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a b s t r a c t 

Statistical modelling of industrial production data can lead to improved understanding of the process 

to benefit process monitoring and control routines. The production data required for such models need 

however to be synchronized in time, a topic sparsely covered in literature. We propose a strategy for 

data-driven automated optimization of dynamic synchronization of industrial production data, that op- 

timizes the synchronization per process variable and can be applied for on-line monitoring in real-time. 

The strategy is tested and validated for two relevant production facilities, each of which has multiple pro- 

duction lines or configurations. For all lines and configurations, models predicting the production quality 

from process variables improved in accuracy using the presented per-variable optimization strategy. Al- 

though the prediction accuracy for two models would still be insufficient for real-time monitoring and 

control, process operators and engineers may still obtain novel process understanding from applying the 

presented strategy on these models. 

© 2021 The Author(s). Published by Elsevier Ltd. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 

1. Introduction 

Industrial (bio)chemical production facilities have to be care- 

fully monitored and controlled to guarantee consistent turnover 

of high-quality product that meets customer wishes. A prerequi- 

site for designing accurate control strategies is to understand how 

changes in the physical state of the plant and process affect quality 

and other Key Performance Indicators (KPI) of the production. Mul- 

tivariate latent variable-based methods, such as Principal Compo- 

nent Analysis (PCA) and Partial Least Squares (PLS), are commonly 

used to extract valuable process-specific knowledge from historical 

production data ( Kourti and MacGregor, 1995 ). Such methods sta- 

tistically model and identify relationships between physical process 

variables, such as temperatures, pressures and flow rates, and the 

production quality of the plant. 

The information obtained from a multivariate regression model 

may complement process understanding obtained from an engi- 

neering point of view, as it represents the actual operation of the 

plant closer than the intended operation as designed. The use of 
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these models is however not limited to analysing historical data 

only. After calibration, they can also be used to monitor the mod- 

elled relationships in real-time . In cases where the product qual- 

ity is costly or difficult to measure frequently, they can for in- 

stance be used as a soft-sensor to predict that product quality from 

process measurements that are readily available at high frequency 

( Lin et al., 2007 ). 

Production data is often collected asynchronously, due to sen- 

sors operating at different measurement intervals and frequencies. 

However, for the data to be modelled by a multivariate regression 

method, or any bilinear method, it needs to be synchronized, re- 

gardless of whether it is historical or collected in real-time. Mea- 

surements need to be available for all modelled process and/or 

quality variables at the same production times to be able to es- 

timate the relationships between them for those times. Fig. 1A- 

B illustrate the problem of asynchronously collected data when at- 

tempting to regress a product quality variable ( Y ) on several pro- 

cess variables ( X). 

Much research has been done on the statistical analysis of in- 

dustrial production data, and different review articles are avail- 

able that elucidate on all the different steps required to pre- 

pare the data for statistical modelling. These articles discuss for 

instance variable filtering, missing value imputation, outlier re- 
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Fig. 1A-B. Visualizations of asynchronous ( A ) and synchronous ( B ) production data. Only for the synchronous data, the relationships between the quality variable and the 

process variables can be estimated for the production times that the quality variable is available. 

moval, nonlinear modelling, dynamic modelling and model valida- 

tion ( Lin et al., 2007 ; Petr Kadlec and Strandt, 2009 ; Sliškovi ́c et al., 

2011 ; Camacho et al., 2008 ). The issue of dynamic synchronization 

is however covered limitedly in literature. We have addressed this 

in a recent publication, where we also demonstrate for an example 

case study that suffers from data asynchronicity how the choice in 

synchronization method greatly affects the accuracy of a statistical 

model ( Offermans et al., 2020 ). Although this work was thorough, 

two aspects regarding dynamic synchronization of production data 

were not covered. 

Firstly, it was only attempted to find the best global synchro- 

nization method. The methods tested were taken or adapted from 

related fields, and include linear interpolation, nearest value inter- 

polation and median-filtering using moving windows. These meth- 

ods were only applied globally to all process variables, in the sense 

that either all process variables were synchronized using linear in- 

terpolation, or using median-filtering, or using any of the other 

methods. However, the optimal synchronization method may differ 

per process variable, depending on the sampling rate and dynam- 

ics of the variables (which causes the data asynchronicity in the 

first place). Therefore, to optimally synchronize production data, 

the best synchronization method would need to be identified per 

process variable. 

Secondly, the work offered a critical review of different syn- 

chronization methods, but did not offer a protocol or strategy 

for automated optimization of dynamic synchronization of any 

given dataset that suffers from asynchronicity. Implementing such 

a strategy in the default data analysis routine at a production plant 

would allow process operators to extract more process-specific 

information from historical data. It is also a valuable additional 

step in the (re)calibration routine of a statistical model that is 

used for production monitoring, such as for instance a soft-sensor. 

This is especially relevant as sensor maintenance and replacement 

may change the optimal settings for dynamic synchronization over 

time. 

In this work, we propose a strategy for the data-driven auto- 

mated optimization of dynamic synchronization of process vari- 

ables for statistical modelling. This strategy not only performs a 

global optimization for all variables, but also a local optimization 

for each individual process variable. This strategy is developed for 

optimizing production data for a statistical model where a product 

quality variable is regressed on process variables, and thus opti- 

mizes the extraction of statistical relationships between the pro- 

duction process and the production quality. The optimization cri- 

terion for the models is the Pearson correlation coefficient be- 

tween true product quality and product quality as predicted by 

the model, penalized on data exclusion. A high value signifies an 

informative model that relates the production quality and process 

variables well for the majority of the collected data. The strategy 

will be demonstrated on data from two production facilities in the 

dairy industry. Both facilities feature multiple production lines or 

configurations that are independently tested and compared. 

2. Methods 

2.1. Dynamic synchronization optimization strategy 

The proposed strategy for dynamic synchronization optimiza- 

tion of production data for statistical modelling is schematically 

shown in Fig. 2 . The strategy can be divided into three steps. In the 

first step, the best synchronization method when applied globally 

to all process variables is identified. The second step finds the best 

synchronization locally , for each individual process variable. In the 

final step, the entire model and method including dynamic syn- 

chronization optimization is validated. Each of these three steps as 

well, as the actual synchronization methods considered, will be ex- 

plained in detail in the remainder of this Methods-section. The two 

demonstrator processes on which the proposed strategy is tested 

are also shortly introduced. 

2.2. Synchronization methods 

The dynamic synchronization methods considered for each vari- 

able are linear, cubic spline, previous value and nearest value in- 

terpolation, and window-filtering using means or medians with 

different window placements and widths. These methods are the 

same ones as introduced in our earlier work ( Offermans et al., 

2020 ), and are exemplified in Figures 3A-H. 

For both mean- and median-filtering, the window width and 

window placement have to be optimized. The width of the win- 

dow effectively determines the degree of smoothing that is applied 

to the data, and thus the robustness of the model against outlying 

process measurements. Ten different window widths are consid- 

ered for the proposed strategy, evenly ranging from five minutes 

to five hours. These boundaries were selected so that the average 

throughput processing times of most chemical production plants, 

including the ones used for demonstration in this study, fall well 

within them. The boundaries can however be adapted if the strat- 

egy were to be used for a process with a particular long or short 

processing time. 

Four options for window placement are considered: either 

100%, 90%, 75% or 50% of the window is placed before the tar- 

get production time of the synchronization. These four placements 

are shown in Fig. 1 Fig. 3E-H . Effectively, each cross-combination 

of either mean- or median-filtering with all ten window widths 

and with all four window placements is considered as a separate 

synchronization method. This brings the total number of synchro- 

nization methods tested to 84: 4 interpolation methods and 80 

( 2 × 10 × 4 ) window-filtering methods. 
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Fig. 2. Schematic representation of the strategy for dynamic synchronization opti- 

mization of process variables. 

2.3. Step I: global optimization 

For the global synchronization optimization, each of the syn- 

chronization methods is applied to all process variables universally, 

yielding a total of 84 synchronized datasets. These datasets are first 

cleared of missing and outlying measurements, for which the pro- 

cedures will be discussed in the upcoming subsections. Then, the 

synchronized and cleaned datasets are statistically modelled by re- 

gressing the critical product quality on the (synchronized) process 

variables, using Partial Least Squares (PLS) regression ( Geladi and 

Kowalski, 1986 ). Each dataset is mean-centred and autoscaled prior 

to modelling, as process variables are measured in different units 

( Gurden et al., 2001 ). 

The accuracy of the models, and thus the reliability of the infor- 

mation given by them, is quantified in terms of the Pearson corre- 

lation coefficient r between predicted and reference product qual- 

ity. A high value of r signifies an informative model that can relate 

the production quality well to the process variables. The models 

are subjected to double cross-validation to ensure that the r re- 

flects the accuracy of independent testing data. The inner valida- 

tion loop is used to select the optimal number of latent variables 

for that model, and the outer validation loop is used to test the 

model’s accuracy given that number of latent variables, as is pro- 

posed in ( Szyma ́nska et al., 2012 ). Both loops used a 5-fold Vene- 

tian blinds resampling scheme. This scheme was selected as it en- 

sures that the entire production period that is modelled is equally 

well represented in the test and training set of each validation fold. 

Note that this validation is carried out internally in the second step 

of the strategy, and differs from the additional layer of validation 

in the third step of the strategy, as will be further explained later 

on. 

The goal is to maximize the model accuracy, and as such the 

dynamic synchronization method that leads to the PLS model with 

the highest validated r is selected as the global optimal method. 

Because the goal is to maximize model accuracy, and for concise- 

ness, comparing different synchronization methods and the models 

they yield through significance testing with for instance CV-ANOVA 

is not further discussed ( Indahl and Næs, 1998 ). Before select- 

ing the model with the highest accuracy, the accuracy measures 

are penalized on data exclusion. The number of data points that 

are successfully synchronized by each synchronization method, and 

that are not missing or outlying, can be different. This is elabo- 

rately discussed in our previous publication on data synchroniza- 

tion, where the fraction of retained samples ranged from around 

0.15 to 0.85 for the different methods studied. Especially window- 

filtering using windows that are relatively small with respect to 

the sampling frequency can lead to very few samples available for 

modelling, as will be explained in more detail Section 2.4 . 

To prevent the strategy from selecting a synchronization 

method that leads to a model that is highly accurate but only on 

a small portion of the data as optimal, the fraction of data points 

that were successfully synchronized is calculated. This fraction is 

multiplied with the r for each corresponding PLS model, and the 

synchronization method leading to the highest value for this mea- 

sure is selected as optimal. In preliminary studies, penalizing on 

the squared fraction of data points present was investigated, as this 

would penalize synchronization methods leading to very few sam- 

ples relatively more. This however led to very comparable results, 

as the main goal of excluding synchronization methods leading to 

very few samples is achieved regardless of whether the penalty is 

transformed or not. 

2.4. Missing values 

Missing values may be present in each of the datasets synchro- 

nized with one of the window-filtering methods. When synchro- 

nizing by calculating either a mean or a median over a moving 

window, it can and does occur that no value is available for one 

or more variables within the window at a certain point in time. In 

these cases, no mean or median can be calculated and matched 

to the target process quality value, and a missing value is syn- 

chronized instead. The locations of missing data thus depend on 

the window size and placement: especially synchronizations with 

small window widths are more likely to introduce missing values. 

The locations of missing data will therefore differ per synchroniza- 

tion method. 

Missing values have to be either cleared or imputed from a syn- 

chronized dataset before the dataset can be modelled using PLS 

( Walczak and Massart, 2001 ). For the presented strategy, missing 

values are imputed by replacing them with the median value of 

the data, an approach that is also suggested for modelling indus- 

trial production data by Suoza et al. (2016) . This imputation is done 

per synchronized dataset and per process variable. 

There are other, arguably more advanced methods available 

for missing data imputation for PLS modelling ( Petr Kadlec and 
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Fig. 3A-H. The different synchronization methods considered for the optimization strategy, examplified using dummy data. Process variables X 1 and X 2 are synchronized to 

product quality variable Y at production time t using linear ( A ), cubic spline ( B ), nearest value ( C ) or previous value ( D ) interpolation, or using window filtering ( E-H ). For 

window-filtering, which can be done using means and medians and for variable window width, the four window placements P considered in this study are shown ( E-H ). 

Strandt, 2009 ; Walczak and Massart, 2001 ; Fortuna et al., 2005 ; 

Arteaga and Ferrer, 2002 ). These methods are however typically 

slower to calculate and require additional parameters to be op- 

timized. As this would increase the synchronization optimization 

time and complexity, the (less complex) method of substituting 

missing values by medians was chosen. Replacing the missing val- 

ues by means would be more accurate, since the data is mean- 

centred before PLS modelling. Substituting a missing value by the 

variable mean would then correspond to setting the contribution 

of that variable for that sample to zero. However, imputing using 

medians offers greater robustness against outliers, which are not 

yet filtered during the imputation but are during the PLS modelling 

(and mean centring). 

2.5. Outliers 

Outlying values for the process variables may be manifested in 

the synchronized data for different reasons, including system er- 

rors, production errors or because the data corresponds to non- 

effective production periods such as pauses, cleaning or break- 

downs, and are common in industrial datasets ( Wang et al., 2010 ). 

As these values do not reflect effective production time of the 

plant, they have to be removed from the data to optimize the ac- 

curacy of the model. Most of the non-physical data is automatically 

removed during data synchronization, as the process variables are 

synchronized to the product quality that is sampled only when the 

plant is in effective production anyway. Some outliers may how- 

ever remain after synchronization, and are therefore detected and 

removed. This is done per synchronized dataset individually, as the 

manifestation of the outliers will be different in each of them. 

The outliers are identified using the Hotelling T 2 and Q-statistic, 

which are calculated from Principal Component Analysis (PCA) 

models ( Varmuza and Filzmoser, 2009 ). These models are calcu- 

lated for each dataset, autoscaling the data beforehand and using 

as many principal components are required to describe at mini- 

mal 70% of variance in the dataset. Any sample for which either 

the Hotelling T 2 or the Q-statistic (or both) are over two standard 

deviations removed from the median value, is marked as outlier 

and is removed from the respective dataset ( Lin et al., 2007 ). An 

(additional) univariate outlier removal step on the individual un- 

synchronized process variables was considered, but not included 

as the unsynchronized process variables still contain much data 

corresponding to non-effective production periods such as clean- 

ing. These periods impact the (automatic) estimation of the vari- 

able median and standard deviation, which reduces the stability 

and accuracy of the optimization. 

2.6. Step II: local optimization 

After the global optimization has been completed, all synchro- 

nization methods are re-considered iteratively per variable by or- 

der of importance. The measure for importance used is the ab- 

solute regression coefficient, which are assigned to each process 

variables by the PLS algorithm ( Geladi and Kowalski, 1986 ). Other 

measures for variable importance were considered, such as Vari- 

able Importance in Projection ( Eriksson et al., 2013 ), Selectivity Ra- 

tio ( Rajalahti et al., 2009 ) and Significance Multivariate Correlation 

( Tran et al., 2004 ). The absolute regression vector was chosen as 

it directly reflects the relationships between the process variables 

and the product quality ( Wang et al., 2015 ), which is what the 

strategy is intended to optimize. 

The local optimization starts with the variable that has the 

highest absolute regression coefficient. It re-considers all synchro- 

nization methods for only this variable, while keeping the methods 

selected for the other variables unchanged. This results in 84 (new) 

synchronized datasets, for which the process variable being opti- 

mized is synchronized with any of the 84 synchronization methods 

as introduced in Section 2.2 , and for which all other process vari- 

ables are identical. All datasets are subjected to the same missing 

value imputation, outlier removal and PLS modelling and validation 

steps as used during the global optimization. The synchronization 

method leading to the PLS model with the highest validated accu- 

racy is chosen as optimal for the variable being optimized. These 

accuracies are, as with the global optimization, penalized on data 

exclusion. 

The variable that has the highest absolute regression coefficient 

in that same model (and is not already optimized) is optimized 

in the next iteration. This is repeated until all variables are opti- 

mized. Once the optimal method is found for a certain variable, 

its selection is fixed and is used instead of the global optimal 

method when optimizing the next individual variable(s). Note that 

the regression coefficients, and thus the order of importance, of 
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the yet-to-optimize variables may change after each iteration. The 

PLS model with the highest validated (penalized) accuracy found 

during the optimization of the last variable is selected as the fi- 

nal model, with optimal dynamic synchronization for each sepa- 

rate process variable. 

Locally optimizing the synchronization method for an individual 

variable in the presented way will likely improve the overall per- 

formance of the model (in case a better synchronization method 

than the global method is found for that variable), or may leave 

the overall performance unaffected (in case the global method 

was already the best method for that variable). The local synchro- 

nization will however never decrease the model performance, as 

re-selecting the global method as the best local method for that 

variable is the worst-case scenario and will not affect the overall 

model performance. In general, a higher increase in model perfor- 

mance may be expected for the first few variables that are locally 

optimized, as they are sequentially optimized in order of decreas- 

ing importance. 

Asynchronous data always has to be synchronized in some way 

before it can be modelled, which is why the local optimization 

cannot be used without the global optimization. During synchro- 

nization optimization of one variable, all other non-optimized vari- 

ables still have to be synchronized. It is technically possible to use 

for instance linear interpolation as a default method for this, but 

we chose to use the global optimal method instead. This ensures 

that the synchronization of the variables that are not being opti- 

mized is still to a certain degree optimal. Because of the multivari- 

ate nature of the data and the models, this increases the accuracy 

of the synchronization method selection of the variable that is be- 

ing optimized. 

2.7. Step III: method validation 

To ensure that the optimal synchronization settings and asso- 

ciated model accuracy are not overfitting the modelled data, the 

entire global and local optimization has to be subjected to another 

layer of (cross-)validation. This cross-validation effectively acts as a 

complete external and independent third layer of cross-validation, 

on top of the double cross-validation used to optimized the in- 

dividual PLS models. A 5-fold Venetian blinds resampling scheme 

is also used for this validation layer. The modelling performance 

found after this the cross-validation layer gives an estimate of 

how well newly measured production data would be modelled us- 

ing the optimal settings found by the proposed strategy. The re- 

ported performances are the average performances found for the 

five models, one calibrated per validation fold. 

Cross-validation is generally recommended for the synchroniza- 

tion optimization strategy and used to demonstrate the strategy. 

This because cross-validation ensures a validated result that accu- 

rately represents the entire production period modelled, also for 

datasets with a limited sample availability. For datasets for which 

many samples are available, using a single independent test set for 

validation is however also likely accurate, and can be considered 

as it would save calculation time. 

The presented approach for synchronization optimization and 

model calibration is computationally intensive, because of the elab- 

orate validation scheme and because all synchronizations have to 

be calculated and tested for all process variables. Applying an op- 

timized set of synchronization methods to incoming data and pro- 

jecting that data into a calibrated prediction model is however not 

intensive. It should also be taken into account that asynchronously 

collected data always has to be synchronized with one method 

or another. The applicability of the presented approach to process 

monitoring in real-time is therefore little to not limited. Updat- 

ing the model may take more time than is usual for a soft-sensor 

without synchronization optimization, but such updating is typi- 

cally not done frequently enough for the longer calibration time to 

be limiting. 

Although the dynamic synchronization is optimized for the re- 

ported models in an advanced way, there are certain possibly rel- 

evant aspects that are not optimized. Such aspects include for 

instance variable selection and nonlinear modelling. These steps 

were not in scope for this work, but could be considered for fu- 

ture use of the presented strategy, as they can be valuable addi- 

tions that improve the modelling accuracy further. 

2.8. Demonstrator process I: lactose powder production 

The first demonstrator process for this study is a facility that 

produces dry lactose crystal powder from aqueous lactose. The 

crystals are first grown in a crystallization tank, after which they 

are centrifuged and subjected to two consecutive drying steps to 

form the dry powder product. Different parallel instruments are 

available for all process steps, which are activated in pre-defined 

configurations depending on consumer, maintenance or cleaning 

wishes. The critical production quality parameter or KPI for this 

process is the mass fraction of small crystals in the product (fines). 

As this mass fraction can currently only be measured off-line a 

few times per day, improved understanding or even prediction of 

it from production data would benefit the overall controllability of 

the plant. 

Historical data was collected for a period of 39 months. Only 

process variables from the centrifuge and drying steps are used 

as predictor variables, as these steps are believed to be the ma- 

jor sources affecting the fraction of crystal fines. The processing 

time of these steps is 30–60 min, depending on the capacity that 

the plant is running on. Only data corresponding to the two most 

often used preset operation configurations were used. These con- 

figurations are henceforth referred to as configurations A and B, 

and were subjected to the soft-sensor optimization strategy indi- 

vidually. Measurements for 48 equivalent process variables were 

collected for both configurations. These variables are for instance 

temperatures, flow rates, power consumptions and pressures, and 

have average sampling intervals between 15 s and 5 min. The to- 

tal number of samples collected for configurations A and B are 868 

and 912, respectively. 

2.9. Demonstrator process II: milk protein powder production 

The second process on which the dynamic synchronization op- 

timization strategy is demonstrated is a milk protein powder pro- 

duction facility. This is the same facility as reported in our earlier 

publication ( Offermans et al., 2020 ). The protein powder is pro- 

duced from skim milk by heating, precipitation, washing and dry- 

ing, and the total throughput time of this plant is around 30 min. 

The critical product quality parameter for this process is the min- 

eral content in the milk protein powder, which should be as low 

as possible. Like the mass fractions for demonstrator process I, 

this mineral content can only be measured with off-line labora- 

tory analysis a few times per day. A regression model predicting it 

from the process variables would therefore benefit the understand- 

ing, monitoring and control of the plant. 

The plant features three parallel production lines, which were 

modelled individually and which are referred to as lines A, B and 

C. Data corresponding to 45 process variables (equivalent for the 

three lines) were collected alongside the mineral content for the 

same 39 months as were collected for the lactose powder pro- 

duction demonstration. The average sampling interval of the pro- 

cess variables ranges from 10 s to 5 min; the sampling interval of 

the mineral content is around 8 h. The number of mineral content 

samples collected for lines A, B and C are 1256, 728 and 624, re- 

spectively. 
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Table 1 

Modelling performances in terms of Pearson correlation coefficient between predicted and reference product quality for 

demonstrator process I. Results are given for both operation configurations, for both synchronization optimization strate- 

gies (global and local) and for both the validation and calibration data. 

Operation 

configuration Samples Variables 

Global optimization Local optimization 

Calibration 

r(pred, ref) 

Validation 

r(pred, ref) 

Calibration 

r(pred, ref) 

Validation 

r(pred, ref) 

A 868 48 0.79 0.74 0.88 0.81 

B 912 48 0.74 0.70 0.87 0.78 

3. Results & discussion 

In this section, regression models for each of the demonstrator 

processes and plants as introduced above will be discussed and 

compared. Modelling accuracies are compared in terms of (vali- 

dated) Pearson correlation coefficient between modelled and ref- 

erence product qualities. This measure effectively represents how 

well the variation in the product quality can be explained from 

changes in the process itself, and thus how well the model could 

be used for soft-sensoring. We will furthermore discuss the actual 

synchronization methods selected for each of the process variables, 

and compare them within one production plant and between par- 

allel production lines or configurations. This allows us to see if dif- 

ference in the nature and/or dynamics in the variables indeed call 

for different synchronization methods. Finally, we will discuss the 

importance of each the process variables for predicting the product 

quality, and how those importances change when the synchroniza- 

tion is optimized locally per variable instead of globally for all vari- 

ables. Studying these importances relatively for a model can lead 

to a better understanding of which parts of the process are most 

influential on the production quality, and on how they should be 

controlled. 

3.1. Demonstrator process I: lactose powder production 

The accuracies for the regression models calibrated while us- 

ing only the global synchronization optimization or while also us- 

ing the local synchronization optimization are given in Table 1 , for 

both operation configurations of demonstrator process I. The vali- 

dated performance found using the local optimization is higher for 

both cases, showing that a more accurate model is obtained when 

the synchronization is optimized per process variable individually. 

For all models, the performances on the calibration set is higher 

than on the validation set. This is expected, as the models will in 

most cases perform better on seen data than on unseen data. How- 

ever, the differences between these performances are not so large 

to suggest that the models are highly overfitting the calibration 

data. This is especially important for the models found using lo- 

cal optimization. Optimizing the synchronization per variables in- 

creases the complexity of the model significantly, which increases 

the risk over model overfitting. The absence of such overfitting 

shows that the validation routines used within the synchroniza- 

tion optimization strategy are accurately, and results in a reliable 

optimization. 

Fig. 4A-B show the prediction versus reference plots for the re- 

gression models optimized for both configurations. These plots cor- 

respond to the validated results found using the local synchroniza- 

tion optimization. For configuration A, there seems to be little to 

no samples with clear outlying prediction accuracies. For configu- 

ration B however, there are some samples with outlying accuracy, 

each of which has a very low reference value. Because of their low 

reference mass fraction values, it is likely that these samples suffer 

from sampling, analysis or registration errors for those measure- 

ments. This is affirmed by them not being removed by the outlier 

removal procedure, which only determines outliers based on the 

independent process data ( X) and not on the dependant mass frac- 

tion data ( Y ). That outlier removal procedure was selected because 

the goal of the strategy is to synchronize the process data to the 

product quality data, and the choice in synchronization method for 

the process data does not change the values for the product qual- 

ity data. The outliers in Figure 4B do however signify that it is es- 

sential to carefully remove samples with outlying product quality 

before employing the proposed synchronization optimization strat- 

egy, preferably with process experts knowledge. 

The synchronization methods that were selected by the opti- 

mization strategy for each variable are given in Table 2 , for both 

operation configurations. The row ‘All’ refers to the method se- 

lected by the global optimization; all subsequent rows refer to the 

synchronization method for one particular variable using the local 

optimization step. 

The optimal global method for both configurations is to use 

previous value interpolation. This would theoretically be the most 

accurate method as it matches each product quality sample to the 

process values that are last known and thus most relevant in time. 

Remarkable is that previous value interpolation in general out- 

performs any form of window-filtering for this process. Window- 

filtering would offer a higher robustness against outlying values 

in the process variables due to a smoothing effect, which suggests 

that the process variables for this demonstrator process suffer lit- 

tle from outliers. It also suggests that the values for the process 

variables are changing relatively rapidly over time, and that these 

result in quick response changes in the product quality. This im- 

plies that the system has a high responsiveness in general, sig- 

nifying the need for fast control action formulation and thus for 

a model (soft-sensor) predicting the product quality in real-time. 

However, it should also be noted that missing value interpolation 

cannot lead to missing values while window-filtering can, at least 

for the implementation in the presented strategy. As the synchro- 

nization methods are optimized towards both high modelling ac- 

curacy and minimum number of missing values, nearest value in- 

terpolation has an added advantage over window-filtering. 

There is high diversity in the synchronization methods found 

optimal for the individual variables. Linear, cubic spline, previous 

and nearest value interpolation are selected most often. In compar- 

ison to window-filtering, all these methods use only data measured 

close to the production quality in time. As such, these variables 

likely suffer little from outliers and change frequently. The vari- 

ables for which window-filtering is found optimal are likely more 

prone to outliers, which is supported by median-filtering being se- 

lected more often than mean-filtering. These variables may also 

change more gradually and slower over time, and cause more long- 

term responses in the product quality. This is confirmed by the fact 

that if window-filtering is chosen, long windows in comparison to 

the total throughput time of the plant are selected. No relationship 

could be found between the physical property measured (level, 

flow, temperature, etc.) and the synchronization method chosen. 

The diversity in the methods chosen per process variables 

shows that the dynamics of these variables and the responsiveness 

of the product quality to changes in these variables are quite differ- 

ent, and that the synchronization method should indeed be opti- 
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Fig. 4A-B. Prediction versus reference plots for each operation configuration (A and B) of demonstrator process II. These results were found after optimizing the synchro- 

nization using the local optimization method and corresponding to the cross-validated results. 

Table 2 

Synchronization methods found optimal for all variables (using global optimization) and for each variable (using local optimization), for both operation con- 

figurations of demonstrator process I. The names consists of the interpolation method or, in case of window-filtering, to the population estimator followed by 

the window width in minutes and the window placement as illustrated in Figures 3e-h. 

Process variable Operation configuration A Operation configuration B Process variable Operation configuration A Operation configuration B 

All previous previous 25 previous mean-300–0.5 

1 nearest nearest 26 median-71–0.5 median-234–1 

2 spline spline 27 previous linear 

3 mean-300–0.5 previous 28 mean-267–0.5 previous 

4 nearest spline 29 previous linear 

5 previous previous 30 nearest nearest 

6 linear linear 31 previous nearest 

7 nearest nearest 32 linear spline 

8 linear previous 33 nearest mean-267–0.5 

9 linear median-202–1 34 mean-300–1 previous 

10 nearest nearest 35 previous nearest 

11 linear median-136–0.75 36 previous median-300–1 

12 spline median-136–0.5 37 median-267–0.5 median-103–0.5 

13 linear nearest 38 mean-267–0.75 previous 

14 spline median-169–0.5 39 nearest previous 

15 linear spline 40 previous previous 

16 median-38–0.5 nearest 41 mean-136–0.9 linear 

17 mean-169–0.5 linear 42 nearest nearest 

18 linear linear 43 median-71–0.5 median-38–0.5 

19 median-300–1 linear 44 nearest nearest 

20 nearest nearest 45 median-136–1 median-38–0.5 

21 linear previous 46 previous previous 

22 nearest nearest 47 mean-169–0.5 previous 

23 nearest previous 48 median-136–0.9 median-169–0.75 

24 linear nearest 

mized per variable. The choice in optimal synchronization method 

also differs between the two operation configurations. This could 

be an indication that the strategy is overfitting the synchroniza- 

tion choices per configuration. However, as discussed before, the 

small differences between the validation and calibration accuracies 

indicate that the models do not suffer from such strong overfitting. 

The differences between the choices per configuration do signify 

the need to model each configuration individually. 

To illustrate this further, the data for configuration A was syn- 

chronization with the methods found using local optimization for 

configuration B, and vice versa. All other modelling steps, includ- 

ing validation, were retained to ensure comparability of the re- 

sults. The modelling results found after external cross-validation 

are given in Table 3 . These results show indeed that for both con- 

figurations, the most explanatory models are obtained when they 

are optimized on the data from that same configuration, as may 

be expected. However, interchanging the synchronization methods 

between configurations still give a relative high modelling accuracy 

Table 3 

Cross-validated modelling accuracies found for each operation configuration 

when applying the synchronization methods found after local optimization for 

the other configuration, for demonstrator process I. All results are given in 

terms of Pearson correlation coefficient ( r) between cross-validated and refer- 

ence product quality. The results on the main diagonal correspond to those in 

the rightmost column of Table 1 . 

Settings from configuration 

A B 

Applied to 

configuration 

A 0.81 0.77 

B 0.75 0.78 

for both configurations. This is likely due to the physical compa- 

rability of the configurations, and shows that the synchronization 

optimization does not overfit the configurations. 

Fig. 5A-B show for both configurations the absolute regression 

coefficient of each process variable when the model is optimized 

using the global or the local synchronization optimization. The val- 
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Fig. 5A-B. Absolute regression coefficients found for the models calibrated for demonstrator process I. Results are given for both operation configurations (A and B) and for 

both using the global and local synchronization during calibration. 

ues are averaged over all five validation folds. The absolute regres- 

sion coefficient of a process variable quantifies the contribution 

that variable has to the prediction of the product quality, and may 

be interpreted as a measure of variable importance. 

The local optimization optimizes the synchronization method of 

each individual process variable towards maximum contribution of 

that variable to the prediction of the product quality. It can there- 

fore be expected that most process variables will overall have a 

higher absolute regression coefficient after local optimization, as 

opposed to global optimization. Fig. 5A-B confirm this for most 

process variables. This holds especially for variables that have a 

relative high contribution to the globally optimized model, which 

is sensible as they are optimized first during the local optimization. 

Some variables, for instance variables 28, 35, 37, 38 and 43 of 

configuration A, show an especially high increase in regression co- 

efficient from global to local synchronization. This signifies that 

process variables are indeed able to contribute more to the predic- 

tion of product quality when their synchronization method is opti- 

mized individually. For some variables, the absolute regression co- 

efficient decreases when the local optimization is used. This is due 

to the multivariate nature of the data and the regression models 

used. Optimizing the synchronization of one process variable can 

increase the contribution of that variable a lot, but decrease the 

contribution of a related process variable somewhat also, regard- 

less of the synchronization method used for that related variable. 

Remarkable is that variables 28 and 43 have a very high contri- 

bution to the models of both configurations, despite them having 

slightly (variable 43) or considerably (variable 28) different opti- 

mal synchronization methods for both configurations. This shows 

that equivalent variables can be important in both configurations, 

but may require a different synchronization method. 

3.2. Demonstrator process II: milk protein powder production 

Table 4 shows the accuracies for the regression models cali- 

brated for each production line of demonstrator process II, for both 

the global and local optimization approach. These results show 

that also for this demonstrator process, using the local optimiza- 

tion as opposed to the global optimization yields a model with 

higher validated accuracy. 

The validated performance for production line A is high, and 

no indication of overfitting is present for this model. The perfor- 

mances of the models for production lines B and C on the valida- 

tion data are however quite low, and the much higher performance 

on their respective calibration sets does indicate that these mod- 

els are overfitted. One possible reason for this is that the data for 

these two production lines contains more noise. Causes for such 

noise include less stable equipment, more frequent maintenance, 

higher variation in raw material feed or product demand, or less 

consistent control practices in general. 

Another reason for a higher level of model overfitting is the 

lower number of samples that are available for these two lines. 

This is supported by the fact that the model for line C has both 

the lowest sample count and the lowest performance. As men- 

tioned before, performing the local synchronization optimization 

adds complexity to the model. To cope with this added complex- 

ity and to prevent the model from overfitting, a large number of 

calibration samples is required. This shows that a large collection 

of strategically obtained historical data is a prerequisite to reliable 

calibrate a model using the local synchronization optimization ap- 

proach. 

The models found for production lines B and C have too low 

performance to use them for real-time process control purposes, 

despite using the more advanced local synchronization optimiza- 
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Table 4 

Modelling accuracy in terms of Pearson correlation coefficient between predicted and reference product quality for demonstrator process 

II. Results are given for all production lines, for both synchronization optimization strategies (global and local) and for both the validation 

and calibration data. 

Production line Samples Variables 

Global optimization Local optimization 

Calibration 

r(pred, ref) 

Validation 

r(pred, ref) 

Calibration 

r(pred, ref) 

Validation 

r(pred, ref) 

A 1256 45 0.75 0.72 0.81 0.75 

B 728 45 0.57 0.46 0.73 0.54 

C 624 45 0.43 0.34 0.75 0.48 

Fig. 6A-C. Prediction versus reference plots for each production line (A to C) for demonstrator process II. These results were found after optimizing the synchronization 

using the local optimization method and corresponding to the cross-validated results. 

tion. However, local synchronization still leads to a better descrip- 

tion of the correlations between process variables and product 

quality. As such, the local optimization approach can still help pro- 

cess operators and engineers to obtain a better understanding of 

the plant. This may improve monitoring and control practices, and 

thus higher production quality. 

The prediction versus reference plots for the regression models 

optimized for all production lines are shown in Fig. 6A-C . These 

figures only show the validated results found using the local syn- 

chronization optimization. For production lines B and C there are 

some samples for with the respective model performs particularly 

bad. These are mostly samples for which the predicted values are 

far below the reference values. The presence of these samples is an 

additional cause for the lower performance of the models for lines 

B and C. This is confirmed by the model for line C having both 

having the lowest performance and suffering seemingly most from 

outliers. 

The predicted values for these samples are more outlying than 

the reference values, which indicates that these inaccurate predic- 

tions result from outliers in the process measurements and not 

from inaccurate product quality measurements. Increasing the sen- 

sitivity of the outlier detection method used in the optimization 

approach may therefore improve the accuracy and reliability of the 

final model. This also shows that the optimal setting for this out- 

lier detection may be different per production process. 

Table 5 shows the synchronization methods found optimal for 

each process variable and for each production line of demonstra- 

tor process II (analogues to Table 2 for demonstrator process II). 

The globally optimal synchronization method is quite comparable 

for the three production lines. For all lines, using a median fil- 

ter that is placed either for 100% or 90% before the target time 

is optimal. There is some variation in the optimal window width, 

but they are all wide with respect to the total process throughput 

time of 30 min. This indicates that changes in the process state 

can still affect the production quality for a prolonged time. These 

results are in agreement with our earlier findings for this produc- 

tion facility ( Offermans et al., 2020 ). As for demonstrator process I, 

the different physical properties measured did not show any clear 

preference for a certain synchronization method. 

From all synchronization methods considered, median filtering 

would offer the highest robustness against outliers in the process 

data, especially when relatively wide windows are used. It being 

selected as best global method for this process suggests that this 

process suffers from such outliers, and more so than demonstrator 

process I. This is confirmed by the analysis of the prediction versus 

reference plots for both processes (Figures 4A-B and 6A-C), and by 

the fact that relatively wide windows are selected. 

As for demonstrator process I, there is quite some variation 

in synchronization methods found optimal for the individual vari- 

ables for demonstrator process II. As discussed before, this results 

from the process variables representing different instrument and 

measurements with different dynamic behaviour, and signifies the 

need to optimize the synchronization method per process variable. 

The choice in optimal methods per variable differs also per pro- 

duction line. 

One reason for this is that the production lines are not exact 

copies from one another, either by design or introduced by mainte- 

nance and repair practices. However, the differences between val- 

idation and calibration performances were quite high for produc- 

tion lines B and C. This indicates that these models could be over- 

fitted at least to some degree, which can be an alternative reason 

for the large differences in selected synchronizations between the 

production lines. 

Table 6 shows the validated modelling results obtained for each 

production line when the optimal synchronization methods of an- 

other line are used, and is analogous to Table 3 for demonstra- 

tor process I. As with demonstrator process I, the highest accura- 

cies are obtained when optimizing the synchronization on the data 

from the same line as for which the model is desired, as expected. 

However, using the optimized synchronization from another pro- 

duction line or configuration does seem to generally lower the 

modelling accuracy more than was the case for demonstrator pro- 

cess I (save for when using the optimal methods from line C while 

modelling line A). This could be the result of the lines of demon- 
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Fig. 7A-C. Absolute regression coefficients found for the models calibrated for demonstrator process II. Results are given for all production lines (A to C) and for both using 

the global and local synchronization during calibration. 

strator process II being physically less comparable than the config- 

urations of demonstrator process I. 

The absolute regression coefficients for the models are shown in 

Fig. 7A-C for all three production lines and for both the global and 

local optimization approaches. As for demonstrator process I, the 

absolute regression coefficient is higher when the local optimiza- 

tion is used, especially for variables that have a high coefficient for 

the globally optimized model. Variable 6 in production line A is an 

exception. As this variable is the second most important, it is likely 

correlated to the most important variable: variable 4. Optimizing 

the synchronization for variable 4 increased its contribution to the 

prediction of the product quality, but simultaneously decreased the 

contribution of variable 6 regardless of its synchronization method. 

The relative contributions of the process variables to the pre- 

diction of the product quality differs for the production lines, and 

more so than they differed for the two operation configurations 

for demonstrator process I. This is in line with the higher variation 

in synchronization method found optimal and the higher variation 

for the prediction accuracies for the different lines of demonstra- 

tor process II. Careful investigation of the results as presented in 

this discussion can however help process operators and engineers 
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Table 5 

Synchronization methods found optimal for all variables (using global optimization) 

and for each variable (using local optimization), for each of the production lines of 

demonstrator process II. The names consists of the interpolation method or, in case 

of window-filtering, to the population estimator followed by the window width in 

minutes and the window placement as illustrated in Figures 3e-h. 

Process variable Production line 1 Production line 2 Production line 3 

All median-202–1 median-169–0.9 median-267–1 

1 median-169–0.5 nearest median-38–1 

2 mean-5–0.9 previous mean-267–1 

3 spline mean-234–0.9 mean-300–1 

4 mean-169–1 mean-234–1 mean-202–1 

5 median-234–0.75 median-38–0.75 median-300–1 

6 mean-169–1 median-234–1 mean-136–1 

7 median-267–0.9 median-169–0.9 nearest 

8 mean-234–1 median-136–0.5 median-38–0.9 

9 median-300–1 median-267–1 median-267–1 

10 median-169–0.5 mean-169–0.5 median-300–1 

11 median-267–1 previous median-300–1 

12 mean-103–0.5 previous mean-300–1 

13 mean-38–1 mean-103–1 median-202–0.75 

14 nearest nearest previous 

15 median-300–1 median-202–1 median-300–1 

16 median-38–1 previous median-300–1 

17 mean-169–1 spline mean-267–1 

18 median-103–0.9 median-169–1 median-169–1 

19 previous spline median-267–1 

20 median-169–1 previous median-300–0.9 

21 spline median-267–1 spline 

22 spline median-267–1 median-202–1 

23 median-169–1 median-38–0.75 mean-300–1 

24 median-38–0.9 nearest median-267–1 

25 median-169–0.5 linear median-169–0.5 

26 nearest median-300–0.5 mean-300–0.5 

27 spline spline median-136–1 

28 median-38–0.75 spline median-103–1 

29 median-267–0.75 median-103–1 mean-5–1 

30 median-71–1 median-169–0.9 median-300–1 

31 median-71–0.75 mean-38–0.5 median-136–0.5 

32 median-300–0.75 spline median-38–0.5 

33 median-234–1 nearest linear 

34 median-300–0.75 previous spline 

35 mean-267–1 median-136–1 spline 

36 spline previous linear 

37 spline spline spline 

38 median-103–0.5 spline median-136–1 

39 median-267–0.75 spline median-300–1 

40 median-234–0.75 spline mean-300–1 

41 median-300–0.9 linear mean-300–1 

42 spline previous mean-300–1 

43 spline nearest spline 

44 median-267–0.9 previous median-71–0.5 

45 median-300–0.5 previous median-136–1 

Table 6 

Cross-validated modelling accuracies found for each production line when 

applying the synchronization methods found after local optimization for an- 

other line, for demonstrator process II. All results are given in terms of Pear- 

son correlation coefficient ( r) between cross-validated and reference product 

quality. The results on the main diagonal correspond to those in the right- 

most column of Table 4 . 

Settings from line 

A B C 

Applied to 

line 

A 0.75 0.68 0.73 

B 0.49 0.54 0.44 

C 0.38 0.36 0.48 

to better understand each of the production lines and their differ- 

ences. 

4. Conclusion 

In our study, we have developed a new strategy for automati- 

cally optimizing the dynamic synchronization of individual process 

variables for statistically modelling industrial production data. Al- 

though the method is specifically designed and tested for regres- 

sion models that predict the production quality from process vari- 

ables, it could be extended to models of a different nature. The 

strategy first optimizes the synchronization globally by finding the 

method that leads to the most accurate prediction of product qual- 

ity when applied to all variables universally. It then optimizes the 

synchronization locally, by iteratively re-considering all synchro- 

nization methods for each variable individually. This all while tak- 

ing into account missing data imputation and outlier removal. To 

demonstrate the strategy, prediction models were calibrated for 

data from two demonstrator processes, each for which multiple 

production configuration or lines were present and modelled sep- 

arately. All models were calibrated to predict the production qual- 

ity from process variables, and were cross-validated and elabo- 

rately compared. For all models, the local optimization resulted in 

more accurate predictions than the global optimization did, show- 

ing that the more advanced local optimization is a valuable addi- 

tion when modelling production data suffering from asynchronic- 

ity. The choice in optimal synchronization method was found to be 

dependant on the process, on the production line or configuration, 

and on the process variable. This variation results from differences 

in dynamics and the manifestation of outliers for different plants 

and process variables, and signifies the need to model production 

lines individually. For three out of five models, the optimized mod- 

els have high enough accuracy to consider them as soft-sensors 

for real-time process monitoring and maybe even control. For two 

models, the presented strategy for per-variable synchronization op- 

timization did improve the accuracies, but the improved accuracy 

was still too low for the sensors to be used for real-time process 

monitoring purposes. However, as the optimization strategy still 

maximized the correlation between the process variables and the 

end product quality, investigation of these optimized models can 

lead to an unprecedented understanding of the production process. 
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