puted “control” noise. While existing works chose standard noise 

distributions such as Gaussian for this purpose ( Paschali et al., 

2018 ), we chose to compare adversarial perturbations with their 

randomly spatially shuffled versions to ensure the same degree of 
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Table 2 

Effects of perturbation degree on attack transferability. Average performance (AUC) over two model architectures is shown when using 

FGSM, PGD or control noise (spatially shuffled black-box adversarial perturbations) with varying perturbation degrees. The target and 

surrogate model were both trained with the same dataset, d1 . The lowest AUC value (highest attack transferability) in each application 

is shown in bold. 

Data Noise FGSM PGD 

ε = 0.01 0.02 0.03 0.04 0.05 0.06 0.01 0.02 0.03 0.04 0.05 0.06 

Ophthalmology None 0.86 

Ophthalmology Adversarial 0.56 0.44 0.37 0.32 0.32 0.33 0.72 0.56 0.44 0.37 0.35 0.34 

Ophthalmology Control 0.85 0.85 0.84 0.79 0.76 0.73 0.86 0.85 0.85 0.84 0.84 0.84 

Radiology None 0.75 

Radiology Adversarial 0.61 0.55 0.52 0.51 0.51 0.52 0.65 0.57 0.52 0.49 0.47 0.45 

Radiology Control 0.75 0.75 0.75 0.74 0.73 0.72 0.75 0.75 0.75 0.75 0.74 0.74 

Pathology None 0.87 

Pathology Adversarial 0.70 0.56 0.45 0.38 0.35 0.33 0.73 0.56 0.47 0.41 0.38 0.36 

Pathology Control 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.87 

perturbation in adversarial and “control” examples. Spatial shuf- 

fling was performed by randomly permuting perturbation values 

for all pixels. 

4.2. Pre-training on ImageNet 

In this set of experiments, we measured the attack effective- 

ness when target and surrogate were both pre-trained on Ima- 

geNet, both randomly initialized, or had different initializations 

(pre-trained or random). We measured this for target-surrogate 

pairs with the same and different architectures separately. For this 

purpose, we trained four versions of each architecture (two pre- 

trained and two randomly initialized) to cover all possible target- 

surrogate combinations in black-box settings, using the same par- 

tition of the development set, d1 . 

4.3. Development data disparity 

This experimental setup focused on the effect of disparity in the 

data used for the development of the target and surrogate mod- 

els, as well as its interaction with architecture disparity. For the 

first part of this set of experiments, we trained four randomly ini- 

tialized versions of each architecture: a target model trained and 

validated on d1 and three surrogate models trained and validated 

on d1, d2 , and d2/2 , respectively. For every development dataset, 

the same split between training and validation images was used to 

train every model. 

For the second part, we experimented with target models 

trained on small datasets attacked by surrogate models trained on 

larger, non-overlapping datasets. Since pre-training on ImageNet 

is often needed to reach good performance in models trained on 

small datasets, we have included it in this experiment. As target 

models, we trained pre-trained and randomly initialized versions 

of each architecture on d1/10 ; as surrogate models, we trained pre- 

trained and randomly initialized versions of each architecture on 

d2 . For every development dataset, the split between training and 

validation images was the same as in previous experiments. 

5. Results 

5.1. Perturbation degree 

The results of our experiments with different attack methods 

(FGSM and PGD) at different perturbation degrees can be found 

in Table 2 . The results for individual models are included in the 

Supplementary Material. Increasing adversarial perturbation de- 

gree decreased the target model’s performance in most cases. The 

experiments with control noise (spatially shuffled noise) showed 

that in the ophthalmology and radiology datasets the decrease in 

the performance of the target could be partially attributed to im- 

age corruption. However, this effect was quite small, except for the 

FGSM attack in the ophthalmology dataset. FGSM and PGD attacks 

performed similarly for the radiology and pathology dataset. For 

the ophthalmology dataset, the FGSM attack decreased the perfor- 

mance of the target model more than the PGD attack. We chose to 

use both attacks in our subsequent experiments and report average 

results. 

Fig. 1 shows original images and their adversarial counterparts 

computed using FGSM attacks at different perturbation degrees. 

Fig. 2 shows mean SSIM values across all images for FGSM and 

PGD attacks. SSIM values for individual models are included in 

the Supplementary Material. As can be seen, applying the same 

amount of perturbation to different imaging modalities has a dif- 

ferent effect on human visual perceptibility and the measured 

SSIM. Adversarial perturbations were the most noticeable in the 

radiology images, with ε = 0 . 02 yielding an already visible, albeit 

quite subtle perturbation. For the ophthalmology and pathology 

images, at the same perturbation degree, perturbations were al- 

most imperceptible and became noticeable with higher epsilon val- 

ues. Perturbations computed by FGSM had lower SSIM than those 

computed by PGD in all three datasets. This is an expected result, 

since PGD optimizes perturbations according to both their impact 

on model predictions and their size. 

For our further experiments, we chose to report attacks using 

ε = 0 . 02 , as this was the highest perturbation degree that was still 

visually subtle for all applications and attack methods, and it had 

substantially better transferability than an epsilon of 0.01 in most 

of the studied applications. 

5.2. Pre-training on ImageNet 

Table 3 summarizes our experiments on the effect of pre- 

training on adversarial attack transferability and its interaction 

with model architecture parity. The results for individual mod- 

els and different attack methods can be found in the Supplemen- 

tary Material. In the ophthalmology and radiology datasets, the at- 

tack transferability between pre-trained models was substantially 

higher than that between randomly initialized models. In both 

datasets, the effect was consistent: for all eight combinations of 

attack method and target and surrogate pairs (including pairs hav- 

ing a different architecture), pre-trained targets had lower per- 

formance when attacked by pre-trained surrogates, compared to 

their randomly initialized counterparts. In the pathology dataset, 

however, the opposite effect was observed with similar consis- 

tency. It is noteworthy that the effect of pre-training on transfer- 

ability seemed to correlate to the performance increase resulting 

from pre-training: in the ophthalmology dataset, both the perfor- 

mance boost obtained by using pre-training and the transferability 
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Fig. 1. Original and adversarial images created with fast gradient sign method attacks using different perturbation degrees ( ε). The images in the top row are the original 

images. The red squares indicate the location of the patches that we show in the rest of the figure. (For interpretation of the references to color in this figure legend, the 

reader is referred to the web version of this article.) 

of adversarial examples between pre-trained networks were high; 

in the radiology dataset, the performance boost was smaller and 

the transferability was also smaller; in the pathology dataset, pre- 

training yielded no benefit and the effect on transferability was re- 

versed. 

Fig. 3 includes two examples from the ophthalmology dataset 

that illustrate attack transferability when both target and surrogate 

are pre-trained on ImageNet and when both are randomly initial- 

ized. 

All the aforementioned effects held similarly for the scenarios 

where the target and surrogate model had the same or different 

architecture. 

5.3. Development data disparity 

The effects of data disparity on adversarial attack transferabil- 

ity and its interaction with model architecture disparity can be 

seen in Table 4 . The results for individual models and different 

attack methods are included in the Supplementary Material. For 

all datasets, networks were substantially less susceptible to attacks 

crafted using surrogates with the same architecture but trained on 

a different data subset ( d2 or d2/2 ). This held for both target archi- 

tectures and both attack methods. Decreasing the surrogate train- 

ing set size (from d2 to d2/2 ) led to a further drop in the attack 

transferability for the ophthalmology and radiology datasets. 
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Fig. 2. Mean Structural Similarity Index Measure (SSIM) computed between original images in the test sets and adversarial examples generated using FGSM or PGD with 

varying perturbation degree ε. Points represent SSIM values averaged over two model architectures (Inception-v3 and Densenet-121).. 

Table 3 

Effects of pre-training and the interaction between pre-training and model architecture par- 

ity on attack transferability. Average performance (AUC) over FGSM and PGD ( ε= 0.02) and 

two model architectures (Inception-v3 and Densenet-121) is shown. The target and surrogate 

model were both trained with the same dataset, d1 . Average relative performance with re- 

spect to the no-attack setting is shown in brackets. The lowest AUC value (highest attack 

transferability) in each application is shown in bold. . 

Architecture Target Surrogate Ophthalmology Radiology Pathology 

No attack Imagenet - 0.94 (100%) 0.78 (100%) 0.87 (100%) 

No attack Random - 0.86 (100%) 0.75 (100%) 0.87 (100%) 

Same Imagenet Imagenet 0.00 (0%) 0.31 (40%) 0.61 (70%) 

Same Random Random 0.44 (51%) 0.48 (64%) 0.41 (47%) 

Same Random Imagenet 0.63 (74%) 0.63 (83%) 0.60 (69%) 

Same Imagenet Random 0.80 (85%) 0.55 (71%) 0.71 (82%) 

Different Imagenet Imagenet 0.24 (25%) 0.50 (65%) 0.75 (86%) 

Different Random Random 0.55 (64%) 0.64 (86%) 0.71 (82%) 

Different Random Imagenet 0.71 (83%) 0.65 (86%) 0.69 (80%) 

Different Imagenet Random 0.86 (92%) 0.59 (76%) 0.75 (86%) 

Table 4 

Effects of data and model architecture parity on attack transferability. Average per- 

formance (AUC) over FGSM and PGD ( ε= 0.02) and two model architectures is 

shown, with surrogate models trained on different sets while the target model is 

trained on d1 . Average relative performance with respect to the no-attack setting 

is shown in brackets. The lowest AUC value (highest attack transferability) in each 

application is shown in bold. 

Architecture Training set Ophthalmology Radiology Pathology 

No attack - 0.86 (100%) 0.75 (100%) 0.87 (100%) 

Same d1 0.44 (51%) 0.48 (64%) 0.41 (47%) 

Same d2 0.56 (65%) 0.56 (75%) 0.67 (77%) 

Same d2/2 0.75 (88%) 0.59 (79%) 0.65 (75%) 

Different d1 0.55 (64%) 0.64 (86%) 0.71 (82%) 

Different d2 0.66 (77%) 0.65 (87%) 0.74 (85%) 

Different d2/2 0.80 (93%) 0.69 (91%) 0.71 (81%) 

When the architecture of the surrogate was different, however, 

additional data disparity between the target and surrogate sub- 

stantially decreased the attack performance only for the ophthal- 

mology dataset. Disparity in the model architecture had greater ef- 

fect on attack performance than disparity in data for the radiology 

and pathology datasets; for the ophthalmology dataset, data and 

model architecture disparity had similar effects. 

The transferability of attacks on models trained on small 

datasets in a data disparity scenario is reported in Table 5 . The 

Supplementary Material contains the results for individual mod- 

els and different attack methods. For the ophthalmology and radi- 

ology datasets, the pre-trained models clearly outperformed their 

randomly initialized counterparts on clean images. For the pathol- 

ogy dataset, pre-trained models performed slightly worse than ran- 

domly initialized ones. These results are similar to ones we ob- 

served for models trained on larger sets (see Table 3 ). On ad- 

versarial images, pre-trained models performed worse than their 

randomly initialized counterparts in all three datasets, both in 

absolute terms and relative to their performance on clean im- 

ages. These results were mostly similar to the results for networks 

trained on larger data ( Table 3 ). For the ophthalmology and radiol- 

ogy datasets, adversarial attack transferability between pre-trained 

models was higher than that between randomly initialized models, 

and this effect was stronger in the ophthalmology dataset. There 

was an interesting difference, however: for the pathology dataset, 

pre-training increased transferability, whereas in our experiments 

with networks trained on larger data it was the other way around. 

Attacks on randomly initialized models trained on small datasets 

hardly have any effect ( Table 5 ), while attacks on randomly ini- 

tialized models trained on larger sets can lead to performance de- 

creases of up to 35% ( Table 4 ). 

6. Discussion 

In this study, we have demonstrated that ImageNet pre-training 

may substantially affect transf erability of adversarial examples, 

even between networks with different architecture. This effect var- 

ied substantially across the applications and appeared to be re- 
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Fig. 3. Original images, adversarial images and corresponding adversarial noise created with FGSM ( ε= 0.02) in different black-box settings: target and surrogate pre-trained 

on ImageNet; target and surrogate randomly initialized; target and surrogate randomly initialized plus surrogate developed using a different and reduced dataset (d2/2). The 

average area under the receiver operating characteristic curve (AUC) is indicated above of each configuration for the clean and the black-box settings. Green frame indicates 

correct classification of referable or non-referable diabetic retinopathy (DR); red frame, incorrect classification. The adversarial noise shown is equivalent to the difference 

between the original and the adversarial image.. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

lated to the gain in performance resulting from pre-training. We 

have also shown that differences in development data between tar- 

get and surrogate models reduce transferability substantially, even 

when development sets are equally sized and sampled from the 

same distribution. This effect was in some cases comparable to 

that of architecture disparity. All experiments were performed us- 

ing a perturbation degree tuned to be visually subtle and perform 

optimally in the black-box attack setting. 

In this section, we discuss the importance of perturbation de- 

gree tuning and the influence of pre-training and data disparity on 

transferability of adversarial attacks. Based on the results of our 

study, we make recommendations for developers of MedIA sys- 
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Table 5 

Transferability of attacks on models trained on small datasets in a data disparity scenario. 

Average performance (AUC) over FGSM and PGD ( ε= 0.02) and two model architectures is 

shown, with surrogate models trained on d2 and target models trained on d1 / 10 . Average 

relative performance with respect to the no-attack setting is shown in brackets. The lowest 

AUC value (highest attack transferability) in each application is shown in bold. 

Architecture Target Surrogate Ophthalmology Radiology Pathology 

No attack Imagenet - 0.88 (100%) 0.69 (100%) 0.79 (100%) 

No attack Random - 0.61 (100%) 0.64 (100%) 0.81 (100%) 

Same Imagenet Imagenet 0.13 (15%) 0.58 (84%) 0.73 (93%) 

Same Random Random 0.60 (99%) 0.63 (99%) 0.78 (96%) 

Different Imagenet Imagenet 0.45 (51%) 0.62 (90%) 0.75 (96%) 

Different Random Random 0.60 (100%) 0.63 (99%) 0.79 (98%) 

tems, as well as for future evaluation of adversarial robustness of 

these systems. 

6.1. Perturbation degree 

Our experiments confirmed that perturbation degree is an im- 

portant attack parameter to take into account to obtain more ac- 

curate estimates of adversarial robustness of DL systems. Using a 

lower-than-optimal perturbation degree may lead to an underper- 

forming attack and hence an overestimated robustness; using a 

higher-than optimal perturbation degree may make the adversar- 

ial perturbation visually perceptible. We observed differences in vi- 

sual perceptibility of adversarial perturbations in different imaging 

modalities as estimated by both our visual perception and SSIM. 

This could occur because of differences in color, homogeneity, con- 

trast, and resolution between the imaging modalities. Since these 

characteristics may affect visual perceptibility of adversarial at- 

tacks, it is important to optimize the perturbation degree to the 

image type and task, as well as for the considered attack sce- 

nario (e.g., whether adversarial examples are likely to be inspected 

by a human). Quantitative measures, such as SSIM, could also be 

used to ensure minimal visual perceptibility of adversarial pertur- 

bations. However, since there is not an accepted threshold value 

to determine whether a perturbation is imperceptible for SSIM 

or other quantitative perceptibility measures, an optimal thresh- 

old value would still need to be found and ensured to agree with 

human visual perception. Moreover, to our knowledge, no quan- 

titative metric can perfectly capture human visual perceptibility 

( Chandler, 2013 ). Therefore, we think the best way to assess vi- 

sual perceptibility of different degrees of adversarial perturbations 

would be a blinded observer study involving medical experts. Such 

a study is beyond the scope of this paper. 

Ma et al. (2021) experimented with different perturbation de- 

grees in the white-box attack setting and concluded that MedIA 

systems are “easier to attack” than systems trained on natural im- 

ages, based on their observation that for MedIA systems far smaller 

perturbations were needed to reach near-maximal attack perfor- 

mance. In our study, we considered the more realistic black-box 

setting, in which perturbations became visually perceptible be- 

fore yielding high attack performance. This suggests that, firstly, in 

black-box settings, MedIA systems may not be very easy to attack. 

Secondly, it suggests it is harder to compare the difficulty of attack- 

ing systems in different applications: for example, in applications 

where a given perturbation degree yields better attack effective- 

ness, the perturbations may also be more perceptible. 

6.2. Pre-training on ImageNet 

In the ophthalmology and radiology applications, we observed 

that transferability between pre-trained models, including the ones 

with different architectures, was substantially larger than that be- 

tween randomly initialized models: 20–50% difference in AUC was 

observed. These results motivate caution in generalizing perfor- 

mance of black-box adversarial attacks from pre-trained networks 

to randomly initialized ones and vice versa. For example, an attack 

that was only shown effective on pre-trained targets and surro- 

gates may be substantially less effective when applied to randomly 

initialized targets and surrogates in the same application or to net- 

works in applications that do not benefit from pre-training. 

We believe increased transferability between pre-trained mod- 

els may be explained by increased closeness of their decision 

boundaries. Tramèr et al. (2017b) showed empirically that deci- 

sion boundaries of DL models are on average closer to each other 

than to data points, which implies that adversarial perturbations 

causing data points to cross one model’s decision boundary would 

likely cause them to cross another model’s decision boundary as 

well. There are several possible mechanisms through which pre- 

training may increase closeness of decision boundaries of mod- 

els. Firstly, pre-trained networks with the same architecture start 

with the same weight initialization (whereas randomly initialized 

networks in our experiments started with different initializations), 

which may increase the similarity of the features they learn. The 

fact that pre-training speeds up convergence may amplify this. Sec- 

ondly, pre-trained networks may be more similar because they re- 

tain some features from ImageNet pre-training. As, in our experi- 

ments, pre-training also increased transferability between models 

with different architectures, same weight initialization is likely not 

the only cause of increased similarity between pre-trained net- 

works. The correlation between the strength of the performance 

boost from pre-training and the increase in transferability also sup- 

ports the second mechanism: the higher the performance gain 

from pre-training, the more the network retains from its ImageNet 

pre-training. 

Our observations put into an interesting perspective the ones 

made in the study by Hendrycks et al. (2019) the only study on 

the effects of pre-training on adversarial robustness we are aware 

of. Hendrycks et al. (2019) found that adversarial pre-training on 

ImageNet can increase adversarial robustness for networks adver- 

sarially fine-tuned on the target data in the white-box attack set- 

ting. We found that regular ImageNet pre-training can decrease 

adversarial robustness in the black-box setting. Whether adver- 

sarial pre-training could instead improve robustness in the black- 

box setting remains an open question. On the one hand, adversar- 

ial training is substantially less successful in preventing attacks in 

the black-box than in the white-box setting ( Tramèr et al., 2017a ) 

and these results could be expected to extend to adversarial pre- 

training. Furthermore, if any kind of pre-training increases vulner- 

ability to black-box attacks by similarly pre-trained networks, for 

example, by increasing similarity between the decision boundaries 

of the target and the surrogate, adversarial pre-training could be 

less beneficial or even detrimental to black-box robustness. On the 

other hand, even if adversarial pre-training facilitated transferabil- 

ity to some degree, it could still be overall beneficial due to the 

fact that the network would be trained to be adversarially robust 
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on a larger and more variable set of images. Future research could 

focus on answering these questions. 

6.3. Development data disparity 

Data parity is assumed, to our knowledge, by all studies 

on black-box adversarial attack robustness of MedIA systems 

( Finlayson et al., 2018; Taghanaki et al., 2018; Paschali et al., 2018 ). 

Our results, however, indicate that black-box attacks may be less 

effective when using a surrogate trained on a different dataset, 

even if it is a large dataset of the same size as the development 

data of the target and it is sampled from the same distribution. A 

30–40% increase in AUC of the attacked models in the ophthalmol- 

ogy and pathology datasets was observed when the surrogate was 

trained on a disjoint subset. This data disparity effect may be as 

strong or even stronger than the effect of architecture disparity, as 

observed in the ophthalmology dataset. 

The data disparity effect is even stronger when the target model 

is trained on a small dataset, in which case attacks are gener- 

ally quite ineffective, especially when performed against randomly 

initialized target models. However, pre-trained models trained 

on small datasets can still be vulnerable to adversarial attacks. 

This vulnerability increases for applications where ImageNet pre- 

training provides a significant boost in clean performance, similar 

to what was observed in the experiments with models trained on 

larger datasets. 

These results suggest that MedIA systems that use private de- 

velopment data are less susceptible to adversarial attacks than 

systems that use public development data (assuming attacks per- 

formed by an external party who cannot access the private data 

and assuming other properties of the systems are equal). Simulat- 

ing data disparity between the target and surrogate model yields a 

more realistic estimate of adversarial robustness for such systems. 

Studies on adversarial robustness would therefore benefit from in- 

cluding different attack scenarios assuming data parity and dispar- 

ity, including differences in development data sizes of target and 

surrogate networks, in their evaluation. 

6.4. Adversarial robustness: Inception-v3 vs Densenet-121 

Considering the results included in the Supplementary Mate- 

rial for each implemented model architecture, Inception-v3 and 

Densenet-121, we observed that, in the ophthalmology application, 

target models based on Inception-v3 tended to be more vulnera- 

ble when attacked by surrogate models with the same architecture, 

whereas target models based on Densenet-121 were slightly more 

vulnerable when attacked by surrogate models based on Inception- 

v3 (compared to Inception-v3 attacked by Densenet-121 models). 

In the radiology application, target models based on Inception- 

v3 were observed to be on average more vulnerable than those 

based on Densenet-121, although no substantial differences were 

observed for ImageNet pre-trained versions of the models. In the 

pathology application, target models based on Densenet-121 were 

found to be slightly more vulnerable in most scenarios. Further- 

more, when there was development data disparity between tar- 

get and surrogate models, only small differences in robustness be- 

tween architectures were observed in all applications. 

Su et al. (2018) studied transferability of adversarial attacks be- 

tween popular architectures trained on ImageNet. Densenet-121 

was observed to be more robust, often substantially, to FGSM 

and PGD attacks by Inception-v3 than the other way around. Si- 

multaneously, there was almost perfect transfer between different 

variants of Densenet: Densenet-121, Densenet-161, and Densenet- 

169 (although transferability between the same version of archi- 

tectures were not reported). Our results showed different trends 

when comparing Densenet-121 and Inception-v3 in different appli- 

cations, for different weight initializations (ImageNet pre-training 

or random initialization), and for different target-surrogate devel- 

opment data configurations. For example, we observed perfect or 

high transferability between Densenet-121 models only for oph- 

thalmology and radiology applications and only for the ImageNet- 

pretrained versions. It is thus difficult to conclude whether either 

of these architectures is innately more robust to black-box attacks 

than the other. 

6.5. Recommendations for developers of MedIA systems 

We recommend developers of all MedIA systems to be deployed 

in clinical practice to consider the environment their system will 

be used in and assess whether the following holds: 

1. Users of these systems may have a motivation (financial or oth- 

erwise) to manipulate their output. 

2. Users may have the capacity to manipulate their input without 

being detected. 

For MedIA systems satisfying these criteria, especially those 

systems that significantly affect clinical or financial decision- 

making, we recommend taking proactive measures to mitigate the 

risk of successful adversarial attacks. 

Many different methods have been proposed to defend DL sys- 

tems from adversarial attacks ( Yuan et al., 2019; Akhtar and Mian, 

2018; Biggio and Roli, 2018 ). Although all defense methods pro- 

posed to date are only partially effective ( Yuan et al., 2019 ), ap- 

plying the most successful methods is likely to increase the diffi- 

culty of manipulating DL systems. We thus recommend develop- 

ers of security-critical MedIA systems to consider employing some 

of these strategies. In addition to strategies purposefully designed 

to defend against adversarial attacks, quantifying uncertainty and 

using techniques for interpreting predictions may aid in detecting 

adversarial attacks ( Li and Gal, 2017; Tao et al., 2018 ). It was shown 

that adversarial perturbations can increase the model’s uncertainty 

( Li and Gal, 2017 ) and cause discrepancies in interpretations of the 

model’s predictions ( Tao et al., 2018 ). However, detection of ad- 

versarial examples based on uncertainty and interpretability also 

provides only partial protection against adversarial attacks ( Carlini, 

2019; Smith and Gal, 2018 ), and can be easily circumvented when 

taken into account in the attack method ( Zhang et al., 2020 ). 

Given that adversarial defense methods are not fully reli- 

able, and given that increased transferability between similar 

models was observed in this and other studies (for example, 

Su et al. (2018) ), we also recommend taking measures to increase 

the difficulty of training a surrogate model similar to the target. As 

one such measure, we recommend restricting the amount of infor- 

mation on the design of the system available to the public. This in- 

cludes information on the methodology components of the system, 

such as network architecture and weight initialization. We also rec- 

ommend avoiding disclosing extensive details on the systems data: 

for example, names and identifying details of used public data, de- 

tailed information on distribution of subjects, scanning modalities, 

and protocols. However, we do not recommend keeping secret the 

methods, procedures, and description of datasets used to evaluate 

the system, since this would make it harder to ensure the system 

is safe and has the desired performance level. 

To further increase the difficulty of emulating the target model 

for an attacker, we recommend considering re-designing MedIA 

systems to reduce the use of standard components, such as pop- 

ular network architectures, and components that facilitate trans- 

ferability, such as pre-training, as well as reducing the reliance of 

these systems on publicly available development data. For exam- 

ple, standard architectures could be replaced by customized archi- 

tectures and pre-training may be substituted by random initializa- 
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tion. However, we recommend this strategy only as a complement 

to more explicit defense strategies and only if it does not lead to 

a significant decrease in the system performance or substantially 

slow down its development. 

We acknowledge that our recommendation to avoid using stan- 

dard components, such as pre-training on ImageNet and publicly 

available development datasets might hamper performance. How- 

ever, for MedIA systems planned to be deployed in clinical prac- 

tice, robustness needs to be considered in addition to performance. 

The trade-off between performance and robustness has already 

been discussed by others ( Zhang et al., 2019; Tsipras et al., 2018; 

Paschali et al., 2018 ). The decision on how much performance to 

sacrifice for robustness will differ per case depending on the like- 

lihood of adversarial attacks against the given system and their po- 

tential consequences. 

We believe a combination of several defense strategies would 

provide the most comprehensive security. Thus, we recommend 

combining multiple methods for detecting, neutralizing, or robusti- 

fying against adversarial perturbation, with measures that increase 

the difficulty of modeling the target system for a potential attacker. 

We would like to emphasize that all recommendations above 

only apply to systems that are planned to be deployed in practice. 

However, we believe they are also relevant to researchers develop- 

ing models at earlier stages, or performing research not specifically 

focused on adversarial attacks. We consider it important that Me- 

dIA researchers are aware of the effect that commonly used design 

components, such as pre-training on ImageNet or public datasets, 

have on attack transferability and the existing trade-off between 

performance and robustness of DL systems. This way, researchers 

will acknowledge the role of adversarial vulnerabilities in model 

development, with the capability of shifting what is currently stan- 

dard in MedIA towards components that acknowledge these vul- 

nerabilities as well. 

6.6. Recommendations for evaluating adversarial robustness of MedIA 

systems 

Carlini et al. (2019) presented a detailed discussion on best 

evaluation practices to conduct reproducible, falsifiable studies on 

adversarial robustness of DL systems. They place an emphasis on 

estimating the upper bound of adversarial robustness: that is, ad- 

versarial robustness measured against attacks of the maximally 

knowledgeable and capable attacker. Below is a condensed list of 

their general recommendations: 

• State a precise threat model that the target system is supposed 

to be robust under. 
• Perform adaptive attacks to estimate the upper bound of ro- 

bustness: test attacks that have full access to the defense mech- 

anisms the target system might use and adapt attacks to the 

target system so as to maximize their effectiveness. This in- 

cludes carefully investigating the attack parameters to ensure 

optimal attack performance. 
• Perform various sanity checks on the success rates of the 

attacks to ensure they are correctly implemented and their 

methodology is valid (for example, white-box iterative attacks 

should perform better than one-step attacks; attacks adapted 

to the studied system should perform at least as good as any 

other). 
• Test diverse attacks (e.g. one-shot attacks and iterative attacks). 
• Describe the attacks studied fully, including parameters. 
• Compare against prior work and explain important differences. 

Current studies on adversarial attacks on MedIA systems do not 

follow all of these practices. To the best of our knowledge, no pub- 

lished studies investigating robustness of MedIA systems formu- 

late an explicit threat model, and thus do not clearly define the 

considered attack scenarios; many do not tune the parameters of 

their attacks, including perturbation degree ( Paschali et al., 2018; 

Taghanaki et al., 2018; Finlayson et al., 2018 ); and some do not re- 

port all attack parameters ( Paschali et al., 2018; Taghanaki et al., 

2018 ). 

Inspired by the results in our study, we have developed several 

additional recommendations and suggestions for evaluating adver- 

sarial robustness of DL systems. Note that while recommendations 

of Carlini et al. (2019) (particularly the recommendation on per- 

forming adaptive attacks) have as their aim estimating the upper 

bound of adversarial robustness, our recommendations have a dif- 

ferent scope. We aim at investigating factors that may affect ad- 

versarial vulnerability of real-world DL systems, which are unlikely 

to be completely known by the attacker, as well as at obtaining 

realistic estimates of robustness of such systems. 

• For image analysis (including MedIA) applications, we recom- 

mend tuning the perturbation degree ( ε or another parame- 

ter controlling it) to the target image type or modality, so that 

the attack yields maximal performance while the perturbations 

still satisfy a chosen criterion for bounding perturbation degree, 

such as visual perceptibility. Such criterion should be explicitly 

defined and measured. For example, if the criterion is visual 

perceptibility, we suggest the studies to describe how percep- 

tibility was judged and to provide fully-sized or zoomed-in ver- 

sions of images that the reader can also examine. 
• We encourage researchers to consider design components 

shared by both target and surrogate that may increase the sim- 

ilarity between them and study the effect of changing such set- 

tings on attack transferability. For example, pre-training on Im- 

ageNet, development data parity, and architecture parity could 

be considered as similarity-promoting components as in our 

study. Other similarity-promoting settings could focus on reg- 

ularization techniques, which encourage networks to have spe- 

cific properties (e.g. weight decay, deformation consistency reg- 

ularization), loss function, pre-processing, data augmentation 

protocol, or popular network architectures other than the ones 

we used and their properties (such as ResNets and skip con- 

nections, found to increase adversarial vulnerability ( Wu et al., 

2020 )). 

The recommendations developed by Carlini et al. (2019) and by 

us are aimed at public scientific studies on adversarial robustness. 

However, we can envision a different setting for evaluating robust- 

ness of DL systems where most of this advice may also be useful: 

a private evaluation setting in which the robustness of a closed- 

source DL system is evaluated by the developing company or a dif- 

ferent organization. In this setting, it may be of interest to estimate 

robustness under the most likely attack scenarios, which may ex- 

clude scenarios where the attacker has complete or very compre- 

hensive knowledge of the target system. Therefore, recommenda- 

tions aimed at obtaining realistic robustness estimates, as opposed 

to the upper bound estimates, may be the most applicable. Rec- 

ommendations we would not advise to apply in this setting are 

those concerning public disclosure of robustness evaluation proce- 

dure, including tested attacks and their parameters. 

7. Conclusion 

In this paper, we studied the influence of two previously un- 

explored factors on the transferability of black-box adversarial at- 

tacks in three different MedIA applications. We observed that pre- 

training on ImageNet may dramatically increase the transferability 

of adversarial examples in MedIA systems; the larger the perfor- 

mance gain achieved by pre-training, the larger the transfer and 

thus the more vulnerable the pre-trained system is to attacks by 
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pre-trained surrogate models. We also showed that disparity in de- 

velopment data and model architecture between target and sur- 

rogate models can substantially decrease the success of attacks. 

We believe these factors should be considered in the design of 

security-critical MedIA systems, especially those planned to be de- 

ployed in clinical practice. In order to reduce the transferability 

of potential attacks, in addition to using techniques developed for 

defending DL models against adversarial attacks, we recommend 

restricting the disclosure of information on design specifications, 

as well as considering reducing the use of standard components 

(such as pre-training on ImageNet and popular network architec- 

tures) and publicly available datasets for development. Finally, we 

believe future studies on adversarial robustness of MedIA systems 

may benefit from simulating various attack scenarios and target- 

surrogate disparities. This may facilitate a better understanding of 

attack transferability and the factors that determine it, as well as 

more realistic robustness estimates for MedIA systems. 
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