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Abstract. We investigate the longtime behavior of stochastic partial differential equations (SPDEs) with
differential operators that depend on time and the underlying probability space. In particular, we consider
stochastic parabolic evolution problems in Banach spaces with additive noise and prove the existence of
random exponential attractors. These are compact random sets of finite fractal dimension that contain the
global random attractor and are attracting at an exponential rate. In order to apply the framework of random
dynamical systems, we use the concept of pathwise mild solutions.

1. Introduction

Our aim is to study the longtime dynamics of stochastic evolution equations using
an approach that is different from the classical one. Namely, instead of transforming
the SPDE into a random PDE, we work with solutions that are defined pathwise,
see [5,26]. We consider parabolic problems with random differential operators and
use a pathwise representation formula to show that the solution operator generates a
random dynamical system and to prove that it possesses random attractors of finite
fractal dimension.
In particular, let X be a separable Banach space and let (�,F ,P) be a complete

probability space with filtration (Ft )t∈R. We consider stochastic parabolic evolution
equations of the form

du(t) = (A(t, ω)u(t) + F(u(t)))dt + σdW (t), (1.1)

where (A(t, ω))t∈R,ω∈� is a measurable, adapted family of sectorial operators in X
depending on time and the underlying probability space.Moreover, F is the nonlinear-
ity, σ > 0 indicates the noise intensity, and (W (t))t≥0 denotes an X -valued Brownian
motion.
The common approach to show the existence of random attractors is to introduce

a suitable change of variables that transforms the SPDE into a family of PDEs with
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random coefficients. The resulting random PDEs can be studied by deterministic tech-
niques. This method has been applied to a large variety of PDEs, mainly for equa-
tions perturbed by additive noise or by a particular linear multiplicative noise, e.g., see
[4,16,17,28,31] and the references therein. However, for more general situations such
a change of variables is not always known or cannot be performed. In [15], using the
theory of strongly monotone operators, a strictly stationary solution of the equation

du(t) = A(t, ω, u(t)) dt + σdW (t)

was constructed. This allows to transform SPDEs of the form (1.1) into a family of
random PDEs. Using this ansatz, the existence of random attractors was shown in [15]
for a class of SPDEs including equations such as (1.1).
Here, we follow a different approach. We aim to use the notion of pathwise mild

solutions introduced by Pronk and Veraar in [26] to establish the existence of global
and exponential random attractors for (1.1). So far, only few results concerning
the existence of exponential attractors for SPDE have been obtained. In particular,
let (U (t, s, ω))t≥s,ω∈� be the stochastic evolution system generated by the family
(A(t, ω))t∈R,ω∈�, then the pathwise mild solution of (1.1) is defined as

u(t) = U (t, 0)u0 + σU (t, 0)W (t) +
t∫

0

U (t, s)F(u(s)) ds

− σ

t∫

0

U (t, s)A(s)(W (t) − W (s)) ds,

where, for simplicity, we omit to write the dependency of A andU on ω. This formula
is motivated by formally applying integration by parts for the stochastic integral, and
it, indeed, yields a pathwise representation for the solution, see [26]. Instead, if one
directly used the classical mild formulation of SPDEs to define a solution, the resulting
stochastic integral would not be well defined (see Sect. 2.3).
Our aim is to show that problem (1.1) generates a random dynamical system using

the concept of pathwise mild solutions and to prove the existence of random attractors.
We will not only consider (global) random attractors, but also show that random expo-
nential attractors exist. In particular, the existence of random exponential attractors
immediately implies the existence and finite fractal dimension of the (global) random
attractor. To this end, we employ a general existence result for random exponential
attractors in [7] which turns out to be easily applicable in our setting.
Stochasticity plays an important role in many real world applications. Complex

systems in physics, engineering or biology can be described by PDEs with coeffi-
cients that depend on stochastic processes. These random terms quantify the lack of
knowledge of certain parameters in the equation or reflect external fluctuations. Prob-
lem (1.1) is a semilinear parabolic problem where the coefficients of the differential
operators (A(t, ω))t∈R,ω∈� depend on a stochastic process with suitable properties,



Random attractors via pathwise mild solutions

and the equation is perturbed by additive noise. A related but simpler setting is random
parabolic equations of the form

du(t) = (A(t, ω)u(t) + F(t, ω, u(t)))dt. (1.2)

The longtime behavior of such random evolution equations has been investigated using
the random dynamical system approach in [6,20,21,27]. To this end, the following
structure of the random generators was assumed,

A(t, ω) := A(θtω) ∀t ∈ R, ω ∈ �,

where (�,F ,P, (θt )t∈R) is an ergodicmetric dynamical system. In this context, results
concerning invariant manifolds [6,20], principal Lyapunov exponents [21] and the
stability of equilibria [27] have been obtained. Random evolution equations of the
form (1.2) arise in several applications. For instance, setting A(θtω)u := �u+a(θtω)u
and F(t, ω, u) := −a(θtω)u2, with a suitable measurable function a : � → (0,∞),
we recover a random version of the Fisher–KPP equation,

du(t) = [(� + a(θtω))u(t) − a(θtω)u2(t)]dt,

which was analyzed in [27].

In the present work, we consider equations of the form (1.1), i.e., we perturb a semi-
linear nonautonomous random parabolic equation by an infinite-dimensional Brown-
ian motion and investigate the existence of random attractors.

The outline of our paper is as follows. In Sect. 2, we collect basic notions and
results from the theory of random dynamical systems and nonautonomous stochastic
evolution equations and recall an existence result for random exponential attractors.
In Sect. 3, we formulate and prove our main results. First, we show that under suitable
assumptions on A, F and W , the solution operator corresponding to (1.1) generates
a random dynamical system. Then, we establish the existence of an absorbing set
and verify the so-called smoothing property of the random dynamical system. These
properties allow us to conclude the existence of random exponential attractors in
Theorem 3.8 and to derive upper bounds for their fractal dimension. As a consequence,
the (global) random attractor exists and its fractal dimension is finite. In Sect. 4, we
provide explicit examples of nonautonomous random differential operators satisfying
our hypotheses and point out potential applications of our results.

Our paper provides a first, simple example that illustrates how the concept of path-
wise mild solutions can be used to show the existence of global and exponential ran-
dom attractors for SPDEs with random differential operators. Numerous extensions
are imaginable. In particular, in future works we plan to relax the assumptions on the
nonlinear term F and to consider Problem (1.1) with multiplicative noise. Another
interesting aspect would be to investigate the regularity of random attractors.
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2. Preliminaries

We first collect some basic notions and results from the theory of random dynam-
ical systems, which are mainly taken from [3,10,28]. Then, in Sect. 2.2, we state a
general existence theorem for random exponential attractors which was proven in [7].
In Sect. 2.3, we recall the notion of pathwise mild solutions for stochastic evolution
equations introduced in [26].

2.1. Random dynamical systems and random attractors

In order to quantify uncertainty, we describe an appropriatemodel of the noise. If not
further specified, (�,F ,P) denotes a probability space. Moreover, X is a separable
and reflexive Banach space and ‖ · ‖X denotes the norm in X .

Definition 2.1. Let θ : R × � → � be a family of P-preserving transformations
(meaning that θtP = P for all t ∈ R) with the following properties:

(i) the mapping (t, ω) �→ θtω is (B(R) ⊗F ,F)-measurable for all t ∈ R, ω ∈ �;
(ii) θ0 = Id�;
(iii) θt+s = θt ◦ θs for all t, s,∈ R,

where B(R) denotes the Borel σ -algebra. Then, the quadruple (�,F ,P, (θt )t∈R) is
called a metric dynamical system.

Remark 2.2. (a) Here and in the sequel, we write θtω for θ(t, ω), t ∈ R, ω ∈ �.
(b) We always assume that P is ergodic with respect to (θt )t∈R, i.e., any (θt )t∈R-

invariant subset has either zero or full measure.

Our aim is to introduce a metric dynamical system associated with a two-sided
X -valued Wiener process.
For the sake of completeness, we recall the construction of such a process if X is not

a Hilbert space. First, we introduce an auxiliary separable Hilbert space H and denote
by (WH (t))t≥0 an H -cylindrical Brownian motion, i.e., (WH (t)h)t≥0 is a real-valued
Brownian motion for every h ∈ H and E[WH (t)h · WH (s)g] = min{s, t}[h, g]H for
s, t ≥ 0 and h, g ∈ H , where [·, ·] denotes the inner product in H . Furthermore, an
operator G : H → X is called γ -radonifying if

E

∥∥∥∥∥
∞∑
n=1

γnGen

∥∥∥∥∥
2

X

< ∞,

where (γn)n∈N is a sequence of independent standard Gaussian random variables and
(en)n∈N is an orthonormal basis in H . If X is isomorphic to H , then the previous
condition means that G is a Hilbert–Schmidt operator (notation: G ∈ L2(H)). In this
framework, letting (ẽn)n∈N be an orthonormal basis of (kerG)⊥, we know according
to [30, Prop. 8.8] that the series

∞∑
n=1

WH (t)ẽnGen
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converges almost surely and defines an X -valued Brownian motion. Its covariance
operator is given by tGG∗, where G∗ denotes the adjoint. Moreover, every X -valued
Brownian motion can be obtained in this way. Again, if X is isomorphic to H and
G ∈ L2(H) with ‖G‖L2(H) = Tr(GG∗), then the previous definition entails a trace-
class Wiener process. Finally, we extend this to a two-sided process in the standard
way.
Toobtain ametric dynamical systemassociatedwith such a process,we letC0(R; X)

denote the set of continuous X -valued functions which are zero at zero equipped with
the compact open topology.We takeP as theWienermeasure onB(C0(R; X)) having a
covarianceoperatorQ on X . Then,Kolmogorov’s theoremabout the existenceof a con-
tinuous version yields the canonical probability space (C0(R; X),B(C0(R; X)),P).
Moreover, to obtain an ergodic metric dynamical system we introduce the Wiener
shift, which is defined as

θtω(·) := ω(t + ·) − ω(t) for all t ∈ R, ω ∈ C0(R; X). (2.1)

Throughout this manuscript, θtω(·) will always denote the Wiener shift.
We now recall the definition of a random dynamical system.

Definition 2.3. Acontinuous randomdynamical systemon X over ametric dynamical
system (�,F ,P, (θt )t∈R) is a mapping

ϕ : R+ × � × X → X, (t, ω, x) �→ ϕ(t, ω, x),

which is (B(R+) ⊗ F ⊗ B(X),B(X))-measurable and satisfies:

(i) ϕ(0, ω, ·) = IdX for all ω ∈ �;
(ii) ϕ(t + τ, ω, x) = ϕ(t, θτω, ϕ(τ, ω, x)), for all x ∈ X, t, τ ∈ R

+ and all ω ∈
�;

(iii) ϕ(t, ω, ·) : X → X is continuous for all t ∈ R
+ and ω ∈ �.

The second property is referred to as the cocycle property and generalizes the semi-
group property. In fact, if ϕ is independent of ω, (ii) reduces exactly to the semigroup
property, i.e., ϕ(t + τ, x) = ϕ(t, ϕ(τ, x)). For random dynamical systems, the evolu-
tion of the noise (θtω) has additionally to be taken into account.
Under suitable assumptions, the solution operator of a random differential equation

generates a random dynamical system. Stochastic (partial) differential equations are
more involved since stochastic integrals are defined almost surely, though the cocycle
property must hold for all ω.
Referring to themonograph byArnold [3], it is well known that stochastic (ordinary)

differential equations generate random dynamical systems under suitable assumptions
on the coefficients. This is due to the flow property, see [19], which can be deduced
from Kolmogorov’s theorem about the existence of a (Hölder-) continuous random
field with a finite-dimensional parameter range. Here, the parameters of this random
field are the time and the nonrandom initial data.
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Whether an SPDE generates a random dynamical system has been a long-standing
open problem, since Kolmogorov’s theorem breaks down for randomfields parameter-
ized by infinite-dimensional Hilbert spaces, see [23]. As a consequence, the question
of how a random dynamical system can be obtained from an SPDE is not trivial, since
solutions are only defined almost surely which is insufficient for the cocycle prop-
erty. In particular, there exist exceptional sets which depend on the initial condition,
and if more than countably many exceptional sets occur, it is unclear how the random
dynamical system can be defined. This problemwas fully solved only under restrictive
assumptions on the structure of the noise. More precisely, for SPDEs with additive
or linear multiplicative noise, there are standard transformations which reduce these
SPDEs in PDEswith random coefficients. Since randomPDEs can be solved pathwise,
the generation of the random dynamical system is straightforward.
Before we recall the notions of global and exponential random attractors, we need

to introduce the class of tempered random sets. From now on, in this Sect. 2.2, when
stating properties involving a random parameter, we assume, unless otherwise speci-
fied, that they hold on a (θt )t∈R-invariant subset of � of full measure, i.e., there exists
a (θt )t∈R-invariant subset �0 ⊂ � of full measure such that the property holds for all
ω ∈ �0. To simplify notations, we denote �0 again by �.

Definition 2.4. A multifunction B = {B(ω)}ω∈� of nonempty closed subsets B(ω)

of X is called a random set if

ω �→ inf
y∈B(ω)

‖x − y‖X

is a random variable for each x ∈ X .
The random set B is bounded (or compact) if the sets B(ω) ⊂ X are bounded (or

compact) for all ω ∈ �.

Definition 2.5. A random bounded set {B(ω)}ω∈� of X is called tempered with
respect to (θt )t∈R if for all ω ∈ � it holds that

lim
t→∞ e−βt sup

x∈B(θ−tω)

‖x‖X = 0 for all β > 0.

Here and in the sequel, we denote by D the collection of tempered random sets in
X .

Definition 2.6. Letϕ be a randomdynamical systemon X .A randomset {A(ω)}ω∈� ∈
D is called a D-random (pullback) attractor for ϕ if the following properties are sat-
isfied:

(a) A(ω) is compact for every ω ∈ �;
(b) {A(ω)}ω∈� is ϕ-invariant, i.e.,

ϕ(t, ω,A(ω)) = A(θtω) for all t ≥ 0, ω ∈ �;
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(c) {A(ω)}ω∈� pullback attracts every set in D, i.e., for every D = {D(ω)}ω∈� ∈
D,

lim
t→∞ d(ϕ(t, θ−tω, D(θ−tω)),A(ω)) = 0,

where d denotes the Hausdorff semimetric in X , d(A, B) = supa∈A inf
b∈B ‖a −

b‖X , for any subsets A ⊆ X and B ⊆ X .

The following theorem provides a criterion for the existence of random attractors,
see Theorem 4 in [11]. The uniqueness follows from Corollary 1 in [11].

Theorem 2.7. There exists aD-random (pullback) attractor for ϕ if and only if there
exists a compact random set that pullback attracts all random sets D ∈ D. Moreover,
the random (pullback) attractor is unique.

One way of proving the existence of the random attractor, that in addition implies
its finite fractal dimension, is to show that a random exponential attractor exists.
Exponential attractors are compact subsets of finite fractal dimension that contain
the global attractor and are attracting at an exponential rate. This notion was first
introduced for semigroups in the autonomous deterministic setting [12] and has later
been extended for nonautonomous and random dynamical systems, see [7,9] and the
references therein.
Here, we consider so-called nonautonomous random exponential attractors, see

[7]. While random exponential attractors in the strict sense are positively ϕ-invariant,
nonautonomous randomexponential attractors are positivelyϕ-invariant in theweaker,
nonautonomous sense. To construct exponential attractors for time-continuous random
dynamical systems that are positively ϕ-invariant typically requires the Hölder con-
tinuity in time of the cocycle which is a restrictive assumption. However, if we relax
the invariance property and consider nonautonomous random exponential attractors
instead, only the Lipschitz continuity of the cocycle in space is needed. In fact, the
construction can be essentially simplified, we obtain better bounds for the fractal
dimension and the assumption of Hölder continuity in time can be omitted, see [7].
Even though we could prove the Hölder continuity in time for the cocycle for our
particular problem, we omit it since it has no added value for our main results and
would lead to weaker bounds for the fractal dimension.

Definition 2.8. A nonautonomous tempered random set {M(t, ω)}t∈R,ω∈� is called a
nonautonomous D-random (pullback) exponential attractor for ϕ if there exists t̃ > 0
such thatM(t + t̃, ω) = M(t, ω) for all t ∈ R, ω ∈ �, and the following properties
are satisfied:

(a) M(t, ω) is compact for every t ∈ R, ω ∈ �;
(b) {M(t, ω)}t∈R,ω∈� is positively ϕ-invariant in the nonautonomous sense, i.e.,

ϕ(s, ω,M(t, ω)) ⊆ M(s + t, θsω) for all s ≥ 0, t ∈ R, ω ∈ �;
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(c) {M(t, ω)}t∈R,ω∈� is pullback D-attracting at an exponential rate, i.e., there
exists α > 0 such that

lim
s→∞ eαsd(ϕ(s, θ−sω, D(θ−sω)),M(t, ω)) = 0 for all D ∈ D, t ∈ R, ω ∈ �;
(d) the fractal dimension of {M(t, ω)}t∈R,ω∈� is finite, i.e., there exists a random

variable k(ω) ≥ 0 such that

sup
t∈R

dim f (M(t, ω)) ≤ k(ω) < ∞ for all ω ∈ �.

We recall that the fractal dimension of a precompact subset M ⊂ X is defined as

dim f (M) = lim sup
ε→0

log 1
ε
(Nε(M)),

where Nε(M) denotes the minimal number of ε-balls in X with centers in M needed
to cover the set M .
By Theorem 2.7, the existence of a nonautonomous random exponential attractor

immediately implies that the (global) random attractor exists. Moreover, the global
random attractor is contained in the random exponential attractor, and hence, its fractal
dimension is finite.
Existence proofs for global and exponential random attractors are typically based

on the existence of a pullback D-absorbing set for ϕ.

Definition 2.9. A set {B(ω)}ω∈� ∈ D is called random pullback D-absorbing for ϕ

if for every D = {D(ω)}ω∈� ∈ D and ω ∈ �, there exists a random time TD(ω) ≥ 0
such that

ϕ(t, θ−tω, D(θ−tω)) ⊆ B(ω) for all t ≥ TD(ω).

The following condition is convenient to show the existence of an absorbing set.
Namely, if for every x ∈ D(θ−tω), D ∈ D and ω ∈ �, it holds that

lim sup
t→∞

‖ϕ(t, θ−tω, x)‖X ≤ ρ(ω), (2.2)

where ρ(ω) > 0 for every ω ∈ �, then the ball B(ω) := B(0, ρ(ω)+ δ) centered in 0
with radius ρ(ω) + δ for some constant δ > 0 is a random absorbing set. For further
details and applications, see [5,28].
Instead of considering random exponential attractors which is typically more

involved and requires to verify additional properties of the cocycle, the existence
of random attractors is frequently shown using the following result, see Theorem 2.1
in [28].

Theorem 2.10. Let ϕ be a continuous random dynamical system on X over (�,F ,P,

(θt )t∈R). Suppose that {B(ω)}ω∈� is a compact randomabsorbing set forϕ inD. Then,
ϕ has a unique D-random attractor {A(ω)}ω∈� which is given by

A(ω) =
⋂
τ≥0

⋃
t≥τ

ϕ(t, θ−tω, B(θ−tω)).
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We could apply Theorem 2.10 to prove the existence of a random attractor for
our particular problem. However, showing that a nonautonomous random exponential
attractor exists does not only imply the existence of the random attractor, but also
its finite fractal dimension. Moreover, it turns out to be even simpler in our case than
applying Theorem 2.10. To this end, we use an existence result for random exponential
attractors obtained in [7] that we recall in the next subsection.

2.2. An existence result for random exponential attractors

The existence result for random pullback exponential attractors is based on an
auxiliary normed space that is compactly embedded into the phase space and the
entropy properties of this embedding. We recall some notions and results that we will
need in the sequel, see also [7–9].

The (Kolmogorov) ε-entropy of a precompact subset M of a Banach space X is
defined as

HX
ε (M) = log2(N

X
ε (M)),

where N X
ε (M) denotes the minimal number of ε-balls in X with centers in M needed

to cover the set M . It was first introduced by Kolmogorov and Tihomirov [14]. The
order of growth of HX

ε (M) as ε tends to zero is a measure for the massiveness of the
set M in X , even if its fractal dimension is infinite.
If X and Y are Banach spaces such that the embedding Y ↪→ X is compact, we use

the notation

Hε(Y ; X) = HX
ε (BY (0, 1)),

where BY (0, 1) denotes the closed unit ball in Y .

Remark 2.11. The ε-entropy is related to the entropy numbers êk for the embedding
Y ↪→ X, which are defined by

êk = inf

⎧⎨
⎩ε > 0 : BY (0, 1) ⊂

2k−1⋃
j=1

BX (x j , ε), x j ∈ X, j = 1, . . . , 2k−1

⎫⎬
⎭ ,

k ∈ N. If the embedding is compact, then êk is finite for all k ∈ N. For certain function
spaces, the entropy numbers can explicitly be estimated (see [13]). For instance, if
D ⊂ R

n is a smooth bounded domain, then the embedding of the Sobolev spaces

Wl1,p1(D) ↪→ Wl2,p2(D), l1, l2 ∈ R, p1, p2 ∈ (1,∞),

is compact if l1 > l2 and l1
n − 1

p1
> l2

n − 1
p2

. Moreover, the entropy numbers grow
polynomially, namely

êk � k− l1−l2
n
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(see Theorem 2, Section 3.3.3 in [13]), and consequently,

Hε(W
l1,p1(D);Wl2,p2(D)) ≤ cε

− n
l1−l2 ,

for some constant c > 0. Here, we write f � g, if there exist positive constants c1
and c2 such that

c1 f ≤ g ≤ c2 f.

The following existence result for nonautonomous random pullback exponential
attractors is a special case of the main result in [7]. In fact, we formulate a simplified
version that suffices for the parabolic stochastic evolution problem we consider. In
particular, we assume that the cocycle is uniformly Lipschitz continuous and satisfies
the smoothing property with a constant that is independent of ω. More generally, one
can allow that the constants depend on the random parameter ω and that the cocycle
is asymptotically compact, i.e., it is the sum of a mapping satisfying the smoothing
property and a contraction.

Theorem 2.12. Let ϕ be a random dynamical system in a separable Banach space
X, and let D denote the universe of tempered random sets. Moreover, we assume that
the following properties hold for all ω ∈ �:

(H1) Compact embedding: There exists another separable Banach space Y that is
compactly and densely embedded into X.

(H2) Random pullback absorbing set: There exists a random closed set B ∈ D that
is pullback D-absorbing, and the absorbing time corresponding to a random
set D ∈ D satisfies TD,θ−tω ≤ TD,ω for all t ≥ 0.

(H3) Smoothing property: There exist t̃ > TB,ω and a constant κ > 0 such that

‖ϕ(t̃, ω, u) − ϕ(t̃, ω, v)‖Y ≤ κ‖u − v‖X ∀u, v ∈ B(ω).

(H4) Lipschitz continuity: There exists a constant Lϕ > 0 such that

‖ϕ(s, ω, u) − ϕ(s, ω, v)‖X ≤ Lϕ‖u − v‖X ∀s ∈ [0, t̃], u, v ∈ B(ω).

Then, for every ν ∈ (0, 1
2 ) there exists a nonautonomous random pullback exponential

attractor, and its fractal dimension is uniformly bounded by

dim f (Mν(t, ω)) ≤ log 1
2ν

(
N X

ν
κ
(BY (0, 1))

)
∀t ∈ R, ω ∈ �.

2.3. Pathwise mild solutions for parabolic SPDEs

Let � := {(s, t) ∈ R
2 : s ≤ t}, X be a separable, reflexive, type 2 Banach space

and (�,F ,P) be a probability space. Similarly to [26], we consider nonautonomous
SPDEs of the form

du(t) = A(t, ω)u(t) dt + F(u(t)) dt + σ(t, u(t)) dWt , t > s,
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u(s) = u0 ∈ X, s ∈ R, (2.3)

where A = {A(t, ω)}t∈R,ω∈� is a family of time-dependent random differential oper-
ators. Intuitively, this means that the differential operator depends on a stochastic
processes, in a meaningful way which will be specified later.
We aim to investigate the longtime behavior of (2.3) using a random dynamical

systems approach. First, we recall sufficient conditions that ensure that the family A
generates a parabolic stochastic evolution system, see [26]. In particular, we make the
following assumptions concerning measurability, sectoriality and Hölder continuity
of the operators.

Assumption 1. (A0) We assume that the operators are closed, densely defined and
have a common domain, DA := D(A(t, ω)) for all t ∈ R, ω ∈ �.

(A1) The mapping A : R × � → L(DA, X) is strongly measurable and adapted.
(A2) There exists ϑ ∈ (π, π

2 ) and M > 0 such that �ϑ := {μ ∈: |arg μ| < ϑ} ⊂
ρ(A(t, ω)) and

‖R(μ, A(t, ω))‖L(X) ≤ M

|μ| + 1
for all μ ∈ �ϑ ∪ {0}, t ∈ R, ω ∈ �.

(A3) There exists ν ∈ (0, 1] and a mapping C : � → X such that

‖A(t, ω) − A(s, ω)‖L(DA,X) ≤ C(ω)|t − s|ν for all s, t ∈ R, ω ∈ �, (2.4)

where we assume that C(ω) is uniformly bounded with respect to ω, see [26].

Assumptions (A2) and (A3) are referred to in the literature as the Kato–Tanabe
assumptions, compare [2], p. 55, or [24], p. 150, and are common in the context of
nonautonomous evolution equations. Since the constants in (A2) and (A3) are uni-
formly bounded w.r.t. ω, all constants arising in the estimates below do not dependent
on ω.
In the sequel, we denote by Xη, η ∈ (−1, 1], the fractional power spaces D((−A(t,

ω))η) endowed with the norm ‖x‖Xη = ‖(−A(t, ω))ηx‖X for t ∈ R, ω ∈ � and
x ∈ Xη.

Assumption 2. (AC) We assume that the operators A(t, ω), t ∈ R, ω ∈ �, have
a compact inverse. This implies that the embeddings Xη ↪→ X , η ∈ (0, 1],
are compact.

(U) The evolution family is uniformly exponentially stable, i.e., there exist con-
stants λ > 0 and c > 0 such that

‖U (t, s, ω)‖L(X) ≤ ce−λ(t−s) for all (s, t) ∈ � and ω ∈ �. (2.5)

(Drift) The nonlinearity F : X → X is globally Lipschitz continuous, i.e., there
exists a constant CF > 0 such that

‖F(x) − F(y)‖X ≤ CF‖x − y‖X for all x, y ∈ X and ω ∈ �.
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This implies a linear growth condition on F . Namely, there exist a positive
constant CF such that

‖F(x)‖X ≤ CF + CF‖x‖X for all x ∈ X and ω ∈ �. (2.6)

Furthermore, we assume that λ − cCF > 0.
(Noise) We assume that W (t) is a two-sided Wiener process with values in Xβ ,

β ∈ (0, 1]. Furthermore, we set σ(t, u) := σ > 0.

Based on the Assumptions 1, by applying [1, Thm. 2.3] pointwise in ω ∈ � we
obtain the following theorem, see [26, Theorem 2.2]. The measurability was shown
in [26, Proposition 2.4]. Before we state the result, we recall the definition of strong
measurability of random operators.

Definition 2.13. Let X1 and X2 be two separable Banach spaces. A random operator
L : � × X1 → X2 is called strongly measurable if the mapping ω �→ L(ω)x , ω̄ ∈ �,
is a random variable on X2 for every x ∈ X1.

Theorem 2.14. There exists a unique parabolic evolution systemU : �×� → L(X)

with the following properties:

(1) U (t, t, ω) = Id for all t ≥ 0, ω ∈ �.
(2) We have

U (t, s, ω)U (s, r, ω) = U (t, r, ω) (2.7)

for all 0 ≤ r ≤ s ≤ t , ω ∈ �.
(3) The mapping U (·, ·, ω) is strongly continuous for all ω ∈ �.
(4) For s < t , the following identity holds pointwise in �

d

dt
U (t, s, ω) = A(t, ω)U (t, s, ω).

(5) The evolution systemU : �×� → L(X) is strongly measurable in the uniform
operator topology. Moreover, for every t ≥ s, the mapping ω �→ U (t, s, ω) ∈
L(X) is strongly Ft -measurable in the uniform operator topology.

To prove the existence of random attractors, we need additional smoothing prop-
erties of the evolution system. The following properties and estimates were shown in
Lemmas 2.6 and 2.7 in [26]. The exponential decay is a consequence of our assumption
(U ).

Lemma 2.15. We assume that the family of adjoint operators A∗(t, ω) satisfies (A3)
with exponent ν∗ > 0. Then, for every t > 0, the mapping s �→ U (t, s, ω) belongs to
C1([0, t);L(X)), and for all x ∈ DA one has

d

ds
U (t, s, ω)x = −U (t, s, ω)A(s, ω)x .
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Moreover, for α ∈ [0, 1] and η ∈ (0, 1) there exist positive constants C̃α, C̃α,η such
that the following estimates hold for t > s and ω̄ ∈ �:

‖(−A(t, ω))αU (t, s, ω)x‖X ≤ C̃α

e−λ(t−s)

(t − s)α
‖x‖X , x ∈ X;

‖U (t, s, ω)(−A(s, ω))αx‖X ≤ C̃α

e−λ(t−s)

(t − s)α
‖x‖X , x ∈ Xα;

‖(−A(t, ω))−αU (t, s, ω)(−A(s, ω))ηx‖X ≤ C̃α,η

e−λ(t−s)

(t − s)η−α
‖x‖X , x ∈ Xη.

To shorten notations, in the sequel we omit the ω-dependence of A and U if there
is no danger of confusion. The classical mild formulation of the SPDE (2.3) is

u(t) = U (t, 0)u0 +
t∫

0

U (t, s)F(u(s)) ds + σ

t∫

0

U (t, s) dW (s). (2.8)

However, the Itô-integral is not well defined since the mapping ω �→ U (t, s, ω)

is, in general, only Ft -measurable and not Fs-measurable, see [26, Prop. 2.4]. To
overcome this problem, Pronk and Veraar introduced in [26] the concept of pathwise
mild solutions. In our particular case, this notion leads to the integral representation

u(t) = U (t, 0)u0 + σU (t, 0)W (t) +
t∫

0

U (t, s)F(u(s)) ds

− σ

t∫

0

U (t, s)A(s)(W (t) − W (s)) ds. (2.9)

The formula is motivated by formally applying integration by parts for the stochastic
integral, and, as shown in [26], it indeed yields a pathwise representation for the
solution.
Our aim is to show the existence of randomattractors for SPDEsusing this concept of

pathwise mild solutions. It allows us to study random attractors without transforming
the SPDE into a random PDE, as it is typically done.

Remark 2.16. We emphasize that the concept of pathwise mild solutions also applies
if σ is not constant, see [26, Sec.5]. In this case, the solution of (2.3) is given by

u(t) = U (t, 0)u0 +U (t, 0)

t∫

0

σ(s, u(s)) dW (s) +
t∫

0

U (t, s)F(u(s)) ds (2.10)

−
t∫

0

U (t, s)A(s)

t∫

s

σ(τ, u(τ )) dW (τ ) ds. (2.11)
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However, it is not possible to obtain a random dynamical system in this case, due to
the presence of the stochastic integrals in (2.10) and (2.11) which are not defined in
a pathwise sense. Consequently, this representation formula does not hold for every
ω ∈ �. We aim to investigate this issue in a future work.

Recalling that W is an Xβ -valued Wiener process, we introduce the canonical
probability space

� := (C0(R; Xβ),B(C0(R; Xβ)),P) (2.12)

and identify W (t, ω) =: ω(t), for ω ∈ �. Moreover, together with the Wiener shift,

θtω(s) = ω(t + s) − ω(t), ω ∈ �, s, t ∈ R,

we obtain, analogously as in Sect. 2.1, the ergodic metric dynamical system (�,F ,

P, (θt )t∈R).
In the following, (�,F ,P) always denotes the probability space (2.12).

3. Random attractors for nonautonomous random SPDEs

3.1. Random dynamical system and absorbing set

Since we consider SPDEs with time-dependent random differential operators, we
need to impose additional structural assumptions in order to use the framework of
random dynamical systems, see [6,20].

Assumption 3.

(RDS) We assume that the generators depend on t and ω in the following way:

A(t, ω) = A(θtω) for all t ∈ R and ω ∈ �. (3.1)

This assumption is needed to obtain the cocycle property. In this case, the group
property of the metric dynamical system implies hat

A(θsθt−sω) = A(θtω) for all t, s ∈ R and ω ∈ �.

Moreover, one can easily show that A(θtω) generates a random dynamical system,
i.e., the solution operator corresponding to the linear evolution equation

du(t) = A(θtω)u(t) dt

u(0) = u0 ∈ X

forms a random dynamical system.
From now on, we always assume that Assumptions 1, 2 and 3 hold and that the

family of adjoint operators A∗ satisfies (A3) with ν∗ ∈ (0, 1].
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Theorem 3.1. Let U : � × � → L(X) be the evolution operator generated by
A(θtω). Then, Ũ : R+ × � × X → X defined as

Ũ (t, ω) := U (t, 0, ω), t ≥ 0, (3.2)

is a random dynamical system.

Proof. The cocycle property immediately follows from (2.7). In fact, let t, s ≥ 0.
Then, (2.7) implies that

U (t + s, 0, ω) = U (t + s, s, ω)U (s, 0, ω).

Moreover, we observe thatU (t+s, s, ω) = U (t, 0, θsω) since A(θtω) = A(θsθt−sω).
Intuitively, this means that starting at time s on the ω-fiber of the noise and letting
time t > 0 pass lead to the same state as starting at time zero on the shifted θs-fiber of
the noise and letting the system evolve for time t . At the level of random generators,
U (t + s, s, ω) is obtained from A(θtω) which is the same as A(θsθt−sω) due to the
properties of the metric dynamical system. Therefore, the cocycle property

Ũ (t + s, ω) = Ũ (t, θsω)Ũ (s, ω). (3.3)

is satisfied. The measurability of Ũ follows from Theorem 2.14, Property 5. �

Remark 3.2. We obtain the measurability of Ũ directly from the results in [26]. Alter-
natively, one can show themeasurability of Ũ as in [20, Lem. 14] usingYosida approx-
imations of A(ω). Here, one argues that the evolution operators corresponding to these
approximations are strongly measurable and then pass to the limit. These arguments
exploit the structural assumption (3.1). The proof of the measurability in [26] is more
involved and holds under more general assumptions.

We give a standard example of a random nonautonomous generator and its corre-
sponding evolution operator.

Example 3.3. A simple example for an operator that satisfies our assumptions is a ran-
dom perturbation of a uniformly elliptic operator A (in a smooth bounded domain with
homogeneous Dirichlet boundary conditions) by a real-valued Ornstein–Uhlenbeck
process, which is the stationary solution of the Langevin equation

dz(t) = −μz(t) dt + dW (t).

Here, μ > 0 and W is a two-sided real-valued Brownian motion. We denote by
(�,F ,P) its associated canonical probability space and make the identification W (t,
ω) := ω(t) for ω ∈ �. Then, we have that

z(θtω) =
t∫

−∞
e−μ(t−s) dω(s) =

0∫

−∞
eμs dθtω(s).



C. Kuehn et al. J. Evol. Equ.

In this case, the parabolic evolution operator generated by A + z(θtω) is

Ũ (t, ω) := T (t)e

t∫
0
z(θτ ω) dτ

,

where (T (t))t≥0 is the analytic C0-semigroup generated by A. We have

Ũ (t, ω) = T (t − s)e

t∫
s
z(θτ ω) dτ

︸ ︷︷ ︸
U (t,s,ω)

T (s)e

s∫
0
z(θτ ω) dτ

︸ ︷︷ ︸
U (s,0,ω)

,

and consequently, Ũ (t − s, θsω) = T (t − s)e

t−s∫
0

z(θτ+sω)

dτ .

This simple example illustrates that the formalismwe introduced above is meaning-
ful. Further examples of random time-dependent generators are provided in Sect. 4.
For additional applications, we refer to [26], and to [6,20] in the context of random
dynamical systems.

We now prove the existence of random attractors for SPDEs of the form

{
du(t) = A(θtω)u(t) dt + F(u(t)) dt + σ dω(t)

u(0) = u0
(3.4)

using pathwise mild solutions as defined in (2.9).

Remark 3.4. • We emphasize that the SPDE (3.4) cannot be transformed into a
PDEwith random coefficients using the stationary Ornstein–Uhlenbeck process,
since the convolution

t∫

0

U (t, s, ω) dω(s)

is not defined and one has to make sense of it using the integration by parts
formula

ω(t) +
t∫

0

U (t, s, ω)A(θsω)ω(s) ds = U (t, 0, ω)ω(t)

−
t∫

0

U (t, s, ω)A(θsω)(ω(t) − ω(s)) ds. (3.5)

A different transformation based on a strictly stationary solution has been intro-
duced in [15].
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• Another approach would be to subtract the noise, i.e., to introduce the change
of variables v := u − σω. This would formally lead to the random PDE

dv(t) = A(θtω)(v(t) + σω(t)) dt + F(v(t) + ω(t)) dt

= A(θtω)v(t) dt + σ A(θtω)ω(t) dt + F(v(t) + ω(t)) dt. (3.6)

The mild solution of (3.6) would be given by

v(t) = U (t, 0, ω)v0 + σ

t∫

0

U (t, s, ω)A(θsω)ω(s) ds

+
t∫

0

U (t, s, ω)F(v(s) + σω(s)) ds.

However, we would need to justify that this mild solution is well defined, and the
noise also interacts with the nonlinear term. In order to avoid these difficulties,
we work with pathwise mild solutions.

Using (3.5), the representation formula of a solution for (3.4) reads as

u(t) = U (t, 0)u0 + σU (t, 0)ω(t) +
t∫

0

U (t, s)F(u(s)) ds

− σ

t∫

0

U (t, s)A(θsω)(ω(t) − ω(s)) ds

= U (t, 0)u0 + σU (t, 0)ω(t) +
t∫

0

U (t, s)F(u(s)) ds

− σ

t∫

0

U (t, s)A(θsω)θsω(t − s) ds

= Ũ (t, ω)u0 + σ Ũ (t, ω)ω(t) +
t∫

0

Ũ (t − s, θsω)F(u(s)) ds (3.7)

− σ

t∫

0

Ũ (t − s, θsω)A(θsω)θsω(t − s) ds

= Ũ (t, ω)u0 +
t∫

0

Ũ (t − s, θsω)F(u(s)) ds

+ σω(t) + σ

t∫

0

Ũ (t − s, θsω)A(θsω)ω(s) ds. (3.8)
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Here, we used in the last line that

t∫

0

U (t, s, ω)A(s, ω) ds =
t∫

0

Ũ (t − s, θsω)A(θsω) ds = −U (t, t, ω)

+U (t, 0, ω) = Ũ (t, ω) − Id,

since

∂

∂s
U (t, s, ω) = −U (t, s, ω)A(s, ω).

Remark 3.5. We emphasize that the pathwise mild solution concept is applicable also
under weaker assumptions on the noise, for instance, if ω takes values in a suitable
extrapolation space [25, Section 3.1].Moreover, the formal computationsmade in (3.8)
can be justified even if ω �∈ DA.

In fact, according to [26, Theorem 4.9] we know that the pathwise mild solution is
equivalent to the weak solution of (3.4). For simplicity, we test the linear part (i.e., for
F ≡ 0) of (3.4) with x∗ ∈ DA∗ := D((A∗(t))). This yields

〈u(t), x∗〉 = 〈U (t, 0)u0, x
∗〉 + σ 〈U (t, 0)ω(t), x∗〉

− σ

t∫

0

〈U (t, s)A(θsω)(ω(t) − ω(s)), x∗〉 ds, (3.9)

where 〈·, ·〉 denotes the dual pairing. Plugging the identity

t∫

0

〈U (t, s)A(θsω)ω(t), x∗〉 ds = 〈U (t, 0)ω(t), x∗〉 − 〈ω(t), x∗〉,

which holds for ω(·) ∈ X (see [26, Section 4.4]), into (3.9) entails

〈u(t), x∗〉 = 〈U (t, 0)u0, x
∗〉 + σ 〈ω(t), x∗〉 + σ

t∫

0

〈U (t, s)A(θsω)ω(s), x∗〉 ds.

Lemma 3.6. The solution operator corresponding to (3.4) generates a random
dynamical system ϕ : R+ × � × X → X.

Proof. We only verify the cocycle property. The continuity is straightforward, and the
measurability of ϕ follows from the measurability of Ũ .
Let s, t ≥ 0. Using (3.8), we have

ϕ(t + s, ω, u0)

= Ũ (t + s, ω)u0 +
t+s∫

0

Ũ (t + s − r, θrω)F(u(r)) dr + σω(t + s)
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+ σ

t+s∫

0

Ũ (t + s − r, θrω)A(θrω)ω(r) dr

= Ũ (t, θsω)Ũ (s, ω)u0 + Ũ (t, θsω)

s∫

0

Ũ (s − r, θrω)F(u(r)) dr

+
s+t∫

s

Ũ (t + s − r, θrω)F(u(r))dr + σω(t + s)

+ σ Ũ (t, θsω)

s∫

0

Ũ (s − r, θrω)A(θrω)ω(r) dr

+ σ

s+t∫

s

Ũ (t + s − r, θrω)A(θrω)ω(r) dr

= Ũ (t, θsω)

[
Ũ (s, ω)u0 +

s∫

0

Ũ (s − r, θrω)F(u(r)) dr

+ σ

s∫

0

Ũ (s − r, θrω)A(θrω)ω(r) dr

]

+
s+t∫

s

Ũ (t + s − r, θrω)F(u(r)) dr + σω(t + s)

+ σ

s+t∫

s

Ũ (t + s − r, θrω)A(θrω)ω(r) dr.

Using that

s+t∫

s

Ũ (t + s − r, θrω)A(θrω)ω(r) dr =
t∫

0

Ũ (t − r, θs+rω)A(θs+rω)ω(r + s) dr

=
t∫

0

Ũ (t − r, θs+rω)A(θs+rω)(θsω(r) + ω(s)) dr

=
t∫

0

Ũ (t − r, θs+rω)A(θs+rω)θsω(r) dr + ω(s)(−Id + Ũ (t, θsω)),

one immediately gets

ϕ(t + s, ω, u0)
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= Ũ (t, θsω)

[
Ũ (s, ω)u0

+ σω(s) +
s∫

0

Ũ (s − r, θrω)F(u(r)) dr + σ

s∫

0

Ũ (s − r, θrω)A(θrω)ω(r) dr

]

+
t∫

0

Ũ (t − r, θs+rω)F(u(r + s)) dr

+ σ

t∫

0

Ũ (t − r, θs+rω)A(θr+sω)θsω(r) dr + σθsω(t)

= ϕ(t, θsω, ϕ(s, ω, u0)).

This proves the statement. �

Next, we show the existence of an absorbing set.We recall that λ > cCF as assumed
in (Drift). Here, λ, c and CF are the constants in (2.5) and (2.6).

From now on, the properties and statements hold for all ω ∈ �0 where �0 ⊂ � is
the set of all ω that have subexponential growth. The set �0 is (θt )t∈R-invariant and
has full measure, see, e.g., [5]. To simplify notations, in the sequel, we will denote �0

again by �.

Lemma 3.7. The random dynamical system ϕ has a pullback absorbing set.

Proof. Weverify (2.2). To this end,weuse the estimates inLemma2.15 andGronwall’s
lemma. We observe that ω ∈ Xβ implies that

‖Ũ (t, ω)ω(t)‖X = ‖Ũ (t, ω)(−A(ω))−β(−A(ω))βω(t)‖X ≤ ĉe−λt‖ω(t)‖Xβ ,

for some constant ĉ > 0.
It is convenient to work with the representation formula (3.7). Assuming that the

fiber is given for θ−tω, we obtain

‖u(t)‖X ≤ ‖U (t, 0)u0‖X + σ‖U (t, 0)θ−tω(t)‖X +
t∫

0

‖U (t, s)F(u(s))‖X ds

+σ

t∫

0

‖U (t, s)A(θs−tω)θs−tω(t − s)‖X ds

≤ ce−λt‖u0‖X + σ ĉe−λt‖ω(−t)‖Xβ +
t∫

0

‖U (t, s)F(u(s))‖X ds

+σ

t∫

0

‖Ũ (t − s, θs−tω)A(θs−tω)ω(s − t)‖X ds.
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For the nonlinear term, the Lipschitz continuity and (2.5) yield

∥∥∥∥
t∫

0

Ũ (t − s, θsω)F(u(s)) ds

∥∥∥∥
X

≤ c

t∫

0

e−λ(t−s)(CF + CF‖u(s)‖X ) ds,

and the generalized stochastic convolution results in

t∫

0

‖Ũ (t − s, θs−tω)A(θs−tω)ω(s − t)‖X ds

=
t∫

0

‖Ũ (t − s, θs−tω)(−A(θs−tω))1−β‖L(X)‖(−A(θs−tω))βω(s − t)‖X ds

≤ C̃1−β

t∫

0

e−λ(t−s)

(t − s)1−β
‖ω(s − t)‖Xβ ds,

where C̃1−β denotes the constant in Lemma 2.15. Hence, combining the estimates we
obtain

‖u(t)‖X ≤ ce−λt‖u0‖X + σ ĉe−λt‖ω(−t)‖Xβ + c

t∫

0

e−λ(t−s)(CF + CF‖u(s)‖X ) ds

+ σ C̃1−β

t∫

0

e−λ(t−s)

(t − s)1−β
‖ω(s − t)‖Xβ ds.

Setting

γ (t) := ce−λt‖u0‖X + σ ĉe−λt‖ω(−t)‖Xβ

+ cCF

t∫

0

e−λ(t−s) ds + σ C̃1−β

t∫

0

e−λ(t−s)

(t − s)1−β
‖ω(s − t)‖Xβ ds

= ce−λt‖u0‖X + σ ĉe−λt‖ω(−t)‖Xβ + cCF

λ

+ σ C̃1−β

0∫

−t

eλr

(−r)1−β
‖ω(r)‖Xβ ds,

we can rewrite the previous inequality as

‖u(t)‖X ≤ γ (t) + cCF

t∫

0

e−λ(t−s)‖u(s)‖X ds. (3.10)
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Applying Gronwall’s lemma to eλt‖u(t)‖X , we infer that

eλt‖u(t)‖X ≤ eλtγ (t) + cCF

t∫

0

eλsγ (s)ecCF (t−s) ds,

and multiplying with e−λt , we obtain

‖u(t)‖X ≤ γ (t) + cCF

t∫

0

e−(λ−cCF )(t−s)γ (s) ds. (3.11)

This estimate allows us to determine the pullback absorbing set. First, note that all
terms in γ are well defined for the limit t → ∞, due to the subexponential growth of
‖ω(t)‖Xβ , and consequently,

γ (t) ≤ e−λt
(
c‖u0‖X + ĉσ‖ω(−t)‖Xβ

)

+ cCF

λ
+ σ C̃1−β

0∫

−∞

eλr

(−r)1−β
‖ω(r)‖Xβdr < ∞. (3.12)

We now focus on the second term in (3.11),

t∫

0

e−(λ−cCF )(t−s)γ (s) ds

≤
t∫

0

e−(λ−cCF )(t−s)
(
ce−λs‖u0‖X + ĉσe−λs‖ω(−s)‖Xβ + cCF

λ

+ σ C̃1−β

0∫

−s

eλr

(−r)1−β
‖ω(r)‖Xβdr

)
ds.

The first and the third terms are bounded by

t∫

0

e−(λ−cCF )(t−s)e−λs‖u0‖X ds ≤ e−(λ−cCF )t

cCF
‖u0‖X

and obviously

cCF

λ

t∫

0

e−(λ−cCF )(t−s) ds ≤ cCF

λ(λ − cCF )
.
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The second one can be estimated by

σ ĉe−(λ−cCF )t

t∫

0

e−cCF s‖ω(−s)‖Xβ ds = σ ĉe−(λ−cCF )t

0∫

−t

ecCF s‖ω(s)‖Xβ ds.

Finally, for the last term, we observe that

σ C̃1−β

t∫

0

e−(λ−cCF )(t−s)

0∫

−s

eλr

(−r)1−β
‖ω(r)‖Xβdr ds

≤ σ C̃1−β

t∫

0

e−(λ−cCF )(t−s) ds

0∫

−∞

eλr

(−r)1−β
‖ω(r)‖Xβdr

= σ C̃1−β

λ − cCF

0∫

−∞

eλr

(−r)1−β
‖ω(r)‖Xβdr.

In conclusion, using all the previous estimates in (3.11) we have

‖u(t)‖X ≤ e−λt
(
c‖u0‖X + σ ĉ‖ω(−t)‖Xβ

)

+ cCF

λ
+ σ C̃1−β

0∫

−∞

eλr

(−r)1−β
‖ω(r)‖Xβdr

+ ce−(λ−cCF )t‖u0‖X + c2CFCF

λ(λ − cCF )

+ cCFσ ĉe−(λ−cCF )t

0∫

−t

ecCF s‖ω(s)‖Xβ ds

+ cCFσ C̃1−β

λ − cCF

0∫

−∞

eλs

(−s)1−β
‖ω(s)‖Xβ ds

≤ e−(λ−cCF )t
(
2c‖u0‖X + σ ĉ‖ω(−t)‖Xβ

)
+ cCF

λ − cCF

+ cCFσ ĉ

0∫

−∞
ecCF s‖ω(s)‖Xβ ds + σ C̃1−βλ

λ − cCF

0∫

−∞

eλs

(−s)1−β
‖ω(s)‖Xβ ds.

(3.13)

Using (2.2), we infer that B(ω) := B(0, ρ(ω) + δ) for some δ > 0, where

ρ(ω) := cCF

λ − cCF
+ cCFσ ĉ

0∫

−∞
ecCF s‖ω(s)‖Xβ ds
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+ σ C̃1−βλ

λ − cCF

0∫

−∞

eλs

(−s)1−β
‖ω(s)‖Xβ ds

is a pullback absorbing set for our random dynamical system. This expression is
natural, since we can immediately see the influence of the linear part, nonlinear term
and noise intensity. The previous integrals are well defined due to the subexponential
growth of ω. More precisely, the set of all ω ∈ � that have subexponential growth is
invariant and has full measure. The temperedness of the absorbing set can be verified
as in [5, Lem. 3.7]. �

3.2. Existence and finite fractal dimension of random attractors

We now apply Theorem 2.12 to deduce the existence of nonautonomous random
exponential attractors for the random dynamical system ϕ.

Theorem 3.8. For every ν ∈ (0, 1
2 ) and η ∈ (0, 1), the random dynamical system

ϕ generated by (3.4) has a nonautonomous random pullback exponential attractor
Mν,η, and its fractal dimension is bounded by

sup
t∈R

dim f (Mν,η(t, ω)) ≤ log 1
2ν

(
N X

ν
κ
(BXη (0, 1))

)
,

where

κ = C̃η + CFC̃ηce
cCF

λ

∫ t̃

0

e−λ(t̃−s)

(t̃ − s)η
ds,

and t̃ > 0 is arbitrary.

We remark that κ is determined by the constant C̃η in Lemma 2.15, the Lipschitz
constant CF of F and the constants c and λ in (2.5).

Proof. We verify the hypotheses in Theorem 2.12.

(H1) By Assumptions 2 (AC), this property holds for the spaces X and Y = Xη,
for arbitrary η ∈ (0, 1).

(H2) This was shown in Lemma 3.7. In fact, B(ω) = B(0, ρ(ω) + δ), for some
δ > 0, is pullback D-absorbing and B ∈ D. Moreover, the absorbing time
fulfills the condition in (H1). In fact, let D ∈ D, then

TD,ω = inf

{
t̃ ≥ 0 : e−(λ−cCF )t

(
2c sup

ζ∈D(θ−tω)

‖ζ‖ + σ ĉ‖ω(−t)‖Xβ

)
< δ ∀t ≥ t̃

}
,

see the estimate in (3.13).
(H4) We verify the Lipschitz continuity of ϕ in B. To this end, let u0, v0 ∈ B(ω),

ω ∈ �. For the difference of the corresponding solutions, we obtain

‖ϕ(t, ω, u0) − ϕ(t, ω, v0)‖X
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≤ ‖Ũ (t, ω)(u0 − v0)‖X +
∫ t

0
‖Ũ (t − s, θsω)

(
F(ϕ(s, ω, u0))

− F(ϕ(s, ω, v0))
)‖X ds

≤ ce−λt‖u0 − v0‖X +
∫ t

0
ce−λ(t−s)

∥∥F(ϕ(s, ω, u0)) − F(ϕ(s, ω, v0))
∥∥
X ds

≤ ce−λt‖u0 − v0‖X + cCF

∫ t

0
e−λ(t−s)

∥∥ϕ(s, ω, u0) − ϕ(s, ω, v0)
∥∥
X ds

≤ c‖u0 − v0‖X + cCF

∫ t

0
e−λ(t−s)

∥∥ϕ(s, ω, u0) − ϕ(s, ω, v0)
∥∥
X ds.

Hence, Gronwall’s lemma implies that

‖ϕ(t, ω, u0) − ϕ(t, ω, v0)‖X ≤ c‖u0 − v0‖XecCF
∫ t
0 e

−λ(t−s) ds ≤ ce
cCF

λ ‖u0 − v0‖X .

(H3) Finally, we use the Lipschitz continuity in (H4) to verify the smoothing prop-
erty for the spaces X and Y = Xη. Let t̃ > 0. We estimate the difference of
the solutions in the Xη-norm,

‖ϕ(t̃, ω, u0) − ϕ(t̃, ω, v0)‖Xη

≤ ‖Ũ (t̃, ω)(u0 − v0)‖Xη

+
∫ t̃

0
‖Ũ (t̃ − s, θsω)

(
F(ϕ(s, ω, u0)) − F(ϕ(s, ω, v0))

)‖Xη ds

≤ C̃η

t̃η
e−λt̃‖u0 − v0‖X + C̃η

∫ t̃

0

e−λ(t̃−s)

(t̃ − s)η
∥∥F(ϕ(s, ω, u0)) − F(ϕ(s, ω, v0))

∥∥
X ds

≤ C̃η

t̃η
e−λt̃‖u0 − v0‖X + CFC̃η

∫ t̃

0

e−λ(t̃−s)

(t̃ − s)η
∥∥ϕ(s, ω, u0) − ϕ(s, ω, v0)

∥∥
X ds

≤ C̃η

t̃η
‖u0 − v0‖X + CFC̃ηce

cCF
λ

∫ t̃

0

e−λ(t̃−s)

(t̃ − s)η
ds‖u0 − v0‖X ,

where we used the Lipschitz continuity of ϕ in X in the last step. Hence, the
smoothing property holds with the smoothing constant

κ = C̃η

t̃η
+ CFC̃ηce

cCF
λ

∫ t̃

0

e−λs

sη
ds.

The smoothing property holds for any t̃ > 0, and consequently, (H3) is
satisfied.

�

An immediate consequence is the existence and finite fractal dimension of the global
random attractor.
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Corollary 3.9. There exists a unique global random attractor for ϕ, and its fractal
dimension is bounded by

dim f (A(ω)) ≤ inf
ν∈(0, 12 )

{
log 1

2ν

(
N X

ν
κ
(BXη (0, 1))

)}
,

for all η ∈ (0, 1), where κ is the constant given in Theorem 3.8.

The existence of a nonautonomous random exponential attractor implies that the
global random attractor exists and that its fractal dimension is finite. We point out that
in our particular case, it is, in fact, easier to consider random exponential attractors
than to deduce the existence of the global random attractor from Theorem 2.10. In
fact, we have shown that a tempered absorbing set exists, but the theorem requires
the existence of a compact absorbing set. To show how this can be established and
to indicate that the proof is indeed more involved than verifying the hypotheses of
Theorem 2.12, we provide the following lemma, even if we do not use it to prove our
main results.

Lemma 3.10. Let TB ≥ 0 denote the absorbing time corresponding to the absorbing

set B. Then, the set K (ω) := ϕ(TB, θ−TBω, B(θ−TBω))
X
is a compact absorbing set

for ϕ.

Proof. The proof is based on compact embeddings of fractional power spaces. Let η >

0 be such that 0 < η < β ≤ 1. It suffices to derive uniform estimates of the solutions
w.r.t. the Xη-norm since Xη is compactly embedded into X . Let u0 ∈ B(θ−TBω). We
observe that

‖ϕ(TB, θ−TBω, u0)‖Xη ≤ ‖Ũ (TB, θ−TBω)u0‖Xη + ‖Ũ (TB, θ−TBω)θ−TBω(TB)‖Xη

+
TB∫

0

‖Ũ (TB − s, θs−TBω)F(ϕ(s, θ−TBω, u0))‖Xη ds

+ σ

TB∫

0

‖Ũ (TB − s, θs−TBω)A(θs−TBω)ω(s − TB)‖Xη ds.

To estimate these terms, we use that u0 ∈ B(θ−TBω) and that B is a pullback absorbing
set. The first and second terms yield the following expressions,

‖Ũ (TB, θ−TBω)u0‖Xη ≤ C̃ηe
−λTB‖u0‖X ≤ C̃ηe

−λTB (ρ(θ−TBω) + δ),

and

‖Ũ (TB, θ−TBω)ω(−TB)‖Xη ≤ C̃η

ĉ

c
e−λTB‖ω(−TB)‖Xβ .

For the generalized convolution, we obtain

TB∫

0

‖Ũ (TB − s, θs−TBω)A(θs−TBω)ω(s − TB)‖Xη ds



Random attractors via pathwise mild solutions

=
TB∫

0

‖Aη(θTBω)Ũ (TB − s, θs−TBω)A1−β(θs−TBω)Aβ(θs−TBω)ω(s − TB)‖X ds

≤ C̃1−(β−η)

TB∫

0

e−λ(TB−s)

(TB − s)1−(β−η)
‖ω(s − TB)‖Xβ ds

≤ C̃1−(β−η) sup
s∈[0,TB ]

‖ω(s − TB)‖Xβ

TB∫

0

e−λ(TB−s)

(TB − s)1−(β−η)
ds < ∞.

Finally, we estimate the drift term,

TB∫

0

‖Ũ (TB − s, θTB−sω)F(ϕ(s, θ−TBω, u0))‖Xη ds

≤ C̃ηCF

0∫

−TB

eλr

(−r)η
dr + C̃ηCF

0∫

−TB

eλr

(−r)η
‖ϕ(r + TB, θ−TBω, u0)‖X dr

≤ C̃ηCF

0∫

−TB

eλr

(−r)η
dr + C̃ηCF

0∫

−TB

eλr

(−r)η
(ρ(θrω) + δ) dr,

where we used that u0 ∈ B(θ−TBω) and the absorbing property of B, i.e.,

ϕ(r + TB, θ−TBω, u0) ⊂ B(θrω).

We remark that the expressions and ω-dependent constants in all estimates are well
defined. Collecting the estimates, we finally conclude that

‖ϕ(TB, θ−TBω, u0)‖Xη ≤ C̃(ω, η, β, δ, TB) < ∞,

for some constant C̃(ω, η, β, δ, TB). The compact embedding Xη ↪→ X implies that
the set ϕ(TB, θ−TBω, B(θ−TBω)) is relatively compact in X . Hence, K (ω) is compact
which proves the statement. �

4. Examples

We provide examples of differential operators A that satisfy our assumptions in
the previous sections. The canonical examples are uniformly elliptic operators with
random, time-dependent coefficients. Such operators have been investigated in the
context of SPDEs, see [25,26] and the references therein. In the framework of ran-
dom dynamical systems, several properties of the evolution system generated by such
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operators have been analyzed, including results on the spectral theory and princi-
pal Lyapunov exponents [21,22,29], stable and unstable manifolds and multiplicative
ergodic theorems [6,20].
We consider the random partial differential operators in the Banach space X :=

L p(G) for 2 ≤ p < ∞, where G ⊂ R
n is a bounded open domain with smooth

boundary ∂G (see also [24, Sec. 7.6]). We recall that in our case, the differential
operator A(t, ω) depends on time t ∈ R and the random parameter ω ∈ � in the
following way

A(t, ω) = A(θtω), t ∈ R, ω ∈ �.

Example 4.1. Let m ∈ N and A be the random partial differential operator

A(θtω, x,D) =
∑

|k|≤2m

ak(θtω, x)Dk, t ∈ R, ω ∈ �, x ∈ G,

with homogeneous Dirichlet boundary conditions,

Dku = 0 on ∂G for |k| < m.

We make the following assumptions on the coefficients.

1. The operator A is uniformly strongly elliptic in G, i.e., there exists a constant
c > 0 such that

(−1)m
∑

|k|=2m

ak(θtω, x)ξk ≥ c|ξ |2m for all t ∈ R, x ∈ G, ξ ∈ R
n .

2. The coefficients form a stochastic process (t, ω) �→ ak(θtω, ·) ∈ C2m(G)which
has Hölder continuous trajectories, i.e., there exists ν ∈ (0, 1] such that

|ak(θtω, x) − ak(θsω, x)| ≤ c1|t − s|ν for all t, s ∈ R, x ∈ G, |k| ≤ 2m, (4.1)

for some c1 > 0.
3. The constants c and c1 are uniformly bounded with respect to ω ∈ � and x ∈ G.

We define the L p-realization of A(·, ·, D) by

Ap(θtω)u := A(θtω, x,D)u for u ∈ DA, where

DA := D(Ap(θtω)) = W 2m,p(G) ∩ Wm,p
0 (G). (4.2)

We verify now Assumptions (A0)–(A3) and (AC). It is well known that Ap(ω)

generates a compact analytic semigroup in L p(G) for every ω ∈ �. Moreover, the
mapping ω �→ Ap(ω)v is measurable for every smooth function v ∈ C∞(G). This
entails the measurability of the mapping ω �→ Ap(ω)v for every v ∈ L p(G). Conse-
quently, the Assumptions (A0)-(A2) and (AC) are satisfied. We only need to show the
Hölder continuity of the mapping t �→ Ap(θtω) to verify (A3).
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To this end, let v ∈ DA and t, s ∈ R. Then, we have

‖Ap(θtω) − Ap(θsω)‖p
L(DA,X)

= sup
v∈DA,‖v‖=1

‖(Ap(θtω) − Ap(θsω))v‖p
X

= sup
v∈DA,‖v‖=1

∥∥∥ ∑
|k|≤2m

(ak(θtω, x) − ak(θsω, x))Dkv

∥∥∥p

X
.

Furthermore, we estimate∥∥∥ ∑
|k|≤2m

(ak(θtω, x) − ak(θsω, x))Dkv

∥∥∥p

X

=
∫

G

∣∣∣∣
∑

|k|≤2m

(ak(θtω, x) − ak(θsω, x))Dkv(x)

∣∣∣∣
p

dx

≤
∫

G

Cp

∑
|k|≤2m

|(ak(θtω, x) − ak(θsω, x))Dkv(x)|p dx

≤ Cp

∑
|k|≤2m

sup
x∈G

|ak(θtω, x) − ak(θsω, x)|p
∫

G

|Dkv(x)|p dx

≤ Cp

∑
|k|≤2m

sup
x∈G

|ak(θtω, x) − ak(θsω, x)|p‖v‖p
W 2m,p

≤ Cp||v||p
W 2m,p

∑
|k|≤2m

‖ak(θtω, ·) − ak(θsω, ·)‖p
C2m (G)

.

Therefore, the Hölder continuity of (t, ω) �→ ak(θtω, ·) justifies (2.4).
The following example is similar to [26, Example 6.2] and [32, Section 10.2]. In

our case, the operators satisfy the structural assumption (3.1) and the domains are
assumed to be constant with respect to time t and ω ∈ �. For random nonautonomous
second-order operators of this type, see [21, Sec. 3] and [22].

Example 4.2. Let m ∈ N and A be the differential operator

A(θtω, x,D) :=
∑

|k1|,|k2|≤m

Dk1(ak1,k2(θtω, x)Dk2), ω ∈ �, x ∈ G, t ∈ R,

with homogeneous Dirichlet or Neumann boundary conditions. Similarly as in the
previous example and [26], we make the following assumptions on the coefficients.

1. We assume that the coefficients ak1,k2 are bounded and symmetric. More precisely,
there exists a constant K ≥ 1 such that

|ak1,k2(θtω, x)| ≤ K for all |k1|, |k2| ≤ m, t ∈ R, x ∈ G, ω ∈ �

and

ak1,k2(·, ·) = ak2,k1(·, ·) for |k1|, |k2| ≤ m.
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Furthermore, the mapping t �→ Dkak1,k2(θtω, x) is continuous for |k|, |k1|, |k2| ≤
m, ω ∈ � and x ∈ G.

2. The operator A is uniformly elliptic in G, i.e., there exists a constant c̄ > 0 such
that

∑
|k1|=|k2|=m

ak1,k2(θtω, x)ξk1ξk2 ≥ c|ξ |2m for all t ∈ R, x ∈ G, ξ ∈ R
n .

3. The coefficients form a stochastic process (t, ω) �→ ak1,k2(θtω, ·) ∈ Cm(G) with
Hölder continuous trajectories as in (4.1). This means that there exists ν ∈ (0, 1]
such that

|ak1,k2(θtω, x) − ak1,k2(θsω, x)| ≤ c2|t − s|ν for all t ∈ R, x ∈ G, |k1|, |k2| ≤ m,

for some constant c2 > 0.
4. All constants K , c and c2 are uniformly bounded with respect toω ∈ � and x ∈ G.

One can define the L p-realization Ap of A(·, ·,D) as in (4.2). Moreover, one can
verify as in Example 4.1 that the Assumptions (A0)–(A3) are satisfied.
For instance, (A3) follows from the estimate

‖Ap(θtω) − Ap(θsω)‖p
L(DA,X) = sup

v∈DA,‖v‖=1
‖(Ap(θtω) − Ap(θsω))v‖p

X

=
∥∥∥∥

∑
|k1|,|k2|≤m

Dk1(ak1,k2(θtω, x) − ak1,k2(θsω, x))Dk2v

∥∥∥∥
p

X

=
∫

G

∣∣∣∣∣∣
∑

|k1|,|k2|≤m

Dk1(ak1,k2(θtω, x) − ak1,k2(θsω, x))Dk2v(x)

∣∣∣∣∣∣
p

dx

≤ Cp

∑
|k1|,|k2|≤m

∫

G

|Dk1(ak1,k2(θtω, x) − ak1,k2(θsω, x))Dk2v(x)|p dx

≤ Cp

∑
|k1|,|k2|≤m

sup
x∈G

|Dk1(ak1,k2(θtω, x) − ak1,k2(θsω, x))|p
∫

G

|Dk2v(x)|p dx

≤ Cp‖v‖p
W 2m,p

∑
|k1|,|k2|≤m

‖ak1,k2(θtω, ·) − ak1,k2(θsω, ·)‖p
Cm (G)

.

Example 4.3. Another widely studied example is operators of the form A := � +
a(θtω), where � denotes the Laplace operator with homogeneous Dirichlet bound-
ary conditions in a bounded domain G ⊂ R

n and a(θtω) can be viewed as a time-
dependent random potential [27]. Here, the function a : � → (0,∞) is measurable
and the mapping (t, ω) �→ a(θtω) is assumed to be Hölder continuous. For instance,
in mathematical models for populations dynamics such random potentials can be used
to quantify environmental fluctuations, see, e.g., [18] and the references specified
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therein. Several PDEs where the linear part has this structure have been investigated,
see, e.g., [27] where a random nonautonomous version of the Fisher–KPP equation is
considered. The asymptotic dynamics of the solutions as t tends to infinity has been
characterized depending on the behavior of a.
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