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Abstract
This study addresses the question whether visually

grounded speech recognition (VGS) models learn to capture
sentence semantics without access to any prior linguistic knowl-
edge. We produce synthetic and natural spoken versions of a
well known semantic textual similarity database and show that
our VGS model produces embeddings that correlate well with
human semantic similarity judgements. Our results show that
a model trained on a small image-caption database outperforms
two models trained on much larger databases, indicating that
database size is not all that matters. We also investigate the im-
portance of having multiple captions per image and find that
this is indeed helpful even if the total number of images is
lower, suggesting that paraphrasing is a valuable learning sig-
nal. While the general trend in the field is to create ever larger
datasets to train models on, our findings indicate other charac-
teristics of the database can just as important important.
Index Terms: speech recognition, multimodal embeddings,
computational linguistics, deep learning, sentence semantics

1. Introduction
The idea that words that occur in similar contexts have similar
meaning has been investigated for decades (e.g., [1, 2]). Ad-
vances in deep learning and computational power have made
it possible to create models that learn useful and meaningful
representations of larger spans of text such as sentences, para-
graphs and even complete documents [3, 4, 5, 6, 7, 8]. A caveat
of such models is the need to be trained on enormous amounts
of text and the current trend is to use ever larger training cor-
pora to create better models. Whereas BERT [8] is trained on
2.5 billion tokens of text the more recent GPT-3 [9] is trained
on nearly 500 billion tokens. It is obvious that humans are able
to understand and use language after much less exposure; one
would need to read 200 words per second, 24 hours a day for 80
years to digest as much information as GPT-3. People are able
to hear and speak long before we are able to read, and many
people never learn to read at all. Moreover, writing is a rela-
tively recent invention, which only arose after spoken language.

Visually Grounded Speech (VGS) models aim to learn lan-
guage without using written text data or prior information on the
linguistic units in the speech signal. Instead, these models com-
bine speech signals with visual information to guide learning; a
VGS model learns to create representations for an image and its
corresponding spoken caption that are similar to each other in
the embedding space. Such models have been shown to learn to
extract meaningful linguistic units from speech without explic-
itly being told what these units are, as shown in word recogni-
tion experiments [10, 11] and semantic keyword spotting [12].
Recent research has shown that VGS models with quantisation
layers learn to extract phonetic and word-like units that are use-
ful in zero-shot learning and speech synthesis [13, 14].

As with text-based models, there is a trend in VGS mod-
els to use ever larger training corpora. CELL, one of the ear-

liest VGS models, used a database of around 8,000 utterances
[15]. Harwath and colleagues introduced the first ‘modern’ neu-
ral network based approach which was trained on the Flickr8k
Audio Caption corpus, a corpus with 40,000 utterances [16].
This corpus was quickly followed up by Places Audio Captions
(400,000 utterances) [17] and, most recently, by SpokenCOCO
(600,000 utterances) [14].

However, previous work on visual grounding using writ-
ten captions has shown that larger databases do not always re-
sult in better models. In [18], we compared models trained on
the written captions of Flickr8k [19] and MSCOCO [20]. We
showed that, although the much larger MSCOCO (600k sen-
tences) achieved better performance on the training task, the
model trained on the smaller Flickr database performed better
at transfer tasks; the resulting embeddings correlated better with
human semantic relatedness ratings. As the MSCOCO model
only performed better on visually descriptive sentences, these
results suggest that there is a trade-off between getting better
at processing image descriptions and creating generally useful
sentence representations.

There is another interesting difference between the VGS
training corpora besides their size. While both Flickr8k Audio
and SpokenCOCO have five captions per image, Places Audio
has only one. Consequently, even though SpokenCOCO has
more captions than Places, Places has 400,000 images while
SpokenCOCO has only 120,000. The more fundamental dif-
ference is how models trained on Places and Flickr8k handle
paraphrases. In a VGS, captions with similar images (i.e., likely
paraphrases) should have similar representations. So, in a way,
a VGS can be said to implicitly learn that paraphrases share
one meaning. However, the paraphrasing in SpokenCOCO and
Flickr8k is more explicit than in Places because there are always
five captions per image, and these should ideally have the same
representation in the embedding space.

Our first research question is: do VGS models learn to cap-
ture sentence semantics? So far, testing of the usability of the
sentence representations created by VGS models has been lim-
ited, and recent research has focused more on whether useful
sub-sentence units can be extracted (e.g. [11, 13, 14]). To
answer this question we will investigate whether the represen-
tations learned by a VGS are predictive of semantic sentence
similarity as judged by humans. In order to test this, we cre-
ate spoken versions of the Semantic Textual Similarity (STS)
database. STS consists of sentence pairs that were annotated
by humans for semantic similarity. We look at the correlation
between the human similarity ratings and the similarity of sen-
tence representations created by our VGS model.

We compare models trained on the three spoken image cap-
tion databases; Flickr8k Audio Captions, Places Audio Cap-
tions and SpokenCOCO. It is tempting to simply move on to
the bigger corpus once one becomes available without investi-
gating whether this actually constitutes an improvement. Using
more data will likely lead to an increase in training task per-



formance, but comparisons between corpora based on metrics
other than training task performance are scarce. We investigate
which model creates sentence representations that best capture
sentence semantics, the only difference between these models
being the database they were trained on. Our test material (STS)
contains sentences from a wide range of domains, so a model
needs to be able to generalise well to perform well on this task.

We will also investigate the importance of paraphrasing in
corpora having multiple captions for each image. Our second
research question is: is it beneficial for VGS models to have
multiple captions per image? We answer this question by train-
ing models on subsets of SpokenCOCO where we fix the total
number of captions, but vary the number of captions per image
and consequently the number of images in the training data.

2. Methods
2.1. Semantic similarity data

For the semantic evaluation we use the Semantic Textual Sim-
ilarity (STS) data. STS is a shared task hosted at the SemEval
workshop. These datasets contain paired sentences from vari-
ous sources labelled by humans with a similarity score between
zero (‘the two sentences are completely dissimilar’) and five
(‘the two sentences are completely equivalent, as they mean
the same thing’) averaged over five annotators per sentence pair
(see [21] for a full description of the annotator instructions).

We use the STS 2012 to 2016 tasks, which are included in
the SentEval toolbox for testing textual sentence representations
[22], allowing for a comparison between speech-based models
and previous work using SentEval. Table 1 gives an overview of
the STS tasks by year, and the sources from which the sentences
were taken. We had the sentences produced by speech produc-
tion software (synthetic speech) and by humans. All synthetic
and natural utterances are made publicly available in .wav for-
mat as the SpokenSTS database.

2.1.1. Synthetic speech

The synthetic speech was created with Google’s Wavenet us-
ing three male and three female voices with a US accent. All
utterances were produced using all six voices for a total of
75,264 utterance pairs. We applied as little preprocessing to
the STS text as possible. To identify the necessary preprocess-
ing steps, we sampled 10% of the STS sentence pairs to con-
vert to synthetic speech without any preprocessing. This sample
was used to identify text characteristics that were troublesome
to Wavenet and to apply the necessary preprocessing steps in
order to correct these where possible. For example, Wavenet
pronounces the quotation marks (saying ‘quote’) if there is a
space between the period and a quotation mark at the end of a
sentence. Wavenet also pronounces certain non-capitalised ab-
breviations as if they were words rather than spelling them out
(e.g., “usa” is pronounced /usa/ instead of /u/, /s/, /a/). A full
overview of all preprocessing applied, our code and our data
can be found at https://github.com/DannyMerkx/
speech2image/tree/Interspeech21.

2.1.2. Natural speech

We selected a random sample of 5% of the STS sentence pairs
(638 pairs) evenly distributed across the different STS subsets.
These sentences were recorded by four native speakers of En-
glish (two male, two female) with a North American accent.
Recordings were made in a sound-attenuated booth using Au-

Table 1: Description of the STS subtasks by year. Some subtasks
appear in multiple years, but consist of different sentence pairs
drawn from the same source. The image description datasets
are drawn from the PASCAL VOC-2008 dataset [23] and do
not overlap with the training material of our models.

Task Subtask #Pairs Source
MSRpar 750 newswire
MSRvid 750 videos

STS 2012 SMTeuroparl 459 glosses
OnWN 750 WMT eval.
SMTnews 399 WMT eval.
FNWN 189 newswire

STS 2013 HDL 750 glosses
OnWN 561 glosses
Deft-forum 450 forum posts
Deft-news 300 news summary

STS 2014 HDL 750 newswire headlines
Images 750 image descriptions
OnWN 750 glosses
Tweet-news 750 tweet-news pairs
Answers forum 375 Q&A forum answers
Answers students 750 student answers

STS 2015 Belief 375 committed belief
HDL 750 newswire headlines
Images 750 image descriptions
Answer-Answer 254 Q&A forum answers
HDL 249 newswire headlines

STS 2016 Plagiarism 230 short-answer plagiarism
Postediting 244 MT postedits
Question-Question 209 Q&A forum questions

Total 12,544

dacity in sessions of one and a half hour including breaks.
Speakers read the sentences out loud from a script. They were
instructed to pronounce the sentences as they found most appro-
priate (e.g., saying ‘an apple’ even though the original STS sen-
tence might be misspelled as ‘a apple’) and to pronounce large
numbers according to their preference either in full or digit by
digit. Speakers were paid 10 euros per hour in gift certificates.

After recording was done, the audio was processed by an
annotator. Utterances were automatically detected and labelled
in Audacity, checked by the annotator for deviations from the
script and where possible these deviations were corrected. For
instance, when speakers made a mistake, they were allowed to
continue from a natural break like a comma and so the annota-
tor combined the correct parts from multiple attempts. If speak-
ers misspoke and corrected themselves mid-utterance without
re-recording (part of) the utterance, the mistake was removed.
Furthermore, silences longer than 500ms were shortened.

2.2. Visually Grounded Speech Model

The VGS architecture used in this study is our own implementa-
tion presented in [10] and we refer to that paper for more details.
Here, we present a description of the model and the differences
with [10].

Our VGS model maps images and their corresponding cap-
tions to a common embedding space. It is trained to make
matching images and captions lie close together, and mis-
matched images and captions lie far apart, in the embedding
space. The model consists of two parts; an image encoder and
a caption encoder. The image encoder is a single-layer linear
projection on top of ResNet-152 [24], a pretrained image recog-
nition network, with the classification layer removed. We train
only the linear projection and do not further fine-tune ResNet.

https://github.com/DannyMerkx/speech2image/tree/Interspeech21
https://github.com/DannyMerkx/speech2image/tree/Interspeech21


The caption encoder consists of a 1-dimensional convolu-
tional layer followed by a bi-directional recurrent layer and fi-
nally a self-attention layer. The only difference with [10] is the
use of a four-layer LSTM instead of a three-layer GRU. Au-
dio features consist of 13 Cepstral mean-variance normalised
MFCCs and their first and second order derivatives calculated
for 25ms frames with 10ms frameshift.

2.3. Training material

We train separate models on each of the three training corpora.
Flickr8k [19] has 8,000 images and 40,000 written captions,
five per image. We use the spoken versions of these captions
collected using Amazon Mechanical Turk (AMT) by [16]. The
data split is provided by [25], with 6,000 images for training
and a development and test set both of 1,000 images.

Places has 400,000 images drawn from the Places205 cor-
pus [26] for which a single audio description per image was col-
lected by [17] using AMT. Whereas Flickr8k Audio consisted
of written captions which were then read out loud by workers,
here, workers were tasked with describing the Places images
as no written captions existed. We use the most recent official
split1 with 400,000 images for training and a development and
test set of 1,000 images.

MSCOCO has 123,287 images and 605,495 written cap-
tions [20], for which [14] collected spoken versions using AMT
which they released as SpokenCOCO. Five thousand images are
reserved as a development set and no official test set is pro-
vided. In order to keep results comparable between models we
use 1,000 images from the development set for development and
reserve 1,000 images as a test set.

2.4. Experiments

All models reported in this study are trained for 32 epochs. The
models are trained using a cyclical learning rate which smoothly
varies the learning rate between 2×10−4 and 2×10−6 over the
course of four epochs. After a model is trained, we select the
epoch with the lowest development set error for further testing.

To answer our first research question, we use the trained
caption encoders to encode the SpokenSTS sentences. We cal-
culate the cosine similarity between each pair of encoded sen-
tences and then calculate the Pearson correlation coefficient be-
tween the embedding similarity scores and the human similarity
judgements.

To answer our second research question, we train five more
models on subsets of SpokenCOCO where we vary the number
of images in the training set and the number of captions per im-
age. As a lower bound on the amount of data we take the size
of Flickr8k; 6,000 images and 30,000 captions, five per image.
We then increase the amount of visual information (i.e., num-
ber of images) while keeping the total number of captions fixed
at 30,000; 7,500 images with four captions per image, 10,000
images with three captions per image, 15,000 images with two
captions per image and finally 30,000 images with one caption
per image, similar to the Places database. If paraphrasing is
helpful to the model, we expect model performance to decrease
with a decreasing number of captions per image, even though
the total number of captions remains the same. While we ob-
viously cannot make sure that the models are trained on the
same data, the data in the model with five captions per image
is a subset of the data for the model with four captions per im-

1Available at: https://groups.csail.mit.edu/sls/
downloads/placesaudio/downloads.cgi

Table 2: Image-Caption retrieval results of each database’s re-
spective test set. R@N is the percentage of items for which the
correct image or caption was retrieved in the top N (higher is
better). Med r is the median rank of the correct image or cap-
tion (lower is better).

Model Caption to Image
R@1 R@5 R@10 med r

Flickr8k Audio 12.7 35.1 48.4 12
Places Audio 30.6 62.6 73.8 3
SpokenCOCO 30.6 64.1 79.8 3

Image to Caption
Flickr8k Audio 20.3 44.8 58.8 7
Places Audio 29.5 62.0 74.3 3
SpokenCOCO 39.2 75.3 86.4 2

ages and so on, so that the training data for each model over-
laps as much as possible given the experimental setup. All code
used in this study is available at https://github.com/
DannyMerkx/speech2image/tree/Interspeech21

3. Results

In Table 2 we compare the image-caption retrieval performance
of the three models trained on different datasets (Flickr8k Au-
dio, Places Audio and SpokenCOCO). This indicates how well
the models perform on the training task. In order to retrieve
images using a caption or captions using an image, the caption
embeddings are ranked by their similarity to the image embed-
dings, and vice versa. It is clear that training task performance
increases with database size.

The results of the sentence semantics evaluation are shown
in Figure 1. We show Pearson correlation coefficients between
the human similarity judgements and the embedding similar-
ities generated by the trained models. As each sentence is
pronounced by six voices we calculate the embedding similar-
ity for each pair of voices and average over the resulting 36
pairs. In general, we see that both the Flickr8k and the Spoken-
COCO model tend to outperform the Places model, and that the
Flickr8k model tends to outperform the SpokenCOCO model.
This is confirmed by the significant differences in Pearson’s r
calculated on the complete SpokenSTS database (indicated as
All).

Lastly, it is clear that all models perform worse on natural
speech. In Figure 1, Sample indicates the subset of synthetic
speech representing the same sample of STS sentences that was
used for the natural speech. Model performance on this sub-
set is similar to the performance on the entirety of SpokenSTS
indicating that the sample is representative of the entire corpus.

To further investigate this trend we performed five separate
regression analyses with the human similarity judgements as de-
pendent variable and each of the five models’ similarity ratings
as regressors. Embedding similarities were averaged over the 36
voice pairs. Table 3 shows a comparison of the Akaike Infor-
mation Criteria (AIC) of these regression models. These results
show the same trend as Figure 2 and clearly indicate that the
similarity ratings generated by models with more captions per
image provide a better fit to the human similarity ratings.

https://groups.csail.mit.edu/sls/downloads/placesaudio/downloads.cgi
https://groups.csail.mit.edu/sls/downloads/placesaudio/downloads.cgi
https://github.com/DannyMerkx/speech2image/tree/Interspeech21
https://github.com/DannyMerkx/speech2image/tree/Interspeech21


Figure 1: Semantic evaluation task results: Pearson correlation coefficients with their 95 percent confidence interval for the various
subtasks using the synthetic SpokenSTS(see Table 1). The rightmost section shows the average over all STS subsets (All), the results on
the natural speech recordings (Natural speech) and the results on the synthetic version of the natural speech sample (Sample).

Figure 2: Comparison of the five models trained on subsets of
SpokenCOCO with differing numbers of captions per image. We
show Pearson correlation coefficients over the entire synthetic
SpokenSTS with 95 percent confidence intervals.

Table 3: AIC comparison of regression models (lower is bet-
ter). ∆AIC indicates the difference in AIC compared to the best
model, LL indicates the model’s log likelihood

No. captions AIC ∆AIC LL
5 127974.5 0.00 −63984.23
3 127985.3 10.81 −63989.64
4 128116.3 141.80 −64055.13
2 128218.3 243.80 −64106.13
1 128269.7 295.26 −64131.86

4. Discussion and conclusion
We collected synthetic and natural speech for a large corpus of
human sentence similarity judgements in order to investigate
whether VGS models learn to capture sentence semantics. Fur-
thermore, we investigated the merits of database size and the
availability of paraphrases in the training data.

The results show that similarity scores generated by our
VGS models correlate quite well human similarity judgements
overall. This shows that a model tasked with mapping images
to captions and vice versa learns to capture sentence semantics.
However there are also some subsets of STS (MSRpar, FNWN)
on which the model performs quite poorly, and unsurprisingly
all models clearly perform best on subtasks consisting of visual

descriptions. Furthermore, we found that even though the mod-
els trained on Places and SpokenCOCO outperform the Flickr8k
model in terms of training task performance, the Flickr8k model
performs better on the SpokenSTS task. This confirms previ-
ous results on text-based grounding models [18] which com-
pared models trained on the written versions of Flickr8k and
MSCOCO. As in [18] we see that SpokenCOCO outperforms
Flickr8k mainly on the subtasks containing visual descriptions.
The models that were trained on a smaller subsets of Spoken-
COCO for the paraphrasing experiment performed better than
the model trained on the entire database. This indicates that
training on more data might cause the model to overspecialise;
it performs better on sentences which are similar to the training
data, but becomes worse at generalising to sentences from other
domains.

Next, we investigated whether the presence of paraphrases
in the data (i.e., multiple captions per image) is beneficial to the
model. By training models on subsets of SpokenCOCO where
we fixed the total number of captions but varied the number
of captions per image, we found that having more captions per
image increases model performance, even though these models
consequently are trained on less visual information. This also
explains why the Places model performs worst out of the three,
even though the amount of data is in the same ballpark as Spo-
kenCOCO (it has fewer captions but more images). An interest-
ing question for future research is whether this trend continues
beyond five captions per image. Collecting more captions for
existing databases, rather than collecting more image captions
pairs, could be an important consideration for future data col-
lection efforts.

In conclusion, we show VGS models are capable of cap-
turing sentence semantics. Importantly, our results show that
database size is not all that matters when it comes to training
VGS models. Even though it is enticing to collect ever larger
databases to increase training task performance, this does not
always translate to better transfer learning results. Our Flickr8k
model outperforms our SpokenCOCO model even though it
has 20 times less data. Furthermore, other characteristics of
a database might be even more important than its size; in the
case of VGS this is the presence of multiple captions per image.

5. Acknowledgements
The research presented here was funded by the Netherlands
Organisation for Scientific Research (NWO) Gravitation Grant
024.001.006 to the Language in Interaction Consortium.



6. References
[1] H. Rubenstein and J. B. Goodenough, “Contextual correlates of

synonymy,” Communications of the Association for Computing
Machinery, vol. 8, no. 10, pp. 627–633, 1965.

[2] S. Deerwester, S. T. Dumais, G. W. Furnas, T. K. Landauer, and
R. Harshman, “Indexing by latent semantic analysis,” Journal of
the American Society for Information Science, vol. 41, no. 6, pp.
391–407, 1990.

[3] R. Kiros, Y. Zhu, R. R. Salakhutdinov, R. Zemel, R. Urtasun,
A. Torralba, and S. Fidler, “Skip-thought vectors,” in Advances
in Neural Information Processing Systems 28 (NIPS), 2015, pp.
3294–3302.

[4] F. Hill, K. Cho, and A. Korhonen, “Learning distributed represen-
tations of sentences from unlabelled data,” in Proceedings of the
2016 Conference of the North American Chapter of the Associa-
tion for Computational Linguistics: Human Language Technolo-
gies (NAACL-HLT), 2016, pp. 1367–1377.

[5] A. Conneau, D. Kiela, H. Schwenk, L. Barrault, and A. Bor-
des, “Supervised Learning of Universal Sentence Representations
from Natural Language Inference Data,” in Proceedings of the
2017 Conference on Empirical Methods in Natural Language
Processing (EMNLP), 2017, pp. 670–680.

[6] Y. Yang, S. Yuan, D. Cer, S.-y. Kong, N. Constant, P. Pilar, H. Ge,
Y.-H. Sung, B. Strope, and R. Kurzweil, “Learning semantic tex-
tual similarity from conversations,” in Proceedings of The Third
Workshop on Representation Learning for NLP, 2018, pp. 164–
174.

[7] D. Kiela, A. Conneau, A. Jabri, and M. Nickel, “Learning visually
grounded sentence representations,” in Proceedings of the 2018
Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies,
2018, pp. 408–418.

[8] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-
training of deep bidirectional transformers for language under-
standing,” in Proceedings of the 2019 Conference of the North
American Chapter of the Association for Computational Linguis-
tics: Human Language Technologies (NAACL-HLT), 2019, p.
4171–4186.

[9] T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhari-
wal, A. Neelakantan, P. Shyam, G. Sastry, A. Askell, S. Agarwal,
A. Herbert-Voss, G. Krueger, T. Henighan, R. Child, A. Ramesh,
D. M. Ziegler, J. Wu, C. Winter, C. Hesse, M. Chen, E. Sigler,
M. Litwin, S. Gray, B. Chess, J. Clark, C. Berner, S. McCan-
dlish, A. Radford, I. Sutskever, and D. Amodei, “Language mod-
els are few-shot learners,” in 34th Conference on Neural Informa-
tion Processing Systems (NeurIPS 2020), 2020.

[10] D. Merkx, S. L. Frank, and M. Ernestus, “Language learning
using speech to image retrieval,” in Proceedings of Interspeech
2019. Crossroads of Speech and Language, 2019.

[11] W. N. Havard, J.-P. Chevrot, and L. Besacier, “Word recogni-
tion, competition, and activation in a model of visually grounded
speech,” in Proceedings of the 23rd Conference on Computational
Natural Language Learning (CoNLL), 2019, pp. 339–348.

[12] H. Kamper and M. Roth, “Visually grounded cross-lingual key-
word spotting in speech,” in The 6th International Workshop on
Spoken Language Technologies for Under-Resourced Languages,
2018.

[13] D. Harwath, W.-N. Hsu, and J. Glass, “Learning hierarchical dis-
crete linguistic units from visually-grounded speech,” in ICLR
2020 The Ninth International Conference on Learning Represen-
tations, 2020.

[14] W.-N. Hsu, D. Harwath, C. Song, and J. Glass, “Text-free image-
to-speech synthesis using learned segmental units,” in Thirty-
fourth Conference on Neural Information Processing Systems
(NeurIPS), 2020.

[15] D. Roy and A. Pentland, “Learning words from natural audio-
visual input,” vol. 4, no. 1, 1998, pp. 1279–1282.

[16] D. Harwath and J. Glass, “Deep multimodal semantic embeddings
for speech and images,” in 2015 IEEE Workshop on Automatic
Speech Recognition and Understanding (ASRU), 2015, pp. 237–
244.

[17] D. Harwath, A. Recasens, D. Surı́s, G. Chuang, A. Torralba, and
J. Glass, “Jointly discovering visual objects and spoken words
from raw sensory input,” International Journal of Computer Vi-
sion, vol. 128, pp. 620–641, 2020.

[18] D. Merkx and S. L. Frank, “Learning semantic sentence represen-
tations from visually grounded language without lexical knowl-
edge,” Natural Language Engineering, vol. 25, no. 4, p. 451–466,
2019.

[19] M. Hodosh, P. Young, and J. Hockenmaier, “Framing image de-
scription as a ranking task: Data, models and evaluation metrics,”
Journal of Artificial Intelligence Research, vol. 47, no. 1, pp. 853–
899, 2013.

[20] X. Chen, H. Fang, T.-Y. Lin, R. Vedantam, S. Gupta, P. Dollar, and
C. L. Zitnick, “Microsoft COCO Captions: Data Collection and
Evaluation Server,” arXiv preprint arXiv: 1504.00325, pp. 1–7,
2015.

[21] E. Agirre, C. Banea, C. Cardie, D. Cer, M. Diab, A. Gonzalez-
Agirre, W. Guo, I. Lopez-Gazpio, M. Maritxalar, R. Mihalcea,
G. Rigau, L. Uria, and J. Wiebe, “SemEval-2015 Task 2: Semantic
Textual Similarity, English, Spanish and Pilot on Interpretability,”
in SemEval, 2015, pp. 252–263.

[22] A. Conneau and D. Kiela, “SentEval: An Evaluation Toolkit
for Universal Sentence Representations,” in Proceedings of the
Eleventh International Conference on Language Resources and
Evaluation (LREC 2018), 2018.

[23] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn,
and A. Zisserman, “The PASCAL Visual Object Classes
Challenge 2008 (VOC2008) Results,” http://www.pascal-
network.org/challenges/VOC/voc2008/workshop/index.html,
2008.

[24] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in The IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2016.

[25] A. Karpathy and L. Fei-Fei, “Deep visual-semantic alignments
for generating image descriptions,” in The IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2015.

[26] B. Zhou, A. Lapedriza, J. Xiao, A. Torralba, and A. Oliva, “Learn-
ing deep features for scene recognition using Places database,” in
Advances in Neural Information Processing Systems 27 (NIPS),
2014.


	 Introduction
	 Methods
	 Semantic similarity data
	 Synthetic speech
	 Natural speech

	 Visually Grounded Speech Model
	 Training material
	 Experiments

	 Results
	 Discussion and conclusion
	 Acknowledgements
	 References

