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Many studies provided compelling evidence that extracellular vesicles (EVs) are involved in
the regulation of the immune response, acting as both enhancers and dampeners of the
immune system, depending on the source and type of vesicle. Research, including ours,
has shown anti-inflammatory effects of milk-derived EVs, using human breast milk as well
as bovine colostrum and store-bought pasteurized cow milk, in in vitro systems as well as
therapeutically in animal models. Although it is not completely elucidated which proteins
and miRNAs within the milk-derived EVs contribute to these immunosuppressive
capacities, one proposed mechanism of action of the EVs is via the modulation of the
crosstalk between the (intestinal) microbiome and their host health. There is increasing
awareness that the gut plays an important role in many inflammatory diseases. Enhanced
intestinal leakiness, dysbiosis of the gut microbiome, and bowel inflammation are not only
associated with intestinal diseases like colitis and Crohn’s disease, but also characteristic
for systemic inflammatory diseases such as lupus, multiple sclerosis, and rheumatoid
arthritis (RA). Strategies to target the gut, and especially its microbiome, are under
investigation and hold a promise as a therapeutic intervention for these diseases. The
use of milk-derived EVs, either as stand-alone drug or as a drug carrier, is often suggested
in recent years. Several research groups have studied the tolerance and safety of using
milk-derived EVs in animal models. Due to its composition, milk-derived EVs are highly
biocompatible and have limited immunogenicity even cross species. Furthermore, it has
been demonstrated that milk-derived EVs, when taken up in the gastro-intestinal tract,
stay intact after absorption, indicating excellent stability. These characteristics make milk-
derived EVs very suitable as drug carriers, but also by themselves, these EVs already have
a substantial immunoregulatory function, and even without loading, these vesicles can act
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as therapeutics. In this review, we will address the immunomodulating capacity of milk-
derived EVs and discuss their potential as therapy for RA patients.

Review criteria: The search terms “extracellular vesicles”, “exosomes”, “microvesicles”,
“rheumatoid arthritis”, “gut-joint axis”, “milk”, and “experimental arthritis” were used.
English-language full text papers (published between 1980 and 2021) were identified from
PubMed and Google Scholar databases. The reference list for each paper was further
searched to identify additional relevant articles.

Keywords: rheumatoid arthritis, intestine, microbiome, immunomodulation, extracellular vesicles, bovine milk

INTRODUCTION

There is increasing awareness that the gut plays an important
role in many inflammatory diseases. The intestinal epithelial
cell layer is a selectively permeable barrier permitting the
absorption of nutrients, but at the same time preventing the
entry of microorganisms (gut flora/microbiome) (Box 1). The
gut also has an active immune surveillance system to actually
cope with these microbes and is the largest immune organ of
the body (11). Enhanced gut leakiness, dysbiosis, and intestinal
inflammation are associated with the pathogenesis of many
inflammatory and autoimmune diseases, such as Crohn’s
disease and rheumatoid arthritis (RA) (12–14). Patients with
these diseases also frequently report enhanced disease activity
after food intake (15). The relationship between food intake
and enhanced disease activity is further supported by
antibodies against food components in the blood of these
patients (15).

The pathogenesis of most autoimmune diseases is poorly
understood, but environmental factors, including the
microbiome, and genetic background are known to play a role
in the development of these disorders (16). Autoimmunity is
breaking self-tolerance and one of the proposed mechanisms is
epitope mimicry, a cross reactive immune recognition of self and
viral or bacterial epitopes (17). Some bacteria are capable of post-
translational modification of body ’s own proteins by
citrullination creating altered self-epitopes (18). Citrullination
is catalyzed by host’s own but also bacterial peptidylarginine
deiminase (PAD) enzymes (18). There is compelling preclinical
evidence that the gut microbiome is causally related to this break
in self-tolerance and clinically a leaky gut is linked with a higher
risk of autoimmune diseases (12). The microbiome consists of all
living microorganisms of a defined region, such as the gastro-
intestinal tract. Multiple lines of evidence support the potential
pathogenic role of microbial gut dysbiosis in inflammatory
disorders of the intestine, but also in autoimmune disorders
such as RA, indicating an important role for the gut–joint axis in
the development of this disease (19). For instance, in experimental
arthritis, RA disease is strongly attenuated in germ-free (GF) mice

compared to conventionally colonized mice, as was also reported
for experimental autoimmune encephalomyelitis (20, 21). Both
systemic and intestinal T-helper 17 (Th17) cell differentiation was
strongly reduced in these GF mice (20–22), indicating an
important role of the microbiome in breaking immune
tolerance. Also, targeting intestinal barrier dysfunction before
arthritis onset attenuates development of collagen-induced
arthritis (23). This makes the gut and its microbiota promising
targets for drug- and dietary intervention (24). A way of doing this
is to optimize the micromilieu for hosting favorable
microorganisms and at the same time increase the barrier
function and direct the immune surveillance to target the
putative pathogens and prevent their entry. In this sense,
antibiotics are like a sledgehammer, and although promising
results are obtained in animal models (25, 26), the use of
antibiotics is also linked to microbiome dysbiosis and
consequently the development of autoimmune disease.
Probiotics and prebiotics to modulate the microbiome and
thereby the gut–joint axis are currently under investigation (27);
also, immune-regulatory components from food are promising
options. Milk is a complex biological fluid with unique bioactive
components that influence gut immunity, intestinal flora, and
growth and development of infants (28, 29). Breastfeeding is
associated with a decreased risk of asthma and allergic disease
during childhood [reviewed in (30)]. However, a protective effect
of breastfeeding against atopy, eczema, and food allergies is not
convincingly proven yet (30, 31). On the other hand, several
studies indicate a protective effect of raw cow milk consumption
early in life against the development of asthma and respiratory
tract infections during childhood (32–37). However, in some
studies, the effects were not always independent of other farm-
related exposures, e.g. exposure to straw, silage, or cows (32, 33, 36).
The underlying mechanisms for this protection are therefore not
always clear, but a potential contributor could be extracellular
vesicles found in milk. Many proteins present in milk, such as
lactoferrin, lactadherin, and immunoglobulins, are implied in
mediating these effects.

Compared to milk protein, fat, and hormones, milk-derived
exosomes or extracellular vesicles (mEVs) are less frequently
studied components of milk (Box 2). Our lab has been on the
forefront of researching the functional effects of milk EVs on
bone and joint-related diseases. Our initial study revealed that
milk-derived EVs could attenuate experimental arthritis in mice
(14). Oral gavage with milk EVs, or milk EVs in the drinking

Abbreviations: EV, extracellular vesicle; RA, rheumatoid arthritis, GF, germ-free;
TLR, toll-like receptor; MSC, mesenchymal stem cell; IEC, intestinal epithelial cell;
NEC, necrotizing enterocolitis; SEC, size-exclusion chromatography; MVE,
multivesicular endosome.
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water of mice resulted in reduced severity of experimental
arthritis in two different animal models (14). IL1rn−/− mice
developed spontaneous arthritis associated with loss of intestinal
microbial diversity and specific taxonomic alterations in the
microbiota (50). Furthermore, arthritis in these IL1rn−/− mice
was diminished under germ-free conditions and was shown to be
dependent on the activation of toll-like receptor 4 (TLR4) and
subsequent enhanced Th17 differentiation (22). Interestingly,
these mice showed reduced cartilage proteoglycan depletion
and bone marrow cellularity after treatment with mEVs by
oral gavage. Similarly, in a collagen-induced model for
arthritis, where one week before immunization with collagen
the mice received milk EVs via drinking water, the mEV-treated
group showed less severe arthritis. This was accompanied by
reduced inflammatory markers in the serum (MCP-1 and IL-6),
as well as lower Tbet (Th1) and RORyT (Th17) expression in
splenocytes, suggesting reduced T cell activation (14).

In this review, we summarize and discuss the current
knowledge on the therapeutic potential of bovine milk EVs in

inflammatory disorders, in particular in the context of the gut–
joint axis in RA.

EXTRACELLULAR VESICLES

EVs is the collective term for vesicles secreted by a variety of cells
throughout the body and can be found in all body fluids, such as
blood, urine, synovial fluid, and milk (51) (Box 3). EVs are small
cell membrane-derived phospholipid bilayer structures that
range in size from 30 to 2,000 nm in diameter (60). Previously,
they were considered to be cellular waste products, but
compelling evidence has indicated that EVs transport their
cargo, consisting of bioactive proteins, enzymes and lipids, and
deliver them to recipient cells. This makes EVs important
mediators in cell–cell communication.

Milk is a rich source of EVs, and EVs obtained from human
breast milk as well as from raw and pasteurized cow milk have
been characterized in great detail, including their microRNA and

BOX 2 | Milk processing and milk EV characteristics.
Bovine milk is part of the human diet. Next to the main milk proteins, i.e. caseins and whey proteins, milk contains 3.5% fat present in the milk fat globules, and milk EVs as
one of the minor milk components. The structure of milk EVs differs from milk fat globules in the fact that they are membrane vesicles that are structured in a bilayered cell
membrane, while the fat globules are surrounded by a trilayered membrane. Milk EVs can be characterized by their size, density, and surface markers like flotillin 1 and
tetraspanins CD9 and CD81 (38).

Milk EVs can survive digestion (39, 40), allowing the functional transfer of the bovine milk EVs (including membrane components or EV content) into the human body
after consumption (41, 42). However, because rawmilk is not sterile andmay contain pathogens, processing of milk by heat treatment is required to make bovine milk safe
for human consumption. There are several heating methods, from which pasteurization and ultra-heat treatment (UHT) are the processes that are applied most frequently.
These processing steps can impact the biological activity of the milk EVs. Pasteurization conditions result in preservation of the milk EVs to a large extent, while UHT is
detrimental for the milk EVs and its miRNA (43–46). During milk processing, homogenization is also performed to stabilize the milk fat globules in a uniform way in the milk
by decreasing their size. Part of the milk fat globules after homogenization have similar sizes as the milk EVs, and are therefore difficult to differentiate from EVs on the basis
of size alone. More pure EVs can be isolated with sucrose gradient centrifugation; however, for the scalability of the milk EVs, this is not the best method (47). To remove
protein content and thereby create more pure EVs, acidification is also an option (48, 49).

BOX 3 | Biogenesis of EVs.
Extracellular vesicle is the collective term for vesicles secreted by a variety of cells throughout the body. This heterogeneous population of vesicles is found in body fluids,
such as plasma, urine, synovial fluid, milks, saliva, and cerebrospinal fluid (52). A distinction can be made between three different subtypes of vesicles: microvesicles (MVs),
apoptotic bodies, and exosomes (53). The nomenclature of these vesicles is still under debate, and ongoing efforts are made to better distinguish vesicle subtypes [see
positional paper ISEV (54)]. Within this review, we will use terminology from the original papers. MV size varies from 50 to 1,000 nm (55), making them overlap slightly with
exosomes which are 30–150 nm in diameter. Apoptotic bodies are the largest vesicles, ranging from 500 to 2,000 nm. MVs and apoptotic vesicles arise through direct
outward budding and fission of the plasma membrane, a process also known as vesicle shedding (56), and by blebbing of the cell membrane during apoptosis (57),
respectively. Exosomes, on the other hand, derive from the multivesicular endosome (MVE). The generation of MVEs involves the lateral segregation of cargo at the
membrane of an endosome, followed by inward budding and release of vesicles into the endosomal lumen (58). A comprehensive review on the cell biology of EVs was
recently published by van Niel et al. (59).

BOX 1 | Gut microbiome and gastro-intestinal function.
The gut microbiome consists of bacteria, bacteriophages, yeasts, protozoa, and viruses and can be seen as an external organ. The biggest component of the gut
microbiome are bacteria. Colonization with gut microbes starts after birth and depends on many external factors, such as the delivery mode, type of feeding (breast versus
formula), maternal factors, and other early life exposures such as infections or use of antibiotics (1, 2). The gut microbiota in early life is important for the maturation of the
immune system, and it produces vitamins, minerals, and energy from our diet (3). During childhood, a complex relation between the host and its microbiome develops that
stabilizes over time (4, 5). The developed host–microbiome symbiosis is essential for health throughout life. After coevolution of the immune system with the microbiome,
keeping the balance is of utmost importance to sustain health. Microbiome disruptions can therefore lead to changes in barrier function and immune responses that
contribute to disease development or progression (6). In this respect, a highly diverse microbiome is considered healthy, as it helps to free essential nutrients and energy,
helps detoxification of toxic substances such as primary bile acids, and provides colonization resistance against pathogens. Contrarily, a low diversity is linked to microbial
dysbiosis and associated with many diseases, including autoimmune disorders such as RA (7, 8). However, there is still debate whether higher diversity is always a good
thing (9). Keeping a balanced microbiome is therefore essential for the function of our gut and maintaining health. A diverse diet rich in fibers, polyphenols, and fermented
food helps to maintain a healthy microbiome that provides short-chain fatty acids and essential vitamins that are important energy sources for the gut epithelium (10). It is
clear that a delicate balance between the host and its microbiome exists that reflects our health and is influenced by many external factors of which lifestyle is the
most important.

Aarts et al. Milk EVs Break Gut–Joint Axis

Frontiers in Immunology | www.frontiersin.org July 2021 | Volume 12 | Article 7032773

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


protein cargo (48, 61). A large part of highly abundant
microRNAs in milk-derived EVs are evolutionary conserved
and are present in milk of all mammals (62). Numerous
microRNAs have been identified in milk-derived EVs, of which
a large number have been described as having an immune-
modulatory function. In Table 1, a list of these commonly
identified microRNAs can be found.

Milk-derived EVs have a particularly resilient lipid bilayer
membrane, which serves to protect miRNAs from degradation
caused by low pH and rich enzymatic environments, as seen in
the gastro-intestinal tract. Minimal loss of RNA was observed
after exposing milk EVs to digestive juices such as saliva and
gastric, pancreatic, and bile juice (39). Also, there are some
studies showing that miRNA from milk EVs can be found in
blood and organs from humans and mice (41, 76). Additionally,
using the in vitro TNO intestinal model-1, representing the
gastro-intestinal tract from stomach to small intestine, it was
shown that 2 h of ‘digestion’ resulted only in a minor loss of the
abundant miR-223 and miR-125b (40). These findings indicate
that mEVs can reach the small intestine without losing their
integrity. Besides their resilience to low pH and enzymatic
degradation, milk EVs can also withstand high temperatures,
as milk EVs isolated from store-bought pasteurized milk are still
bioactive (77). We will further discuss the bioactivity and effects
of milk EVs on various cell types below.

IMMUNOMODULATORY PROPERTIES OF
EXTRACELLULAR VESICLES

MilkEVs, andEVs in general, have interesting immunomodulatory
properties. Many studies have shown involvement of EVs in the
regulation of the immune response, acting as both enhancers and
dampeners of the immune system, depending on the source and
type of vesicle and the receiving cell type. Immunosuppressive EVs
are naturally present in the body, including T cell-derived EVs,
which have been shown to downregulate antigen presentation by

antigen-presenting cells (78). Additionally, stem cell-derived EVs
are vastly investigated for their immune-modulatory properties
[reviewed in (79)] Both embryonic stem cells (ESCs) and
mesenchymal stem cells (MSCs) are producers of EVs with strong
immunosuppressive capacities, similar to that found using stem
cells as therapeutics themselves. Finally, research, including our
own at the Radboudumc, has shown the anti-inflammatory effects
of milk-derived EVs, using human breast milk as well as bovine
colostrum and store-bought pasteurized milk. Although it is not
completely elucidated which factors within the EVs contribute to
these immunosuppressive capacities, a number of proteins and
miRNAs are likely candidates.

Despite their immunosuppressive role, in many diseases EVs
havebeen found toenhance inflammationaswell (80).For example,
EVsderived fromsynovialfluidofRApatients containhigh levelsof
TNFa and have been shown to delay activated T cell-mediated cell
death, possibly contributing to the pathogenesis in RA (81).
Similarly, sarcoidosis patients have EVs in their bronchoalveolar
fluid, which show pro-inflammatory properties (82). Macrophage-
derived EVs can also carry alarmins and contribute to bone
homeostasis (83). It is noteworthy that the membrane receptor
composition, cellular metabolism, and role in the disease process of
the recipient cell may also determine the net outcome of the
EV response.

T CELL ACTIVATION AND
DIFFERENTIATION BY
EXTRACELLULAR VESICLES

Activated CD4+ T cells are found in inflammatory infiltrates of
the rheumatoid synovium (84), and the hallmark cytokine for
Th17 cells, IL-17, is spontaneously produced in synovial explant
cultures of RA donors (85). In experimental animal models for
RA, such as collagen-induced arthritis and adjuvant arthritis, the
disease can be transferred by autoreactive T cells (86). Collagen-
induced arthritis is clearly attenuated in IL-17 deficient mice

TABLE 1 | Commonly identified microRNAs in milk-derived EVs.

MicroRNA present in bovine milk EVs Expected function

Let7 Protection against bacterial infection (63)

miR-21 Linked to regulation of TLR signaling (64)
Clearance of apoptotic cells (65)
Clearance of bacterial infection (63)

miR-146 Linked to regulation of TLR signaling (66)
Clearance of bacterial infection (63)

miR-148 Inhibition of demethylation Foxp3 (43, 67)
Suppression of TGFb signaling via SMAD (68)
Regulation of DNMT1 and DNMT3, epigenetic homeostasis of DNA methylation (69)

miR-155 Anti-inflammatory effects (70)
Regulation of TLR signaling (66)
Induction of Tregs (71)

miR-181 Anti-inflammatory effects (72)
NFkB signaling (73)

miR-223 Linked to infection and inflammation (74)
Eosinophil function (75)
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(87), and in IL1rn-deficient mice, spontaneous arthritis is
completely prevented in the absence of IL-17 (88). Another
important cytokine in the pathophysiology of RA and key in
Th17 differentiation is IL-23, which is detectable in RA synovial
joints (89, 90). In patients with RA, the Th17 and regulatory T
cell (Treg) balance is skewed in favor of Th17 development,
contributing to a break in tolerance and autoimmunity (91).

A strong candidate to modulate T cell function, especially
Th17 and Treg cells, is transforming growth factor-beta (TGFb).
TGFb has been found on the surface of EVs from a number of
different origins, including mast cells (92), tumor cells (93, 94),
but also milk-derived EVs (77) and intestinal epithelial cells
(IECs) (95). Most notable is a study by Cai et al. who used TGF-
b1 gene-modified dendritic cel ls (DCs) to produce
immunosuppressive EVs, which were able to attenuate
inflammatory bowel disease in vivo. A significant prevention of
weight loss, decreased disease activity scores, as well as reduced
intestinal bleeding was observed after the administration of TGF-
b1-EVs (96).

Ogino et al. speculate the underlying mechanism could be via
the induction of Tregs, which are known to downregulate Th17
cells and thereby suppress colonic inflammation (97).
Interestingly, milk EVs from both human (98) and bovine milk
(14) have been shown to promote Treg differentiation. Admyre
et al. (98) were among the first to show Treg differentiation
induced by EVs isolated from colostrum and mature breast milk.
Their functional analyses showed that milk EVs can inhibit anti-
CD3-induced IL-2 and IFN-g production by T cells and
simultaneously increase the number of Treg cells in vitro. A
potential link to the prevention of asthma by Tregs suppressing
Th2 responses was later suggested (99). Additionally, Zonneveld
et al. have recently reported that human milk EVs can directly
inhibit CD4+ T helper cell activation without inducing tolerance
(100). In experimental arthritis studies, our research group at the
Radboudumc found circumstantial evidence for this effect on T
cells, asmice treatedwith bovinemEVs showed amarked reduction
in Tbet (Th1) and RORyT (Th17) expression in splenocytes.
Although no changes were observed in the Treg subset in vivo, we
were able to confirm that EVs from pasteurized bovine milk
enhanced Treg differentiation in vitro. Further research is needed
toelucidate if the route ofEVadministration, aswell as the timing in
the developing immune response, determines the net outcome of
the EVs, as has been demonstrated for therapeutic viral vectors and
stem cells (101).

MICROBIOME AND BARRIER FUNCTION
IN RA

Several studies in RA patients and animal models showed that
dysbiosis of the gut microbiota induces an inflammatory
response and is associated with disease progression of RA
(102). For instance, new onset rheumatoid arthritis (NORA)
patients have enriched levels of Prevotella copri in their gut, and
this correlates with enhanced susceptibility to RA (8).
Interestingly, germ-free mice inoculated with P. copri-

dominated fecal samples from RA patients developed arthritis in
a Th17-dependent manner (103). Of great interest, our group
showed that these alterations in intestinal microbiome may
precede the development of arthritis, as our study showed that
the intestinal microbiome undergoes marked changes in the
preclinical phase of collagen-induced arthritis (26). It is also
known that the intestinal barrier is changed before the onset of
RA. Ileal mucosal biopsies from treatment-naïve NORA patients
and active RA patients showed a reduced expression of tight
junction proteins claudin-1 and occludin compared to healthy
controls on mRNA level and histology (23). Also, increased levels
of CD3+ T cells, macrophages, and B cells were found in the
lamina propria of NORA patients (23). Unfortunately, RA
patients are often treated with methotrexate, but this DMARD is
known to increase intestinal permeability (104, 105). Interestingly,
patients with RA successfully treated with DMARDs show partial
restoration of eubiotic gutmicrobiome, suggesting a crucial role of
microbiota in treatment efficacy (106).

MILK EVs PROMOTE GUT
BARRIER INTEGRITY

In RA, the gut–joint axis is in part related to the observation of
leaky guts in some of these patients as cause of the elevated levels
of bacterial cell wall fragments as well as bacterial DNA in the
joints of these patients (107–111). The mucosal barrier is an
important line of defense against invasion, infection, and
bacterial dissemination. Underneath the epithelial cells lies the
lamina propria, where T cells, macrophages, B cells, and plasma
cells are present, and dendritic cells promote the differentiation
of Th17 and Treg cells (112). The intestinal epithelial barrier
prevents the entry of microbes into this lamina propria (112).
Milk components have a protective effect on the intestine by
improving its barrier function and microbiome diversity and
limiting inflammatory processes. Milk EVs, from different
species, show a similar tendency (113–115). Most milk EV
studies focusing on barrier function study the functional effects
on the epithelial cells, often using cell lines or animal models for
necrotizing enterocolitis (NEC). Porcine milk EVs have been
shown to promote cell proliferation of intestinal epithelial cells
from newborn (unsuckled) piglets (IPEC-J2 cells), as well as,
promote intestinal tract development in vivo, as shown by
increased villus height, crypt depth, and higher expression of
CDX2, PCNA, and IGF-1R (116). Similarly, milk EVs also
promote epithelial cell growth, potentially via activation of the
MAPK pathway (117). Additionally, milk EVs were able to
protect mice from intestinal injuries caused by NEC (118).
Reduced intestinal inflammation (myeloperoxidase expression)
was observed, as well as an increase in goblet cell activity (MUC2+
and GRP94+ cells), highlighting the potential novel application of
milk-derived EVs in the prevention of NEC development. Several
studies using human milk EVs show comparable results. Martin
et al. found that human breast milk-derived EVs had a protective
effect on intestinal epithelial cells, reducing oxidative stress-induced
cell apoptosis (induced by H202) (119). The factors from EVs that
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promote the intestinal barrier function have not been identified, but
the expression of e.g. polymeric immunoglobulin receptor on EVs
could be of importance. This receptor mediates the transcytosis of
dimeric IgA and polymeric IgM through the intestinal epithelial
layer and by this, protects against bacterial overgrowth and invasion
causing leakage. Interestingly, two cow milk EV subsets [isolated by
ultracentrifugation 35,000 g (P35K) or isolated at 100,000 g
(P100K)] were administered orally by gavage to healthy and DSS
(dextran sodium sulfate)-treated mice. P35K EVs and P100K EVs
(to a lesser extent) improved several outcomes associated with DSS-
induced colitis; they restored intestinal impermeability, replenished
mucin secretion, and modulated the gut microbiota (13).

THERAPEUTIC USE OF MILK EVs

The use of milk EVs, either as stand-alone drug, drug carrier, or
functional dietary component, is often suggested in recent years.
Several research groups have studied the tolerance and safety of
milk-derived EVs in animal models, administered either
intravenously or by oral gavage, and the consensus is that they
are well tolerated with no significant changes or slightly induced
cytokine levels systemically (48, 76). Due to its composition,
milk-derived EVs are highly biocompatible and have enhanced
stability and limited immunogenicity, which gives them many
advantages over traditional synthetic delivery vehicles, such as
liposomes, indicating that they might be well tolerated.
Furthermore, it has been demonstrated that milk-derived EVs are
taken up in the gastro-intestinal tract after oral delivery via the
neonatal Fc receptor, and they stay intact after absorption (120).
This receptormediates bidirectional transcytosis of IgG in epithelial
cells and rescues albumin from intracellular degradation, thereby
increasing plasma half-lives of these proteins.

As previously mentioned, milk-derived EVs have two
important characteristics that make them very suitable as drug
carriers; first of all, their lipid bilayer functions as a protective
shell for drugs inside, and second, the efficient uptake of EVs
results in improved bioavailability (Box 4) of the drug. Among
one of the first studies is a large study undertaken by the group of
Gupta, who developed a scalable isolation method for bulk
production of milk-derived EVs that can act as carriers for
chemotherapeutic agents (76). They used a number of different
chemotherapeutics and chemoprotective compounds, including
withaferin A, to test loading efficiency which varied between 10
and 40% depending on the agent. After confirming tumor

growth inhibition by drug-loaded EVs in vitro, they compared
efficacy of drug-loaded EVs to free drug in a long tumor
xenograft model in vivo and found a significantly greater
tumor inhibitory effect with drug-loaded EVs (76). A follow-up
study, this time using paclitaxel-loaded EVs, demonstrated oral
delivery also resulted in significant tumor growth inhibition in a
tumor xenograft model (124). Additionally, the study confirmed
the stability of paclitaxel-loaded EVs for storage up to four weeks
at −80°C (124). Milk-derived vesicles have also been used as a
novel delivery system for small interfering RNA (siRNA) in a
therapeutic application against cancer (125, 126). Furthermore,
when encapsulated in milk EVs, curcumin showed increased
stability, solubility, and bioavailability (127). Of note, as
discussed in the previous paragraphs, milk-derived EVs
themselves already have a substantial immunoregulatory
function, and even without loading, these vesicles can act as
therapeutics. Additionally, the characterization of EVs to
monitor potential differences is very important, and this is still
a field of ongoing research.

FUTURE RESEARCH

There is increasing awareness that the gut plays a vital role in our
overall health. The gut represents the largest surface area being
exposed to our environment and is also the largest immune
organ in our body. An enhanced intestinal leakiness, dysbiosis of
the gut microbiome, and bowel inflammation are not only
associated with diseases of the gut such as colitis and Crohn’s
disease, but are also characteristic of many other systemic
inflammatory diseases such as lupus, multiple sclerosis, psoriatic
arthritis, systemic sclerosis, and RA (128–131). Strategies to target
the gut, and especially its microbiome, using pro- and prebiotics
(27) are under investigation and hold a promise as a therapeutic
intervention for these diseases.

We hypothesize that milk-derived EVs could be a potential
therapeutic strategy (Figure 1) in modulating the gut–joint axis
in RA. Since the net effect of the total dairy matrix on human
health is dependent on the health status of the individual, the
product type of dairy, and individual preferences towards dairy
products, several aspects need to be considered before such
application could be implemented. The isolation of pure
extracellular vesicles without other milk constituents like fat
globules, milk proteins, lactose, and feed-derived milk
components, would provide a widely applicable format of

BOX 4 | Bioavailability and safety of milk EVs.
Research has shown that milk EVs are easily taken up by several different cell types. Intestinal cells are particularly quick to take up milk EVs when exposed. Wolf et al.
(121) showed that both Caco-2 and IEC-6, intestinal cell lines, are able to take up milk EVs as fast as within 15 min. Intestinal uptake of EVs is likely via receptor-mediated
endocytosis by intestinal epithelial cells (transcellular transport) or paracellular transport via tight junctions. Interestingly, not all cells can take up milk EVs; for example
undifferentiated THP-1 cells (monocytes) do not show uptake, whereas their differentiated counterpart (macrophages) do take up EVs (122), indicating there is a cell type
or cell differentiation state specific mechanism at work. Besides in vitro uptake, several animal studies have shown uptake and biodistribution of milk EVs in mice (48, 123).
Both oral intake and intravenous injection (i.v.) resulted in peak uptake in the liver and spleen of mice, after 24 and 3 h, respectively. Interestingly, miRNAs transfected into
the milk EVs were found in several organs 6 and 12 h after oral gavage (123), confirming uptake in vivo. In the intestine, EVs could exert other additional effects due to their
ability to spread, cross the mucus layer, and directly migrate to other tissues and/or interact with different cells of the immune system of the host. In healthy animals, the
biocompatibility and safety have been tested, and extensive analysis confirmed that there were no systemic changes upon i.v. injection of milk EVs into mice (48). Blood
levels of markers for liver damage (aspartate transaminase, alanine transaminase, and total bilirubin), kidney damage (blood urea nitrogen and creatinine) and
hematological parameters were all unchanged (48).
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milk-derived EVs for therapeutic application. Pure mEVs would
be preferred over more complete milk products, since lactose
intolerance is prevalent in a large part of the world, and RA
patients for example can have increased antibodies against food
antigens including milk proteins of cows (132). The isolation
procedure is important and should conform GMP guidelines.

One of the important aspects to tackle is the reproducibility of
the efficacy of the milk EV product used. Another challenge is the
translation of studies performed in vitro or in animals into humans.

More research is required to figure out what the active
components of the milk-derived EVs are. Whether these are
miRNAs, growth-factors, or other proteins, or a combination of
these factors is important to understand. Whether further

separation, based on size or content, into subpopulations of the
heterogeneous population of EVs is required, needs attention.
Another parameter determining the content of milk-EVs is the
origin of milk, i.e. species (cow, camel, horse, goat or sheep),
changes during lactation period, food intake, seasonal effects, and
animal breeds used.

Additionally, we need to know if these vesicles are actively taken
up via oral intake in humans and show similar effects to the mouse
and in vitro models described here. Finally, standard practices for
the isolation, especially on a larger scale, are required.

Over the years, many different isolation protocols have been
developed for the isolation of milk-derived EVs. Each isolation
protocol comes with its own strengths and pitfalls, which are

FIGURE 1 | Schematic overview how milk EVs can modulate intestinal barrier function and immunity. A healthy intestine has an intact barrier of various intestinal
cells and mucus. Milk-derived EVs may contribute to the restoration of an impaired barrier function during disease by increasing mucus production and expression of
tight junctions via miRNAs and TGF-b. Furthermore, mEVs can act on immune cells, locally in the gut, or systemically via the circulation. This figure was in part
created with BioRender and was licenced for use in publication (created with BioRender.com).

BOX 5 | Organoids.
In the human body, the intestinal epithelial layer is exposed to the microbiome. Although the microbiome is separated from the enterocytes by a mucus layer, bacterial-
derived metabolites can penetrate this mucus layer and affect growth, differentiation, and intestinal health. To mimic these interactions in vitro, there are several factors to
take into consideration. For instance, the intestine consists of different cell types such as, stem, Paneth, goblet, enteroendocrine cells, and enterocytes. The recent
development of intestinal organoid cultures in 3D and 2D, however, allows the use of more sophisticated cultures with all cell types present.

A second hurdle to take, and maybe the most difficult one, is the difference in growth (conditions) between human cells and bacteria. When bacteria are co-cultured
with human cells, they will rapidly overgrow the culture and kill the human intestinal cells within hours. In addition, human intestinal cells require high oxygen levels, whereas
most intestinal bacteria grow anaerobic. One way to solve these problems is by micro-injecting bacteria into the lumen of organoids/spheroids (139). Williamson et al.
injected human fecal microbiota and showed that even oxygen-sensitive anaerobic taxa are maintained for at least 96 h. However, when longer studies are required, the
group of Donald E. Ingber has developed an anaerobic human intestine and microbiome-on-a-chip system (140). Although they used Caco2 cells and endothelial cells
instead of organoids, they nicely demonstrated that it is possible to create an oxygen gradient that allows the growth of human intestinal cells combined with anaerobic
bacteria. The next step would be to apply 2D grown human intestinal organoids, replacing Caco2 cells in this system.
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nicely compared in a recent article by Maburutse et al. (133)
Ultracentrifugation is the most used isolation method, either as a
stand-alone procedure or in combination with further
purification using density gradients, isoelectric precipitation, or
size-exclusion chromatography (SEC). Several methods to lose
the casein and whey proteins, followed by purification of the milk
EV via ultracentrifugation, size exclusion chromatography,
membrane affinity columns, or solid phase extraction have
been reviewed (134–136). Which process is most applicable for
upscaling, with the preservation of biological functionality of the
milk EVs, needs to be validated.

Upfront milk testing and quality control will be an essential
component in the milk processing and downstream EV isolation.
Furthermore, the milk EV isolation methods that are used can
influence the composition of the EV sample. As described by
Provost, different subsets of milk EVs are present in commercial
milk (137). They found that a milk EV subset, which pellets at
low ultracentrifugation speeds, contains and protects the bulk of
milk microRNAs from degradation. In addition, sample
collection methods as well as storage conditions influence the
quality of the EVs. Zonneveld et al. have shown that prolonged
storage at 4°C and −80°C can lead to cell death which results in
contamination of the EV population in human breast milk.
Interestingly, the cow breed and even the diet of the cow can
also influence the milk EV composition (137, 138). These are all
important considerations in moving forward to establish a
standardized, large-scale isolation protocol for milk EVs, ready
to be used as potential therapeutics.

FUTURE PERSPECTIVE AND FINAL
CONSIDERATION

Altogether, this review highlights the therapeutic potential of
milk EVs to treat arthritis and inflammatory gut diseases. Once a
suitable large-scale isolation method is established and it is
confirmed that the vesicles retained their therapeutic potential
in vitro and in mouse models of disease, we propose testing the
bioavailability and safety in both human organoids (Box 5) and
humans. It will not replace the current standards of care
(DMARDs, biologicals) but will be a sophisticated supportive
treatment by disrupting the pathogenic gut–joint axis.
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