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Despite some decreases in the western world in recent years, substantial groups of 
individuals worldwide use tobacco, alcohol, and cannabis. Twenty percent of European 
and US individuals smoke on a regular basis (in the age group >14 years, WHO, 2016). 
Almost half of all people 15 years and older have consumed alcohol in the past year, with 
a worldwide average intake of 14 grams of alcohol per day (about one glass; WHO, 2018). 
More than a quarter of Europeans aged 15-64 have used cannabis in their lifetime. In the 
US, this rate is more than 50% for individuals older than 15 (EMCDDA, 2011; 2020).  
 
Consumption of tobacco, alcohol, and cannabis has deleterious health effects. Smoking 
is among the lead preventable causes of mortality (World Health Organization, 2017). 
Despite increased awareness of the dangers of smoking and reductions in smoking 
prevalence in the past decades, smoking rates are still substantial and the associated 
disease burden is large (Reitsma et al., 2017). Health risks associated with alcohol use are 
less widely acknowledged among the public and in most countries alcohol use policies 
are less stringent. Still, the risks associated with alcohol use are substantial, with 5% of 
deaths worldwide in 2016 (indirectly) attributable to alcohol (WHO, 2018). Despite recent 
legalizations and (proclaimed) benefits (Pratt et al., 2019), cannabis has also been 
associated with substantial health risks, including risks for respiratory disease (National 
Academies of Sciences & Medicine, 2017) and negative effects on brain function and 
development (Batalla et al., 2013). 
 
Beside these physical effects, there are important consequences of substance use for 
mental health. For all three substances, regular use can develop into substance abuse and 
addiction. It has been estimated that 9% of cannabis users, 23% of alcohol users, and an 
astounding 67% of tobacco users will develop dependence (Lopez-Quintero et al., 2011). 
There are high rates of comorbidity between different substance use disorders, as well as 
between substance use disorders and other mental health problems, including anxiety, 
depression, and psychosis (Lai, Cleary, Sitharthan, Hunt, & Dependence, 2015; Large, 
Sharma, Compton, Slade, & Nielssen, 2011). Even in the absence of abuse or dependence, 
substance use shows associations with mental health problems. The relationships seem 
to be bidirectional, meaning that substance use causally contributes to psychopathology 
and that psychiatric symptoms can lead to increased substance use. For instance, there 
is evidence that smoking increases chances for depression, anxiety, and insomnia (Boden, 
Fergusson, & Horwood, 2010; Pedersen & Von Soest, 2009; chapter 5), that alcohol abuse 
increases risk for depression (Boden & Fergusson, 2011), and that cannabis increases risk 
for psychosis, anxiety and depression (Degenhardt, Hall, & Lynskey, 2003; Pratt et al., 
2019; Volkow et al., 2016). 
 

General Introduction 

Given the high prevalence and health risks associated with substance use, it is important 
to gain insight in its etiology. Beside a plethora of environmental risk factors, genetic 
predisposition strongly contributes to substance use behavior. Part 1 of my PhD thesis 
focuses on identifying genetic risk factors for substance use. Information from gene 
identification studies can be leveraged to investigate more specific questions. Part 2 of 
my thesis describes 4 studies that show how findings from genetic research can be used 
to answer important research questions. As an exciting example, Mendelian 
Randomization (MR) studies use genetic information to test causal relationships between 
traits, something that is not viable in observational designs.  
 
Although the focus of my thesis lies on genetic risk factors for substance use, it is unlikely 
that such factors operate in a vacuum. That is, many environmental factors influence 
substance use behaviors, and these are likely to show interplay with genetic factors. The 
effect of genetic influences might in some cases depend on environmental exposures. 
Therefore, part 3 of my thesis focuses on the interplay between environmental and 
genetic factors. Figure 1 gives an overview of the 3 components of my thesis with the 
corresponding chapter numbers. Below, each part of my thesis is further introduced. 
  

Figure 1. Thesis overview by sub theme 
with corresponding chapter numbers 
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Part 1. Gene finding 
 
Much research effort has been devoted to uncovering genetic factors underlying 
substance use. Traditionally, twin, adoption, and pedigree studies have been used to 
estimate what proportion of individual differences in a trait is due to genetic factors as 
compared to environmental factors. Such heritability research has provided crucial 
insights into the etiology of substance use, showing that genetic predisposition is an 
important contributor. For ‘normative’ substance use traits, such as initiation of use and 
quantity of use, genetic factors explain up to half of the differences between individuals, 
which lines up with the estimated 49% average heritability across all human traits 
(Polderman et al., 2015). For smoking, heritability estimates lie around 40-55% 
(Timberlake et al., 2006; Vink & Boomsma, 2011; Vink, Willemsen, & Boomsma, 2005). For 
alcohol use estimates range from 40-60% (Grant et al., 2009; Hansell et al., 2008; Lessov-
Schlaggar et al., 2006). Cannabis use is estimated to be 40-48% heritable (Verweij et al., 
2010). Heritability estimates seem to be generally higher for more ‘problematic’ 
substance use traits, such as abuse and dependence (Ducci & Goldman, 2012; Mbarek et 
al., 2015; Verweij et al., 2010; Vink et al., 2005; Walters, 2002). Another recurring finding is 
that the heritability increases as individuals mature, while the influence of the family 
environment on substance use behavior becomes less strong (Bergen, Gardner, & 
Kendler, 2007). 
 
Although twin studies have proven invaluable to provide insight into the genetic 
contribution to substance use, they cannot uncover specific genetic variants and thus 
give no clues on the underlying biological mechanisms. Linkage studies have aimed to do 
this by studying co-segregation of genetic variants and traits in a family pedigree (Vink & 
Boomsma, 2002). This method performs well for identifying genetic variants linked to rare 
disorders, but has important limitations for studying more common traits. It has been 
largely abandoned in favor of other methods in the study of behavior. Candidate-gene 
research simply tests associations between substance use traits and a genetic variant that 
is hypothesized to be involved because of its biological function. For example, as the 
neurotransmitter dopamine is related to experiencing a substance’s rewarding 
properties, decades of research have been devoted to finding links between dopamine 
regulating genes and substance use. The advantages of the candidate-gene design 
include the theoretical basis for biological mechanisms underlying behavior and the 
feasibility to study common traits, without requiring any complex pedigree data. 
However, candidate-gene study results have been mixed, with some studies showing 
clear associations whereas other did not (e.g., in smoking, Munafo, Clark, Johnstone, 
Murphy, & Walton, 2004). In other subject areas, as well, candidate-gene research has 

General Introduction 

been plagued by non-replication issues. This is likely mainly due to the use of small 
sample sizes to detect minuscule effects of single genetic variants, combined with under-
publication of null-findings (e.g., Border et al., 2019; Johnson et al., 2017; Duncan & Keller, 
2011). In order to circumvent such limitations, my first study investigated a pathway of 
multiple candidate-genes in two relatively large samples (N=2,500 and N=1,173). 
Investigating multiple variants in a pathway in these samples should increase the power 
to detect effects. We tested the association of use of tobacco, alcohol, and cannabis with 
a sum score of variants that had previously been associated with dopamine function and 
substance use (chapter 2). We did not detect an effect of this genetic risk score.  
 
These findings added to a growing body of literature suggesting that candidate-gene 
research could not be rehabilitated by simply employing larger sample sizes. For one 
thing, it became more and more clear that the effects of genetic variants are even smaller 
than anticipated, requiring not simply large (i.e., thousands of individuals), but 
astronomical sample size (hundreds of thousands or even millions). Also, it appeared that 
the body of scientific knowledge hardly sufficed to select a good candidate-gene. In effect, 
it appeared that pre-selected candidate-genes did not have a higher chance to be 
implicated in the trait under investigation than some random other variant (Johnson et 
al., 2017). Fortunately, new methods had been developed that do not rely on preselection 
of any gene or variant, but scan the full genome (with millions of genetic variants) for any 
association with a trait in a hypothesis-free manner (Klein et al., 2005). Technical 
advances and the increasing availability of genome-wide data from large population 
samples have made this genome-wide association study (GWAS) approach a tremendous 
success, sparking an avalanche of new gene discoveries.  
 
GWASs test the association between each measured genetic variant (generally a one-
letter variation in the DNA sequence, called a single nucleotide polymorphism [SNP]) and 
an outcome trait. In chapter 3, we adopted this approach to discover genetic factors 
underlying lifetime cannabis use in a population sample of N=184,765 individuals. We 
found 8 SNPs and 35 genes that contributed to cannabis initiation, among them many 
that had not been implicated in cannabis or substance use before. Eleven per cent of the 
variation in the population in lifetime cannabis use could be explained by the genetic 
variants that were measured in this study (i.e., the SNP-heritability was estimated to be 
11%). Only one of the proposed candidate-genes from the candidate gene study (chapter 
2) was among the top findings in this GWAS, suggesting that, indeed, GWASs are now the 
method of choice for gene discovery studies. They can be used to generate new 
hypotheses on likely candidate-genes.  
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GWASs test the association between each measured genetic variant (generally a one-
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an outcome trait. In chapter 3, we adopted this approach to discover genetic factors 
underlying lifetime cannabis use in a population sample of N=184,765 individuals. We 
found 8 SNPs and 35 genes that contributed to cannabis initiation, among them many 
that had not been implicated in cannabis or substance use before. Eleven per cent of the 
variation in the population in lifetime cannabis use could be explained by the genetic 
variants that were measured in this study (i.e., the SNP-heritability was estimated to be 
11%). Only one of the proposed candidate-genes from the candidate gene study (chapter 
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The 11% heritability that we found for lifetime cannabis use is substantially smaller than 
heritability that was estimated by twin research (about 40-50%, Verweij et al., 2010; Vink, 
Wolters, Neale, & Boomsma, 2010). This disparity between GWAS- and twin-based 
heritability is commonly observed and has been dubbed ‘missing heritability’ (Manolio et 
al., 2009). There is a plethora of possible reasons for this phenomenon. Although generally 
more powerful than traditional candidate-gene research, GWASs might still have limited 
power. Huge sample sizes are needed because of the small effect sizes and the multiple 
testing burden: as there are millions of variants scanned across the genome, millions of 
tests are conducted, each with their own margin of error. Other reasons might include 
that twin research has overestimated heritability, that rare variants (that have not been 
included in GWASs) will explain large amounts of variance, or that interactions between 
genes or between genes and environmental exposures mask the actual heritability. 
Another explanation lies in the nature of the traits we have been investigating using 
GWASs. The use of what I would like to call ‘shallow phenotyping’ could decrease our 
chances of detecting important associations. It results in more error and lower heritability 
estimates (Van Der Sluis, Verhage, Posthuma, & Dolan, 2010). Because genetic research 
requires such large sample sizes, collaborative data collection efforts tend to focus on 
including a broad range of measures that are of interest to many scientists, thereby 
limiting how much into depth each measure can go. For example, most databases include 
a question on if a person has ever used cannabis, but not on how much, how often, what 
kind of cannabis they used, or if they experience abuse or dependence symptoms. GWAS-
heritability for one of the latter traits might turn out to be higher. Also, to reach the 
necessary sample sizes meta-analyses are conducted across studies that have used 
slightly different measures, increasing the measurement error and decreasing the GWAS-
heritability. Finally, measures in general tend to be designed to capture a construct that 
exists as an abstraction, but does not necessarily constitute a demarcated trait in nature. 
Think for example of depression, a phenomenon that can be expressed in many different 
ways, but is often thought of as a single concept and is often analyzed as a binary 
diagnostic category.  
 
Much can be gained in future years, when some or most of these limitations could be 
tackled. Behavior genetics is a dynamic, quickly developing field, where new techniques 
are constantly being presented to increase gene discovery and decrease the missing 
heritability. A new technique that came out during my PhD project is Genomic SEM, that 
can be used to follow-up on existing GWAS results (Grotzinger et al., 2018). By capitalizing 
on the genetic correlations between different substance use traits captured in the 
summary statistics from GWASs, this method is able to tell us how these traits cluster 
together, and what traits are more or less genetically independent from one another. 
Genomic SEM provides an interesting opportunity to use a more data-driven method to 
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study behavior, rather than approaching traits as demarcated natural entities. In chapter 
4 I use this technique to show that substance use traits cluster together per substance, 
but also that dependence on different kinds of substances has a common genetic 
architecture. Hence, we could identify genetic variants that are associated with addiction-
proneness, rather than with the use of a specific substance. Also, the GWAS- heritability 
of the common genetic factors underlying substance use behavior was higher than the 
GWAS-heritability for the traits separately. Thus, techniques such as these can contribute 
to tackling the limitations of GWASs and discovering the missing heritability.  
 
Over the course of Part 1 of my PhD project, I moved to increasingly powerful and 
sophisticated methods capitalizing on all available information to capture genetic 
variants associated with substance use. I abandoned candidate-gene research in favor of 
GWASs, and used multivariate approaches to extend the possibilities of GWASs to identify 
variants for overlapping and related traits. Using these methods I contributed to scientific 
knowledge on what variants and genes are important for substance use, providing insight 
into genetic architecture of related and distinct traits. Such gene discovery efforts lay the 
groundwork for a number of ingenious designs that can be used to answer new research 
questions. In part 2 and 3 of my thesis, I leveraged my own and others’ gene findings to 
test causal relationships, to assess genetic relationships across a myriad of psycho-
behavioral traits, and to create individual-level genetic risk scores. 
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Part 2. Leveraging gene findings  

 
Research does not end, but rather begins, at discovering genetic variants for substance 
use. A profusion of techniques is continuing to be developed to use gene findings to 
investigate new questions. For example, in chapter 5 we proposed a new take on the 
traditional candidate-gene approach, capitalizing both on the strengths of that design 
and GWAS techniques. Chapter 2 showed that preselected candidate-genes were not 
robust instruments to predict substance use. In our and other published GWASs, 
proposed candidate-genes are not strongly represented among the top hits, showing that 
they might not be the most important genetic predictors. Reversely, maybe genes 
uncovered by GWASs can be used as empirically based candidate-genes and tested in 
follow-up studies. One gene repeatedly found in risk behavior GWASs, including our 
lifetime cannabis use GWAS (chapter 3), is the CADM2 gene (e.g., Liu et al., 2019; 
Strawbridge et al., 2018). In chapter 5 we tested the association between CADM2 and a 
number of substance use and other risk behaviors, focusing on more than 4,000 variants 
in or near the gene (instead of one or a handful of variants, as was done in traditional 
candidate-gene studies). Rather than focusing on one (shallow) phenotype, we compared 
results for a wealth of different traits and trait clusters within the risk behavior spectrum. 
A big advantage was that we could use smaller samples than required in GWASs, as the 
multiple testing burden associated with scanning all variants in the genome was now 
reduced. We found associations with a range of substance use and risk behavior traits, 
and even found hints that the effect of CADM2 on smoking and alcohol use was mediated 
by risk-taking proneness. I followed up on this work in chapter 6 in which I examined if 
these CADM2 associations were actually limited to the risk behavior spectrum by testing 
its association with a broad range of  psycho-behavioral traits in a sizeable population 
sample. Indeed, it seemed that CADM2 was involved in a number of other behaviors, as 
well, but effects were largest for the health behavior and substance use spectrum. These 
findings suggest (common) underlying biological mechanisms for these traits, that may 
involve CADM-mediated neural connectivity.  
 
Another promising venue opened up by gene discovery findings is testing causal 
relationships between traits using a technique called Mendelian Randomization (MR). In 
observational research, it is unfeasible to test causal relationships due to the presence of 
confounding variables that are not randomly distributed in the population. Also, reverse 
causation can often not be ruled out. Using genetic variables as ‘instruments’ to measure 
a trait makes it possible to circumvent these limitations. The assumption is that genes are 
randomly distributed across the population, fixed at birth, and cannot be influenced by 
environmental confounders. The idea of MR is that if one finds a relationship between a 
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genetic instrumental variable for a trait with an outcome, it has to go via its relationship 
with the trait, rather than some other, non-measured variable. Thus, using genetic 
variants as instrumental variables enables us to make inferences about causal 
relationships between traits, something that is normally impossible in observational 
research. I made use of this Mendelian Randomization (MR) technique at several points in 
my PhD project.  
 
MR can be used to test causal relationships between substance use and mental health 
traits, to see what causes what. In chapter 3 we used this method to show that liability to 
schizophrenia had a causal effect on cannabis use, but found only weak evidence for an 
effect of cannabis use risk on schizophrenia, a finding that stirred much media attention. 
In chapter 7 I tested causal associations between different types of substance use and 
insomnia. I showed strong evidence that insomnia causes different smoking behaviors, 
alcohol dependence, and cannabis initiation. In the other direction, I found evidence only 
for an effect of smoking, such that being a current or ex-smoker increased risk for 
insomnia. These findings suggest that substance use should be targeted in insomnia 
therapies, with special attention for smoking, which could give rise to a vicious cycle with 
sleeping problems and smoking causing each other.  
 
MR can also be used to answer more fundamental questions about the etiology of 
substance use. In chapter 8 we tested if differences in subcortical brain region volumes 
led to substance use, or if substance use actually induces volume changes in these brain 
regions. We found that liability to alcohol dependence decreases amygdala and 
hippocampus volume, and smoking decreases pallidum and hippocampus volume. In the 
other direction, we hardly found evidence that subcortical brain structure volume led to 
substance use. These findings confirm the importance of targeting substance use to 
improve (mental) health.  
 
Another way to leverage findings from gene discovery studies, perhaps the one used most 
often, is to create polygenic (risk) scores (PGSs). The idea is to use the results from a GWAS 
to create individual genetic risk profiles in a new sample. A GWAS provides a per-SNP 
estimate of the strength of association to a trait. Risk scores are then created by 
identifying the risk-alleles of these SNPs in a group of individuals and weighting them by 
the strength of association. In that way, each individual has a GWAS-based polygenic risk 
score that quantifies their genetic predisposition. For example, using the results from our 
cannabis GWAS, we created polygenic scores in a different sample and used these to 
predict rates of lifetime cannabis use. The applicability of PGSs is still limited, due to low 
heritability of the source GWAS and the measurement error that is also summed in the 
PGS. Still, on group level they can be used to answer interesting research questions. For 
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example, they can be used to test interplay between genetic risk and environmental 
circumstances.  
 
In part 2 of my PhD thesis I showed how the results of gene finding studies can be used to 
answer new research questions. The advances that the GWAS-era has provided, enabled 
us to turn back to candidate-gene studies and to test causal associations using genetic 
variants as instrumental variables. In part 3 of my thesis, a different application of gene 
finding studies is presented. For the studies in this part I used GWAS-based polygenic risk 
scores to test gene-environment interplay.  
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Part 3. Gene-environment interplay 
 
Environmental and genetic risk factors for substance use do not operate in isolation. For 
example, in the case of gene-environment interaction (GxE) the effect of genes depend on 
environmental characteristics. For example, it is possible that someone with a high 
genetic chance of becoming addicted to cannabis never gets exposed to it and does not 
start using, and thus never becomes addicted. Compare that to a person with a similar 
genetic risk who finds themselves in situations where everyone around them uses 
cannabis: the second person would be much more likely to start using and become 
dependent. Another example of gene-environment interplay is gene-environment 
correlation (rGE). This describes the phenomenon that someone’s genetic risk for an 
outcome shows a relationship to an environmental characteristic. Such correlations can 
arise through a number of processes (Plomin, Defries, & Loehlin, 1977). Take the second 
person from the example above; perhaps it is no coincidence that they find themselves in 
a situation where they are exposed to many cannabis users. If their genetic risk for 
cannabis use also leads them to be more prone to risk taking, they might prefer more 
‘exciting’ company or go clubbing more. This is referred to as ‘active’ rGE. In the case of 
‘reactive’ rGE someone’s genetic make-up elicits a response in the environment. For 
example, someone’s genetic predisposition for alcohol dependence could become 
associated with social isolation if it contributes to behavior that is not socially accepted. 
In the parenting environment, rGE might also arise through overlap between parental and 
offspring genetic material (‘passive’ rGE). For example, if someone has a high genetic 
predisposition for smoking, it is likely that one or both parents have that as well and that 
they actually smoke. This could lead to a correlation between their own genetic risk for 
smoking and exposure to environmental smoke through parental smoking. This 
phenomenon has also been referred to as genetic nurture or dynastic effects. Since both 
genetic predisposition and parental smoking are risk factors for smoking, this could 
subsequently give rise to an interaction. These GxE and rGE processes can thus result in 
complex interrelationships between genetic and environmental risk factors, that can be 
hard to disentangle. 
 
In the third part of my PhD I have focused on identifying such interplay effects in 
substance use. I started out conducting a systematic review on all polygenic GxE studies 
on substance use in chapter 9. I included studies that used a genetic measure that 
comprised more than a single variant, either using a composite of candidate-genes (as I 
did in chapter 2), or using GWAS-based polygenic scores. To assess study quality and the 
reliability of the result I designed an instrument to rate the included studies on a number 
of characteristics. In line with earlier observations, I found that polygenic candidate-gene 
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studies often lacked quality and power, even though many studies reported significant 
GxE findings. The studies using GWAS-based polygenic scores provided some evidence for 
GxE effects, mainly showing that genetic risk for substance use could be further 
augmented by environmental adversity. However, evidence was weak and many studies 
had important methodological shortcomings. Among these limitations was the neglect of 
rGE effects, an important oversight, as rGE could lead to spurious GxE findings. Based on 
my findings, I created a roadmap for future GxE research.  
 
Following this roadmap, in chapter 10 I aimed to increase the body of knowledge on GxE 
in substance use. I tested whether the chance that individuals with high genetic 
vulnerability for smoking, alcohol use, and cannabis use (according to their GWAS-based 
PGSs) would actually show high levels of substance use depended on the neighborhood 
they lived in. I tested 14 different GxE effects and found one significant effect, such that 
genetic risk for alcohol use led to more alcohol use when the neighborhood 
socioeconomic status was high. Although I could not control for rGE effects in the GxE 
analysis (as I recommended in the roadmap from study 9), I did test for rGE in separate 
analyses. I found some indications for rGE with covariates, but the effects were small and 
somewhat unexpected. Overall, the main, GxE, and rGE effects were inconclusive.  
 
In chapter 11 I designed a method that enabled me to test GxE while controlling for rGE, 
so that I could assess the relative contribution of such effects. I focused on more proximal 
(and perhaps more important) predictors of substance use: parenting characteristics 
during adolescence, around the age that most individuals start using substances. I again 
used PGS based on large GWASs for smoking, alcohol use, and cannabis initiation. The 
results showed a clear pattern of both GxE and rGE for smoking, but not for alcohol use or 
cannabis initiation. For smoking, it appeared that one’s own genetic risk for smoking 
overlapped with parental risk factors, including low parental involvement, high parental 
substance use, and a low quality parent-child relationship. Furthermore, higher levels of 
these parental risk factors increased the chance that genetic risk actually led to smoking. 
Thus, I showed the feasibility of testing both rGE and GxE within the same model, and 
found convincing support that both effects contributed independently to smoking 
behavior.  
 
Still, the overall image that appears from study 9-11 is that GxE effects are small and 
certainly not universally present for all types of environmental exposures and outcomes. 
One plausible explanation lies in the use of polygenic risk scores that are based on GWASs 
of the outcome trait. For example, to test interaction between parenting characteristics 
and genetic risk on smoking, I measured genetic risk with a PGS based on GWASs for 
smoking initiation and cigarettes smoked per day. The possible limitation of this 
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approach is that variants that are captured in this GWAS might increase chances for 
smoking per se, but not necessarily chances that someone will be vulnerable to 
environmental risk factors. There is a possibility that genetic susceptibility to 
environmental adversity is constituted by quite different variants than genetic 
susceptibility to the outcome itself (Fox & Beevers, 2016). Also, it may be that genetic risk 
for smoking is mediated by environmental factors, which would be indiscernible in a 
GWAS, that only picks up on main effects. In chapter 12 I aimed to disentangle genetic 
effects on socioeconomic status (i.e., rGE with SES) from direct genetic effects to predict 
smoking status. I showed that the genetic profile for SES and smoking overlap, but that 
there are also specific, ‘direct’ genetic effects for smoking. The remaining heritability after 
partialling out rGE with SES was still substantial with 7% (as compared to 8% before 
subtracting SES). I further tested if direct genetic risk for smoking (without rGE) was more 
sensitive to picking up interaction effects with environmental SES. I did not find GxE with 
neighborhood-level SES, nor with individual-level SES as measured by educational 
attainment. For the latter variable, however, I did observe a pattern such that the smoking 
PGS only had an effect at high educational attainment, although the GxE effect did not 
survive correction for multiple testing. Follow-up research in larger samples is needed to 
corroborate this finding. For now, my findings seem to suggest once more that rGE effects 
are vital in the etiology of substance use, whereas GxE effects are more difficult to detect.  
 
This thesis presents the scientific output of my journey through the field of behavior 
genetics. In part 1 I present research where I succeeded in capturing genetic risk factors 
for substance use. In part 2 I show how findings from such studies can be used to 
investigate exciting questions, including questions on causal relationships between 
traits. In part 3 I present my effort to design methods for testing gene-environment 
interplay, showing that environmental and genetic risk factors overlap and interact in 
complex ways. After reading this thesis, the reader should get an idea of the great 
versatility of genetic research in illuminating etiological processes underlying substance 
use.  
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for smoking is mediated by environmental factors, which would be indiscernible in a 
GWAS, that only picks up on main effects. In chapter 12 I aimed to disentangle genetic 
effects on socioeconomic status (i.e., rGE with SES) from direct genetic effects to predict 
smoking status. I showed that the genetic profile for SES and smoking overlap, but that 
there are also specific, ‘direct’ genetic effects for smoking. The remaining heritability after 
partialling out rGE with SES was still substantial with 7% (as compared to 8% before 
subtracting SES). I further tested if direct genetic risk for smoking (without rGE) was more 
sensitive to picking up interaction effects with environmental SES. I did not find GxE with 
neighborhood-level SES, nor with individual-level SES as measured by educational 
attainment. For the latter variable, however, I did observe a pattern such that the smoking 
PGS only had an effect at high educational attainment, although the GxE effect did not 
survive correction for multiple testing. Follow-up research in larger samples is needed to 
corroborate this finding. For now, my findings seem to suggest once more that rGE effects 
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This thesis presents the scientific output of my journey through the field of behavior 
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Abstract 
 
Twin studies have shown substantial heritability for polysubstance use. Previous research 
has sought to pinpoint this genetic influence to variants in genes related to dopamine 
signaling, that are known to lower baseline dopamine levels (hypodopaminergic 
function). Candidate-gene studies often used single-gene designs and have yielded 
inconsistent results. Genome-wide association studies mainly include Single Nucleotide 
Polymorphisms (SNPs). In this study, a risk score was calculated based on both SNPs as 
well as Variable Number of Tandem Repeats (VNTRs). 
 
Survey data on nicotine, alcohol, and cannabis use from two family samples were 
analysed (N=2435 and N=1173). Moderate and problematic polysubstance use were 
explored. A polygenic risk score was calculated by averaging the number of 
hypodopaminergic variants in three polymorphisms. Polysubstance use was regressed on 
this score with sex and age as covariates. Power was sufficient to detect small effect sizes 
(R2=0.4-0.8%). 
 
The hypodopaminergic polygenic risk score (HPRS) was not related to polysubstance use 
in either sample. There were some indications for opposing effects of individual 
polymorphisms and separate substance use outcomes, and for an interaction of the 
polygenic risk score with education level. There were no effects of a score extended with 
extra polymorphisms, and there were no quadratic effects of the HPRS. 
 
The HPRS did not predict polysubstance use. Several explanations for these findings were 
ruled out. Future research might employ more comprehensive genetic models, thereby 
including gene-environment interaction.

Candidate-genes for polysubstance use 

Introduction 
 
In the Netherlands, about 25% of the population older than twelve is a current smoker, 
77% is a current alcohol drinker, and 20% has used cannabis at least once (Centraal 
Bureau voor de Statistiek, 2016), which is largely in line with prevalence estimates from 
developed countries worldwide (World Health Organization, 2014, 2016a, 2016b). Factors 
that influence whether an individual (ab)uses a substance have been found to be shared 
across different substances and across moderate and problematic use patterns (e.g., 
Palmer et al., 2009).  
 
Genetic predisposition may be such a shared vulnerability factor. Twin models show that 
the genetic factors underlying nicotine, alcohol, and cannabis use overlap to a large 
extent (Young et al., 2006). Molecular genetic studies show that variants associated with 
the use of one substance also show a relation with the use of other substances, at least 
when looking at the same stage of use. For example, there are substantial genetic 
correlations between smoking initiation and cannabis initiation, and between glasses of 
alcohol per week and number of cigarettes per day (Nivard et al., 2016). Likewise, genetic 
risk factors for smoking quantity predicted drinking quantity (Vink et al., 2014). Therefore, 
it is sensible to look at multiple substances concurrently when considering the etiology of 
substance use. 
 
Dopamine-mediated vulnerability to substance use 
Traditional candidate-gene studies have sought to pinpoint the genetic influence in 
substance use at dopamine-related genes. These genes are considered plausible 
candidates, because of the function of dopamine in the brain’s reward system. Addictive 
substances enhance levels of dopamine, resulting in feelings of pleasure (e.g., Di Chiara 
and Imperato, 1988; Tanda et al., 1997). According to the reward deficiency hypothesis 
some individuals are more prone to substance use than others because of differences in 
dopamine function. It has been proposed that individuals with lower baseline dopamine 
levels are more easily ‘bored’ and will seek more stimulation in order to experience the 
rewarding effects of dopamine (Blum et al., 1996; Bowirrat and Oscar-Berman, 2005). 
Indeed, results from PET studies suggest lower dopamine receptor availability, receptor 
binding, and release in substance abusers than in controls (Hommer et al., 2006). 
 
These lower homeostatic dopamine levels may be caused by variations in dopamine-
related genes. For example, alleles related to deficient dopamine reception (such as TaqI 
A1 in DRD2) might lead to lower basal dopamine (‘hypodopaminergic) function and thus 
to lower reward sensitivity, which might then elicit substance-seeking behavior (Blum et 
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Dopamine-mediated vulnerability to substance use 
Traditional candidate-gene studies have sought to pinpoint the genetic influence in 
substance use at dopamine-related genes. These genes are considered plausible 
candidates, because of the function of dopamine in the brain’s reward system. Addictive 
substances enhance levels of dopamine, resulting in feelings of pleasure (e.g., Di Chiara 
and Imperato, 1988; Tanda et al., 1997). According to the reward deficiency hypothesis 
some individuals are more prone to substance use than others because of differences in 
dopamine function. It has been proposed that individuals with lower baseline dopamine 
levels are more easily ‘bored’ and will seek more stimulation in order to experience the 
rewarding effects of dopamine (Blum et al., 1996; Bowirrat and Oscar-Berman, 2005). 
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binding, and release in substance abusers than in controls (Hommer et al., 2006). 
 
These lower homeostatic dopamine levels may be caused by variations in dopamine-
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al., 2016). Many similar hypodopaminergic polymorphisms have been implicated in 
substance use. Importantly, a large proportion of those polymorphisms are not Single 
Nucleotide Polymorphisms (SNPs) but Variable Number of Tandem Repeats (VNTRs). 
Whereas a SNP is a variation of only one nucleotide, VNTRs are variations in the length of 
a repeat sequence of larger units of DNA. Genome-Wide Association Studies (GWAS), 
which look for an association between genetic variation and a given phenotype, have as 
of yet not included VNTRs.  
 
Hypodopaminergic polygenic risk score 
As a reflection of dopamine-related genetic vulnerability to substance use, this study will 
use a genetic risk score for hypodopaminergic functioning. Variations in dopamine-
related genes may lead to individual differences in basal dopamine levels, for example by 
influencing the number of dopamine receptors. These genes all have a small contribution, 
so considering them together is a more powerful method for identifying genetic risk than 
a single-gene approach. Although other recent studies have used polygenic risk scores in 
predicting substance use (e.g., Vink, et al., 2014), these generally did not include non-SNP 
variations.  
 

Table 1. Overview of polymorphisms in dopamine-related genes included in the hypodopaminergic polygenic risk score. 

Gene Polymorphism Risk allele Dopamine-
related effect of 
risk allele 

Representative literature examples 
 

supportive opposing 
DAT1 
dopamine 
transporter 
gene 

3’ UTR 40-bp  
VNTR 

10R enhanced 
clearance 

Smoking: Laucht et 
al. (2008); Herman et 
al. (2014) 
Alcohol: Schacht et 
al. (2013) 
Drugs: Stolf et al. 
(2014)  

Smoking: Munafo 
et al. (2004)  
Substance abuse: 
Blum et al. (2013)  
Polydrug use: 
Conner, et al. 
(2010) 

DRD2 
dopamine 
receptor D2 
gene 

rs1800497 TaqIA 
SNPa 

T reduced D2 
receptor density 

Smoking: Munafo, et 
al. (2004)  
Alcohol: Smith et al. 
(2008) 
Drugs: Esposito-
Smythers et al. 
(2009) 

Alcohol: 
Hallikainen et al. 
(2003) 

DRD4 
dopamine 
receptor D4 
gene 

3rd exon 48-bp 
VNTR 

long (>=7 
repeats) 

reduced receptor 
efficiency 

Addiction: McGeary 
(2009)  
Substance use: 
Olsson et al. (2013) 

Addiction: 
Comings et al. 
(1999) 

A supportive research finding indicates that a positive relation was found between the risk allele and substance use; an 
opposing finding indicates a positive relation between the non-risk allele and substance use.  
a This polymorphism was previously thought to lie in the DRD2 gene but is actually located in the ankyrin repeat and 
kinase domain containing 1 (ANKK1) gene next to DRD2.   

Candidate-genes for polysubstance use 

To the best of our knowledge, only two studies have used a sum score of risk alleles for 
substance use combining both SNPs and VNTRs. One study looked at the number of 
alleles associated with hypodopaminergic function and found this number to be 
associated with the use of licit and illicit substances in adolescent males (Conner et al., 
2010). In contrast, Davis and Loxton (2013) used a score of similar variants, but found that 
alleles associated with higher dopamine levels predicted behavioral and substance 
addiction. These conflicting results might be due to differences in outcome, the exact 
polymorphisms under study, and importantly, in the choice for which allele of each 
variant was considered as the risk allele. 
 
For the current study, the literature was therefore carefully examined in order to make an 
informed prediction. Well-studied polymorphisms with a clear implication in dopamine 
function and substance use were included. Many studies showing a relation between 
these polymorphisms and substance use could be identified, of which representative 
examples are given in Table 1. However, conflicting studies were identified as well (see 
some examples in Table 1), underlining the need for more powerful tests of those 
associations. Most studies identified alleles associated with low dopamine function as 
conferring risk for substance use, which is in line with the reward deficiency hypothesis. 
Thus, for the current study, we counted the number of alleles associated with low 
dopamine for our genetic risk score. Although the number of selected polymorphisms is 
limited, previous polygenic risk score studies have  
 
successfully predicted phenotypes using a score of only a few variants (Belsky et al., 2013; 
Brody et al., 2013; David et al., 2013; Davis and Loxton, 2013; Guo et al., 2015). Because 
heritability is likely to be overlapping for different substances, and because it appears 
from the literature that the same variants are implied, it is hypothesized that reward-
related polymorphisms form a liability factor common to different substance use 
phenotypes. Thus, we predict that hypodopaminergic genetic risk predicts higher 
chances of having initiated use of multiple substances. 
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which look for an association between genetic variation and a given phenotype, have as 
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related genes may lead to individual differences in basal dopamine levels, for example by 
influencing the number of dopamine receptors. These genes all have a small contribution, 
so considering them together is a more powerful method for identifying genetic risk than 
a single-gene approach. Although other recent studies have used polygenic risk scores in 
predicting substance use (e.g., Vink, et al., 2014), these generally did not include non-SNP 
variations.  
 

Table 1. Overview of polymorphisms in dopamine-related genes included in the hypodopaminergic polygenic risk score. 
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kinase domain containing 1 (ANKK1) gene next to DRD2.   

Candidate-genes for polysubstance use 

To the best of our knowledge, only two studies have used a sum score of risk alleles for 
substance use combining both SNPs and VNTRs. One study looked at the number of 
alleles associated with hypodopaminergic function and found this number to be 
associated with the use of licit and illicit substances in adolescent males (Conner et al., 
2010). In contrast, Davis and Loxton (2013) used a score of similar variants, but found that 
alleles associated with higher dopamine levels predicted behavioral and substance 
addiction. These conflicting results might be due to differences in outcome, the exact 
polymorphisms under study, and importantly, in the choice for which allele of each 
variant was considered as the risk allele. 
 
For the current study, the literature was therefore carefully examined in order to make an 
informed prediction. Well-studied polymorphisms with a clear implication in dopamine 
function and substance use were included. Many studies showing a relation between 
these polymorphisms and substance use could be identified, of which representative 
examples are given in Table 1. However, conflicting studies were identified as well (see 
some examples in Table 1), underlining the need for more powerful tests of those 
associations. Most studies identified alleles associated with low dopamine function as 
conferring risk for substance use, which is in line with the reward deficiency hypothesis. 
Thus, for the current study, we counted the number of alleles associated with low 
dopamine for our genetic risk score. Although the number of selected polymorphisms is 
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Material and methods 
 
To test whether hypodopaminergic polygenic risk would predict polysubstance use, data 
of two independent family samples were utilized. 
 
NTR sample 
Participants 
The first sample included participants from the Netherlands Twin Register (NTR), an 
ongoing longitudinal study of twins and their family members. A detailed description of 
study methods has been provided elsewhere (Willemsen et al., 2013). Data on substance 
use were collected between 1991 and 2014 in nine waves. For a subsample there were 
also data on SNPs and VNTRs (see Fig 1). Because of the family structure in the sample, 
age had a bimodal distribution, with a mean of M=22.1 (SD=3.0, N=1139) and M=47.1 
(SD=11.2, N=1296). Females made up 62.8% of the sample.   
 

 
Figure 2. Data availability. Flowchart of data availability in the NTR (left) and 

F&H sample (right). 

Candidate-genes for polysubstance use 

Genotype data 
NTR participants have been genotyped for common SNPs and VNTRs using procedures 
described elsewhere (Huppertz et al., 2014; Willemsen et al., 2010). The 
hypodopaminergic polygenic risk score (HPRS) was the average number of risk alleles in 
the three variants. Individuals with more than one missing genotype were excluded 
(N=58). The formula for this procedure was:  

𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 =
∑(𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷110𝑅𝑅𝑅𝑅 ,𝐷𝐷𝐷𝐷𝐻𝐻𝐻𝐻𝐷𝐷𝐷𝐷2𝑇𝑇𝑇𝑇 , 𝐷𝐷𝐷𝐷𝐻𝐻𝐻𝐻𝐷𝐷𝐷𝐷4𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙)

𝑁𝑁𝑁𝑁𝑣𝑣𝑣𝑣

where the numerator counts the risk alleles (0,1 or 2 per genetic variant) and the 
denominator Nv is the number of genotyped variants (minimal two). Thus, the HPRS 
reflects the mean number of risk alleles for each individual. The variants were not 
weighted by previously found effect sizes (as is common for polygenic risks score studies), 
since GWAS on which such weighting procedures are based have not included VNTRs. 
Principal components for genetic ancestry were not used to control for population 
stratification, as required data were not available for all NTR participants and no such 
data were available in the F&H sample. Non-Caucasian individuals were excluded from 
analysis (N=177) and individuals with no information on ethnicity (N=663) were kept in 
the analyses (results did not change when they were excluded; data not shown). The data 
met quality criteria for minor allele frequency (MAF>0.05), Hardy-Weinberg disequilibrium 
(H-W, threshold p>.001), and Mendelian errors (<.02 per variant). 

F&H sample 
Participants 
The second sample included participants from the Dutch longitudinal Family & Health 
(F&H) study. Details on the F&H sample and procedures are provided elsewhere (e.g., 
Hiemstra et al., 2013; van der Vorst et al., 2005). The sample consisted of families of two 
children and both their parents (N=428 families). Survey data were collected between 
2002 and 2009 in six yearly waves. DNA was collected for 1265 individuals between 2006 
and 2007 via saliva sampling (see Fig 1).  

Mean age was 19.0 (SD=0.8) years for the child cohort (N=621) and 49.8 (SD=3.7) years for 
the parent cohort (N=551). About half of the sample was female (49.4%).  

Genotype data 
Individual variants were genotyped using polymerase chain reaction (PCR; for details, see 
Hiemstra et al., 2014). The HPRS again comprised the mean number of risk alleles in the 
DAT1, DRD4, and DRD2 genes. Individuals born outside of Europe were excluded (N=15). 
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Material and methods 
 
To test whether hypodopaminergic polygenic risk would predict polysubstance use, data 
of two independent family samples were utilized. 
 
NTR sample 
Participants 
The first sample included participants from the Netherlands Twin Register (NTR), an 
ongoing longitudinal study of twins and their family members. A detailed description of 
study methods has been provided elsewhere (Willemsen et al., 2013). Data on substance 
use were collected between 1991 and 2014 in nine waves. For a subsample there were 
also data on SNPs and VNTRs (see Fig 1). Because of the family structure in the sample, 
age had a bimodal distribution, with a mean of M=22.1 (SD=3.0, N=1139) and M=47.1 
(SD=11.2, N=1296). Females made up 62.8% of the sample.   
 

 
Figure 2. Data availability. Flowchart of data availability in the NTR (left) and 

F&H sample (right). 

Candidate-genes for polysubstance use 

Genotype data 
NTR participants have been genotyped for common SNPs and VNTRs using procedures 
described elsewhere (Huppertz et al., 2014; Willemsen et al., 2010). The 
hypodopaminergic polygenic risk score (HPRS) was the average number of risk alleles in 
the three variants. Individuals with more than one missing genotype were excluded 
(N=58). The formula for this procedure was:  

𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 =
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𝑁𝑁𝑁𝑁𝑣𝑣𝑣𝑣

where the numerator counts the risk alleles (0,1 or 2 per genetic variant) and the 
denominator Nv is the number of genotyped variants (minimal two). Thus, the HPRS 
reflects the mean number of risk alleles for each individual. The variants were not 
weighted by previously found effect sizes (as is common for polygenic risks score studies), 
since GWAS on which such weighting procedures are based have not included VNTRs. 
Principal components for genetic ancestry were not used to control for population 
stratification, as required data were not available for all NTR participants and no such 
data were available in the F&H sample. Non-Caucasian individuals were excluded from 
analysis (N=177) and individuals with no information on ethnicity (N=663) were kept in 
the analyses (results did not change when they were excluded; data not shown). The data 
met quality criteria for minor allele frequency (MAF>0.05), Hardy-Weinberg disequilibrium 
(H-W, threshold p>.001), and Mendelian errors (<.02 per variant). 

F&H sample 
Participants 
The second sample included participants from the Dutch longitudinal Family & Health 
(F&H) study. Details on the F&H sample and procedures are provided elsewhere (e.g., 
Hiemstra et al., 2013; van der Vorst et al., 2005). The sample consisted of families of two 
children and both their parents (N=428 families). Survey data were collected between 
2002 and 2009 in six yearly waves. DNA was collected for 1265 individuals between 2006 
and 2007 via saliva sampling (see Fig 1).  

Mean age was 19.0 (SD=0.8) years for the child cohort (N=621) and 49.8 (SD=3.7) years for 
the parent cohort (N=551). About half of the sample was female (49.4%).  

Genotype data 
Individual variants were genotyped using polymerase chain reaction (PCR; for details, see 
Hiemstra et al., 2014). The HPRS again comprised the mean number of risk alleles in the 
DAT1, DRD4, and DRD2 genes. Individuals born outside of Europe were excluded (N=15). 
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Persons with missing birth country were included (N=61; results did not change when 
these individuals were not considered; data not shown). The genotype variables 
withstood MAF (>.05) and Hardy-Weinberg quality control (p>.001). 
 
Measures 
Moderate substance use  
Similar survey items were used to determine moderate substance use in both samples. 
Moderate polysubstance use was defined as having done at least two of the following: 1) 
smoked daily; 2) drank at least one glass of alcohol per day; 3) ever used cannabis (see 
Table 2). In the F&H sample, cannabis use was only measured in adolescents. No 
distinction was made between using substances concurrently or at different time points, 
so that an ex-smoker who currently drank alcohol was in the same category as someone 
who both drank and smoked currently. We expect that using such a composite will 
enhance power to detect effects, as it measures initiation of use of multiple substances, 
and will serve the purpose of capturing genetic variance common to different substance 
use phenotypes. 
 

Table 2.  Overview of aggregate measures included in the main and exploratory analyses,  
with corresponding cut-off points (if applicable) and descriptive statistics. 

 NTR F&H 

composits based on measures Descriptives based on measures Descriptives  

HPRS 
mean number of 
risk alleles 

DAT1, DRD4, DRD2 N=2435 
M=0.81 
SD=0.38 

DAT1, DRD4, DRD2 N=1172 
M=0.76  
SD=0.34 

eHPRSb 

mean number of 
risk alleles 

DAT1, DRD4, DRD2, 
DRD5, MAOA, 
OPRM1, COMT 

N=1771 
M=1.01 
SD=0.24 

DAT1, DRD4, DRD2, 
OPRM1 

N= 1122 
M=1.02 
SD=0.27 

moderate poly use 
at least two substances 
used 
over time 

>=1 cigarette per 
dayc 

>=6 glasses alcohol 
per week & >= 
drinking a few times 
per weekd 

ever use of 
cannabis 

N=2384 
prevalence= 
37.2% 

>=1 cigarette per day 
>=6 glasses alcohol 
per week & >= 
drinking a few times 
per week 
ever use of cannabis 
(for adolescents 
only) 

N=970 
prevalence= 
62.6% 

problematic poly use 
problematic use of at least 
two substances over time 

FTNDa score of >=6 
CAGE score of >=2 
regular cannabis 
use 

N=2376 
prevalence=2.4% 

FTND score of >=6 
RAPI score of >=8 
regular cannabis use 
(for adolescents 
only) 

N=1091 
prevalence= 
4.3% 

Candidate-genes for polysubstance use 

 
Problematic substance use 
For smoking, in both samples the Fagerström Test of Nicotine Dependence (FTND) was 
used. The 6-item FTND measures the degree of nicotine dependence (Heatherton et al., 
1991). The Dutch version of this questionnaire has shown sufficient reliability and validity 
(Vink et al., 2005).  
 
For drinking, the 4-item CAGE questionnaire was used in the NTR sample, and the short 
version of the Rutgers Alcohol Problems Index (RAPI) was used in the F&H sample. CAGE 
is an acronym for the four items in the questionnaire: feeling you need to Cut down on 
drinking; feeling Annoyed by people criticizing your drinking; feeling Guilty about 
drinking; and using alcohol as an Eye-opener to wake up in the morning (Mayfield et al., 
1974). The Dutch version has shown sufficient quality (Aertgeerts et al., 2000). The 
common cut-off score of 2 has shown to yield good specificity and sensitivity (Buchsbaum 
et al., 1991). The RAPI is a longer instrument aimed at measuring problematic use, and 
includes items similar to the CAGE, such as ‘was told by a friend, neighbor or relative to 
stop or cut down drinking’ (White and Labouvie, 1989). The shortened 18-item version 
correlates highly with the original version, which has good measurement properties 
(White and Labouvie, 2000). Previous studies used a cut-off total score of >=15 for the 23-
item version to classify persons as problematic users (Danielson et al., 2003; Thombs and 
Beck, 1994; Watt et al., 2006), which corresponds to a >=12 cut-off for the 18-item version.  
Although they are different instruments, the RAPI and CAGE show overlap (Myerholtz and 
Rosenberg, 1998).  
 
In both samples problematic cannabis use was determined based on a question of the 
format ‘Have you ever started using cannabis on a regular basis?’. In the F&H sample, this 
information was only available for adolescents. A person was considered a problematic 
polysubstance user when he/she had met at least two of the following criteria on at least 

education levelb low: medium 
vocational school, 
higher secondary 
school or lower 
high: higher 
vocational school/ 
university 

N=2366 
prevalence 
low=50.1% 
  

low: medium 
vocational school, 
higher secondary 
school or lower 
high: higher 
vocational school/ 
university 

N=1171 
prevalence 
low=42.5%  
  

a FTND= Fagerström Test of Nicotine Dependence; CAGE= alcohol problems questionnaire; RAPI= Rutgers Alcohol 
Problem Index; for details, see below. 

b Explained in the exploratory analyses. 
c Following definitions from Centraal Bureau voor de Statistiek (2016); d Following guidelines from Gezondheidsraad 
(2015). Drinking at least one glass per day corresponded to the answering category of drinking at least 6-10 glasses 

per week combined with drinking at least a few times per week.  
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Persons with missing birth country were included (N=61; results did not change when 
these individuals were not considered; data not shown). The genotype variables 
withstood MAF (>.05) and Hardy-Weinberg quality control (p>.001). 
 
Measures 
Moderate substance use  
Similar survey items were used to determine moderate substance use in both samples. 
Moderate polysubstance use was defined as having done at least two of the following: 1) 
smoked daily; 2) drank at least one glass of alcohol per day; 3) ever used cannabis (see 
Table 2). In the F&H sample, cannabis use was only measured in adolescents. No 
distinction was made between using substances concurrently or at different time points, 
so that an ex-smoker who currently drank alcohol was in the same category as someone 
who both drank and smoked currently. We expect that using such a composite will 
enhance power to detect effects, as it measures initiation of use of multiple substances, 
and will serve the purpose of capturing genetic variance common to different substance 
use phenotypes. 
 

Table 2.  Overview of aggregate measures included in the main and exploratory analyses,  
with corresponding cut-off points (if applicable) and descriptive statistics. 

 NTR F&H 

composits based on measures Descriptives based on measures Descriptives  

HPRS 
mean number of 
risk alleles 

DAT1, DRD4, DRD2 N=2435 
M=0.81 
SD=0.38 

DAT1, DRD4, DRD2 N=1172 
M=0.76  
SD=0.34 

eHPRSb 

mean number of 
risk alleles 

DAT1, DRD4, DRD2, 
DRD5, MAOA, 
OPRM1, COMT 

N=1771 
M=1.01 
SD=0.24 

DAT1, DRD4, DRD2, 
OPRM1 

N= 1122 
M=1.02 
SD=0.27 

moderate poly use 
at least two substances 
used 
over time 

>=1 cigarette per 
dayc 

>=6 glasses alcohol 
per week & >= 
drinking a few times 
per weekd 

ever use of 
cannabis 

N=2384 
prevalence= 
37.2% 

>=1 cigarette per day 
>=6 glasses alcohol 
per week & >= 
drinking a few times 
per week 
ever use of cannabis 
(for adolescents 
only) 

N=970 
prevalence= 
62.6% 

problematic poly use 
problematic use of at least 
two substances over time 

FTNDa score of >=6 
CAGE score of >=2 
regular cannabis 
use 

N=2376 
prevalence=2.4% 

FTND score of >=6 
RAPI score of >=8 
regular cannabis use 
(for adolescents 
only) 

N=1091 
prevalence= 
4.3% 

Candidate-genes for polysubstance use 

 
Problematic substance use 
For smoking, in both samples the Fagerström Test of Nicotine Dependence (FTND) was 
used. The 6-item FTND measures the degree of nicotine dependence (Heatherton et al., 
1991). The Dutch version of this questionnaire has shown sufficient reliability and validity 
(Vink et al., 2005).  
 
For drinking, the 4-item CAGE questionnaire was used in the NTR sample, and the short 
version of the Rutgers Alcohol Problems Index (RAPI) was used in the F&H sample. CAGE 
is an acronym for the four items in the questionnaire: feeling you need to Cut down on 
drinking; feeling Annoyed by people criticizing your drinking; feeling Guilty about 
drinking; and using alcohol as an Eye-opener to wake up in the morning (Mayfield et al., 
1974). The Dutch version has shown sufficient quality (Aertgeerts et al., 2000). The 
common cut-off score of 2 has shown to yield good specificity and sensitivity (Buchsbaum 
et al., 1991). The RAPI is a longer instrument aimed at measuring problematic use, and 
includes items similar to the CAGE, such as ‘was told by a friend, neighbor or relative to 
stop or cut down drinking’ (White and Labouvie, 1989). The shortened 18-item version 
correlates highly with the original version, which has good measurement properties 
(White and Labouvie, 2000). Previous studies used a cut-off total score of >=15 for the 23-
item version to classify persons as problematic users (Danielson et al., 2003; Thombs and 
Beck, 1994; Watt et al., 2006), which corresponds to a >=12 cut-off for the 18-item version.  
Although they are different instruments, the RAPI and CAGE show overlap (Myerholtz and 
Rosenberg, 1998).  
 
In both samples problematic cannabis use was determined based on a question of the 
format ‘Have you ever started using cannabis on a regular basis?’. In the F&H sample, this 
information was only available for adolescents. A person was considered a problematic 
polysubstance user when he/she had met at least two of the following criteria on at least 

education levelb low: medium 
vocational school, 
higher secondary 
school or lower 
high: higher 
vocational school/ 
university 

N=2366 
prevalence 
low=50.1% 
  

low: medium 
vocational school, 
higher secondary 
school or lower 
high: higher 
vocational school/ 
university 

N=1171 
prevalence 
low=42.5%  
  

a FTND= Fagerström Test of Nicotine Dependence; CAGE= alcohol problems questionnaire; RAPI= Rutgers Alcohol 
Problem Index; for details, see below. 

b Explained in the exploratory analyses. 
c Following definitions from Centraal Bureau voor de Statistiek (2016); d Following guidelines from Gezondheidsraad 
(2015). Drinking at least one glass per day corresponded to the answering category of drinking at least 6-10 glasses 

per week combined with drinking at least a few times per week.  
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one measurement moment: 1) score above cut-off for the FTND; 2) score above cut-off for 
the CAGE/ RAPI; 3) regular use of cannabis.  
 
Statistical analyses 
A logistic generalized estimating equations (GEE) model was used to examine the 
relationship between the hypodopaminergic polygenic risk score and polysubstance use. 
GEE is a form of multilevel regression with the possibility to control for (family) clustering. 
Separate analyses were conducted for both outcome measures and for both samples. Age 
and sex were included as covariates in the analyses. Birth cohort (being a parent or a child 
in the family) correlated almost perfectly with age and was not included in the model. 
Continuous variables were centered on the sample mean. 
 
Power  
In Fig 2 power calculations are depicted for both samples. Effect sizes of individual genetic 
variants are commonly found to be between R2 = 0.1 to 1% (Ioannidis et al., 2006; So et 
al., 2011). In the current investigation, an R2 of 0.3-3% might thus be expected, since three 
variants were considered. As can be seen in Fig 2, power in the NTR sample is sufficient 
(80%) for an explained variance of approximately 0.4% or more. In the F&H sample, a 
larger effect size of 0.8% would be required to have an 80% chance of detecting the effect.  
  

Figure 3. Power analysis. Power for main analysis in NTR (panel a) and F&H sample (panel b). In 
the NTR sample, sample sizes for both outcomes were very similar, so that power was estimated 
for both outcomes together. Estimations of effect sizes are in percentage of explained variance 

(R2). An α-level of .05 was used. 

Candidate-genes for polysubstance use 

Results 

Descriptive statistics for the predictor and outcome variables were given in Table 2. The 
HPRSs were normally distributed between 0 and 2 with a mean of 0.81 and 0.76, 
suggesting that the risk alleles were somewhat rarer than the non-risk alleles. In the NTR, 
36% had ever smoked on a daily basis, 55% had drunk regularly, and 28% had used 
cannabis. In the F&H, these rates were 49%, 83%, and 41% (for adolescents only), 
respectively. Using one substance on a moderate level predicted the use of another 
substance on a moderate level (χ2=111.9, p<.01 for NTR; χ2=16.6, p<.01 for F&H). Likewise, 
the problematic substance use phenotypes were significantly related (χ2=29.1, p<.01 for 
NTR; χ2=43.0, p<.01 for F&H), justifying the aggregation in the polysubstance use indices. 
 
Main effects 
There was no relationship between the HPRS and moderate or problematic 
polysubstance use in either sample (see Table 3). In all models, there was a main effect of 
sex, such that males were more likely than females to show moderate and problematic 
polysubstance use. Results did not change when analyses were conducted separately for 
males and females or for young and old cohorts, or when the interactions with these 
factors were included in the analyses (data not shown). Effects of age were significant in 
some models, but the coefficients were small and in opposing directions for the samples. 
 
Exploratory analyses 
Below, possible explanations for the initial null findings are examined. Because of the 
post hoc nature of these tests, which increases the multiple testing burden, a stricter α-
level of .01 was adopted for the exploratory analyses. 
 
Extended risk score 
As a possible explanation, it was investigated whether a more extensive measure of 
hypodopaminergic risk could predict polysubstance use. The HPRS was extended 
(eHPRS) using risk alleles in other available polymorphisms that have shown a relation 
with hypodopaminergic function and substance use (see Table 4). Four additional 
polymorphisms (in the genes DRD5, OPRM1, COMT, MAOA) were selected in the NTR, and 
one (in OPRM1 gene) in the F&H sample. The eHPRS was calculated if data for at least five 
(in the NTR sample) or four polymorphisms (in the F&H sample) were available. Results 
showed no effect of the eHPRS on either outcome (Supplemental Table A). 
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one measurement moment: 1) score above cut-off for the FTND; 2) score above cut-off for 
the CAGE/ RAPI; 3) regular use of cannabis.  
 
Statistical analyses 
A logistic generalized estimating equations (GEE) model was used to examine the 
relationship between the hypodopaminergic polygenic risk score and polysubstance use. 
GEE is a form of multilevel regression with the possibility to control for (family) clustering. 
Separate analyses were conducted for both outcome measures and for both samples. Age 
and sex were included as covariates in the analyses. Birth cohort (being a parent or a child 
in the family) correlated almost perfectly with age and was not included in the model. 
Continuous variables were centered on the sample mean. 
 
Power  
In Fig 2 power calculations are depicted for both samples. Effect sizes of individual genetic 
variants are commonly found to be between R2 = 0.1 to 1% (Ioannidis et al., 2006; So et 
al., 2011). In the current investigation, an R2 of 0.3-3% might thus be expected, since three 
variants were considered. As can be seen in Fig 2, power in the NTR sample is sufficient 
(80%) for an explained variance of approximately 0.4% or more. In the F&H sample, a 
larger effect size of 0.8% would be required to have an 80% chance of detecting the effect.  
  

Figure 3. Power analysis. Power for main analysis in NTR (panel a) and F&H sample (panel b). In 
the NTR sample, sample sizes for both outcomes were very similar, so that power was estimated 
for both outcomes together. Estimations of effect sizes are in percentage of explained variance 

(R2). An α-level of .05 was used. 
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Results 

Descriptive statistics for the predictor and outcome variables were given in Table 2. The 
HPRSs were normally distributed between 0 and 2 with a mean of 0.81 and 0.76, 
suggesting that the risk alleles were somewhat rarer than the non-risk alleles. In the NTR, 
36% had ever smoked on a daily basis, 55% had drunk regularly, and 28% had used 
cannabis. In the F&H, these rates were 49%, 83%, and 41% (for adolescents only), 
respectively. Using one substance on a moderate level predicted the use of another 
substance on a moderate level (χ2=111.9, p<.01 for NTR; χ2=16.6, p<.01 for F&H). Likewise, 
the problematic substance use phenotypes were significantly related (χ2=29.1, p<.01 for 
NTR; χ2=43.0, p<.01 for F&H), justifying the aggregation in the polysubstance use indices. 
 
Main effects 
There was no relationship between the HPRS and moderate or problematic 
polysubstance use in either sample (see Table 3). In all models, there was a main effect of 
sex, such that males were more likely than females to show moderate and problematic 
polysubstance use. Results did not change when analyses were conducted separately for 
males and females or for young and old cohorts, or when the interactions with these 
factors were included in the analyses (data not shown). Effects of age were significant in 
some models, but the coefficients were small and in opposing directions for the samples. 
 
Exploratory analyses 
Below, possible explanations for the initial null findings are examined. Because of the 
post hoc nature of these tests, which increases the multiple testing burden, a stricter α-
level of .01 was adopted for the exploratory analyses. 
 
Extended risk score 
As a possible explanation, it was investigated whether a more extensive measure of 
hypodopaminergic risk could predict polysubstance use. The HPRS was extended 
(eHPRS) using risk alleles in other available polymorphisms that have shown a relation 
with hypodopaminergic function and substance use (see Table 4). Four additional 
polymorphisms (in the genes DRD5, OPRM1, COMT, MAOA) were selected in the NTR, and 
one (in OPRM1 gene) in the F&H sample. The eHPRS was calculated if data for at least five 
(in the NTR sample) or four polymorphisms (in the F&H sample) were available. Results 
showed no effect of the eHPRS on either outcome (Supplemental Table A). 
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Gene-environment interaction 
Possibly, the effect of the HPRS was obscured by an interaction with environmental 
influences. If genetic risk would lead to more polysubstance use in one environmental 
group, but to lower polysubstance use in another, the main effect would not be found in 
the combined group. One plausible environmental variable is socioeconomic status, of 
which education level is an important element. For example, it has been found that 
individuals with a higher education level have a lower risk for alcohol problems, so that 
they will not develop those unless they have a high genetic liability, whereas 
environmental risk is more important for individuals with a low education level (Latvala 
et al., 2011). In both the NTR and F&H sample, information on education level was 
available. For individuals under age 25, who may not have finished their education, 
parental education was used as a proxy for socioeconomic status. Education level was 
dichotomized using cut-offs as described in Table 2. The interaction of education level 
with the HPRS was explored.  
 
Results of these analyses are summarized in Table 5. In the NTR sample, no significant 
main or interaction effects for education were observed. In the F&H, there was a trend for 
an interaction effect (p=.03), such that a higher HPRS predicted less substance use, but 
only for persons with a low education level.  
 
Relation between HPRS and separate substances 
Possibly, the risk score shows no association with an aggregate measure of polysubstance 
use, but does show an association with separate substance use types. If the association 
with separate substances would be in opposing directions, they would cancel each other 
out in the aggregate measure. To test this possibility, six GEE analyses were conducted 
for the substance use variables separately (moderate and problematic nicotine, alcohol, 
and cannabis use). No significant relations were found, although there was a trend in the 

Table 3. Results for main analyses using the core hypodopaminergic polygenic risk score. 

 
 

moderate poly- 
substance use 

problematic poly- 
substance use 

predictor b (SD) p b (SD) p 

NTR 
N= 2384 (moderate) 
N= 2376 (problematic) 

HPRS 0.02 (0.13) .91 -0.02 (0.43) .96 
age -0.02 (0.00) <.01** -0.01 (0.01) .30 
sex -0.50 (0.09) <.01** -0.71 (0.28) .01* 

F&H 
N=970 (moderate) 
N= 1091 (problematic) 

HPRS -0.19 (0.22) .39 -0.18 (0.48) .71 

age 0.05 (0.01) <.01** -0.04 (0.01) <.01** 
sex 0.57 (0.13) <.01** 1.49 (0.36) <.01** 

*significant at α=.05 ** significant at α=.01 

Candidate-genes for polysubstance use 

NTR sample for moderate alcohol use in the direction opposite from what was expected 
(p=.03, see Supplemental Table B).  
 
Relation between polysubstance use and separate polymorphisms 
In the interaction model a negative effect was found of the HPRS on substance use. 
Therefore, it is possible that the risk alleles were not correctly selected based on the 
literature. To investigate this possibility, separate GEE analyses for each individual 
genetic variant were conducted. The results are summarized in Supplemental Table B and 
C. There were only two associations significant at the α=.01 level, both in the NTR sample, 
between MAOA and moderate cannabis use and problematic alcohol use. There were as 
many variants with small positive as with small negative coefficients, so that these 
cancelled each other out in the sum score. Sample sizes for separate polymorphisms were 
smaller, so that these analyses may have been underpowered. 
 
Quadratic effects 
Both positive and negative coefficients were found for separate polymorphisms and 
separate substance use outcomes. Possibly, both low and high (rather than normal) 
dopamine function are predictive of substance use. To test this possibility, the squared 
centered HPRS was added as a predictor in the model. This quadratic term was zero when 
a person had an average number of hyperdopaminergic risk alleles, and increased when 
he/she had a high or low number of alleles. Analyses using this quadratic term revealed 
no significant associations (see Supplemental Table D). 
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Table 4. Summary of polymorphisms in more peripherally dopamine-related genes that were included in the explorative 
hypodopaminergic polygenic risk score(eHPRS).  

Gene Polymorphism Risk allele 

Dopamine-
related effect of 
risk allele 

Research findingsb 

supportive opposing 
DRD5 
dopamine 
receptor d5 gene 

5’ di-nucleotide 
repeat VNTR 

148bp non-functionala Smoking: Sullivan 
et al. (2001) 
Substance 
dependence: 
Vanyukov et al. 
(2001)  
 

- 

OPRM1 
µ-opioid receptor 
gene 

rs1799971 A118G 
SNP 

G reduced release Smoking: Kleinjan 
et al. (2013) 
Alcohol: Miranda et 
al. (2010)  
Drug dependence: 
Zhang et al. (2006)c 

Alcoholism: Du and 
Wan (2009)c 

Alcoholism and 
polysubstance abuse: 
Schinka et al. (2002)  

COMT  
catechol-O-
methyltrans-
ferase gene 

rs4680 
Val158Metb SNP 

G (Val) increased 
catabolism 

Smoking: Munafo et 
al. (2008)  
Alcoholism: Enoch 
et al. (2006)c  
Cannabis: Isir et al. 
(2008)c   

Smoking: Beuten et al. 
(2006)  
Alcohol: Hendershot et 
al. (2012) 
Cannabis: Verdejo-
García et al. (2013)  

MAOA 
monoamine 
oxidase-A gene 

promoter 30bp 
VNTRa 

long 
(>=3.5 
repeats) 

increased 
catabolism 

Smoking: Wiesbeck 
et al. (2006) 
Alcohol: Nilsson et 
al. (2011)  
Drug abuse: Gade et 
al. (1998) 

Smoking: Jin et al. 
(2006)c  
Alcohol: Samochowiec 
et al. (2015)  
Substance use 
disorders: Vanyukov et 
al. (2007) 

a The DRD5 polymorphism is likely to be in linkage disequilibrium with variants that decrease dopamine receptor 1 
efficiency  

b A positive research finding indicates that a positive relation was found between the risk allele and substance use; an 
opposing finding indicates a positive relation between the non-risk allele and substance use.  

c Non-European ancestry study sample (i.e., Asian, Indian-American) 

Candidate-genes for polysubstance use 

 

  

Table 5. Results for main analyses using the core hypodopaminergic polygenic risk score including the main 
and interaction effect of family education level. 

  moderate 
polysubstance use 

problematic  
polysubstance use 

 predictor b(SD) p b(SD) p 

NTR 
N= 2315 (moderate) 
N= 2312 (problematic) 

HPRS -0.05 (0.40) .81 -0.19 (1.23) .85 
age -0.02 (0.00) <.01** -0.01 (0.01) .32 
sex -0.52 (0.09) <.01** -0.71 (0.29) .02* 
education -0.16 (0.10) .10 -0.49 (0.30) .11 
HPRS*education 0.06 (0.25) .81 0.15 (0.78) .85 

F&H 
N=969 (moderate) 
N= 1090 (problematic) 
 

HPRS -1.88 (0.80) .02* -2.81 (1.49) .06 
age 0.05 (0.01) <.01** -0.04 (0.01) <.01 
sex 0.58 (0.13) <.01** 1.49 (0.36) <.01** 
education -0.16 (0.17) .33 -0.33 (0.36) .35 
HPRS*education 1.05 (0.47) .03* 1.73 (0.91) .06 

*significant at α=.05 ** significant at α=.01 
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Discussion 

This study aimed to test the association between three hypodopaminergic genetic 
variants and the use of multiple substances over life. In two samples, the 
hypodopaminergic polygenic risk score did not predict polysubstance use, and this did 
not change when additional polymorphisms were included.  
 
Possible explanations 
Several explanations for the null results can be offered. First, although there was 
sufficient power to detect an effect of at least R2=0.4-0.8%, it could be that the true effect 
size was smaller than that. Also, power in the problematic polysubstance use analyses 
might have been compromised by the low prevalence of this phenotype.  
 
As a second explanation, an interaction between genetic vulnerability and an 
environmental factor could have muddled the results. It has been suggested that 
interaction with environmental variables is one of the reasons why molecular genetics 
studies succeed in explaining only small part of the heritability estimates found in twin 
studies (Vink, 2016). A plausible candidate for such an environmental variable is 
socioeconomic status, often indexed by (parental) education level. For example, it has 
been found that genetic factors are more important for people with a high education level 
than for those with a low education level in determining the risk for alcohol problems 
(Latvala, et al., 2011). However, the null-results were not explained by an interaction with 
family education level, although there were some unexpected trends in the F&H dataset, 
showing a stronger negative relation between genetic risk and substance use for persons 
with a low education level.  
 
Third, it might be that the genetic risk scores had opposing effects on the different 
substance use types, thus obscuring a main effect. This could be driven by one or more 
polymorphisms that have shown associations in opposing directions for different 
substances. As we tested this, however, the polygenic risk scores showed hardly any 
relations with the substance use variables separately, rendering this explanation 
insufficient.  
 
As a fourth explanation, it was tested whether individual polymorphisms had opposing 
effects. Selection of hypodopaminergic alleles related to substance use was based on an 
extensive literature search, but reports were not consistent. Indeed, in both samples, the 
selected risk alleles showed both positive and negative relations with substance use 
phenotypes, suggesting that they canceled each other out in the combined scores. 
However, these individual effects were not significant. This is in line with many studies 

Candidate-genes for polysubstance use 

that did not find an effect of individual variants in dopamine-related genes on substance 
use (Creemers et al., 2011; Hiemstra, et al., 2014; Lind et al., 2009; Rasmussen et al., 2009), 
but in conflict with an even larger number of studies that did find an effect in the direction 
that was hypothesized or an effect in the opposing direction (see Table 1 and 4). 
 
Finally, it was investigated if there was a quadratic effect of the risk score. This would 
mean that both hypo- and hyperdopaminergic alleles predict polysubstance use, in 
contrast to alleles related to normal dopaminergic function. Considering the opposing 
effects found for the candidate genes (Table 1 and 4) this is a plausible explanation. Also, 
of the two studies to our knowledge that used a dopaminergic polygenic risk score similar 
to the one in the current investigation, one found an effect of hypodopaminergic alleles 
on substance use (Conner, et al., 2010), but the other found a relation between a 
hyperdopaminergic alleles and addiction (Davis and Loxton, 2013). However, tests of a 
quadratic term in our study did not suggest that low and high numbers of 
hypodopaminergic alleles were predictive of polysubstance use as compared to average 
numbers of alleles.  
 
Concluding, we could not sufficiently explain the null-results with post hoc tests. This 
suggests that risk alleles in dopamine-related genes do not play a vital role in predicting 
polysubstance use. Indeed, large GWAS for substance use phenotypes (Stringer et al., 
2016; The Tobacco and Genetics Consortium, 2010; Schumann et al., 2016) have rarely 
identified dopamine-related polymorphisms as their top results, suggesting that these 
may not be as important as has traditionally been assumed. This might mean that the 
relation with dopamine function is more indirect. For example, a variation in the CHRNA5 
gene (rs16969968) related to smoking addiction reduces nicotine receptor activity, which 
may hamper the eventual dopamine response to nicotine (Bierut et al., 2008). 
Alternatively, the genetic etiology of substance use may lie more in other mechanisms 
than dopamine function, such as the metabolism of the substance. For example, there are 
indications that variants in the alcohol dehydrogenase (ADH) gene cluster that are related 
to impaired alcohol metabolism lower the chances of alcohol dependence (Treutlein and 
Rietschel, 2011). 
 
Strengths and limitations 
This study aimed to tackle limitations of previous research. We used a design with 
polygenic risk scores and aggregate outcome measures in order to counteract power-
problems associated with candidate-gene studies. Indeed, power was sufficient to detect 
reasonably small effect sizes. A second strength was that we replicated the analyses in a 
separate sample, which is paramount for genetic association studies (Sullivan, 2007). 
Also, we included VNTRs, that have as of yet not been investigated in GWAS. Furthermore, 
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the longitudinal nature of the data increased chances of reliably capturing substance use. 
Finally, we tested several explanations for our results, which gives some indication for the 
reliability of our findings. 
 
An important limitation of this study lies in the identification of the genetic risk variants 
based on their proposed relation with hypodopaminergic function, although effects in 
other directions were explored. We restricted ourselves to genes for which a relation had 
been found, rather than genes that are in the same pathway but for which a clear effect 
on dopamine levels has not yet been revealed.  
 
The use of an aggregated outcome measure might be viewed as a strength (as it should 
increase power to detect effects), but might also have introduced heterogeneity. 
Preliminary tests of the association among the separate substance use measures however 
suggested that aggregating them was sensible. Also, relations between the HPRS with 
separate substance use variables were explored, and testing an aggregate measuring use 
of no versus 1 or more substance did not change results (not shown). The fact that only 
adolescent cannabis use was available in the F&H sample is unlikely to have biased the 
results, as the same results were obtained in the NTR sample, where adults were included 
in the measure. The measure of problematic cannabis use was based on one question 
measuring ‘regular’ use, which may not reliably capture problematic use. Still, it has been 
found that approximate measures of regular cannabis use (e.g., having used at least ten 
times) already predict later abuse and dependence (Stenbacka, 2003).  
 
Conclusions and future directions 
We found a sum score of hypodopaminergic risk alleles to be unrelated to moderate and 
problematic polysubstance use. The most likely explanation for these findings seemed to 
be that these polymorphisms do not play a crucial role in substance use phenotypes. 
Future research might include (non-SNP) polymorphisms unrelated to dopamine, or 
might adopt a hypothesis-free approach to circumvent the difficulty with defining risk 
alleles. Also, studies should include a role for gene-environment interaction, as there were 
indications that this may alter results. Time may be right for more complex genome-wide 
models, where interaction, mediation, gene-environment correlation, and opposing 
effects are included to disentangle the relation between dopamine-related genes and 
substance use.  

Candidate-genes for polysubstance use 
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the longitudinal nature of the data increased chances of reliably capturing substance use. 
Finally, we tested several explanations for our results, which gives some indication for the 
reliability of our findings. 
 
An important limitation of this study lies in the identification of the genetic risk variants 
based on their proposed relation with hypodopaminergic function, although effects in 
other directions were explored. We restricted ourselves to genes for which a relation had 
been found, rather than genes that are in the same pathway but for which a clear effect 
on dopamine levels has not yet been revealed.  
 
The use of an aggregated outcome measure might be viewed as a strength (as it should 
increase power to detect effects), but might also have introduced heterogeneity. 
Preliminary tests of the association among the separate substance use measures however 
suggested that aggregating them was sensible. Also, relations between the HPRS with 
separate substance use variables were explored, and testing an aggregate measuring use 
of no versus 1 or more substance did not change results (not shown). The fact that only 
adolescent cannabis use was available in the F&H sample is unlikely to have biased the 
results, as the same results were obtained in the NTR sample, where adults were included 
in the measure. The measure of problematic cannabis use was based on one question 
measuring ‘regular’ use, which may not reliably capture problematic use. Still, it has been 
found that approximate measures of regular cannabis use (e.g., having used at least ten 
times) already predict later abuse and dependence (Stenbacka, 2003).  
 
Conclusions and future directions 
We found a sum score of hypodopaminergic risk alleles to be unrelated to moderate and 
problematic polysubstance use. The most likely explanation for these findings seemed to 
be that these polymorphisms do not play a crucial role in substance use phenotypes. 
Future research might include (non-SNP) polymorphisms unrelated to dopamine, or 
might adopt a hypothesis-free approach to circumvent the difficulty with defining risk 
alleles. Also, studies should include a role for gene-environment interaction, as there were 
indications that this may alter results. Time may be right for more complex genome-wide 
models, where interaction, mediation, gene-environment correlation, and opposing 
effects are included to disentangle the relation between dopamine-related genes and 
substance use.  

Candidate-genes for polysubstance use 
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Supplementary Table A. Parameter estimates of the GEE models using the explorative hypodopaminergic 
risk score (eHPRS) as predictor. In other aspects identical to main analyses (using HPRS). 

   moderate 
polysubstance use 

problematic 
polysubstance use 

  predictor B (SD) p B (SD) p 

NTR N=1731 (moderate) 
N=1748 
(problematic) 

eHPRS -0.22 (0.24) .36 -0.21 (0.66) .76 
age -0.02 (0.00) <.01** -0.01 (0.01) .35 
sex -0.50 (0.11) <.01** -0.75 (0.34) .03* 

F&H N=927 (moderate) 
N=1045 
(problematic) 

eHPRS -0.38 (0.29) .18 -0.28 (0.60) .65 
age 0.05 (0.01) <.01** -0.04 (0.10) <.01** 
sex 0.56 (0.13) <.01** 1.54 (0.38) <.01** 

*significant at α=.05 ** significant at α=.01 

Candidate-genes for polysubstance use 

 
 
  

Supplementary Table B. GEEs for individual genetic variants and separate substance use outcomes. In all 
models, age and sex were included as covariates, and ethnic outliers were excluded. 

  

NTR F&H 

moderate problematic moderatea problematica 

smk alc can smk alc can smk alc smk alc 

HPRS b 0.15 -0.26 -0.23 0.06 -0.15 0.22 -0.10 -0.32 -0.21 -0.09 

 
p .24 .03* .10 .84 .41 .44 .57 .20 .58 .71 

 
N 2406 2440 2356 2325 2443 2291 1245 1177 769 1169 

DAT1 b 0.08 -0.07 -0.10 -0.23 -0.09 0.19 -0.01 -0.01 -0.22 -0.02 

 
p .35 .37 .23 .17 .43 .32 .93 .97 .23 .89 

 
N 2360 2393 2310 2279 2396 2246 1203 1136 743 1128 

DRD2 b -0.04 -0.16 -0.11 0.09 -0.02 0.03 -0.02 -0.19 0.12 0.01 

 
p .69 .10 .30 .66 .88 .89 .88 .16 .55 .94 

 
N 1749 1768 1732 1706 1791 1694 1243 1175 768 1167 

DRD4 b 0.11 0.01 -0.02 0.15 -0.03 0.04 -0.07 -0.11 0.06 -0.06 

 
p .19 .95 .87 .39 .79 .82 .50 .37 .77 .68 

 
N 2425 2459 2372 2343 2462 2307 1241 1173 769 1165 

OPRM1 b -0.00 -0.04 -0.12 0.45 -0.10 0.46 -0.21 -0.08 -0.12 0.13 

 
p .98 .75 .40 .15 .57 .18 .15 .71 .64 .53 

 
N 1749 1768 1732 1706 1791 1694 1244 1176 768 1168 

COMT b -0.05 0.19 -0.01 0.01 .09 -0.21     

 
p .45 .02* .90 .94 .42 .26     

 
N 1749 1768 1732 1706 1791 1694     

DRD5 b -0.06 0.06 -0.07 -0.29 -0.04 -0.10     

 
p .34 .36 .29 .05 .69 .44     

 
N 2426 2460 2373 2344 2463 2309     

MAOA b 0.20 0.10 0.23 -0.11 0.34 0.38     

 
p .01* .17 <.01** .52 <.01** .10     

  N 2409 2443 2357 2328 2447 2293     

a The GEE model for cannabis use could not converge due to low variance (low sample sizes).  
*significant at α=.05 **significant at α=.01 

Abbreviations: smk=smoking, alc=alcohol, can=cannabis 
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N 2425 2459 2372 2343 2462 2307 1241 1173 769 1165 

OPRM1 b -0.00 -0.04 -0.12 0.45 -0.10 0.46 -0.21 -0.08 -0.12 0.13 

 
p .98 .75 .40 .15 .57 .18 .15 .71 .64 .53 

 
N 1749 1768 1732 1706 1791 1694 1244 1176 768 1168 

COMT b -0.05 0.19 -0.01 0.01 .09 -0.21     

 
p .45 .02* .90 .94 .42 .26     

 
N 1749 1768 1732 1706 1791 1694     

DRD5 b -0.06 0.06 -0.07 -0.29 -0.04 -0.10     

 
p .34 .36 .29 .05 .69 .44     

 
N 2426 2460 2373 2344 2463 2309     

MAOA b 0.20 0.10 0.23 -0.11 0.34 0.38     

 
p .01* .17 <.01** .52 <.01** .10     

  N 2409 2443 2357 2328 2447 2293     

a The GEE model for cannabis use could not converge due to low variance (low sample sizes).  
*significant at α=.05 **significant at α=.01 

Abbreviations: smk=smoking, alc=alcohol, can=cannabis 
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Supplementary Table C. GEEs for individual genetic variants. In all analyses, age and sex were included as 
covariates, and ethnic outliers were excluded. 

  NTR F&H 

  

moderate problematic moderate problematic 

N b p N b p N b p N b p 

DAT1 2338 0.01 .93 2329 -0.07 .77 935 0.02 .86 1054 0.02 .94 

DRD2 1735 -0.11 .29 1752 0.26 .41 967 -0.07 .56 1089 -0.06 .87 

DRD4 2401 0.09 .27 2395 -0.21 .42 967 -0.14 .25 1087 0.00 >.99 

OPRM1 1735 -0.18 .16 1752 0.27 .50 969 -0.20 .25 1091 -0.41 .26 

COMT 1735 0.07 .37 1752 0.01 .98       

DRD5 2402 -0.02 .73 2396 0.10 .60       

MAOA 2385 0.18 .02* 2380 0.07 .77       

*significant at α=.05 
 
 

 

 

Supplementary Table D. Parameter estimates of the GEE models using a squared hypodopaminergic risk 
score (HPRS) as an additional predictor. In other aspects identical to main analyses.  

   moderate 
polysubstance use 

problematic 
polysubstance use 

  predictor B (SD) p B (SD) p 

NTR N=2384 (moderate) 
N=2376 
(problematic) 

squared HPRS -0.07 (0.22) .74 -0.71 (0.58) .22 
HPRS 0.02 (0.13) .87 0.05 (0.36) .88 
age -0.02 (0.00) <.01** -0.01 (0.01) .29 
sex -0.50 (0.09) <.01** -0.71 (0.28) .01* 

F&H N=970 (moderate) 
N=1091 
(problematic) 

squared HPRS -0.37 (0.41) .38 0.26 (0.93) .78 
HPRS -0.17 (0.22) .43 -0.18 (0.46) .70 
age 0.05 (0.01) <.01** -0.04 (0.10) <.01** 
sex 0.57 (0.13) <.01** 1.49 (0.36) <.01** 
*significant at α=.05 ** significant at α=.01 
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Abstract 
Cannabis use is a heritable trait that has been associated with adverse mental health 
outcomes. In the largest genome-wide association study for lifetime cannabis use to date 
(N=184,765), we identified 8 genome-wide significant independent single nucleotide 
polymorphisms in 6 regions. All measured genetic variants combined explained 11% of 
the variance. Gene-based tests revealed 35 significant genes in 16 regions, and S-
PrediXcan analyses showed that 21 genes had different expression levels for cannabis 
users versus non-users. The strongest finding across the different analyses was CADM2, 
which has been associated with substance use and risk-taking. Significant genetic 
correlations were found with 14 of 25 tested substance use and mental health traits, 
including smoking, alcohol use, schizophrenia, and risk-taking. Mendelian randomization 
analysis showed evidence for a causal positive influence of schizophrenia risk on cannabis 
use. Overall, our study gives new insights about the etiology of cannabis use and its 
relation with mental health. 
 
  

Genome-wide association study for cannabis use 

 
Cannabis is a widely used psychoactive substance and its use is associated with various 
adverse (mental) health outcomes, including psychosis and schizophrenia (Hall & 
Degenhardt, 2009; Moore et al., 2007; Volkow, Compton, & Weiss, 2014). Successful 
prevention and intervention efforts aimed at reducing cannabis use, misuse, and related 
outcomes require a better understanding of why some people use cannabis whereas 
others do not. Lifetime cannabis use, defined as any use of cannabis during lifetime, is a 
heritable trait: a meta-analysis of twin studies estimated the heritability to be 
approximately 45% (Verweij et al., 2010). Twin studies have shown there is substantial 
overlap in the genetic factors influencing cannabis use and those underlying problematic 
cannabis use (abuse/dependence) (Agrawal & Lynskey, 2006; Agrawal, Neale, Jacobson, 
Prescott, & Kendler, 2005). 
 
Several genome-wide association studies (GWASs) have tried to identify genetic variants 
underlying cannabis use phenotypes (Agrawal et al., 2011; Demontis et al., 2018; Minica 
et al., 2015; Stringer et al., 2016; Verweij et al., 2013). Recently, Demontis et al. (Demontis 
et al., 2018) performed the largest GWAS for cannabis use disorder to date with a discovery 
sample of 2,387 cases and almost 50,000 controls, plus a replication sample of 5,501 cases 
and ~300,000 controls. They found one genome-wide significant risk locus for cannabis 
use disorder, a single nucleotide polymorphism (SNP) that is a strong marker for CHRNA2 
expression. Their follow-up analyses showed that cannabis dependent individuals had a 
decreased expression of this gene in the cerebellum as well as in other brain regions. 
 
The largest GWAS of lifetime cannabis use to date is from the International Cannabis 
Consortium (ICC) and is based on a sample size of 32,330 individuals in the discovery 
sample along with 5,627 individuals in the replication sample (Stringer et al., 2016). 
Although no individual SNPs reached genome-wide significance, gene-based tests 
identified four genes significantly associated with lifetime cannabis use: NCAM1, CADM2, 
SCOC, and KCNT2. Notably, NCAM1 has previously been linked to other substance use 
phenotypes (e.g. (Gelernter et al., 2006; Yang et al., 2007)), and following publication of 
the manuscript, CADM2 was found to be associated with alcohol consumption (Clarke et 
al., 2017), personality (Boutwell et al., 2017), reproductive succes and risk-taking behavior 
(Day et al., 2016) in other GWASs. These results indicate that CADM2 may play a role in a 
broader personality profile of sensation seeking and risk taking behaviour in general. In 
the current paper we present a GWAS of lifetime cannabis use on a substantially larger 
sample, providing more power to identify genetic variants. 
 
As mentioned, cannabis use has been linked to a variety of mental health outcomes, 
including substance abuse and dependence and psychiatric disorders (Hall & 
Degenhardt, 2009). In particular, the relationship between cannabis use and 
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schizophrenia has been the subject of intensive research and debate. It has long been 
established that the prevalence of cannabis use is higher in schizophrenia patients 
(Andreasson, Allebeck, Engstrom, & Rydberg, 1987; Smit, Bolier, & Cuijpers, 2004). A 
substantial body of evidence supports the hypothesis that cannabis use increases the risk 
for developing psychoses and schizophrenia (Volkow et al., 2016), but other hypotheses 
(i.e. schizophrenia increases the use of cannabis, or the association is due to (genetic) 
pleiotropy) have also been posed. Previous studies have shown that genetic risk factors 
for cannabis use and schizophrenia are positively correlated (Power et al., 2014; Verweij 
et al., 2017). However, a genetic correlation does not provide insight in the direction of 
causation. With Mendelian randomization it is possible to examine the causality of the 
association between cannabis use and schizophrenia, and recently it has become 
possible to apply this method using summary statistics from GWASs (Burgess, Scott, 
Timpson, Davey Smith, & Thompson, 2015). Previous MR studies have investigated the 
link between lifetime cannabis use and schizophrenia, but findings were inconsistent. 
Vaucher et al. (Vaucher et al., 2017) tested for causal effects from cannabis use to 
schizophrenia and found evidence for a causal influence of cannabis use on schizophrenia 
risk. Gage et al. (Gage et al., 2017) tested bi-directional effects and found weak evidence 
for a causal effect of cannabis use on schizophrenia and much stronger evidence for a 
causal effect in the other direction. The results from our GWAS provide more power to 
examine the causal association between cannabis use and schizophrenia. 
 
In the present study, we perform the largest GWAS for lifetime cannabis use to date. We 
increase the sample size substantially by meta-analysing GWAS results from the ICC study 
(N=35,297), along with new data from UK-Biobank (N=126,785) and 23andMe (N=22,683). 
The combined sample size of this study was N=184,765, a five-fold increase in sample size 
compared to the previous largest GWAS on lifetime cannabis use. We tested the 
association of millions of SNPs with lifetime cannabis use, and estimated the heritability 
of lifetime cannabis use based on all SNPs. Tests of association for individual genetic 
variants were complemented with gene-based tests of association and S-PrediXcan 
analysis. The latter was used to identify genes with differential expression levels in 
cannabis users versus non-users. We further estimated the genetic correlation of lifetime 
cannabis use with other traits, including use of other substances and mental health traits, 
such as schizophrenia. Lastly, we performed bi-directional two-sample Mendelian 
randomization analysis to examine whether there was evidence for a causal relationship 
from cannabis use to schizophrenia and vice versa.  
 
 

Genome-wide association study for cannabis use 

 
Results 
 
Genome-wide association meta-analysis  
The meta-analysis resulted in 8 independent genome-wide significant SNP associations 
(linkage disequilibrium [LD] R2<0.1, window size 250 kb) on chromosomes 3, 7, 8, 11, 16, 
and 17 (Table 1, Supplementary Table S1, and Figure 1). The top SNP and 2 other 
independent associations were located in CADM2 on chromosome 3 (rs2875907, p=9.38e-
17; rs1448602, p=6.55e-11; rs7651996, p=2.37e-09). Other hits were located in ZNF704, 
SDK1, NCAM1, RABEP2/ATP2A1, and SMG6 (Figure 2). All SNPs combined explained 11% 
(h2

SNP=0.11, SE=0.01) of the individual differences in lifetime cannabis use. Supplementary 
Figure S1-S3 and Table S2 provide information on results of the individual GWASs (ICC, 
UK-Biobank, and 23andme). 
 
Gene-based test of association and expression 
Gene-based tests of associations in MAGMA (De Leeuw, Mooij, Heskes, & Posthuma, 2015) 
identified 35 genes genome-wide significantly associated with lifetime cannabis use (see 
Figure 3, Table 2, Supplementary Figure S4, and Supplementary Table S3). These genes 
were located in 5 regions that were already identified in the SNP-based analysis (including 
those containing CADM2 and NCAM1) and in 11 different regions (Supplementary Figure 
S5). 
  
 

Chromosomal region (Chr), Gene refers to the gene the SNP is located in or the nearest gene (within 500kb). 
eQTL target gene (eGene) obtained from the S-PrediXcan analysis, base pairs location SNP on Hg19 (BP), allele 

1 (A1), allele 2 (A2), Frequency of allele 1 (Freq A1), number of individuals for which variant was included (N), 
beta of the effect allele A1 (β), standard error (SE).  

* Direction per sample: allele A1 increases (+) or decreases (-) liability for cannabis use, or sample did not 
contribute to this SNP (?). Order of samples: ICC, 23andMe, UK-Biobank. Independent SNPs were selected as 

SNPs with linkage disequilibrium R2<0.1 using a window size of 250 kB. 
** SNP was not present in UK-Biobank sample and its effect is rather isolated (see Figure 1b and 2); it might not 

represent a robust association.  
 

Table 1. Association results (based on linear regression) of 8 independent (R2<0.01, window size 250 kb) SNPs that are 
significantly associated with lifetime cannabis use at p<5e-08 (conventional genome-wide significant threshold, two-sided).  
SNP rs Chr Gene BP A1 A2 Freq A1 N β SE p-value Direction* 
rs2875907 3p12.1 CADM2 85,518,580 A G 0.352 181,675 0.070 0.009 9.38e-17 +++ 
rs1448602 3p12.1 CADM2 85,780,454 A G 0.756 184,765 -0.062 0.010 6.55e-11 --- 
rs7651996 3p12.1 CADM2 85,057,349 T G 0.477 184,765 0.049 0.008 2.37e-09 +++ 
rs10085617 7p22.2 SDK1 3,634,711 A T 0.416 184,765 0.046 0.008 2.93e-08 +++ 
rs9773390 8q21.13 ZNF704 81,565,692 T C 0.933 44,595 -0.171 0.029 5.66e-09 --?** 
rs9919557 11q23.2 NCAM1 112,877,408  T C 0.614 180,428 -0.055 0.009 9.94e-11 --- 
rs10499 16p11.2 RABEP2, 

ATP2A1 
28,915,527 A G 0.651 179,767 0.053 0.009 1.13e-09 +++ 

rs17761723 17p13.3 SMG6 2,107,090 T C 0.346 184,765 0.047 0.009 3.24e-08 +++ 
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1 (A1), allele 2 (A2), Frequency of allele 1 (Freq A1), number of individuals for which variant was included (N), 
beta of the effect allele A1 (β), standard error (SE).  

* Direction per sample: allele A1 increases (+) or decreases (-) liability for cannabis use, or sample did not 
contribute to this SNP (?). Order of samples: ICC, 23andMe, UK-Biobank. Independent SNPs were selected as 

SNPs with linkage disequilibrium R2<0.1 using a window size of 250 kB. 
** SNP was not present in UK-Biobank sample and its effect is rather isolated (see Figure 1b and 2); it might not 

represent a robust association.  
 

Table 1. Association results (based on linear regression) of 8 independent (R2<0.01, window size 250 kb) SNPs that are 
significantly associated with lifetime cannabis use at p<5e-08 (conventional genome-wide significant threshold, two-sided).  
SNP rs Chr Gene BP A1 A2 Freq A1 N β SE p-value Direction* 
rs2875907 3p12.1 CADM2 85,518,580 A G 0.352 181,675 0.070 0.009 9.38e-17 +++ 
rs1448602 3p12.1 CADM2 85,780,454 A G 0.756 184,765 -0.062 0.010 6.55e-11 --- 
rs7651996 3p12.1 CADM2 85,057,349 T G 0.477 184,765 0.049 0.008 2.37e-09 +++ 
rs10085617 7p22.2 SDK1 3,634,711 A T 0.416 184,765 0.046 0.008 2.93e-08 +++ 
rs9773390 8q21.13 ZNF704 81,565,692 T C 0.933 44,595 -0.171 0.029 5.66e-09 --?** 
rs9919557 11q23.2 NCAM1 112,877,408  T C 0.614 180,428 -0.055 0.009 9.94e-11 --- 
rs10499 16p11.2 RABEP2, 

ATP2A1 
28,915,527 A G 0.651 179,767 0.053 0.009 1.13e-09 +++ 

rs17761723 17p13.3 SMG6 2,107,090 T C 0.346 184,765 0.047 0.009 3.24e-08 +++ 
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Figure 1. Q–Q and Manhattan plot of the GWAS meta-analysis. a) Q–Q plot of 

the distribution of the –log 10(P) observed for the SNP associations with 
lifetime cannabis use against those expected under the null hypothesis. 

Expected –log 10(P) values under the null hypothesis are indicated by the 
red line. Genomic inflation is indicated by λ in the plot. There was no 

evidence for population stratification (LD score regression b0 = 1.00, s.e. = 
0.007). b, Manhattan plot for the SNP-based GWAS meta-analysis. Results 

are based on N = 184,765 individuals and NSNPs = 11,733,371 SNPs. The SNP 
with the lowest P-value for each independent (R2 < 0.1, window size 250 kb) 
genome-wide significant locus is annotated by a red circle with rsnumber. 

The red line represents the conventional genome-wide significance 
threshold of P < 5 × 10–8. The statistical test comprised linear regression; 

significance was tested two-sided. 

S-PrediXcan analysis (Barbeira et al., 2017) revealed 133 Bonferroni-corrected significant 
associations across tissues targeting 21 unique genes (Supplementary Table S42-S5). 
Eight genes were also significant in the gene-based test, whereas 13 were novel. For genes 
identified in multiple tissues, directions of effects were largely consistent across tissues 
(Supplementary Figure S6). Again, the most significant finding was CADM2; genetic 
variants associated with increased liability to use cannabis are predicted to upregulate 
expression levels of CADM2 in 8 (non-brain) tissues, including whole blood (Z=5.88, 
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p=4.17e-09). Of note, although CADM2 is expressed more widely in brain compared with 
other tissues (Supplementary Figure S7), the top SNP rs2875907 regulates the expression 
of CADM2 only in non-brain tissues (Supplementary Figure S8). Exploration of S-PrediXcan 
results in UK-Biobank data (https://imlab.shinyapps.io/ gene2pheno_ukb_neale/) 
showed that CADM2 expression is significantly associated with multiple traits, including 
increased risk-taking, BMI, and reduced feelings of anxiety. Similar to the SNP- and gene-
based tests of association, the S-PrediXcan analysis detected a strong signal in a high-LD 
region at 16p11.2. Supplementary Table S3 provides an overview of all genes that were 
identified in the gene-based test of association and the S-PrediXcan analyses, along with 
information about the gene-product and previously identified associations with the gene. 
 

Table 2. Genes significantly associated with lifetime cannabis use, as identified in the MAGMA (p<2.74e-06, 
which is p<0.05 corrected for 18,293 genes tested) and/or S-PrediXcan analyses (p< 1.92e-07, which is p<0.05 

corrected  for the 259,825 genes and tissues tested). The MAGMA statistical test is based on multiple 
regression. Genes that were significant only in the S-PrediXcan analysis are hightlighted in grey. 

Locus Top genes BP start BP stop #SNPs Z p-value 
1p36.31 KLHL21 6,640,784 6,672,958 96 4.81 7.65e-07 

 PHF13 6,663,756 6,694,093 84 4.61 1.99e-06 

2p12 LRRTM4 76,969,849 77,754,502 3621 5.19 1.03e-07 

3p12.1 CADM2 85,003,133 86,128,579 4287 8.96 1.59E-19 

4p16.3 MSANTD1 3,240,766 3,283,465 231 4.59 2.22e-06 

5q12.3 HTR1A 63,245,875 63,268,119 64 4.57 2.41e-06 

6p12.1 
 

BEND6 56,814,773 56,897,450 252 5.22 2.60e-08 
KIAA1586 56,906,343 56,925,023 58 5.09 1.75e-07 
RAB23 57,046,790 57,092,112 86 5.86 2.32e-09 

6q21 REV3L 111,610,234 111,814,421 539 4.61 1.99e-06 

6q25.3 ARID1B 157,093,980 157,536,913 1344 5.59 1.15e-08 

8q24.3 ADGRB1 143,535,377 143,636,369 
275 4.71 1.23e-06 

10q24.32-33 
 
 

NEURL 103,493,890 103,592,552 17 5.22 1.83e-07 

BORCS7 104,603,967 104,634,718 
87 4.72 1.19e-06 

AS3MT 104,624,183 104,666,656 177 5.54 1.53e-08 

CNNM2 104,673,075 104,843,344 549 4.80 8.02e-07 

NT5C2 104,842,774 104,958,063 389 4.81 7.64e-07 

11q23.2 NCAM1 112,826,969 113,154,158 1263 6.21 2.63e-10 

12q24.12 
 
 
 

BRAP 112,069,950 112,133,790 
97 

4.87 5.48e-07 

ACAD10 112,118,857 112,199,911 141 
5.22 8.96e-08 

ALDH2 112,199,691 112,252,789 112 
4.96 3.61e-07 
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https://imlab.shinyapps.io/
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MAPKAPK5 112,275,032 112,336,228 195 
4.87 5.58e-07 

TMEM116 112,364,086 112,456,023 222 
4.94 3.96E-07 

16p11.2/ 
16q12.1 
 
 
 
 

SBK1 28,303,840 28335170 23 5.47 4.52e-08 

NPIPB7 28,467,693 28481868 10 5.44 5.46e-08 

CLN3 28,483,600 28,510,897 62 
5.84 2.56e-09 

APOBR 28,500,970 28,515,291 49 
5.66 7.56e-09 

IL27 28,505,683 28,523,155 57 
5.66 7.48e-09 

CCDC101 28,560,249 28,608,111 181 
4.90 4.87e-07 

SULT1A2 28,603,264 28,608,391 25 5.40 6.66e-08 

SULT1A1 28,605,196 28,623,625 51 5.30 1.14e-07 

CDC37P1* 28,700,176 28,701,611 31 5.26 1.42e-07 

EIF3C 28,722,782 28,747,053 14 5.37 8.08-08 

EIF3CL 28,722,785 28,747,053 23 5.47 4.55e-08 

NPIPB9 28,742,728 28,772,850 8 
5.41 6.29e-08 

ATXN2L 28,829,369 28,853,558 89 
5.85 2.50e-09 

TUFM 28,848,732 28,862,729 55 
5.83 2.83e-09 

SH2B1 28,867,939 28,890,534 71 
5.72 5.46e-09 

ATP2A1 28,884,192 28,920,830 89 
5.97 1.20e-09 

NFATC2IP  28,962,318 28,977,767 8 5.35 8.82e-08 

RABEP2 28,910,742 28,942,339 71 
5.43 2.84e-08 

17p13.3 SRR 2,202,244 2,233,553 121 
5.33 5.03e-08 

TSR1 2,220,972 2,245,678 90 
5.59 1.12e-08 

18q11.2 C18orf8 21,078,434 21,118,311 132 
5.30 5.65e-08 

NPC1 21,081,148 21,171,581 257 
5.30 5.87e-08 

 

Genome-wide association study for cannabis use 

 

 
Figure 2. Regional plots of the genome-wide significant SNPs. Underlined in 

yellow are the genes that were significant in the gene-based test (tested 
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Figure 3. Q–Q and Manhattan plot of the gene-based test of association. a, Q–Q plot of 
the distribution of the –log10(P) for the gene-based association with lifetime cannabis 
use against those expected under the null hypothesis. Expected –log 10(P) under the 
null hypothesis are indicated by the red line. Genomic inflation is indicated by λ . The 

gene-based test was performed in MAGMA, which uses multiple regression (tested two-
sided). b, Manhattan plotfor the gene-based test of association. The red line represents 

the genome-wide significance threshold of P < 2.74 × 10–6 (Bonferroni corrected 
threshold of P < 0.05 adjusted for 18,293 tests; NSNPs = 5,710,956 were mapped to at 

least one gene). The top gene (that with the lowest P-value) for each locus is annotated 
by a red circle and gene symbol. 
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Genetic correlations with other traits 
Using our GWAS results and those of other GWASs, we estimated the genetic correlation 
of lifetime cannabis use with 25 traits of interest, including substance use, personality, 
and mental health phenotypes. Fourteen traits were significantly genetically correlated 
with lifetime cannabis use after correction for multiple testing (Figure 4 and 
Supplementary Table S6). Positive genetic correlations were found with substance use 
phenotypes, including smoking and alcohol use and dependence, as well as with mental 
health phenotypes, including ADHD and schizophrenia. Furthermore, positive genetic 
correlations were found with risk-taking behaviour, openness to experience, and 
educational attainment, as well as a negative correlation with conscientiousness.  
 

 
Figure 4. Genetic overlap between lifetime cannabis use and other 

phenotypes. Blue dots represent point estimates of the genetic correlation, 
blue error bars represent 95% confidence intervals and red asterisks 

indicate significant associations after correction for multiple testing (two-
sided P < 0.002, Bonferroni corrected threshold of P < 0.05 adjusted for 25 

tests). MDD, major depressive disorder; ADHD, attention deficit hyperactivity 
disorder; BMI, body mass index. 
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Causal association between cannabis use and schizophrenia: Two-sample Mendelian 
randomization 
A positive genetic correlation was found between genetic risk factors for cannabis use and 
schizophrenia (rg=0.24, SE=0.03, p<0.01). To examine whether there was evidence for a 
causal effect of cannabis use on schizophrenia risk and vice versa we performed bi-
directional two-sample Mendelian randomization (MR) analysis (Burgess et al., 2015). In 
our main analysis (Inverse Variance Weighted [IVW] regression analysis) we found some 
weak (non-significant) evidence for a causal influence of lifetime cannabis use on 
schizophrenia risk, but only for the genetic instrument containing SNPs associated with 
cannabis use under the p-value threshold 1e-05. The IVW regression odds ratio was 1.10 
(95% confidence intervals [CIs] 0.99-1.21, p=0.074). We found stronger evidence for a 
causal positive influence of schizophrenia risk on lifetime cannabis use, the IVW 
regression odds ratio being 1.16 (95% CIs 1.06-1.27, p=0.001; see Table 3, Supplementary 
Table S7-S9, and Supplementary Figure S9-S10 for details).  
 
 

 
  

Table 3. Results of the bidirectional two-sample Mendelian randomization analysis between lifetime cannabis use and 
schizophrenia including results of 4 sensitivity analyses. Significant results (p<0.05; two-sided) are shown in bold. 
 Cannabis-Schizophrenia 

(p<5e-08, 5 SNPs) 
Cannabis-Schizophrenia 

(p<1e-05, 69 SNPs*) 
Schizophrenia-Cannabis 

(p<5e-08, 109 SNPs**) 

 B SE  OR p B SE OR p B SE OR p 

IVW 0.039 0.158 1.04 0.806 0.091 0.051 1.10 0.074 0.151 0.046 1.16 0.001 

Weighted Median -0.048 0.105 0.95 0.649 0.069 0.049 1.07 0.156 0.163 0.049 1.17 0.001 

MR-Egger SIMEX -0.044 0.190 0.96 0.827 0.106 0.110 1.11 0.340 0.071 0.293 1.07 0.810 

Weighted  Mode -0.084 0.125 0.92 0.536 0.016 0.071 1.02 0.823 0.315 0.178 1.37 0.080 

GSMR after HEIDI 
filtering 

- - - - 0.192 0.080 1.21 0.017 0.237 0.038 1.27 5.36e-
10 

Inverse Variance Weighted regression analysis (IVW); MR-Egger simulation extrapolation (SIMEX); Generalized Summary-
data-based Mendelian Randomization (GSMR; HEIDI outlier analysis detects and eliminates from the analysis instruments 
that show significant pleiotropic effects on both risk factor and disease); risk coefficient representing the change in outcome 
for a one-unit increase in the exposure variable (B); standard error of the B (SE (B)); odds ratios represent the odds of 
schizophrenia for lifetime cannabis users versus non-users (when cannabis is the exposure) or the odds of lifetime cannabis 
use for those with a schizophrenia diagnosis versus those without (when schizophrenia is the exposure) (OR); p-value (p). 
*Number of SNPs in instrument was 74 for the GSMR analysis; ** Number of SNPs in instrument was 102 for the GSMR 
analysis. 
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We performed 4 sensitivity analyses that rely on distinct assumptions regarding 
instrument validity, to determine the robustness of these findings. The sensitivity 
analyses showed a consistent pattern supporting weak evidence for a causal effect of 
cannabis use on schizophrenia and strong evidence for a causal effect of schizophrenia 
on cannabis use (Table 3). As an exception, the evidence provided by MR-Egger SIMEX for 
a causal relation from schizophrenia risk to cannabis use, was very weak. However, since 
the Egger intercept was not significantly different from 0 (Supplementary Table S10), 
indicating no pleiotropic effects for the SNPs included in the genetic instruments 
(Bowden, Davey Smith, & Burgess, 2015), it is likely that this method simply lacked power 
to be able to reject the null hypothesis of no causal effect (Burgess & Thompson, 2017). 
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schizophrenia risk, but only for the genetic instrument containing SNPs associated with 
cannabis use under the p-value threshold 1e-05. The IVW regression odds ratio was 1.10 
(95% confidence intervals [CIs] 0.99-1.21, p=0.074). We found stronger evidence for a 
causal positive influence of schizophrenia risk on lifetime cannabis use, the IVW 
regression odds ratio being 1.16 (95% CIs 1.06-1.27, p=0.001; see Table 3, Supplementary 
Table S7-S9, and Supplementary Figure S9-S10 for details).  
 
 

 
  

Table 3. Results of the bidirectional two-sample Mendelian randomization analysis between lifetime cannabis use and 
schizophrenia including results of 4 sensitivity analyses. Significant results (p<0.05; two-sided) are shown in bold. 
 Cannabis-Schizophrenia 

(p<5e-08, 5 SNPs) 
Cannabis-Schizophrenia 

(p<1e-05, 69 SNPs*) 
Schizophrenia-Cannabis 

(p<5e-08, 109 SNPs**) 

 B SE  OR p B SE OR p B SE OR p 

IVW 0.039 0.158 1.04 0.806 0.091 0.051 1.10 0.074 0.151 0.046 1.16 0.001 

Weighted Median -0.048 0.105 0.95 0.649 0.069 0.049 1.07 0.156 0.163 0.049 1.17 0.001 

MR-Egger SIMEX -0.044 0.190 0.96 0.827 0.106 0.110 1.11 0.340 0.071 0.293 1.07 0.810 

Weighted  Mode -0.084 0.125 0.92 0.536 0.016 0.071 1.02 0.823 0.315 0.178 1.37 0.080 

GSMR after HEIDI 
filtering 

- - - - 0.192 0.080 1.21 0.017 0.237 0.038 1.27 5.36e-
10 

Inverse Variance Weighted regression analysis (IVW); MR-Egger simulation extrapolation (SIMEX); Generalized Summary-
data-based Mendelian Randomization (GSMR; HEIDI outlier analysis detects and eliminates from the analysis instruments 
that show significant pleiotropic effects on both risk factor and disease); risk coefficient representing the change in outcome 
for a one-unit increase in the exposure variable (B); standard error of the B (SE (B)); odds ratios represent the odds of 
schizophrenia for lifetime cannabis users versus non-users (when cannabis is the exposure) or the odds of lifetime cannabis 
use for those with a schizophrenia diagnosis versus those without (when schizophrenia is the exposure) (OR); p-value (p). 
*Number of SNPs in instrument was 74 for the GSMR analysis; ** Number of SNPs in instrument was 102 for the GSMR 
analysis. 
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We performed 4 sensitivity analyses that rely on distinct assumptions regarding 
instrument validity, to determine the robustness of these findings. The sensitivity 
analyses showed a consistent pattern supporting weak evidence for a causal effect of 
cannabis use on schizophrenia and strong evidence for a causal effect of schizophrenia 
on cannabis use (Table 3). As an exception, the evidence provided by MR-Egger SIMEX for 
a causal relation from schizophrenia risk to cannabis use, was very weak. However, since 
the Egger intercept was not significantly different from 0 (Supplementary Table S10), 
indicating no pleiotropic effects for the SNPs included in the genetic instruments 
(Bowden, Davey Smith, & Burgess, 2015), it is likely that this method simply lacked power 
to be able to reject the null hypothesis of no causal effect (Burgess & Thompson, 2017). 
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Discussion 

 
SNP- and gene-based tests revealed several SNPs and genes strongly associated with 
lifetime cannabis use. Overall, 11% of the variation in the phenotype was explained by the 
combined effect of SNPs, which amounts to approximately 25% of twin-based heritability 
estimates (Verweij et al., 2010). CADM2 and NCAM1, both identified in the original ICC 
meta-analysis (Stringer et al., 2016), were among the strongest findings in the SNP-based 
and gene-based tests. The CADM2 gene (Cell Adhesion Molecule 2) is a synaptic cell 
adhesion molecule and is part of the immunoglobulin superfamily. Interestingly, CADM2 
has previously been identified in GWASs of other behavioural phenotypes, including 
alcohol consumption (Clarke et al., 2017), processing speed (Ibrahim-Verbaas et al., 2016), 
and number of offspring and risk-taking behavior (Day et al., 2016). A large-scale 
phenome-wide scan showed that CADM2 was associated with various personality traits, 
with the risk variant being associated with reduced anxiety, neuroticism and 
conscientiousness, and increased risk-taking (Boutwell et al., 2017). Taken together, 
these findings suggest that risk variants in CADM2 are associated with a broad profile of a 
risk-taking, optimistic, and care-free personality (Boutwell et al., 2017). Cannabis use has 
previously been associated with related personality traits, including high levels of 
impulsivity and novelty seeking (Martin et al., 2002; Walther, Morgenstern, & Hanewinkel, 
2012). 
 
NCAM1 (Neural Cell Adhesion Molecule 1) also encodes a cell adhesion protein and is 
member of the immunoglobulin superfamily. The encoded protein is involved in cell-
matrix interactions and cell differentiation during development (Nielsen, Kulahin, & 
Walmod, 2010). NCAM1 is located in the NCAM1-TTC12-ANKK1-DRD2 gene cluster, which is 
related to neurogenesis and dopaminergic neurotransmission. This gene cluster has been 
associated with smoking, alcohol use, and illicit drug use (Bidwell et al., 2015; Ducci et al., 
2011; Gelernter et al., 2006; Rubinek et al., 2003) and has been implicated in psychiatric 
disorders, such as schizophrenia and mood disorders (Atz, Rollins, & Vawter, 2007; 
Petrovska et al., 2017).  
 
A putatively novel finding comprises the 16p11.2 region (identified in the SNP and gene-
based tests of association and in S-PrediXcan analysis). Deletions and duplications in this 
region have previously been reported to be associated with autism and schizophrenia 
(Mccarthy et al., 2009; Weiss et al., 2008), while a common 16p11.2 inversion underlies 
susceptibility to asthma and obesity (Gonzalez et al., 2014). The inversion explains a 
substantial proportion of variability in expression of multiple genes in this region, 
including TUFM and SH2B1 (Gonzalez et al., 2014). Given the high LD in this region and 
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high levels of co-expression of the differentially expressed genes, follow-up studies will 
be needed to determine which genes are functionally driving the association with 
cannabis use. 
 
Several of the top genes from the gene-based and/or S-PrediXcan analyses have 
previously shown an association with other traits, including schizophrenia (e.g., TUFM, 
NCAM1), BMI or obesity (e.g. SH2B1, APOBR, ATXN2L), alcohol use (e.g. ALDH2), intelligence 
and cognitive performance (CNNM2, CCDC101), and externalizing and impulsive 
phenotypes (e.g. CADM2; see Supplementary Table S4). Interesting is also the association 
with HTR1A; this gene has been implicated in alcohol and nicotine co-dependence (Zuo et 
al., 2013), BMI (Speliotes et al., 2010), psychiatric disorders (Donaldson et al., 2016; Gatt, 
Burton, Williams, & Schofield, 2015), and antipsychotic pharmacological treatment 
response (Takekita et al., 2016).  At the phenotypic level, associations between cannabis 
use and psychiatric disorders (Moore et al., 2007) and use of other substances (Walther et 
al., 2012) are well-established.  
 
There are two previous studies that found significant SNP associations for a cannabis use 
phenotype. Sherva et al. (2016, (Sherva et al., 2016)) found 3 SNPs significantly associated 
with cannabis dependence. In our results only one of the SNPs was available (rs77378271) 
and was not significantly associated with lifetime cannabis use (p=.144). The other 2 SNPs 
(rs143244591 and rs146091982) or their high LD proxies were not available in our data. 
The SNPs rs77378271 and rs146091982 were located in genes CSDM1 and SLC35G1 
respectively, and neither of those were significant in our gene-based results (p=0.96 and 
p=0.49, respectively). Demontis et al. (Demontis et al., 2018) found one independent 
significant signal at chromosome 8 to be associated with cannabis dependence (with top 
SNP rs56372821, a strong eQTL for CHRNA2). Neither the SNP (p=0.55) nor the gene 
(p=0.52) was significantly associated with lifetime cannabis use in our study. The protein 
encoded by CHRNA2 is a subunit of certain nicotinic acetylcholine receptors and Demontis 
et al. (Demontis et al., 2018) provide three potential biological explanations for the link 
between cannabis intake and CHRNA2. However, it is possible that while CHRNA2 is 
associated with cannabis dependence, it does not play a role in the initial stages of 
cannabis use, which are more related to personality and risk-taking behaviours and less 
to the actual effects of cannabis intake on the brain.   
 
The genetic correlation analyses revealed genetic overlap of cannabis use with a broad 
range of traits, including positive associations with substance use and mental health 
phenotypes. Furthermore, positive genetic correlations were found with risk-taking 
behaviour, openness to experience, and educational attainment, as well as a negative 
correlation with conscientiousness. The range of correlations suggests that genetic 
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SNP- and gene-based tests revealed several SNPs and genes strongly associated with 
lifetime cannabis use. Overall, 11% of the variation in the phenotype was explained by the 
combined effect of SNPs, which amounts to approximately 25% of twin-based heritability 
estimates (Verweij et al., 2010). CADM2 and NCAM1, both identified in the original ICC 
meta-analysis (Stringer et al., 2016), were among the strongest findings in the SNP-based 
and gene-based tests. The CADM2 gene (Cell Adhesion Molecule 2) is a synaptic cell 
adhesion molecule and is part of the immunoglobulin superfamily. Interestingly, CADM2 
has previously been identified in GWASs of other behavioural phenotypes, including 
alcohol consumption (Clarke et al., 2017), processing speed (Ibrahim-Verbaas et al., 2016), 
and number of offspring and risk-taking behavior (Day et al., 2016). A large-scale 
phenome-wide scan showed that CADM2 was associated with various personality traits, 
with the risk variant being associated with reduced anxiety, neuroticism and 
conscientiousness, and increased risk-taking (Boutwell et al., 2017). Taken together, 
these findings suggest that risk variants in CADM2 are associated with a broad profile of a 
risk-taking, optimistic, and care-free personality (Boutwell et al., 2017). Cannabis use has 
previously been associated with related personality traits, including high levels of 
impulsivity and novelty seeking (Martin et al., 2002; Walther, Morgenstern, & Hanewinkel, 
2012). 
 
NCAM1 (Neural Cell Adhesion Molecule 1) also encodes a cell adhesion protein and is 
member of the immunoglobulin superfamily. The encoded protein is involved in cell-
matrix interactions and cell differentiation during development (Nielsen, Kulahin, & 
Walmod, 2010). NCAM1 is located in the NCAM1-TTC12-ANKK1-DRD2 gene cluster, which is 
related to neurogenesis and dopaminergic neurotransmission. This gene cluster has been 
associated with smoking, alcohol use, and illicit drug use (Bidwell et al., 2015; Ducci et al., 
2011; Gelernter et al., 2006; Rubinek et al., 2003) and has been implicated in psychiatric 
disorders, such as schizophrenia and mood disorders (Atz, Rollins, & Vawter, 2007; 
Petrovska et al., 2017).  
 
A putatively novel finding comprises the 16p11.2 region (identified in the SNP and gene-
based tests of association and in S-PrediXcan analysis). Deletions and duplications in this 
region have previously been reported to be associated with autism and schizophrenia 
(Mccarthy et al., 2009; Weiss et al., 2008), while a common 16p11.2 inversion underlies 
susceptibility to asthma and obesity (Gonzalez et al., 2014). The inversion explains a 
substantial proportion of variability in expression of multiple genes in this region, 
including TUFM and SH2B1 (Gonzalez et al., 2014). Given the high LD in this region and 
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high levels of co-expression of the differentially expressed genes, follow-up studies will 
be needed to determine which genes are functionally driving the association with 
cannabis use. 
 
Several of the top genes from the gene-based and/or S-PrediXcan analyses have 
previously shown an association with other traits, including schizophrenia (e.g., TUFM, 
NCAM1), BMI or obesity (e.g. SH2B1, APOBR, ATXN2L), alcohol use (e.g. ALDH2), intelligence 
and cognitive performance (CNNM2, CCDC101), and externalizing and impulsive 
phenotypes (e.g. CADM2; see Supplementary Table S4). Interesting is also the association 
with HTR1A; this gene has been implicated in alcohol and nicotine co-dependence (Zuo et 
al., 2013), BMI (Speliotes et al., 2010), psychiatric disorders (Donaldson et al., 2016; Gatt, 
Burton, Williams, & Schofield, 2015), and antipsychotic pharmacological treatment 
response (Takekita et al., 2016).  At the phenotypic level, associations between cannabis 
use and psychiatric disorders (Moore et al., 2007) and use of other substances (Walther et 
al., 2012) are well-established.  
 
There are two previous studies that found significant SNP associations for a cannabis use 
phenotype. Sherva et al. (2016, (Sherva et al., 2016)) found 3 SNPs significantly associated 
with cannabis dependence. In our results only one of the SNPs was available (rs77378271) 
and was not significantly associated with lifetime cannabis use (p=.144). The other 2 SNPs 
(rs143244591 and rs146091982) or their high LD proxies were not available in our data. 
The SNPs rs77378271 and rs146091982 were located in genes CSDM1 and SLC35G1 
respectively, and neither of those were significant in our gene-based results (p=0.96 and 
p=0.49, respectively). Demontis et al. (Demontis et al., 2018) found one independent 
significant signal at chromosome 8 to be associated with cannabis dependence (with top 
SNP rs56372821, a strong eQTL for CHRNA2). Neither the SNP (p=0.55) nor the gene 
(p=0.52) was significantly associated with lifetime cannabis use in our study. The protein 
encoded by CHRNA2 is a subunit of certain nicotinic acetylcholine receptors and Demontis 
et al. (Demontis et al., 2018) provide three potential biological explanations for the link 
between cannabis intake and CHRNA2. However, it is possible that while CHRNA2 is 
associated with cannabis dependence, it does not play a role in the initial stages of 
cannabis use, which are more related to personality and risk-taking behaviours and less 
to the actual effects of cannabis intake on the brain.   
 
The genetic correlation analyses revealed genetic overlap of cannabis use with a broad 
range of traits, including positive associations with substance use and mental health 
phenotypes. Furthermore, positive genetic correlations were found with risk-taking 
behaviour, openness to experience, and educational attainment, as well as a negative 
correlation with conscientiousness. The range of correlations suggests that genetic 
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liability to lifetime cannabis use should be viewed in a broader context of personality and 
mental health traits. Specifically, the substantial genetic correlations with risk-taking 
behaviour and openness to experience may indicate that liability to start using cannabis 
is an indication of one’s personality. The positive genetic correlation between lifetime 
cannabis use and educational attainment was unexpected and in contrast to a previous 
study that found a negative genetic correlation between cannabis dependence and 
educational attainment (Demontis et al., 2018).  We therefore investigated phenotypic 
associations of cannabis use with household income and fluid intelligence using UK-
Biobank data. Within Caucasian participants of UK-Biobank (N=438,870), categorically 
rated household income was higher among lifetime cannabis users compared to non-
users (χ2(4)=2243, p=2.2e-16). Cannabis users also scored higher on fluid intelligence 
(t(50,856)=25.13, p<2e-16). These findings are in agreement with observations by Patrick 
et al. (Patrick, Wightman, Schoeni, & Schulenberg, 2012), who showed that cannabis use 
is associated with higher childhood family social economic status (SES) in a survey of US 
families. Possibly, environments more often experienced by those with higher SES 
backgrounds, such as universities, increase accessibility to cannabis, explaining how a 
positive correlation between lifetime cannabis use and educational attainment in our 
study could arise.  
 
We also found a significant genetic correlation between cannabis use and schizophrenia 
(rg=0.24), which is in line with previous findings (Power et al., 2014; Verweij et al., 2017), 
indicating that genetic risk factors for cannabis use and schizophrenia are positively 
correlated. As for the causal direction of this correlation, we found weak evidence for a 
causal link from cannabis use to schizophrenia and much stronger evidence for a causal 
link from schizophrenia to cannabis use. This suggests that individuals with schizophrenia 
have a higher risk to start using cannabis. These results are in contrast with results from 
a MR study by Vaucher et al. (Vaucher et al., 2017), who found strong evidence for a causal 
effect from cannabis use to schizophrenia (causality in the other direction was not tested). 
However, our findings are in line with a MR study by Gage et al. (Gage et al., 2017) who 
used genetic instruments similar to ours and also found weak evidence for a causal effect 
of cannabis use to schizophrenia and much stronger evidence for a causal effect in the 
other direction. Our findings may indicate that individuals at risk for developing 
schizophrenia experience prodromal symptoms or negative affect that make them more 
likely to start using cannabis to cope or self-medicate (Muller-Vahl & Emrich, 2008). The 
lack of strong evidence of a causal influence of cannabis use on schizophrenia may be due 
to the lower power of the instrumental variables. The instrumental variable based on 
schizophrenia SNPs explained 3.38% of variance in liability to schizophrenia. For cannabis 
use, the genetic instruments explained 1.12% and 0.15% of the variance in cannabis use 
for SNPs included with p<1e-05 and p<5e-08, respectively.  

Genome-wide association study for cannabis use 

 
 
The results of our study should be interpreted in view of its strength and limitations.  
Important strengths of this study include the analyses of the largest population sample 
to date which has led to a substantial increase in power to identify genetic variants 
associated with lifetime cannabis use. The association analyses were complemented with 
several follow-up analyses to further investigate the genetic basis of cannabis use and the 
extent to which the genetic aetiology of cannabis use overlaps with that of other complex 
phenotypes. Strong genetic correlations across a wide spectrum of traits are observed, 
confirming that lifetime cannabis use is a relevant measure of an individual’s 
vulnerability.  
 
Our study also has several limitations. First, lifetime cannabis use was analyzed as a 
dichotomous measure combining experimental and regular users in a single group. 
Additionally, the different samples varied substantially regarding the age of the 
participants, the prevalence of cannabis use, and the country’s policies regarding 
cannabis use. All these factors may introduce heterogeneity which may reduce the power 
to detect genetic associations. Secondly, power of some analyses may have been limited. 
For example, the MR analysis from cannabis to schizophrenia was based on an instrument 
of only 5 SNPs, and the summary statistics of some traits used for the genetic correlation 
analyses in LD-score regression (e.g. cannabis dependence) were based on a small sample 
size. Finally, some regions identified in the SNP-based analyses did not appear in the 
gene-based analyses. In particular, inspection of the region around rs9773390 (in ZNF704) 
showed that the top SNP in this region was isolated, and that the SNP was only available 
in two of the three datasets (not in UK-Biobank). SNPs in LD with the top SNP that were 
included in all three datasets were not genome-wide significant. Thus, this result may not 
represent a robust association.  
 
In summary, our GWAS of lifetime cannabis use, which is the largest to date, revealed 
significant SNP and gene associations in 16 regions, 14 of which have not been previously 
implicated in cannabis use. The most promising candidates for future functional studies 
are CADM2, NCAM1, and multiple genes located at 16p11.2. Our findings further indicated 
a causal influence of schizophrenia on cannabis use and substantial genetic overlap 
between cannabis use and use of other substances, mental health traits, and personality 
traits, including smoking and alcohol use, schizophrenia, ADHD, and risk-taking.  
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liability to lifetime cannabis use should be viewed in a broader context of personality and 
mental health traits. Specifically, the substantial genetic correlations with risk-taking 
behaviour and openness to experience may indicate that liability to start using cannabis 
is an indication of one’s personality. The positive genetic correlation between lifetime 
cannabis use and educational attainment was unexpected and in contrast to a previous 
study that found a negative genetic correlation between cannabis dependence and 
educational attainment (Demontis et al., 2018).  We therefore investigated phenotypic 
associations of cannabis use with household income and fluid intelligence using UK-
Biobank data. Within Caucasian participants of UK-Biobank (N=438,870), categorically 
rated household income was higher among lifetime cannabis users compared to non-
users (χ2(4)=2243, p=2.2e-16). Cannabis users also scored higher on fluid intelligence 
(t(50,856)=25.13, p<2e-16). These findings are in agreement with observations by Patrick 
et al. (Patrick, Wightman, Schoeni, & Schulenberg, 2012), who showed that cannabis use 
is associated with higher childhood family social economic status (SES) in a survey of US 
families. Possibly, environments more often experienced by those with higher SES 
backgrounds, such as universities, increase accessibility to cannabis, explaining how a 
positive correlation between lifetime cannabis use and educational attainment in our 
study could arise.  
 
We also found a significant genetic correlation between cannabis use and schizophrenia 
(rg=0.24), which is in line with previous findings (Power et al., 2014; Verweij et al., 2017), 
indicating that genetic risk factors for cannabis use and schizophrenia are positively 
correlated. As for the causal direction of this correlation, we found weak evidence for a 
causal link from cannabis use to schizophrenia and much stronger evidence for a causal 
link from schizophrenia to cannabis use. This suggests that individuals with schizophrenia 
have a higher risk to start using cannabis. These results are in contrast with results from 
a MR study by Vaucher et al. (Vaucher et al., 2017), who found strong evidence for a causal 
effect from cannabis use to schizophrenia (causality in the other direction was not tested). 
However, our findings are in line with a MR study by Gage et al. (Gage et al., 2017) who 
used genetic instruments similar to ours and also found weak evidence for a causal effect 
of cannabis use to schizophrenia and much stronger evidence for a causal effect in the 
other direction. Our findings may indicate that individuals at risk for developing 
schizophrenia experience prodromal symptoms or negative affect that make them more 
likely to start using cannabis to cope or self-medicate (Muller-Vahl & Emrich, 2008). The 
lack of strong evidence of a causal influence of cannabis use on schizophrenia may be due 
to the lower power of the instrumental variables. The instrumental variable based on 
schizophrenia SNPs explained 3.38% of variance in liability to schizophrenia. For cannabis 
use, the genetic instruments explained 1.12% and 0.15% of the variance in cannabis use 
for SNPs included with p<1e-05 and p<5e-08, respectively.  
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The results of our study should be interpreted in view of its strength and limitations.  
Important strengths of this study include the analyses of the largest population sample 
to date which has led to a substantial increase in power to identify genetic variants 
associated with lifetime cannabis use. The association analyses were complemented with 
several follow-up analyses to further investigate the genetic basis of cannabis use and the 
extent to which the genetic aetiology of cannabis use overlaps with that of other complex 
phenotypes. Strong genetic correlations across a wide spectrum of traits are observed, 
confirming that lifetime cannabis use is a relevant measure of an individual’s 
vulnerability.  
 
Our study also has several limitations. First, lifetime cannabis use was analyzed as a 
dichotomous measure combining experimental and regular users in a single group. 
Additionally, the different samples varied substantially regarding the age of the 
participants, the prevalence of cannabis use, and the country’s policies regarding 
cannabis use. All these factors may introduce heterogeneity which may reduce the power 
to detect genetic associations. Secondly, power of some analyses may have been limited. 
For example, the MR analysis from cannabis to schizophrenia was based on an instrument 
of only 5 SNPs, and the summary statistics of some traits used for the genetic correlation 
analyses in LD-score regression (e.g. cannabis dependence) were based on a small sample 
size. Finally, some regions identified in the SNP-based analyses did not appear in the 
gene-based analyses. In particular, inspection of the region around rs9773390 (in ZNF704) 
showed that the top SNP in this region was isolated, and that the SNP was only available 
in two of the three datasets (not in UK-Biobank). SNPs in LD with the top SNP that were 
included in all three datasets were not genome-wide significant. Thus, this result may not 
represent a robust association.  
 
In summary, our GWAS of lifetime cannabis use, which is the largest to date, revealed 
significant SNP and gene associations in 16 regions, 14 of which have not been previously 
implicated in cannabis use. The most promising candidates for future functional studies 
are CADM2, NCAM1, and multiple genes located at 16p11.2. Our findings further indicated 
a causal influence of schizophrenia on cannabis use and substantial genetic overlap 
between cannabis use and use of other substances, mental health traits, and personality 
traits, including smoking and alcohol use, schizophrenia, ADHD, and risk-taking.  
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Online methods 

 
Samples 
Data from three sources were obtained: ICC, 23andMe, and UK-Biobank (total N=184,765). 
We used existing GWAS summary statistics from the ICC, based on data from 35,297 
individuals of European ancestry from 16 cohorts from Northern America, Europe, and 
Australia (Stringer et al., 2016). Details regarding ethical approval and informed consents 
of the ICC cohorts can be found in the supplementary material of the original ICC paper 
(Stringer et al., 2016). The overall sample included 55.5% females and the age ranged 
between 16 and 87 years with a mean of 35.7 years. An average of 42.8% of the individuals 
had used cannabis during their lifetime. The second set of results was derived from the 
personal genetics company 23andMe Inc.. Data were available for 22,683 individuals of 
European Ancestry who provided informed consent and answered surveys online 
according to a human subjects protocol approved by Ethical & Independent Review 
Services, a private institutional review board. The sample included 55.3% females and the 
age ranged between 18 and 94 years with a mean of 54.0 years. Within the sample, 43.2% 
had used cannabis during their lifetime. The third sample was obtained from UK-
Biobank. Data were available for 126,785 individuals of European ancestry. The sample 
included 56.3% females and the age ranged between 39 and 72 years with a mean of 55.0 
years.  Within the sample, 22.3% had used cannabis during their lifetime. Ethical approval 
for UK-Biobank data collection procedures has been provided by the North West Multi-
centre Research Ethics Committee (MREC), the National Information Governance Board 
for Health & Social Care (NIGB), and the Community Health Index Advisory Group (CHIAG). 
 
Phenotype and covariates 
For all participants, self-report data were available on whether the participant had ever 
used cannabis during their lifetime: yes (1) versus no (0). Measurement instruments and 
phrasing of the questions about lifetime cannabis use differed across the samples. For the 
ICC study this has been described for each cohort in the original paper (Stringer et al., 
2016). As part of their online questionnaire, 23andMe used the following phrase to 
examine lifetime cannabis use: ‘Have you ever in your life used the following: Marijuana?’. 
The UK-Biobank – as part of an online follow-up questionnaire - asked: ‘Have you taken 
CANNABIS (marijuana, grass, hash, ganja, blow, draw, skunk, weed, spliff, dope), even if it 
was a long time ago?’.  
 
Genotyping and imputation 
Genotyping was performed on various genotyping platforms and standard quality control 
checks were performed prior to imputation. Genotype data were imputed using the 1000 
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Genomes phase 1 release reference set (Abecasis et al., 2012) for ICC and 23andMe, and 
the Haplotype Reference Consortium reference set (Mccarthy & Das, 2016) for the UK-
Biobank sample. Information about samples, genotyping, imputation, and quality control 
is summarized in Supplementary Table S8. After quality control, the ICC sample 
comprised 35,297 individuals and 6,643,927SNPs, the 23andMe sample 22,683 individuals 
and 7,837,888 SNPs, and the UK-Biobank sample 126,785 individuals and 10,827,718 
SNPs. 
 
Statistics 
All statistical tests were two-sided and –unless stated otherwise- we used the 
conventional p-value of 0.05 for significance testing. When necessary, Bonferroni 
correction for multiple testing was applied.  Randomization and blinding procedures do 
not apply to our study design. 
 
Genome-wide association analyses and meta-analysis 
We conducted the GWASs in 23andMe and UK-Biobank samples separately. Associations 
between the binary phenotype and SNPs were tested using a logistic regression model 
accounting for the effects of sex, age, ancestry, and genotype batch (and age2 in the UK-
Biobank sample). The GWAS for UK-Biobank was performed in PLINK 1.9 (Chang et al., 
2015) and for 23andMe using an internally developed pipeline. We then meta-analyzed 
the GWAS results from ICC, 23andMe, and UK-Biobank. Prior to conducting the meta-
analysis, additional quality control of the summary statistics of each study was conducted 
in EasyQC (Winkler & Day, 2014). Because of varying GWAS methods and sample 
characteristics, slightly different quality control criteria were used for the 3 samples (see 
Supplementary Table S8). All 3 samples were aligned with the Haplotype Reference 
Consortium panel using the EasyQC R-package (Winkler & Day, 2014), to ensure that rs-
numbers and chromosome-basepair positions referred to the exact same variants and to 
correct for strand effects. Variants were deleted if they had a minor allele frequency (MAF) 
diverging more than 0.15 from that in the reference panel. 
 
We applied genomic control to the three GWAS files prior to meta-analysis. Inflation due 
to stratification was estimated using LD-score regression, which can differentiate 
inflation due to population stratification from that due to real signal. The intercept was 
used to correct the standard errors (SEs) of the estimated effect sizes as follows: 𝐻𝐻𝐻𝐻𝑆𝑆𝑆𝑆𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 =
 �𝐿𝐿𝐿𝐿𝐷𝐷𝐷𝐷𝐻𝐻𝐻𝐻𝐿𝐿𝐿𝐿 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ∗  𝐻𝐻𝐻𝐻𝑆𝑆𝑆𝑆2 . The intercepts were b0= 1.005 (SE=0.007) for ICC, b0=1.004 
(SE=0.007) for 23andMe, and b0=1.022 (SE=0.008) for UK-Biobank. We then performed a 
fixed effects meta-analysis based on effect sizes (log odds ratios [OR]) and standard errors 
in METAL (Willer, Li, & Abecasis, 2010). We applied the conventional p-value threshold of 
5e-08 as indication of genome-wide significance. The meta-analysis was performed on 
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Online methods 

 
Samples 
Data from three sources were obtained: ICC, 23andMe, and UK-Biobank (total N=184,765). 
We used existing GWAS summary statistics from the ICC, based on data from 35,297 
individuals of European ancestry from 16 cohorts from Northern America, Europe, and 
Australia (Stringer et al., 2016). Details regarding ethical approval and informed consents 
of the ICC cohorts can be found in the supplementary material of the original ICC paper 
(Stringer et al., 2016). The overall sample included 55.5% females and the age ranged 
between 16 and 87 years with a mean of 35.7 years. An average of 42.8% of the individuals 
had used cannabis during their lifetime. The second set of results was derived from the 
personal genetics company 23andMe Inc.. Data were available for 22,683 individuals of 
European Ancestry who provided informed consent and answered surveys online 
according to a human subjects protocol approved by Ethical & Independent Review 
Services, a private institutional review board. The sample included 55.3% females and the 
age ranged between 18 and 94 years with a mean of 54.0 years. Within the sample, 43.2% 
had used cannabis during their lifetime. The third sample was obtained from UK-
Biobank. Data were available for 126,785 individuals of European ancestry. The sample 
included 56.3% females and the age ranged between 39 and 72 years with a mean of 55.0 
years.  Within the sample, 22.3% had used cannabis during their lifetime. Ethical approval 
for UK-Biobank data collection procedures has been provided by the North West Multi-
centre Research Ethics Committee (MREC), the National Information Governance Board 
for Health & Social Care (NIGB), and the Community Health Index Advisory Group (CHIAG). 
 
Phenotype and covariates 
For all participants, self-report data were available on whether the participant had ever 
used cannabis during their lifetime: yes (1) versus no (0). Measurement instruments and 
phrasing of the questions about lifetime cannabis use differed across the samples. For the 
ICC study this has been described for each cohort in the original paper (Stringer et al., 
2016). As part of their online questionnaire, 23andMe used the following phrase to 
examine lifetime cannabis use: ‘Have you ever in your life used the following: Marijuana?’. 
The UK-Biobank – as part of an online follow-up questionnaire - asked: ‘Have you taken 
CANNABIS (marijuana, grass, hash, ganja, blow, draw, skunk, weed, spliff, dope), even if it 
was a long time ago?’.  
 
Genotyping and imputation 
Genotyping was performed on various genotyping platforms and standard quality control 
checks were performed prior to imputation. Genotype data were imputed using the 1000 
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Genomes phase 1 release reference set (Abecasis et al., 2012) for ICC and 23andMe, and 
the Haplotype Reference Consortium reference set (Mccarthy & Das, 2016) for the UK-
Biobank sample. Information about samples, genotyping, imputation, and quality control 
is summarized in Supplementary Table S8. After quality control, the ICC sample 
comprised 35,297 individuals and 6,643,927SNPs, the 23andMe sample 22,683 individuals 
and 7,837,888 SNPs, and the UK-Biobank sample 126,785 individuals and 10,827,718 
SNPs. 
 
Statistics 
All statistical tests were two-sided and –unless stated otherwise- we used the 
conventional p-value of 0.05 for significance testing. When necessary, Bonferroni 
correction for multiple testing was applied.  Randomization and blinding procedures do 
not apply to our study design. 
 
Genome-wide association analyses and meta-analysis 
We conducted the GWASs in 23andMe and UK-Biobank samples separately. Associations 
between the binary phenotype and SNPs were tested using a logistic regression model 
accounting for the effects of sex, age, ancestry, and genotype batch (and age2 in the UK-
Biobank sample). The GWAS for UK-Biobank was performed in PLINK 1.9 (Chang et al., 
2015) and for 23andMe using an internally developed pipeline. We then meta-analyzed 
the GWAS results from ICC, 23andMe, and UK-Biobank. Prior to conducting the meta-
analysis, additional quality control of the summary statistics of each study was conducted 
in EasyQC (Winkler & Day, 2014). Because of varying GWAS methods and sample 
characteristics, slightly different quality control criteria were used for the 3 samples (see 
Supplementary Table S8). All 3 samples were aligned with the Haplotype Reference 
Consortium panel using the EasyQC R-package (Winkler & Day, 2014), to ensure that rs-
numbers and chromosome-basepair positions referred to the exact same variants and to 
correct for strand effects. Variants were deleted if they had a minor allele frequency (MAF) 
diverging more than 0.15 from that in the reference panel. 
 
We applied genomic control to the three GWAS files prior to meta-analysis. Inflation due 
to stratification was estimated using LD-score regression, which can differentiate 
inflation due to population stratification from that due to real signal. The intercept was 
used to correct the standard errors (SEs) of the estimated effect sizes as follows: 𝐻𝐻𝐻𝐻𝑆𝑆𝑆𝑆𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 =
 �𝐿𝐿𝐿𝐿𝐷𝐷𝐷𝐷𝐻𝐻𝐻𝐻𝐿𝐿𝐿𝐿 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ∗  𝐻𝐻𝐻𝐻𝑆𝑆𝑆𝑆2 . The intercepts were b0= 1.005 (SE=0.007) for ICC, b0=1.004 
(SE=0.007) for 23andMe, and b0=1.022 (SE=0.008) for UK-Biobank. We then performed a 
fixed effects meta-analysis based on effect sizes (log odds ratios [OR]) and standard errors 
in METAL (Willer, Li, & Abecasis, 2010). We applied the conventional p-value threshold of 
5e-08 as indication of genome-wide significance. The meta-analysis was performed on 
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11,733,371 SNPs that passed quality control. The combined sample size of the meta-
analysis was 184,765 individuals, although the sample size varied per SNP due to 
differential missingness across samples.  
 
Manhattan and QQ-plots for the GWAS, meta-analysis, and gene-based test results were 
created using the R-package qqman (Turner, 2014). Regional plots were created using 
LocusZoom (Pruim et al., 2010), with varying window size for optimal visualization. 
 
Gene-based test of association  
Testing associations on the level of protein-coding genes can be more biologically 
meaningful and is more powerful (lower multiple testing burden) than testing solely on 
the level of SNPs. Gene-based analysis was used to test associations for the combined 
effect of SNPs  in protein-coding genes taking into account LD between the SNPs and the 
size of the gene. The analysis was conducted in MAGMA (v 1.6) (De Leeuw et al., 2015), 
which uses the 1000 Genomes reference-panel (phase 3, 2012) to control for LD. SNPs 
were mapped to genes if they were located in or within 10 kb from the gene, such that 
5,710,956 SNPs (49%) could be mapped to at least one of 18,293 protein-coding genes in 
the reference panel. The significance threshold was set at p<2.74e-06 (Bonferroni 
correction 0.05/18,293). 
 
Identification of genes with differential expression levels between cannabis users and non-
users  
We used S-PrediXcan to integrate eQTL (expression quantitative trait loci) information 
with our GWAS summary statistics to identify genes of which genetically predicted 
expression levels are associated with cannabis use (Barbeira et al., 2017). Briefly, S-
PrediXcan estimates gene expression weights by training a linear prediction model in 
samples with both gene expression and SNP genotype data. The weights are then used to 
predict gene expression from GWAS summary statistics, while incorporating the variance 
and co-variance of SNPs from an LD reference panel. We used expression weights for 48 
tissues from the GTEx Project (V7) and the DGN whole blood cohort generated by 
Gamazon et al. (Gamazon & Wheeler, 2015), and LD information from the 1000 Genomes 
Project Phase 3 (Delaneau & Marchini, 2014). These data were processed with beta values 
and standard errors from the lifetime cannabis use GWAS meta-analysis to estimate the 
expression-GWAS association statistic. We used a transcriptome-wide significance 
threshold of p<1.92e-07, which is the Bonferroni corrected threshold when adjusting for 
all tissues and genes (i.e. N=259,825 gene-based tests in the GTEx and DGN reference sets). 
 
We used the GTExPortal (https://www.gtexportal.org/home/; GTEx Analysis Release 
V7)(Carithers et al., 2015) to obtain gene expression levels of CADM2 across tissues. We 
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used the same portal to plot a multi-tissue eQTL comparison of the top SNP rs2875907. The 
multi-tissue eQTL plot shows both the single-tissue eQTL p-value and the multi-tissue 
posterior probability from METASOFT (Sul, Han, Ye, Choi, & Eskin, 2013).  
 
SNP-based heritability analysis 
The proportion of variance in liability to cannabis use that could be explained by the 
aggregated effect of the SNPs (h2

SNPs) was estimated using LD-Score regression analysis 
(Bulik-Sullivan, Loh, Finucane, Ripke, & Yang, 2015). The method is based on the premise 
that an estimated SNP effect-size includes effects of all SNPs in linkage disequilibrium 
(LD) with that SNP. A SNP that tags many other SNPs will have a higher probability of 
tagging a causal genetic variant compared to a SNP that tags few other SNPs. The LD score 
estimates the amount of genetic variation tagged by a SNP within a specific population. 
Accordingly, assuming a trait with a polygenic architecture, SNPs with a higher LD-score 
have on average stronger effect sizes than SNPs with lower LD-scores. When regressing 
the effect size from the association analysis against the LD score for each SNP, the slope 
of the regression line provides an estimate of the proportion of variance accounted for by 
all analysed SNPs (Bulik-Sullivan, Loh, et al., 2015). For this analysis, we included 
1,179,898 SNPs that were present in all cohorts and the HapMap 3 reference panel. 
Standard LD scores were used as provided by Bulik-Sullivan et al. (2015) based on the 
Hapmap 3 reference panel, restricted to European populations (Altshuler et al., 2010). 
 
Genetic correlations with other substances and mental health phenotypes 
We used cross-trait LD-Score regression (Bulik-Sullivan, Finucane, Anttila, Gusev, & Day, 
2015) to estimate the genetic correlation between lifetime cannabis use and 25 other 
traits using GWAS summary statistics. The genetic covariance is estimated using the slope 
from the regression of the product of z-scores from 2 GWASs on the LD score. The estimate 
represents the genetic covariation between the 2 traits based on all polygenic effects 
captured by SNPs. Summary statistics from well-powered GWASs were available for 25 
relevant substance use and mental health traits, including nicotine, alcohol and caffeine 
use, schizophrenia, depression, bipolar disorder, and loneliness (Supplementary Table 
S6). To correct for multiple testing we adopted a Bonferroni corrected p-value threshold 
of significance of 0.002 (0.05/25). LD scores were based on the HapMap 3 reference panel, 
restricted to European populations.  
 
Causal association between cannabis use and schizophrenia: Two-sample Mendelian 
randomization 
We performed two-sample Mendelian randomization analyses (MR) (Burgess et al., 2015) 
to examine whether there was evidence for a causal relationship from cannabis use to 
schizophrenia and vice versa. Analyses were performed with the R package of database 

https://www.gtexportal.org/home/
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11,733,371 SNPs that passed quality control. The combined sample size of the meta-
analysis was 184,765 individuals, although the sample size varied per SNP due to 
differential missingness across samples.  
 
Manhattan and QQ-plots for the GWAS, meta-analysis, and gene-based test results were 
created using the R-package qqman (Turner, 2014). Regional plots were created using 
LocusZoom (Pruim et al., 2010), with varying window size for optimal visualization. 
 
Gene-based test of association  
Testing associations on the level of protein-coding genes can be more biologically 
meaningful and is more powerful (lower multiple testing burden) than testing solely on 
the level of SNPs. Gene-based analysis was used to test associations for the combined 
effect of SNPs  in protein-coding genes taking into account LD between the SNPs and the 
size of the gene. The analysis was conducted in MAGMA (v 1.6) (De Leeuw et al., 2015), 
which uses the 1000 Genomes reference-panel (phase 3, 2012) to control for LD. SNPs 
were mapped to genes if they were located in or within 10 kb from the gene, such that 
5,710,956 SNPs (49%) could be mapped to at least one of 18,293 protein-coding genes in 
the reference panel. The significance threshold was set at p<2.74e-06 (Bonferroni 
correction 0.05/18,293). 
 
Identification of genes with differential expression levels between cannabis users and non-
users  
We used S-PrediXcan to integrate eQTL (expression quantitative trait loci) information 
with our GWAS summary statistics to identify genes of which genetically predicted 
expression levels are associated with cannabis use (Barbeira et al., 2017). Briefly, S-
PrediXcan estimates gene expression weights by training a linear prediction model in 
samples with both gene expression and SNP genotype data. The weights are then used to 
predict gene expression from GWAS summary statistics, while incorporating the variance 
and co-variance of SNPs from an LD reference panel. We used expression weights for 48 
tissues from the GTEx Project (V7) and the DGN whole blood cohort generated by 
Gamazon et al. (Gamazon & Wheeler, 2015), and LD information from the 1000 Genomes 
Project Phase 3 (Delaneau & Marchini, 2014). These data were processed with beta values 
and standard errors from the lifetime cannabis use GWAS meta-analysis to estimate the 
expression-GWAS association statistic. We used a transcriptome-wide significance 
threshold of p<1.92e-07, which is the Bonferroni corrected threshold when adjusting for 
all tissues and genes (i.e. N=259,825 gene-based tests in the GTEx and DGN reference sets). 
 
We used the GTExPortal (https://www.gtexportal.org/home/; GTEx Analysis Release 
V7)(Carithers et al., 2015) to obtain gene expression levels of CADM2 across tissues. We 
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used the same portal to plot a multi-tissue eQTL comparison of the top SNP rs2875907. The 
multi-tissue eQTL plot shows both the single-tissue eQTL p-value and the multi-tissue 
posterior probability from METASOFT (Sul, Han, Ye, Choi, & Eskin, 2013).  
 
SNP-based heritability analysis 
The proportion of variance in liability to cannabis use that could be explained by the 
aggregated effect of the SNPs (h2

SNPs) was estimated using LD-Score regression analysis 
(Bulik-Sullivan, Loh, Finucane, Ripke, & Yang, 2015). The method is based on the premise 
that an estimated SNP effect-size includes effects of all SNPs in linkage disequilibrium 
(LD) with that SNP. A SNP that tags many other SNPs will have a higher probability of 
tagging a causal genetic variant compared to a SNP that tags few other SNPs. The LD score 
estimates the amount of genetic variation tagged by a SNP within a specific population. 
Accordingly, assuming a trait with a polygenic architecture, SNPs with a higher LD-score 
have on average stronger effect sizes than SNPs with lower LD-scores. When regressing 
the effect size from the association analysis against the LD score for each SNP, the slope 
of the regression line provides an estimate of the proportion of variance accounted for by 
all analysed SNPs (Bulik-Sullivan, Loh, et al., 2015). For this analysis, we included 
1,179,898 SNPs that were present in all cohorts and the HapMap 3 reference panel. 
Standard LD scores were used as provided by Bulik-Sullivan et al. (2015) based on the 
Hapmap 3 reference panel, restricted to European populations (Altshuler et al., 2010). 
 
Genetic correlations with other substances and mental health phenotypes 
We used cross-trait LD-Score regression (Bulik-Sullivan, Finucane, Anttila, Gusev, & Day, 
2015) to estimate the genetic correlation between lifetime cannabis use and 25 other 
traits using GWAS summary statistics. The genetic covariance is estimated using the slope 
from the regression of the product of z-scores from 2 GWASs on the LD score. The estimate 
represents the genetic covariation between the 2 traits based on all polygenic effects 
captured by SNPs. Summary statistics from well-powered GWASs were available for 25 
relevant substance use and mental health traits, including nicotine, alcohol and caffeine 
use, schizophrenia, depression, bipolar disorder, and loneliness (Supplementary Table 
S6). To correct for multiple testing we adopted a Bonferroni corrected p-value threshold 
of significance of 0.002 (0.05/25). LD scores were based on the HapMap 3 reference panel, 
restricted to European populations.  
 
Causal association between cannabis use and schizophrenia: Two-sample Mendelian 
randomization 
We performed two-sample Mendelian randomization analyses (MR) (Burgess et al., 2015) 
to examine whether there was evidence for a causal relationship from cannabis use to 
schizophrenia and vice versa. Analyses were performed with the R package of database 
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and analytical platform MR-Base (Hemani et al., 2017) and with the gsmr R package which 
implements the GSMR (Generalized Summary-data based Mendelian Randomization) 
method (Zhu et al., 2018). 
 
MR utilizes genetic variants strongly associated with an exposure variable as an 
‘instrument’ to test for causal effects of the exposure on an outcome variable. This 
approach minimizes the risk of spurious findings due to confounding or reverse causation 
present in observational studies, provided that the following assumptions are met: 1) the 
genetic instrument is predictive of the exposure variable, 2) the genetic instrument is 
independent of confounders, and 3) the genetic instrument is not directly associated with 
the outcome variable, other than by its potential causal effect through the exposure (i.e. 
there is no directional pleiotropy) (Davey Smith & Hemani, 2014). Two-sample MR refers 
to the application of MR methods to well-powered summary association results 
estimated in non-overlapping sets of individuals (Burgess et al., 2015) in order to reduce 
instrument bias towards the exposure-outcome estimate. 
Bi-directional causal effects were tested between lifetime cannabis use and 
schizophrenia. We used genetic variants from our cannabis GWAS as well as those from 
the largest schizophrenia GWAS (Schizophrenia Working Group of the Psychiatric 
Genomics Consortium, 2014) to serve as instruments (gene-exposure association). For 
lifetime cannabis use we used 2 genetic instruments; 1) an instrument including all 
independent genetic variants that were genome-wide significantly associated with 
lifetime cannabis use (p<5e-08; 5 SNPs), and 2) an instrument including independent 
variants with a more lenient significance threshold (p<1e-05; 69 SNPs). For schizophrenia 
we used one genetic instrument,  including independent genetic variants that were 
genome-wide significantly associated with schizophrenia (instrument p<5e-08; 109 
SNPs). Information on the included SNPs in the genetic instruments is provided in 
Supplementary Table S6.  
 
Genetic variants were pruned (R2<0.001) and the remaining genetic variants (or proxies 
[R2≥0.8] when an instrumental SNP was not available in the other GWAS) were then 
identified in GWAS summary-level data of the outcome variable (gene-outcome 
association). Note that not all independent SNPs identified in the exposure dataset have 
been included in the analyses, because not all exposure SNPs or their proxies were also 
available in the outcome dataset and because some SNPs were palindromic (see 
Supplementary Table S6). 
 
Evidence for both a gene-exposure and a gene-outcome association suggests a causal 
effect, provided that the MR assumptions are met. To combine estimates from individual 
genetic variants we applied Inverse-Variance Weighted (IVW) linear regression (Ehret et 
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al., 2011). In addition, 4 sensitivity analyses more robust to horizontal pleiotropy were 
applied, each relying on distinct assumptions regarding instrument validity: Weighted 
Median (Bowden, Davey Smith, Haycock, & Burgess, 2016), MR-Egger SIMEX (Bowden et 
al., 2015), Weighted Mode (Hartwig, Davey Smith, & Bowden, 2017), and Generalized 
Summary-data based Mendelian Randomization (GSMR) (Zhu et al., 2018). These 
sensitivity analyses rely on orthogonal assumptions, making their inclusion important for 
triangulation. The Weighted Median approach provides a consistent estimate of the 
causal effect even when up to 50% of the weight comes from invalid instruments 
(Bowden, Davey Smith, et al., 2016). MR-Egger regression applies Egger’s test to MR 
instruments that consist of multiple genetic variants (Bowden et al., 2015; Burgess & 
Thompson, 2017). MR-Egger provides a consistent estimate of the causal effect, provided 
that the strength of the genetic instrument (the association between SNPs and exposure) 
does not correlate with the effect the instrument has on the outcome (i.e. the InSIDE 
assumption:  Instrument Strength Independent of Direct Effect). This is a weaker 
assumption than the assumption of no pleiotropy. MR-Egger may, however, be biased 
when the NOME (NO Measurement Error) assumption is violated – i.e. the assumption that 
the SNP-exposure associations are known rather than estimated. Violation of NOME can 
be quantified with the I2 statistic, which ranges between 0 and 1. A value below 0.9 
indicates a considerable risk of bias. This bias can be corrected for with MR-Egger 
simulation extrapolation (SIMEX, Bowden, Del Greco, et al., 2016). Since I2 ranged between 
0.7-0.9 for our analyses, we report results from MR-Egger SIMEX in Table 3. The Weighted 
Mode methods can produce an unbiased result, as long as the most common causal effect 
estimate is a consistent estimate of the true causal effect: (the Zero Modal Pleiotropy 
Assumption (ZEMPA), Hartwig et al., 2017). Finally, we performed GSMR, a method which 
leverages power from multiple genetic variants while accounting for LD between these 
variants (Zhu et al., 2018). Because GSMR accounts for LD, genetic variants that were 
included in GSMR instruments were pruned at a higher threshold of R2<0.05 (instead of 
R2<0.001 for the other MR analyses). Zhu et al. (2018) showed that the gain of power from 
including SNPs in higher LD than 0.05 is limited. GSMR also allows extra filtering for SNPs 
that are suspected to have pleiotropic effects on both the exposure and the outcome 
(HEIDI filtering). 
 
To calculate variance explained (R2) by the instrument, first we selected a single SNP to 
obtain an estimate of the phenotypic variance, var(y). Assuming effect sizes are normally 
distributed, we used the quantile function of the student t-distribution to transform the 
p-value of the SNP association into an estimate of t, t .̂ The number of degrees of freedom 
and N were based on the effective sample size (4/(1/cases+1/controls)). The effective 
sample sizes were estimated at N=130,072 for schizophrenia and N=180,934 for cannabis 
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and analytical platform MR-Base (Hemani et al., 2017) and with the gsmr R package which 
implements the GSMR (Generalized Summary-data based Mendelian Randomization) 
method (Zhu et al., 2018). 
 
MR utilizes genetic variants strongly associated with an exposure variable as an 
‘instrument’ to test for causal effects of the exposure on an outcome variable. This 
approach minimizes the risk of spurious findings due to confounding or reverse causation 
present in observational studies, provided that the following assumptions are met: 1) the 
genetic instrument is predictive of the exposure variable, 2) the genetic instrument is 
independent of confounders, and 3) the genetic instrument is not directly associated with 
the outcome variable, other than by its potential causal effect through the exposure (i.e. 
there is no directional pleiotropy) (Davey Smith & Hemani, 2014). Two-sample MR refers 
to the application of MR methods to well-powered summary association results 
estimated in non-overlapping sets of individuals (Burgess et al., 2015) in order to reduce 
instrument bias towards the exposure-outcome estimate. 
Bi-directional causal effects were tested between lifetime cannabis use and 
schizophrenia. We used genetic variants from our cannabis GWAS as well as those from 
the largest schizophrenia GWAS (Schizophrenia Working Group of the Psychiatric 
Genomics Consortium, 2014) to serve as instruments (gene-exposure association). For 
lifetime cannabis use we used 2 genetic instruments; 1) an instrument including all 
independent genetic variants that were genome-wide significantly associated with 
lifetime cannabis use (p<5e-08; 5 SNPs), and 2) an instrument including independent 
variants with a more lenient significance threshold (p<1e-05; 69 SNPs). For schizophrenia 
we used one genetic instrument,  including independent genetic variants that were 
genome-wide significantly associated with schizophrenia (instrument p<5e-08; 109 
SNPs). Information on the included SNPs in the genetic instruments is provided in 
Supplementary Table S6.  
 
Genetic variants were pruned (R2<0.001) and the remaining genetic variants (or proxies 
[R2≥0.8] when an instrumental SNP was not available in the other GWAS) were then 
identified in GWAS summary-level data of the outcome variable (gene-outcome 
association). Note that not all independent SNPs identified in the exposure dataset have 
been included in the analyses, because not all exposure SNPs or their proxies were also 
available in the outcome dataset and because some SNPs were palindromic (see 
Supplementary Table S6). 
 
Evidence for both a gene-exposure and a gene-outcome association suggests a causal 
effect, provided that the MR assumptions are met. To combine estimates from individual 
genetic variants we applied Inverse-Variance Weighted (IVW) linear regression (Ehret et 
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al., 2011). In addition, 4 sensitivity analyses more robust to horizontal pleiotropy were 
applied, each relying on distinct assumptions regarding instrument validity: Weighted 
Median (Bowden, Davey Smith, Haycock, & Burgess, 2016), MR-Egger SIMEX (Bowden et 
al., 2015), Weighted Mode (Hartwig, Davey Smith, & Bowden, 2017), and Generalized 
Summary-data based Mendelian Randomization (GSMR) (Zhu et al., 2018). These 
sensitivity analyses rely on orthogonal assumptions, making their inclusion important for 
triangulation. The Weighted Median approach provides a consistent estimate of the 
causal effect even when up to 50% of the weight comes from invalid instruments 
(Bowden, Davey Smith, et al., 2016). MR-Egger regression applies Egger’s test to MR 
instruments that consist of multiple genetic variants (Bowden et al., 2015; Burgess & 
Thompson, 2017). MR-Egger provides a consistent estimate of the causal effect, provided 
that the strength of the genetic instrument (the association between SNPs and exposure) 
does not correlate with the effect the instrument has on the outcome (i.e. the InSIDE 
assumption:  Instrument Strength Independent of Direct Effect). This is a weaker 
assumption than the assumption of no pleiotropy. MR-Egger may, however, be biased 
when the NOME (NO Measurement Error) assumption is violated – i.e. the assumption that 
the SNP-exposure associations are known rather than estimated. Violation of NOME can 
be quantified with the I2 statistic, which ranges between 0 and 1. A value below 0.9 
indicates a considerable risk of bias. This bias can be corrected for with MR-Egger 
simulation extrapolation (SIMEX, Bowden, Del Greco, et al., 2016). Since I2 ranged between 
0.7-0.9 for our analyses, we report results from MR-Egger SIMEX in Table 3. The Weighted 
Mode methods can produce an unbiased result, as long as the most common causal effect 
estimate is a consistent estimate of the true causal effect: (the Zero Modal Pleiotropy 
Assumption (ZEMPA), Hartwig et al., 2017). Finally, we performed GSMR, a method which 
leverages power from multiple genetic variants while accounting for LD between these 
variants (Zhu et al., 2018). Because GSMR accounts for LD, genetic variants that were 
included in GSMR instruments were pruned at a higher threshold of R2<0.05 (instead of 
R2<0.001 for the other MR analyses). Zhu et al. (2018) showed that the gain of power from 
including SNPs in higher LD than 0.05 is limited. GSMR also allows extra filtering for SNPs 
that are suspected to have pleiotropic effects on both the exposure and the outcome 
(HEIDI filtering). 
 
To calculate variance explained (R2) by the instrument, first we selected a single SNP to 
obtain an estimate of the phenotypic variance, var(y). Assuming effect sizes are normally 
distributed, we used the quantile function of the student t-distribution to transform the 
p-value of the SNP association into an estimate of t, t ̂. The number of degrees of freedom 
and N were based on the effective sample size (4/(1/cases+1/controls)). The effective 
sample sizes were estimated at N=130,072 for schizophrenia and N=180,934 for cannabis 
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use. The corresponding value of r was calculated using the formula  𝑖𝑖𝑖𝑖 = 𝑟𝑟𝑟𝑟
�(1−𝑅𝑅𝑅𝑅2)/(𝑁𝑁𝑁𝑁−𝑁)

 and 

obtained the R2 that corresponds to t with the online tool http://vassarstats.net/rsig.html. 
Subsequently, we approximated the variance of the phenotype y using 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑖𝑖𝑖𝑖(𝑦𝑦𝑦𝑦) =
𝑁∗𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝐹𝐹𝐹𝐹∗(1−𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝐹𝐹𝐹𝐹)∗𝛽𝛽𝛽𝛽2

𝑅𝑅𝑅𝑅2
 in which MAF denotes the Minor Allele Frequency and  β the effect size of 

the specific SNP. Finally, we used the estimated value of var(y) to calculate the R2 for the 
remaining SNPs of interest using 𝐻𝐻𝐻𝐻𝑁 = (2 ∗ 𝑀𝑀𝑀𝑀𝐷𝐷𝐷𝐷𝑀𝑀𝑀𝑀 ∗ (1 −𝑀𝑀𝑀𝑀𝐷𝐷𝐷𝐷𝑀𝑀𝑀𝑀) ∗ 𝛽𝛽𝛽𝛽𝑁)/𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑖𝑖𝑖𝑖(𝑦𝑦𝑦𝑦) ; and 
summed the R2 of all SNPs of interest included in the instrumental variable to obtain an 
estimate of the total R2 explained by the instrument. 
 
Data availability 
General information on study design and data availability are included in the Life Sciences 
Reporting Summary. Summary statistics (based on the UK-Biobank and ICC samples) are 
available via LDhub (http://ldsc.broadinstitute.org/gwashare/). The result from the top 
10,000 SNPs based on all three subsamples (i.e. including the 23andMe sample), codes, 
scripts are available upon reasonable request. Full summary statistics can only be 
provided after permission by 23andMe.   
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obtained the R2 that corresponds to t with the online tool http://vassarstats.net/rsig.html. 
Subsequently, we approximated the variance of the phenotype y using 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑖𝑖𝑖𝑖(𝑦𝑦𝑦𝑦) =
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summed the R2 of all SNPs of interest included in the instrumental variable to obtain an 
estimate of the total R2 explained by the instrument. 
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Supplementary Materials 

 
Supplemental to this paper is a large number of figures and tables, of which an overview 
can be found below. They can be view online at: 
Chapter 3 – Genome-wide association study for cannabis use 
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Abstract 

 

Genetic vulnerability is an important predictor of substance use. Previous research has 
shown that different substance use traits correlate both on the observed as well as on the 
genetic level.  
 We used summary level data from genome-wide association studies (GWASs) and 
Genomic SEM to map the common underlying genetic architecture of 12 substance use 
traits related to use of nicotine, alcohol, cannabis, and cocaine. Subsequently, we 
conducted GWASs on the common latent factors to identify genetic markers associated 
with these factors. We then estimated the genetic correlations between the common 
factors and a broad range of mental health, personality, physical and cognitive traits. 
Finally, zooming in on the psychiatrically most relevant trait, we tested the causal 
relationships between the latent substance dependence factor and five common 
psychiatric disorders using Mendelian Randomization and SEM pathway analysis.  
 We identified five latent genetic substance use factors which we refer to as 
dependence, cannabis, smoking, alcohol, and smoking initiation. The GWASs for these 
factors confirmed previously discovered variants and identified novel loci. The genetic 
correlations showed substantial overlap with other traits. Dependence and the smoking 
factors correlated mostly with unfavorable outcomes. The strongest evidence for causal 
effects was found for causal effects of liability to ADHD and schizophrenia on dependence. 
 We found evidence for common genetic factors underlying substance use, which 
showed diverging patterns of (causal) relationships with other traits. Mapping these 
relationships provides new insight in the etiology of substance use.   

Genetic architecture of substance use traits 
 
Introduction 

 

The use of legal and illegal psychoactive substances is prevalent worldwide 1-3. Substance 
abuse and dependence are among the most common mental health disorders 4. Both 
legal and illegal substance use can have deleterious consequences for mental and 
physical health 5, making the etiology of these behaviors an important topic for study. 
 
Genetic vulnerability is an important risk factor for substance use. Twin-based heritability 
estimates lie around 40-50% for many substance use outcomes, such as smoking 
initiation and quantity 6-8, alcohol consumption 9, coffee consumption 10, and cannabis 
initiation 11. For substance use disorders heritability estimates are often higher, with 
estimates around 50-75% for alcohol, nicotine, and caffeine, and around 70% for cocaine 
and opioids 12. In the last decade, genome-wide association studies (GWASs) have aimed 
to identify genetic variants (SNPs) associated with substance use. Most substance use 
GWASs have reached sufficient sample sizes to detect genetic signal, even for substance 
dependence, which is rarer and thus difficult to investigate in large samples. Although the 
power has not always been sufficient to identify genome-wide significant SNPs, these 
GWAS result in significant SNP-based heritability estimates and strong genetic 
correlations across the (mental) health domain 13-15. Variance explained by all SNPs tested 
in the GWAS (SNP-based heritability) is estimated to lie around 10% for many substance 
use outcomes 14-18.  
 
Given the high co-morbidity and overlapping risk factors (such as sensation seeking and 
religion) for different substance use traits e.g., 19, it is not surprising that there is also 
overlap in genetic vulnerability. Twin studies have shown that a common genetic liability 
factor might underlie different kinds of substance use behavior 20, 21. Possibly, within this 
common factor, there are components that overlap for the same stage of use (e.g., 
initiation, quantity, abuse/dependence) across different substances. For example, there 
are indications that the genetic factors underlying problematic substance use are 
distinguishable from those underlying normative use 22, as are factors underlying licit 
versus illicit substance dependence 23 . 
  
Genetic overlap has also been found on the level of the measured DNA. Substantial 
genetic correlations are found between different substance use phenotypes e.g., between 
cannabis, alcohol, and tobacco use; 17, 23, 24, especially for the same kinds of measures for 
different substances e.g., smoking initiation and cannabis use initiation, or cigarettes use 
quantity and alcohol use quantity; 25. Furthermore, it seems that there is also genetic 
overlap between substance use and other psychiatric and physical health traits. To name 
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a few examples, smoking and alcohol use traits show genetic overlap with mood 
disorders, ADHD, BMI and cardiovascular disease 18. Information on shared genetic 
etiology can explain why different substance use behaviors often occur together, and why 
they seem to be associated with phenomena such as psychiatric disorders. 
 
Taking this a step further, genetic information can be used to disentangle shared and 
unique factors in the etiology of related traits and to test causal relationships. In 
Mendelian Randomization (MR) GWAS summary statistics are used to create SNP-
instruments to measure an ‘exposure’ trait. The assumption is that SNPs cannot be 
influenced by confounders and are randomly distributed across the population. If there is 
an effect of a substance use SNP on some outcome, the idea is that this effect can only 
occur through the SNP effect on substance use. In other words, the relationship should 
be causal. Using the MR framework, several studies have shown causal relationships 
between different substance use traits and psychiatric disorders. For example, 
schizophrenia liability seems to cause cannabis initiation 17, smoking risk could cause 
schizophrenia 26, ADHD liability was found to cause several substance use behaviors 27, 
and depression liability could lead to alcohol dependence 28.  
 
In the current paper, we used data from 12 powerful GWASs (related to use of nicotine, 
alcohol, cannabis, and cocaine) to map the common underlying genetic architecture of 
these traits. By conducting GWASs on the common factors, we aimed to identify variants 
and genes that have general effects on substance use. By testing genetic correlations 
between the common substance use factors and 37 other complex trait we provided a 
broad overview into general and distinctive features of the genetic architecture of 
substance use. Subsequently, we zoom in on a potential reason for the high phenotypic 
and genetic overlap between substance use dependence and 5 common psychiatric 
disorders by testing pathway models and causal relationships. 
 

  

Genetic architecture of substance use traits 
 
Results 

 
We investigated the common genetic architecture of substance use by co-analyzing 
available GWAS summary statistics for five smoking traits (initiation, age at initiation, 
pack years, dependence, and cessation), three alcohol traits (consumption in drinks per 
week, drinking frequency, and dependence), three cannabis traits (initiation, use 
frequency, and dependence), and one cocaine trait (dependence; see Table S1). For pack 
years of smoking and cannabis use frequency no published GWAS summary statistics 
were available; we ran these GWASs ourselves in the UK Biobank cohort 29. The GWAS for 
pack years of smoking resulted in 18 independent genome-wide significant hits and a 
significant SNP-heritability of 11%. For cannabis frequency, there were no significant 
associations at the SNP-level, but there was a significant gene-based association with 
SLC45A3 and SNP-heritability was significant at 5%. Full methods and results for these 
GWASs can be found in Supplementary Information 1.  
 
As an initial exploration of the overlap between the 12 substance use traits, we conducted 
Linkage Disequilibrium Score regression30. The overlap was substantial (see Figure 1 and 
Table S2). Smoking initiation, age at smoking initiation, and alcohol consumption were 
important nodes with genetic correlations to all other traits. Alcohol dependence showed 
quite strong correlations with (a smaller subset of) other traits. Alcohol frequency and 
cannabis use frequency showed the least (strong) overlap with other traits. 
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Figure 1. Genetic correlation structure between the substance use traits, with in purple positive relations and 
in orange negative relations. Thicker and darker colored lines indicate stronger correlations. Only significant 
correlations are included in the figure (Bonferroni corrected for the number of tested traits, p= .05/12=0.004).  

Note. alccon=alcohol consumption, alcdep=alcohol dependence, alcfreq=alcohol use frequency, candep= 
cannabis dependence, canfreq= cannabis use frequency, caniniti= cannabis initiation, cocdep= cocaine 

dependence, nicdep= nicotine dependence, pack years=pack years of smoking, smkage= smoking age at 
initiation, smkces= smoking cessation, and smkinit= smoking initiation.dependence, nicdep= nicotine 
dependence, pack years=pack years of smoking, smkage= smoking age at initiation, smkces= smoking 

cessation, and smkinit= smoking initiation. 
 
Factor structure underlying the genetic architecture of substance use 
We explored in how many common latent factors the substance use traits clustered by 
conducting exploratory factor analysis in Genomic Structural Equation Modelling 
(Genomic SEM, 31), using a cut-off value of ≥0.30 for the factor loadings. The factor 
solutions with 1 to 4 factors did not fit the data well. Model fit increased until leveling off 
at a 5-factor solution (Table S3). This model was fit in a confirmatory factor analysis, 
resulting in good fit with AIC=294.17, CFI=.981, SRMR=.084, and χ2(41)=220.17, p=2.27E-26; 
see Table S4). Adding more factors did not increase model fit and led to a solution that 
was less parsimonious (e.g., factors with only one indicator). Thus, the best solution was 
the model containing 5 latent genetic factors. The CFA results for indicators of the factors 
with their factor loadings are depicted in Figure 2. Models using ‘varimax’ instead of 
‘promax’ rotation produced similar results (Table S5).  
 
The first factor comprised cannabis dependence, alcohol dependence, cocaine 
dependence, alcohol use quantity, and smoking cessation. We dub this factor 

Genetic architecture of substance use traits

‘dependence’. The second factor consisted of smoking initiation, lifetime cannabis use, 
and cannabis use frequency; we call this factor ‘cannabis’. The third factor was made up 
by the traits pack years of smoking, smoking dependence, and smoking cessation; we call 
this factor ‘smoking’. The fourth ‘alcohol’ factor has two indicators, alcohol use frequency 
and alcohol use quantity. The final factor is defined by smoking initiation and age at 
smoking initiation; we call it ‘smoking initiation’. Note that age at smoking loads positively 
and smoking initiation negatively, so that a higher factor score indicates a smaller chance 
at initiation and a higher age at initiation. Smoking initiation, smoking cessation, and 
alcohol use quantity had cross loadings. The factor loading of smoking cessation on the 
dependence factor had become smaller than 0.30 in the CFA (p=.177). All other factor 
loadings were larger than 0.5 and significant at p<.001. 
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Genetic architecture of substance use traits 

GWAS on the latent genetic substance use factors 
 Subsequently, GWAS analyses were conducted for the identified factors. Full results are 
presented in Tables S6-S30 and Figures S1-S5. Figure 3 shows a condensed circular 
Manhattan plot with the GWAS results of all five factors, with the outer ring depicting the 
results of factor 1, the second of factor 2, etc. Note that the y-scales vary per factor due to 
variations in statistical power. Sixteen genomic regions contained associations with two 
factors, and one region showed signal for three factors (Table S31). This region on 
chromosome 2 around the LINC01833 gene contained associations with dependence, 
smoking, and smoking initiation. The highest number of overlapping regions was 
observed between the smoking and smoking initiation factor. 

Figure 3. Circular Manhattan plot of the GWAS on the common factor structure of substance use. From the 
outside in: the profiles of association for F1-dependence, F2-cannabis, F3-smoking, F4-alcohol, and F5-smoking 

initiation. The red dots represent SNPs exceeding the genome-wide significance threshold (p<5E-08). The y-
axis was scaled to maximize visibility of the SNP results and differs per factor. 
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Of the eleven genome-wide significant SNP that were identified for the latent dependence 
factor eight were unique for this factor. The strongest association was found for rs1229984 
in the ADH1B gene on chromosome 4 (Table S6), which was also associated with the 
alcohol factor. Look-up in the GWAS catalog 32 showed that this SNP has been implied in 
alcohol (dependence) traits and risk-taking behavior (Table S7). The gene-based test of 
association revealed 40 genes significantly associated with dependence (Table S8). Hits 
included PCCA and ADH7 which have previously been implicated in alcohol use, smoking, 
cognitive phenotypes, BMI and mental health disorders (Table S9). Most identified genes 
had previously been implicated in some substance use trait, although PCCA, ZFYVE21, and 
NSF had not been identified for any of the specific traits included in the dependence factor. 
Putatively novel findings that had not been reported for any substance use trait before 
included the XRCC3 and AL049840.1 genes. The genes associated with the dependence 
factor showed no significant enrichment for tissue expression, although p-values were the 
smallest for expression in brain regions (Table S10).  

The cannabis factor was uniquely associated with 28 independent genome-wide 
significant hits (Table S11) and 42 genes (Table S13). Identified SNPs and genes had 
previously been implicated in a wide range of substance use behaviors, psychiatric 
disorders, and cognitive traits (Table S12, S14). For the smoking factor 129 SNPs were 
independently genome-wide significantly associated, with rs146009840 in the HYKK gene 
on chromosome 15 as the strongest hit (Table S16). This SNP has previously been 
implicated in respiratory traits (Table S17). There were 161 significant genes (Table S18), 
many of which had been implicated in smoking behavior before (Table S19). There were 
129 SNPs independently significantly associated with the alcohol factor (Table S21). The 
strongest association was the same as the top-SNP for the dependence factor (rs1229984 
in the ADH1B gene, Table S22). Most of the significant genes (Table S23) had been 
previously identified in alcohol traits (Table S24). One hundred thirty independent SNPs 
(Table S26) and 169 genes (Table S28) were significantly associated with the smoking 
initiation factor. The top-SNP was rs35290231 in PTPRF, which has previously been 
associated with smoking and cognitive ability traits (Table S27). The most strongly 
associated genes were previously implicated in cognitive traits, mental health, and 
smoking (Table S29). For the cannabis, smoking, alcohol, and smoking initiation factors 
gene expression analysis showed enrichment in all brain tissues, although enrichment 
levels did not always survive correction for multiple testing (Table S15, S20, S25, and S30). 
In addition, the pituitary showed enrichment for the smoking initiation factor. None of the 
other tested tissues showed enrichment for substance use. 

Genetic architecture of substance use traits 
 
Heterogeneity analyses 
For the dependence factor, there were 4 independent loci across the genome with 
significant heterogeneity (Q), indicating that their association with the substance use 
traits was not well accounted for by the pathway through the latent dependence factor 
(Table S32). This means that the observed SNP effects on the indicators were not 
proportional to their loadings on the latent factor 33. The rs1229984 SNP in ADH1B, that 
was a top-hit both for dependence and alcohol, had heterogeneous effects on the first 
factor, such that it was strongly associated with alcohol dependence, but not or reversely 
with the other dependence traits. There were two loci containing heterogeneous SNP-
effects for smoking. These same two regions contained SNPs with heterogeneous effects 
on the alcohol factor. Both loci (around the CYP2A6 gene on chromosome 15 and in the 
nicotine receptor gene cluster on chromosome 19) have been implicated in nicotine 
metabolism. They seem to have rather specific effects on traits that do not generalize well 
to other traits. For factor 2 (cannabis) and 5 (smoking initiation) no significant 
heterogeneity was observed. Figure S6 visualizes to what extent the genetic signal for the 
factors overlaps with heterogeneity signal.  
 

Genetic correlation patterns of the latent substance use factors with 37 other complex traits 
In order to investigate the overlap between the substance use factors and 37 socio-
cognitive, mental health, and physical traits genetic correlations were calculated in LD 
Score Regression (Table S35). Results are presented in Figure 5, with full results given in 
Table S36. The factors showed different patterns of association across traits. For example, 
the dependence, smoking, and cannabis factors showed positive genetic overlap with 
many mental health disorders, whereas the alcohol factor showed negative correlations. 
The negative correlations for the smoking initiation factor indicates that a younger age at 
smoking initiation is related to less favorable mental health outcomes. The dependence 
and smoking factor show remarkably similar associations, with negative correlations with 
cognitive ability and social outcomes, whereas the cannabis, alcohol, and smoking 
initiation factors show positive correlations. For most physical traits, the dependence, 
smoking, and smoking initiation factors clustered together and showed genetic overlap 
with less favorable outcomes, such as heart disease, lower self-rated health, and high BMI, 
whereas the alcohol and cannabis factors showed opposite patterns.  
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Genetic architecture of substance use traits 

 

 

Testing causal relationships between the substance use factors and psychiatric disorders 
Using Mendelian Randomization (MR) we tested the causal direction(s) between the 
substance use factors and psychiatric disorders. We focused on the most recent and 
largest available summary statistics from the Psychiatric Genomics Consortium, with 
information on Attention Deficit/ Hyperactivity Disorder (ADHD), bipolar disorder, major 
depressive disorder, and schizophrenia. Furthermore, we looked at the relationship with 
a more general psychopathology factor, captured by the ‘cross disorder’ GWAS on general 
liability to at least 4 different psychiatric disorders (Table S37). The results are 
summarized in Figure 6, with details given in Tables S38 and Figures S7-16. For the MR 
analysis from the dependence factor to ADHD there were strong indications for outlier 
effects; one outlier SNP was identified and excluded from the dependence instrument 
before conducting MR. We found evidence for positive causal effects of dependence 
liability on ADHD risk and on the cross disorder trait across the main IVW and sensitivity 
analyses. However, there was significant heterogeneity in these analyses, suggesting that 
the effects were not uniform across instrument SNPs and should be interpreted with 
caution. Furthermore, in the GSMR analysis there appeared an effect of liability to 
dependence on schizophrenia risk. GSMR is better powered than the other methods, 
which may explain why this effect did not reach significance in the other tests (although 
they were in the same direction). The effect of dependence liability on schizophrenia risk 
appeared to be driven by a single SNP without pleiotropic effects on schizophrenia 
(rs1229984 in the ADHB1B gene).  
 
In the other direction, there was some evidence for a positive effect of liability to ADHD 
and schizophrenia on dependence risk. For ADHD, the effect did not reach significance in 
the weighted mode analysis, suggesting that the effect may have been driven in part by 
one or a few SNPs with strong effects, that may be due to pleiotropy. For the effect of 
liability to schizophrenia on dependence risk, the leave-one-out analysis showed some 
indications for strong outliers. We identified 6 significant (at p<.001) outliers with radial 
MR and excluded these before MR analysis. The MR Egger analysis for this relationship 
showed significant pleiotropy, and the pleiotropy corrected estimate showed no 
significant effects, suggesting that the effect could have been driven by pleiotropy. For 
the cross disorder trait, the GSMR analysis showed a significant positive effect, but this 
effect did not reach significance in the other analyses. All analyses with dependence as 
outcome, except the one with schizophrenia, showed low I2, indicating substantial NOME 
violation. Also, there was heterogeneity of SNP effects in the cross disorder, depression, 
and schizophrenia analyses. 
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the weighted mode analysis, suggesting that the effect may have been driven in part by 
one or a few SNPs with strong effects, that may be due to pleiotropy. For the effect of 
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indications for strong outliers. We identified 6 significant (at p<.001) outliers with radial 
MR and excluded these before MR analysis. The MR Egger analysis for this relationship 
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In sum, there was some evidence for causal effects of liability to ADHD and the cross 
disorder trait on dependence risk, and in the other direction of liability to dependence on 
ADHD and schizophrenia risk (Figure 5). However, all effects showed some violation of MR 
assumptions, indicating that they should be interpreted with caution.  
 

 
Figure 6. Evidence for causal relationships between the substance dependence factor and psychiatric traits. 

Panel A. Schematic summary of MR results, with solid lines indicating considerable evidence across sensitivity 
analyses for a positive causal effect (green: dependence as exposure, blue: dependence as outcome) and 

dashed lines indicating weak evidence for an effect. Per relationship the IVW beta with standard error is given. 
The results per tested relationship are depicted in Figures S7-16 and summarized in Table S38. Panel B. The 

same relationships, but now with the parameters from the Genomic SEM pathway models, that controlled for 
mediation through the other substance use factors. Per pathway the standardized estimate (β) and the p-value 

is given (in grey p-values above .05). The full models per tested relationship can be found in Figures S17-21. 
 

 
To corroborate these findings, we conduct follow-up analysis on the causal relationships 
for which we found any evidence. Using Genomic SEM pathway analysis, we compare two 
competing models for the effect of dependence on psychiatric traits and vice versa (see 
Figures S17-21 and Tables S39-44). We test if the effects of psychiatric traits on 
dependence are mediated through the other substance use factors, or alternatively, if the 
effects of the substance use factors on psychiatric traits are mediated through 
dependence. Results are shown in Table 1 and Figure 6B. None of the effects of psychiatric 
traits on dependence were (fully) mediated through the other substance use factors, 
providing converging evidence for direct (causal) effects of psychiatric traits on 
dependence. In the other direction, the effect of dependence on ADHD and cross disorder 
was largely accounted for by the other substance use factors (particularly F2 and F3), 
which was not in line with the causal relationships found in the MR analyses. For the effect 
of dependence on schizophrenia we do find evidence corroborating MR analyses.  
  

Genetic architecture of substance use traits 
 
 

Table 1. Model fit and path estimates for Genomic SEM pathway analyses assessing effects of dependence on 
psychiatric traits and vice versa. In all models, we included the full correlation matrix between all factors (F1-

dependence, F2-cannabis, F3-smoking, F4-alcohol, F5-smoking initiation), factor indicators (the separate 
substance use traits), and psychiatric traits (ADHD, bipolar disorder, cross disorder, depression, and 

schizophrenia). Parameters for all the effects in the model can be found in Supplementary Tables S39-S44. 
Models with lower AIC as compared to the alternative model fit the data better. CFI>.90 and SRMR<.08 are 

taken as indications of good model fit. P-values below .05 are boldfaced.  

Predictor Outcome AIC CFI SRMR β p 

Dependence ADHD 1519 .979 .071 -.30 .296 

ADHD Dependence 1405 .981 .078 .27 .042 

Dependence Cross disorder 1058 .987 .067 .11 .751 

Cross disorder Dependence 2299 .967 .086 .17 .012 

Dependence Schizophrenia 977 .988 .066 .41 .021 

Schizophrenia Dependence 5637 .914 .111 .17 .005 
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Discussion 

 

In this study, we used a data driven approach to investigate common liability for 
substance use by conducting an exploratory factor analyses on 12 sets of summary 
statistics from substance use GWAS. There were 5 common factors underlying substance 
use traits that we named substance dependence, cannabis use, smoking, alcohol use, and 
smoking initiation. Combining summary statistics resulted in high power for detecting 
genetic signal. GWAS analysis on these substance use factors resulted both in 
confirmation of previous GWAS findings as well as in putatively novel findings of variants 
that had not before been implicated in the source GWAS. Top SNP and genes for the 
factors follow previously identified associations, with an important role for ADH1B in 
dependence (which has often been implied in alcohol traits), CADM2 in cannabis, the 
nicotine receptor genes in smoking, ADH1B again for alcohol, and PTPRF for smoking 
initiation. Novel findings include XRCC3 for dependence, AC027228.1 for smoking, a 
cluster around SNX17 for alcohol, and AC110781.3 for smoking initiation. The XRCC3 gene 
(associated with dependence) plays an important role in repairing DNA damage, 
providing an interesting avenue of research given the previously reported association 
between substance abuse and DNA damage34. Novel associations for alcohol (ZNF513, 
EIF2B4, and MPV17) cluster on chromosome 2 around SNX17, a gene that was found in a 
GWAS on interaction effects between lipid levels and alcohol use35. Proteins coded by the 
SNX17 gene are involved in intracellular trafficking. Less is known about AC027228.1 
(identified for smoking) and AC110781.3 (for smoking initiation); future research will have 
to shed more light on the function and implications of these genes. 
 
Most SNP effects were consistent with the common factor models, such that only a 
handful had heterogeneous effects that could not be explained by the factor. Strong 
heterogeneous effects were detected for SNPs in ADH1B, CYP2A6, and the nicotine 
receptor gene cluster. These genes are closely involved in the metabolism of alcohol and 
nicotine, respectively. Presumably, these roles explain why these loci have substance-
specific and even trait-specific associations that cannot be explained by a general 
substance use factor. Loci with more general effects might be interesting targets for 
follow-up research. For example, PPP1R13B or BPTF had common effects on the 
dependence factor. PPP1R13B is involved in programmed cell death and has been 
implicated in schizophrenia, whereas BPTF might play a role in transcription and has been 
associated with Alzheimer’s disease.  
 
Genetic signal for most substance use factors was over-expressed in brain regions. For the 
dependence factor enrichment levels in the brain did not reach significance, but this is 

Genetic architecture of substance use traits 
 
likely due to the lower power (i.e., lower sample size) of this factor. Outside of the brain 
tissues, only the pituitary showed enrichment for expression of substance use-related 
variants (for the smoking initiation factor). Overall, the (frontal) cortex, nucleus 
accumbens, and cerebellum tissues showed the strongest enrichment, with no distinct 
enrichment profiles for the different factors. The role of the nucleus accumbens in 
substance use and addiction is well established 36. The frontal cortex is likely involved in 
substance use and the development of addiction due to its role in motivation and 
inhibitory control 37. The role of the cerebellum in addiction is less well-established. It has 
been proposed that it mediates the links between motor and reward systems 38. 
 
The genetic correlation analyses showed diverging patterns for the different substance 
use factors, but also showed clustering between some factors. The dependence, smoking, 
and smoking initiation factors showed similar patterns. In general, higher dependence, 
higher smoking, and younger age at smoking initiation (i.e., lower scores on the initiation 
factor) were associated with less favorable outcomes, including adverse physical and 
mental health outcomes, lower scores on cognitive outcomes, and poorer social 
outcomes. The alcohol factor, on the other hand, showed overlap with more favorable 
outcomes across all domains, including lower chances for psychiatric disorders and 
physical disease.  This could be driven by the correlations with socioeconomic and 
cognitive traits like educational attainment, of which it is well-established that it has 
important advantages for health 39. The cannabis factor was similar to the alcohol factor 
in some respects, but more akin to the other factors in other respects. It was associated 
with higher educational attainment, IQ, and somewhat more favorable physical 
outcomes, but also with more psychiatric disorders. These patterns may be due to the 
higher rates of cannabis use in higher education on the one hand (at least in some 
populations, 17) and causal effects of cannabis use on psychiatric traits on the other 40-42. 
Overall, these results seem to show a split between ‘adaptive’ and ‘maladaptive’ 
substance use phenotypes, and seem to argue that smoking is rather more akin to 
substance use disorders than to moderate alcohol and cannabis use. Also, as the 
correlations will in part have been driven by causal effects, these results emphasize the 
importance of adopting a comprehensive approach to substance use treatment, taking 
into account social, cognitive, mental health, personality, and physical health factors.  
 
Mendelian randomization analyses yielded some evidence for causal effects of ADHD and 
schizophrenia on substance dependence, and weak evidence for an effect of a cross-
disorder trait (general vulnerability for psychiatric disorders) on dependence. Our 
findings of causal effects of substance dependence line up with previous results from 
observational studies 43-45. Previous MR studies have shown similar evidence for causal 
effects of substance use on psychiatric disorders, such as cannabis initiation on 
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Discussion 

 

In this study, we used a data driven approach to investigate common liability for 
substance use by conducting an exploratory factor analyses on 12 sets of summary 
statistics from substance use GWAS. There were 5 common factors underlying substance 
use traits that we named substance dependence, cannabis use, smoking, alcohol use, and 
smoking initiation. Combining summary statistics resulted in high power for detecting 
genetic signal. GWAS analysis on these substance use factors resulted both in 
confirmation of previous GWAS findings as well as in putatively novel findings of variants 
that had not before been implicated in the source GWAS. Top SNP and genes for the 
factors follow previously identified associations, with an important role for ADH1B in 
dependence (which has often been implied in alcohol traits), CADM2 in cannabis, the 
nicotine receptor genes in smoking, ADH1B again for alcohol, and PTPRF for smoking 
initiation. Novel findings include XRCC3 for dependence, AC027228.1 for smoking, a 
cluster around SNX17 for alcohol, and AC110781.3 for smoking initiation. The XRCC3 gene 
(associated with dependence) plays an important role in repairing DNA damage, 
providing an interesting avenue of research given the previously reported association 
between substance abuse and DNA damage34. Novel associations for alcohol (ZNF513, 
EIF2B4, and MPV17) cluster on chromosome 2 around SNX17, a gene that was found in a 
GWAS on interaction effects between lipid levels and alcohol use35. Proteins coded by the 
SNX17 gene are involved in intracellular trafficking. Less is known about AC027228.1 
(identified for smoking) and AC110781.3 (for smoking initiation); future research will have 
to shed more light on the function and implications of these genes. 
 
Most SNP effects were consistent with the common factor models, such that only a 
handful had heterogeneous effects that could not be explained by the factor. Strong 
heterogeneous effects were detected for SNPs in ADH1B, CYP2A6, and the nicotine 
receptor gene cluster. These genes are closely involved in the metabolism of alcohol and 
nicotine, respectively. Presumably, these roles explain why these loci have substance-
specific and even trait-specific associations that cannot be explained by a general 
substance use factor. Loci with more general effects might be interesting targets for 
follow-up research. For example, PPP1R13B or BPTF had common effects on the 
dependence factor. PPP1R13B is involved in programmed cell death and has been 
implicated in schizophrenia, whereas BPTF might play a role in transcription and has been 
associated with Alzheimer’s disease.  
 
Genetic signal for most substance use factors was over-expressed in brain regions. For the 
dependence factor enrichment levels in the brain did not reach significance, but this is 
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likely due to the lower power (i.e., lower sample size) of this factor. Outside of the brain 
tissues, only the pituitary showed enrichment for expression of substance use-related 
variants (for the smoking initiation factor). Overall, the (frontal) cortex, nucleus 
accumbens, and cerebellum tissues showed the strongest enrichment, with no distinct 
enrichment profiles for the different factors. The role of the nucleus accumbens in 
substance use and addiction is well established 36. The frontal cortex is likely involved in 
substance use and the development of addiction due to its role in motivation and 
inhibitory control 37. The role of the cerebellum in addiction is less well-established. It has 
been proposed that it mediates the links between motor and reward systems 38. 
 
The genetic correlation analyses showed diverging patterns for the different substance 
use factors, but also showed clustering between some factors. The dependence, smoking, 
and smoking initiation factors showed similar patterns. In general, higher dependence, 
higher smoking, and younger age at smoking initiation (i.e., lower scores on the initiation 
factor) were associated with less favorable outcomes, including adverse physical and 
mental health outcomes, lower scores on cognitive outcomes, and poorer social 
outcomes. The alcohol factor, on the other hand, showed overlap with more favorable 
outcomes across all domains, including lower chances for psychiatric disorders and 
physical disease.  This could be driven by the correlations with socioeconomic and 
cognitive traits like educational attainment, of which it is well-established that it has 
important advantages for health 39. The cannabis factor was similar to the alcohol factor 
in some respects, but more akin to the other factors in other respects. It was associated 
with higher educational attainment, IQ, and somewhat more favorable physical 
outcomes, but also with more psychiatric disorders. These patterns may be due to the 
higher rates of cannabis use in higher education on the one hand (at least in some 
populations, 17) and causal effects of cannabis use on psychiatric traits on the other 40-42. 
Overall, these results seem to show a split between ‘adaptive’ and ‘maladaptive’ 
substance use phenotypes, and seem to argue that smoking is rather more akin to 
substance use disorders than to moderate alcohol and cannabis use. Also, as the 
correlations will in part have been driven by causal effects, these results emphasize the 
importance of adopting a comprehensive approach to substance use treatment, taking 
into account social, cognitive, mental health, personality, and physical health factors.  
 
Mendelian randomization analyses yielded some evidence for causal effects of ADHD and 
schizophrenia on substance dependence, and weak evidence for an effect of a cross-
disorder trait (general vulnerability for psychiatric disorders) on dependence. Our 
findings of causal effects of substance dependence line up with previous results from 
observational studies 43-45. Previous MR studies have shown similar evidence for causal 
effects of substance use on psychiatric disorders, such as cannabis initiation on 
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schizophrenia 17, substance use on ADHD 46, and smoking initiation on externalizing 
behavior 47.  In the other direction, we found evidence for causal effects of ADHD and 
schizophrenia, and weak evidence for an effect of the cross disorder trait on dependence. 
Causal effects from psychiatric traits on substance use could be explained through ‘self-
medication’ mechanisms, for example when individuals use alcohol or drugs to alleviate 
anxiety symptoms 48, 49.  
 
However, all findings from the MR analysis should be interpreted with caution, given the 
violation of some of MR’s assumptions. These violations were probably due to the use of 
a genetic common factor in these analyses, which is inherently heterogeneous. Also, the 
power of the dependence factor and most of the psychiatric traits summary statistics was 
limited given low sample sizes and low SNP-based heritability (Table S37). In order to 
corroborate the MR findings, we conducted pathway analyses in Genomic SEM, testing to 
what extent the relationship between psychiatric traits and substance dependence was 
accounted for by the other substance use factors. The effects of ADHD, cross disorder, and 
schizophrenia on substance dependence were not (fully) mediated through the other 
substance use factors, supporting the interpretation that these effects were at least in 
part causal. Likewise, there was evidence for a direct, causal effect of schizophrenia on 
substance dependence. However, the effect of dependence on ADHD and the cross 
disorder trait was fully mediated by the other substance use factors, suggesting that these 
effects may not be causal but driven by pleiotropy. These findings warrant future research 
attention. The results suggest that at least in some cases substance dependence and 
psychiatric disorders are causally linked in both directions, which is crucial information 
considering that the advice is often to treat them consecutively rather than 
simultaneously in clinical practice 50.  
 
This study adds to a growing body of studies that try to uncover common factors in the 
genetic etiology of psychiatric traits. Recent studies focusing on psychiatric traits 
identified different common factor structures, such as mood disturbances versus rare 
serious mental illness 51, a four-factor structure of externalizing, internalizing, thought 
problems, and neurodevelopmental disorders 52, three factors of mood/psychotic 
disorders, compulsive disorders, and early neurodevelopmental disorders 53, or even a 
single ‘p’ factor underlying all psychiatric disorders 54. Few studies have included 
substance use disorders in these investigations55. One study that did found that adding 
substance use disorders changed the underlying vulnerability factors for psychiatric 
disorders, with most of them loading on a heterogeneous factor that also included ADHD, 
depression, autism, and Tourette’s syndrome 56. No studies as of yet have focused solely 
on substance use, thereby not only including disorders but also moderate use traits. Our 
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study showed that substance use traits do not fall in a single category, and that different 
types of substance use show diverging genetic relationships to psychiatric disorders.  
 
The findings discussed above also show that similar study designs can lead to diverging 
conclusions. Factor structures can shift depending on the included traits and model 
specification. This is an important caveat to bear in mind when interpreting findings from 
(genomic) factor analyses. A strength of the current study’s design is that it was fully data-
driven: we included all available substance use traits that met our criteria and conducted 
our follow-up analyses based on the results without making any adaptations to the 
model.  
 
Several important conclusions can be drawn from this study. First, we identify genetic 
variants and genes that have rather general effects and are implied in different substance 
use traits. These may form promising starting points for follow-up research into 
underlying biological mechanisms of substance use. Second, we show that different 
substance use factors show diverging and substantial overlap with other traits. 
Interestingly, substance dependence and the smoking factors show rather similar 
patterns such that they correlate genetically with unfavorable outcomes. Third, there was 
some evidence for causal relationships between substance use dependence and 
psychiatric disorders. The strongest evidence was found for bidirectional causal effects 
between ADHD and substance dependence, and for a causal effect of schizophrenia on 
substance dependence. Our results provide new insights into common and distinct 
genetic features of substance use, and show how these traits are related with each other 
and with other psychiatric traits. This new step in mapping the genetics of substance use 
brings us another step closer to unravelling the etiology of these costly behaviors.  
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schizophrenia 17, substance use on ADHD 46, and smoking initiation on externalizing 
behavior 47.  In the other direction, we found evidence for causal effects of ADHD and 
schizophrenia, and weak evidence for an effect of the cross disorder trait on dependence. 
Causal effects from psychiatric traits on substance use could be explained through ‘self-
medication’ mechanisms, for example when individuals use alcohol or drugs to alleviate 
anxiety symptoms 48, 49.  
 
However, all findings from the MR analysis should be interpreted with caution, given the 
violation of some of MR’s assumptions. These violations were probably due to the use of 
a genetic common factor in these analyses, which is inherently heterogeneous. Also, the 
power of the dependence factor and most of the psychiatric traits summary statistics was 
limited given low sample sizes and low SNP-based heritability (Table S37). In order to 
corroborate the MR findings, we conducted pathway analyses in Genomic SEM, testing to 
what extent the relationship between psychiatric traits and substance dependence was 
accounted for by the other substance use factors. The effects of ADHD, cross disorder, and 
schizophrenia on substance dependence were not (fully) mediated through the other 
substance use factors, supporting the interpretation that these effects were at least in 
part causal. Likewise, there was evidence for a direct, causal effect of schizophrenia on 
substance dependence. However, the effect of dependence on ADHD and the cross 
disorder trait was fully mediated by the other substance use factors, suggesting that these 
effects may not be causal but driven by pleiotropy. These findings warrant future research 
attention. The results suggest that at least in some cases substance dependence and 
psychiatric disorders are causally linked in both directions, which is crucial information 
considering that the advice is often to treat them consecutively rather than 
simultaneously in clinical practice 50.  
 
This study adds to a growing body of studies that try to uncover common factors in the 
genetic etiology of psychiatric traits. Recent studies focusing on psychiatric traits 
identified different common factor structures, such as mood disturbances versus rare 
serious mental illness 51, a four-factor structure of externalizing, internalizing, thought 
problems, and neurodevelopmental disorders 52, three factors of mood/psychotic 
disorders, compulsive disorders, and early neurodevelopmental disorders 53, or even a 
single ‘p’ factor underlying all psychiatric disorders 54. Few studies have included 
substance use disorders in these investigations55. One study that did found that adding 
substance use disorders changed the underlying vulnerability factors for psychiatric 
disorders, with most of them loading on a heterogeneous factor that also included ADHD, 
depression, autism, and Tourette’s syndrome 56. No studies as of yet have focused solely 
on substance use, thereby not only including disorders but also moderate use traits. Our 
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study showed that substance use traits do not fall in a single category, and that different 
types of substance use show diverging genetic relationships to psychiatric disorders.  
 
The findings discussed above also show that similar study designs can lead to diverging 
conclusions. Factor structures can shift depending on the included traits and model 
specification. This is an important caveat to bear in mind when interpreting findings from 
(genomic) factor analyses. A strength of the current study’s design is that it was fully data-
driven: we included all available substance use traits that met our criteria and conducted 
our follow-up analyses based on the results without making any adaptations to the 
model.  
 
Several important conclusions can be drawn from this study. First, we identify genetic 
variants and genes that have rather general effects and are implied in different substance 
use traits. These may form promising starting points for follow-up research into 
underlying biological mechanisms of substance use. Second, we show that different 
substance use factors show diverging and substantial overlap with other traits. 
Interestingly, substance dependence and the smoking factors show rather similar 
patterns such that they correlate genetically with unfavorable outcomes. Third, there was 
some evidence for causal relationships between substance use dependence and 
psychiatric disorders. The strongest evidence was found for bidirectional causal effects 
between ADHD and substance dependence, and for a causal effect of schizophrenia on 
substance dependence. Our results provide new insights into common and distinct 
genetic features of substance use, and show how these traits are related with each other 
and with other psychiatric traits. This new step in mapping the genetics of substance use 
brings us another step closer to unravelling the etiology of these costly behaviors.  
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Online methods 

 
Data sources for the substance use GWAS summary statistics 
Publicly available summary statistics from GWAS on substance use traits (published 
before October 2020) were assessed. Due to limited availability of GWASs in other 
ethnicities, we focused solely on GWAS in European ancestry individuals. In order to 
ensure the quality of the data we selected phenotypes with a significant SNP-based 
heritability. If multiple GWAS for the same phenotype were available, we used the 
summary statistics from the one with the largest (effective) sample size. We selected 10 
traits for which we were able to obtain summary statistics (see Table S1). When 
applicable, we requested permission from 23andMe to use summary statistics including 
this cohort. In addition, for 2 phenotypes we ran GWAS analyses in UK Biobank cohort 29, 
namely smoking pack years and cannabis use frequency (for GWAS methods, refer to 
Supplementary Information 1). Pack years is a measure of tobacco exposure, defined as 
(the equivalent of) the number of years a person has smoked one pack of cigarettes per 
day. Eventually, we included summary statistics for five smoking traits (initiation, age at 
initiation, pack years, dependence, and cessation), three alcohol traits (consumption in 
drinks per week, drinking frequency, and dependence), three cannabis traits (initiation, 
use frequency, and dependence), and one cocaine trait (dependence). The summary 
statistics were cleaned for further processing, filtering out rare variants (MAF<.01) and 
aligning with reference data (1000 Genomes, phase 3). If the source GWAS did not report 
SNP-based heritability (h2

SNP) or estimated it in an alternative manner, this was computed 
with linkage disequilibrium (LD) score regression 30, so that it could be compared across 
phenotypes.  
 
Investigating the common genetic architecture of substance use 
As a first step, we mapped the genetic correlations between the 12 substance use traits 
using LD score regression. This tool assesses the overlap in GWAS summary statistics for 
different traits using the relationship between the test statistics and linkage 
disequilibrium scores in the population to tease apart true genetic effects from bias. To 
visualize the results we used the igraph R package to create a network plot of the genetic 
correlations 57. 
 
Next, we identified the genetic architecture underlying the different substance use traits 
using the R-package Genomic Structural Equation Modeling Genomic SEM, 31. Genomic 
SEM can deal with an substantial extent of overlap between samples. We conducted a 
series of exploratory factor analysis (EFA) with ‘promax’ rotations (as well as ‘varimax’ for 
comparison). Subsequently, the factor structure suggested by EFA (with standardized 

Genetic architecture of substance use traits 
 
loadings of ≥0.3) was tested using confirmatory factor analysis (CFA). The fit of the factor 
solution was evaluated using commonly used thresholds for good fit of Comparative Fit 
Index (CFI)>.90 and Standardized Root Mean Square Residual (SRMR) <.08 58. We compare 
the  resulting best model with models with one factor more or a factor less, and prioritize 
the one with the lower AIC. As χ2 is susceptible to large sample sizes and will be inevitably 
significant in all factor solutions using these large sets of summary statistics, it, too, was 
only used to compare models.  
 
GWAS analyses on the identified substance use factors 
Subsequently, we ran GWASs within Genomic SEM on the defined factors. These 
multivariate GWASs estimate the SNP effects from the Genomic SEM model on the 
common factor. Genome-wide significant SNPs (p<5E-08) were clumped using PLINK1.9 
59 with independency defined as R2<.01 and SNPs within 250kb viewed as a single locus. 
To determine effective sample size of the factors we used the formula from Mallard et al. 
(2020) 51. We created a circular Manhattan plot to visualize the SNP profiles for the factors 
using the Rpackage CMplot 60. We also ran genome-wide heterogeneity tests in Genomic 
SEM to test to what extent the SNP-effects were mediated through the latent factors or 
were more consistent with an independent pathway model of specific effects on 
indicators. Miami plots were created to show how much of the genetic signal for the 
factors was significantly heterogeneous using the Hudson R package. Gene-based tests 
and functional gene mapping analyses for the per-factor GWAS results were run in FUMA 
61. As p-value cut-off for the gene-based tests we used p<.05/19,080=2.62E-6 to correct for 
the number of genes tested.  
 
Genetic correlations between factors and other traits 
To assess how the genetic architecture of the latent genetic substance use factors 
overlapped with that of other traits, we used the summary statistics to compute genetic 
correlations using LD score regression 30. We selected a set of 37 physical and mental 
health traits and cognitive/ social traits for which GWAS summary statistics were publicly 
available (see Table S34). To correct for multiple testing, we computed false discovery 
rate p-values. Results were visualized using the R package ggplot 62. 
 
Mendelian Randomization analysis on the dependence factor and psychiatric traits 
Finally, we conducted Mendelian Randomization (MR) analyses to examine causal 
relationships between the first factor we identified (dependence) and 5 common 
psychiatric disorders from the Psychiatric and Genomics Consortium (PGC; attention 
deficit and hyperactivity disorder, bipolar disorder, cross disorder, depression, and 
schizophrenia). MR uses SNPs with a robust association to an ‘exposure’ trait as an 
instrument to test causal associations with ‘outcome’ traits. Assuming that a SNP cannot 
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Online methods 

 
Data sources for the substance use GWAS summary statistics 
Publicly available summary statistics from GWAS on substance use traits (published 
before October 2020) were assessed. Due to limited availability of GWASs in other 
ethnicities, we focused solely on GWAS in European ancestry individuals. In order to 
ensure the quality of the data we selected phenotypes with a significant SNP-based 
heritability. If multiple GWAS for the same phenotype were available, we used the 
summary statistics from the one with the largest (effective) sample size. We selected 10 
traits for which we were able to obtain summary statistics (see Table S1). When 
applicable, we requested permission from 23andMe to use summary statistics including 
this cohort. In addition, for 2 phenotypes we ran GWAS analyses in UK Biobank cohort 29, 
namely smoking pack years and cannabis use frequency (for GWAS methods, refer to 
Supplementary Information 1). Pack years is a measure of tobacco exposure, defined as 
(the equivalent of) the number of years a person has smoked one pack of cigarettes per 
day. Eventually, we included summary statistics for five smoking traits (initiation, age at 
initiation, pack years, dependence, and cessation), three alcohol traits (consumption in 
drinks per week, drinking frequency, and dependence), three cannabis traits (initiation, 
use frequency, and dependence), and one cocaine trait (dependence). The summary 
statistics were cleaned for further processing, filtering out rare variants (MAF<.01) and 
aligning with reference data (1000 Genomes, phase 3). If the source GWAS did not report 
SNP-based heritability (h2

SNP) or estimated it in an alternative manner, this was computed 
with linkage disequilibrium (LD) score regression 30, so that it could be compared across 
phenotypes.  
 
Investigating the common genetic architecture of substance use 
As a first step, we mapped the genetic correlations between the 12 substance use traits 
using LD score regression. This tool assesses the overlap in GWAS summary statistics for 
different traits using the relationship between the test statistics and linkage 
disequilibrium scores in the population to tease apart true genetic effects from bias. To 
visualize the results we used the igraph R package to create a network plot of the genetic 
correlations 57. 
 
Next, we identified the genetic architecture underlying the different substance use traits 
using the R-package Genomic Structural Equation Modeling Genomic SEM, 31. Genomic 
SEM can deal with an substantial extent of overlap between samples. We conducted a 
series of exploratory factor analysis (EFA) with ‘promax’ rotations (as well as ‘varimax’ for 
comparison). Subsequently, the factor structure suggested by EFA (with standardized 
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loadings of ≥0.3) was tested using confirmatory factor analysis (CFA). The fit of the factor 
solution was evaluated using commonly used thresholds for good fit of Comparative Fit 
Index (CFI)>.90 and Standardized Root Mean Square Residual (SRMR) <.08 58. We compare 
the  resulting best model with models with one factor more or a factor less, and prioritize 
the one with the lower AIC. As χ2 is susceptible to large sample sizes and will be inevitably 
significant in all factor solutions using these large sets of summary statistics, it, too, was 
only used to compare models.  
 
GWAS analyses on the identified substance use factors 
Subsequently, we ran GWASs within Genomic SEM on the defined factors. These 
multivariate GWASs estimate the SNP effects from the Genomic SEM model on the 
common factor. Genome-wide significant SNPs (p<5E-08) were clumped using PLINK1.9 
59 with independency defined as R2<.01 and SNPs within 250kb viewed as a single locus. 
To determine effective sample size of the factors we used the formula from Mallard et al. 
(2020) 51. We created a circular Manhattan plot to visualize the SNP profiles for the factors 
using the Rpackage CMplot 60. We also ran genome-wide heterogeneity tests in Genomic 
SEM to test to what extent the SNP-effects were mediated through the latent factors or 
were more consistent with an independent pathway model of specific effects on 
indicators. Miami plots were created to show how much of the genetic signal for the 
factors was significantly heterogeneous using the Hudson R package. Gene-based tests 
and functional gene mapping analyses for the per-factor GWAS results were run in FUMA 
61. As p-value cut-off for the gene-based tests we used p<.05/19,080=2.62E-6 to correct for 
the number of genes tested.  
 
Genetic correlations between factors and other traits 
To assess how the genetic architecture of the latent genetic substance use factors 
overlapped with that of other traits, we used the summary statistics to compute genetic 
correlations using LD score regression 30. We selected a set of 37 physical and mental 
health traits and cognitive/ social traits for which GWAS summary statistics were publicly 
available (see Table S34). To correct for multiple testing, we computed false discovery 
rate p-values. Results were visualized using the R package ggplot 62. 
 
Mendelian Randomization analysis on the dependence factor and psychiatric traits 
Finally, we conducted Mendelian Randomization (MR) analyses to examine causal 
relationships between the first factor we identified (dependence) and 5 common 
psychiatric disorders from the Psychiatric and Genomics Consortium (PGC; attention 
deficit and hyperactivity disorder, bipolar disorder, cross disorder, depression, and 
schizophrenia). MR uses SNPs with a robust association to an ‘exposure’ trait as an 
instrument to test causal associations with ‘outcome’ traits. Assuming that a SNP cannot 
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be influenced by confounders and are randomly distributed across the population, an 
association between the SNP and an outcome can only occur through the exposure trait. 
This is evidence that a causal effect exists of the exposure trait on the outcome trait.  
 
We selected psychiatric disorders for which at least 10 genome-wide significant SNPs 
were reported and that had a significant genetic correlation with the dependence factor. 
Traits meeting these criteria were attention deficit hyperactivity disorder (ADHD), bipolar 
disorder, major depressive disorder, schizophrenia, and a ‘cross-disorder’ factor for 
psychopathology 53; see Table S36. As instruments we selected SNPs that were reported as 
genome-wide significant independent hits in the source GWAS. For the cross-disorder 
trait, we selected SNPs that were significantly associated with at least four different 
psychiatric disorders as our instrument.  
 
Analyses were conducted in the MR-base R-package 63 and GSMR package. In addition to 
the standard Inverse Variance Weighted (IVW) analyses we conducted several sensitivity 
tests. We used radial MR to exclude outliers 64, the F-statistic to assess instrument strength 
65, Generalised Summary-data-based MR (GSMR) to account for LD and increase power to 
detect effects 66, weighted mode and weighted median to offer estimates robust to effect 
size outliers that could be due to pleiotropy 67, and the Q-statistic to assess SNP effect 
heterogeneity 68. MR-Egger was used to test and correct for pleiotropy 69. We used the I2-
statistic to check for no measurement error assumption violation 70. If NOME violation was 
too strong (I2<0.6) MR Egger was not reported; if there was some violation (I2=0.6-0.9) MR 
Egger was corrected with simulation extrapolation SIMEX70.   
 
Genomic SEM pathway analysis on the dependence factor and psychiatric traits 
We aimed to corroborate the findings from the MR analysis on causal relationships 
between dependence and psychiatric traits by testing the direction of association while 
controlling for the effects of the other substance use factors. If the relationships between 
psychiatric traits and dependence are not completely accounted by the other factors this 
supports the interpretation that the relationships are (partly) causal. Within the Genomic 
SEM model used to test the factor structure, we added the same five psychiatric traits as 
in the MR (ADHD, bipolar disorder, cross disorder, depression, and schizophrenia) as well 
as all factors (dependence, cannabis, smoking, alcohol, and smoking initiation) and their 
indicators (Table S1). First, we tested if the effects of dependence on ADHD, cross disorder, 
and schizophrenia that we identified in the MR analysis were accounted for by the other 
substance use factors, by regressing the psychiatric trait as well as the dependence factor 
on the other substance use factors. In other words, we test if the effects of the substance 
use factors on the psychiatric trait are mediated through dependence. Within the models, 
we allowed for cross loadings and correlations among factors and indicators. Second, in 
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the other direction, we tested if the effect of ADHD, cross disorder, and schizophrenia on 
dependence were mediated through the other substance use factors. If the effect of the 
predictor on the outcome was no longer significant when allowing pathways through the 
other factors, this is interpreted as contra-evidence for direct causal effects. If this effect 
is only attenuated when allowing for mediation effects, it is said to be partially mediated. 
We compare models using the fit indices, with a lower AIC, CFI>.90 and SRMR<.08 taken 
as indications of good model fit.  
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We aimed to corroborate the findings from the MR analysis on causal relationships 
between dependence and psychiatric traits by testing the direction of association while 
controlling for the effects of the other substance use factors. If the relationships between 
psychiatric traits and dependence are not completely accounted by the other factors this 
supports the interpretation that the relationships are (partly) causal. Within the Genomic 
SEM model used to test the factor structure, we added the same five psychiatric traits as 
in the MR (ADHD, bipolar disorder, cross disorder, depression, and schizophrenia) as well 
as all factors (dependence, cannabis, smoking, alcohol, and smoking initiation) and their 
indicators (Table S1). First, we tested if the effects of dependence on ADHD, cross disorder, 
and schizophrenia that we identified in the MR analysis were accounted for by the other 
substance use factors, by regressing the psychiatric trait as well as the dependence factor 
on the other substance use factors. In other words, we test if the effects of the substance 
use factors on the psychiatric trait are mediated through dependence. Within the models, 
we allowed for cross loadings and correlations among factors and indicators. Second, in 
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the other direction, we tested if the effect of ADHD, cross disorder, and schizophrenia on 
dependence were mediated through the other substance use factors. If the effect of the 
predictor on the outcome was no longer significant when allowing pathways through the 
other factors, this is interpreted as contra-evidence for direct causal effects. If this effect 
is only attenuated when allowing for mediation effects, it is said to be partially mediated. 
We compare models using the fit indices, with a lower AIC, CFI>.90 and SRMR<.08 taken 
as indications of good model fit.  
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Abstract  

Risky behaviors, such as substance use and unprotected sex, are associated with various 
physical and mental health problems. Recent genome-wide association studies indicated 
that variation in the cell-adhesion molecule 2 (CADM2) gene plays a role in risky behaviors 
and self-control. In this phenome-wide scan for risky behavior, it was tested if underlying 
common vulnerability could be (partly) explained by pleiotropic effects of this gene, and 
how large the effects were. SNP-level and gene-level association tests within 4 samples 
(25 and Up, Spit for Science, Netherlands Twin Register, and UK Biobank and meta-
analyses over all samples (combined sample of 362,018 participants) were conducted to 
test associations between CADM2, substance- and sex-related risk behaviors and various 
measures related to self-control. We found significant associations between the CADM2 
gene, various risky behaviors, and different measures of self-control. The largest effect 
sizes were found for cannabis use, sensation seeking, and disinhibition. Effect sizes 
ranged from 0.01% to 0.26% for single top SNPs and from 0.07 to 3.02% for independent 
top SNPs together, with sufficient power observed only in the larger samples and meta-
analyses. In the largest cohort, we found indications that risk-taking proneness mediated 
the association between CADM2 and latent factors for lifetime smoking and regular 
alcohol use. This study extends earlier findings that CADM2 plays a role in risky behaviors 
and self-control. It also provides insight into gene-level effect sizes and demonstrates the 
feasibility of testing mediation. These findings present a good starting point for 
investigating biological etiological pathways underlying risky behaviors. 
 
KEYWORDS 
CADM2, self-control, multi-cohort, phenome-wide, risky behavior, substance use 
 
 
 
 
 
 
 
 
  

CADM2 and risk behavior 
 
1  |  INTRODUCTION 

Risky behaviors, such as substance use (e.g. nicotine, alcohol, cannabis) and unprotected 
sexual contact, are important factors contributing to physical and mental health 
problems.1 As a result, these risk factors for morbidity and mortality2 are included in the 
global Sustainable Development Goals, set up and agreed on by all member states of the 
United Nations in 2015 to ensure more healthy lives and promote quality of life 
worldwide.3 For instance, substance use contributes to approximately 12% of deaths 
worldwide,4 due to factors such as an increased risk of respiratory and vascular diseases, 
various forms of cancer, stroke, suicide or overdose.5 Approximately 4% of the global 
burden of disease, as measured in disability-adjusted life years (DALYs),6 is attributable to 
alcohol and tobacco use, and 0.8% to illicit drugs.4 Furthermore, risky sexual behavior 
(e.g., unprotected sexual intercourse with multiple partners) contributes another 6.3% of 
the total global burden of disease, as it is associated with the risk of sexually transmitted 
infections (STIs), HIV or cervical cancer.5,7  
 Various studies indicate that risky behavior has a substantial genetic component. 
For instance, a substantial part of the variation in the initiation of substance use can be 
explained by genetic factors: alcohol (37%),8 nicotine (44%)9 and cannabis (40-48%)10. 
Even higher heritability estimates are shown for substance use disorders, e.g. alcohol: 45-
73%,8,11 nicotine: 44-75%,8,9,11 and cannabis: 37-59%.10,11 Furthermore, the heritability of 
risky sexual behavior was estimated by previous research to be around 33%.12 It is 
assumed that different risky behaviors might merely reflect different phenotypic 
manifestations of (partly) shared underlying genetic vulnerabilities.13,14 However, it is 
largely unknown which genetic and biological mechanisms underpin the heritability of 
risky behaviors.15 
 Recent large genome-wide association studies (GWASs) have independently 
implicated a gene located on chromosome 3 encoding cell adhesion molecule 2 (CADM2) 
in various risky behaviors including alcohol (ab)use,16 lifetime cannabis use,17 number of 
sexual partners,16 and age at first sexual intercourse.18 Proteins encoded by CADM2 are 
involved in glutamate signaling, GABA transport and neuron cell-cell adhesion, especially 
in the prefrontal and anterior cingulate cortices.19 These brain regions are well known for 
their role in cognitive control and motivational salience, which are in turn involved in 
impulse regulation and self-control.20,21  
 Low self-control, as indexed by high impulsivity, sensation seeking, and 
disinhibition, has been associated with engaging in risky behavior, including unprotected 
sexual intercourse12 and substance use (initiation) or abuse.22,23 A review by Bezdjian et al. 
showed heritability for different indices of self-control of around 50% across 41 studies 
including around 27,000 infants, children, adolescents and adults24. These findings 
suggest that genetic factors, at least in part, modulate various aspects of self-control. 
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physical and mental health problems. Recent genome-wide association studies indicated 
that variation in the cell-adhesion molecule 2 (CADM2) gene plays a role in risky behaviors 
and self-control. In this phenome-wide scan for risky behavior, it was tested if underlying 
common vulnerability could be (partly) explained by pleiotropic effects of this gene, and 
how large the effects were. SNP-level and gene-level association tests within 4 samples 
(25 and Up, Spit for Science, Netherlands Twin Register, and UK Biobank and meta-
analyses over all samples (combined sample of 362,018 participants) were conducted to 
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measures related to self-control. We found significant associations between the CADM2 
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top SNPs together, with sufficient power observed only in the larger samples and meta-
analyses. In the largest cohort, we found indications that risk-taking proneness mediated 
the association between CADM2 and latent factors for lifetime smoking and regular 
alcohol use. This study extends earlier findings that CADM2 plays a role in risky behaviors 
and self-control. It also provides insight into gene-level effect sizes and demonstrates the 
feasibility of testing mediation. These findings present a good starting point for 
investigating biological etiological pathways underlying risky behaviors. 
 
KEYWORDS 
CADM2, self-control, multi-cohort, phenome-wide, risky behavior, substance use 
 
 
 
 
 
 
 
 
  

CADM2 and risk behavior 
 
1  |  INTRODUCTION 

Risky behaviors, such as substance use (e.g. nicotine, alcohol, cannabis) and unprotected 
sexual contact, are important factors contributing to physical and mental health 
problems.1 As a result, these risk factors for morbidity and mortality2 are included in the 
global Sustainable Development Goals, set up and agreed on by all member states of the 
United Nations in 2015 to ensure more healthy lives and promote quality of life 
worldwide.3 For instance, substance use contributes to approximately 12% of deaths 
worldwide,4 due to factors such as an increased risk of respiratory and vascular diseases, 
various forms of cancer, stroke, suicide or overdose.5 Approximately 4% of the global 
burden of disease, as measured in disability-adjusted life years (DALYs),6 is attributable to 
alcohol and tobacco use, and 0.8% to illicit drugs.4 Furthermore, risky sexual behavior 
(e.g., unprotected sexual intercourse with multiple partners) contributes another 6.3% of 
the total global burden of disease, as it is associated with the risk of sexually transmitted 
infections (STIs), HIV or cervical cancer.5,7  
 Various studies indicate that risky behavior has a substantial genetic component. 
For instance, a substantial part of the variation in the initiation of substance use can be 
explained by genetic factors: alcohol (37%),8 nicotine (44%)9 and cannabis (40-48%)10. 
Even higher heritability estimates are shown for substance use disorders, e.g. alcohol: 45-
73%,8,11 nicotine: 44-75%,8,9,11 and cannabis: 37-59%.10,11 Furthermore, the heritability of 
risky sexual behavior was estimated by previous research to be around 33%.12 It is 
assumed that different risky behaviors might merely reflect different phenotypic 
manifestations of (partly) shared underlying genetic vulnerabilities.13,14 However, it is 
largely unknown which genetic and biological mechanisms underpin the heritability of 
risky behaviors.15 
 Recent large genome-wide association studies (GWASs) have independently 
implicated a gene located on chromosome 3 encoding cell adhesion molecule 2 (CADM2) 
in various risky behaviors including alcohol (ab)use,16 lifetime cannabis use,17 number of 
sexual partners,16 and age at first sexual intercourse.18 Proteins encoded by CADM2 are 
involved in glutamate signaling, GABA transport and neuron cell-cell adhesion, especially 
in the prefrontal and anterior cingulate cortices.19 These brain regions are well known for 
their role in cognitive control and motivational salience, which are in turn involved in 
impulse regulation and self-control.20,21  
 Low self-control, as indexed by high impulsivity, sensation seeking, and 
disinhibition, has been associated with engaging in risky behavior, including unprotected 
sexual intercourse12 and substance use (initiation) or abuse.22,23 A review by Bezdjian et al. 
showed heritability for different indices of self-control of around 50% across 41 studies 
including around 27,000 infants, children, adolescents and adults24. These findings 
suggest that genetic factors, at least in part, modulate various aspects of self-control. 
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Specifically, CADM2 has been associated with sensation seeking,23 hyperactivity, and 
impulsivity.25 This suggests potential shared heritability between reduced self-control 
and risky behavior, most likely due to overlapping underlying biological processes.12,22,23 
As such, reduced self-control might act as intermediate phenotype, linking CADM2 and 
various risky behaviors.  
 Candidate-gene studies have traditionally selected plausible candidate-genes 
based on a theory on the underlying biological mechanisms, e.g. relating the dopamine 
cascade to ADHD26 or substance use.27 This approach is limited by current knowledge of 
the biology of investigated behaviors.27 In addition, candidate-gene studies are often 
restricted by a lack of available data resulting in underpowered or small-scale designs28 
and examination of only a few (or a single) phenotype(s).29 Consequently, these 
limitations have rendered the candidate-approach largely unsuccessful.30,31  
 We propose to apply GWAS techniques on a single gene, whose candidate-gene 
status is anchored in a body of (hypothesis-free) GWASs. In this first phenome-wide 
association study (PHeWAS) 32 for CADM2 and risky behavior, the multiple testing burden 
is much lower than in GWASs, which should increase power. This study aims to establish 
if power increases substantially enough to detect associations in smaller samples, 
thereby also providing insight into gene-level effect sizes. By looking at several risky 
behavior phenotypes concurrently, we furthermore investigate the link between genetic 
variation in CADM2 and substance- and sex-related risk behaviors more comprehensively 
than single phenotype studies. Doing so, we aim to examine if the involvement of CADM2 
in various risky behaviors and self-control related constructs (i.e. pleiotropy, when a 
single gene influences the expression of multiple phenotypic traits) can explain the 
potential genetic overlap between various aspects of reduced self-control and multiple 
risky behaviors. By combining data from four different cohorts, and analyzing a range of 
risky behaviors and indices of self-control, we aim to increase reliability and robustness 
of findings.29 Finally, we explore if reduced self-control might mediate the relationship 
between CADM2 and various risky behaviors. 
  In data across four European ancestry population-based samples from different 
countries, we tested here whether single nucleotide polymorphisms (SNPs) in CADM2 are 
associated with risk behavior, including 1) substance use and abuse (alcohol, tobacco, 
cannabis, and other drugs), 2) sexual risk behavior (number of sex partners, sexual risk-
taking, and age at first sexual intercourse), and 3) indices of reduced self-control 
(disinhibition, sensation seeking, risk-taking proneness, and ADHD symptoms). We 
conduct factor analyses to explore common underlying vulnerability factors. 
Furthermore, we explore whether relationships between CADM2 and risk behaviors are 
mediated by a self-control trait.  
 

CADM2 and risk behavior 
 
2  |  MATERIALS AND METHODS 

 
2.1  |  Subjects and procedures 
 
Data from 443,693 participants from four different data sources were used, including the 
Queensland Twin Registry’s ‘25 and Up’ (25Up: N = 2,133) study in Australia,33 ‘Spit for 
Science’ (S4S: N = 2,994) study in the U.S.,34 the ‘Netherlands Twin Register’ (NTR: N = 
12,120) repository in The Netherlands,35 and the ‘UK Biobank’ (UKB: N = 426,446) in the 
United Kingdom.36 Although 25UP and S4S are considerably smaller than the others, they 
have not been included in previous risk behavior GWAS and have data on phenotypes that 
were not available in NTR and UKB, making them valuable additions. All studies were 
performed in accordance with the Declaration of Helsinki and were approved by local 
ethical committees. Study details are described in articles referenced in the 
Supplementary Methods section.     
 
2.2  |  Measures 
 
Genotyping and quality control 
We used available genotyped or imputed SNP information in and around CADM2 (chr 3 
(3p12.1), bp 83,951,945 - 86,126,470, GRCh37/hg19). Per sample genotyping, imputation 
and quality control (QC) procedures can be found in Supplementary Table S1. Variants 
with a minor allele frequency (MAF) below 1%, a genotype missingness rate above 5%, or 
deviations from Hardy-Weinberg Equilibrium (HWE) of p<1e-10 were excluded from 
further analysis. SNPs were aligned with the 1000 Genomes reference panel (phase 3)37, 
removing ambiguous SNPs and SNPs that had a MAF that diverged more than 0.15 from 
that in the reference panel. Following these procedures, n25Up=297, nS4S=2,972 , nNTR=6,166, 
nUKB=4,638 SNPs were available and retained for analysis. Genetic data and data on at 
least one phenotype were available for N25Up=2,133, NS4S=2,994, NNTR=12,120, and 
NUKB=426,446 individuals (total N = 443,693). The per-phenotype sample size range was 
N25Up=419-2,071, NS4S=503-2,384, NNTR=581-9,432, and NUKB=23,423-362,018 individuals. 
 
Outcome measures 
In this study, we adopted a PHeWAS approach, meaning that we tested the association 
between CADM2 and all risk behavior and self-control measures that were available in the 
datasets. In order to provide an overview of all measures, we grouped them into six 
categories: lifetime experience with substance use (regarding tobacco, cannabis, and 
other substances), age at initiation of substance use (regarding alcohol, tobacco, 
cannabis, and other substances), average substance use level (regarding alcohol and 
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Specifically, CADM2 has been associated with sensation seeking,23 hyperactivity, and 
impulsivity.25 This suggests potential shared heritability between reduced self-control 
and risky behavior, most likely due to overlapping underlying biological processes.12,22,23 
As such, reduced self-control might act as intermediate phenotype, linking CADM2 and 
various risky behaviors.  
 Candidate-gene studies have traditionally selected plausible candidate-genes 
based on a theory on the underlying biological mechanisms, e.g. relating the dopamine 
cascade to ADHD26 or substance use.27 This approach is limited by current knowledge of 
the biology of investigated behaviors.27 In addition, candidate-gene studies are often 
restricted by a lack of available data resulting in underpowered or small-scale designs28 
and examination of only a few (or a single) phenotype(s).29 Consequently, these 
limitations have rendered the candidate-approach largely unsuccessful.30,31  
 We propose to apply GWAS techniques on a single gene, whose candidate-gene 
status is anchored in a body of (hypothesis-free) GWASs. In this first phenome-wide 
association study (PHeWAS) 32 for CADM2 and risky behavior, the multiple testing burden 
is much lower than in GWASs, which should increase power. This study aims to establish 
if power increases substantially enough to detect associations in smaller samples, 
thereby also providing insight into gene-level effect sizes. By looking at several risky 
behavior phenotypes concurrently, we furthermore investigate the link between genetic 
variation in CADM2 and substance- and sex-related risk behaviors more comprehensively 
than single phenotype studies. Doing so, we aim to examine if the involvement of CADM2 
in various risky behaviors and self-control related constructs (i.e. pleiotropy, when a 
single gene influences the expression of multiple phenotypic traits) can explain the 
potential genetic overlap between various aspects of reduced self-control and multiple 
risky behaviors. By combining data from four different cohorts, and analyzing a range of 
risky behaviors and indices of self-control, we aim to increase reliability and robustness 
of findings.29 Finally, we explore if reduced self-control might mediate the relationship 
between CADM2 and various risky behaviors. 
  In data across four European ancestry population-based samples from different 
countries, we tested here whether single nucleotide polymorphisms (SNPs) in CADM2 are 
associated with risk behavior, including 1) substance use and abuse (alcohol, tobacco, 
cannabis, and other drugs), 2) sexual risk behavior (number of sex partners, sexual risk-
taking, and age at first sexual intercourse), and 3) indices of reduced self-control 
(disinhibition, sensation seeking, risk-taking proneness, and ADHD symptoms). We 
conduct factor analyses to explore common underlying vulnerability factors. 
Furthermore, we explore whether relationships between CADM2 and risk behaviors are 
mediated by a self-control trait.  
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2  |  MATERIALS AND METHODS 

 
2.1  |  Subjects and procedures 
 
Data from 443,693 participants from four different data sources were used, including the 
Queensland Twin Registry’s ‘25 and Up’ (25Up: N = 2,133) study in Australia,33 ‘Spit for 
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United Kingdom.36 Although 25UP and S4S are considerably smaller than the others, they 
have not been included in previous risk behavior GWAS and have data on phenotypes that 
were not available in NTR and UKB, making them valuable additions. All studies were 
performed in accordance with the Declaration of Helsinki and were approved by local 
ethical committees. Study details are described in articles referenced in the 
Supplementary Methods section.     
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We used available genotyped or imputed SNP information in and around CADM2 (chr 3 
(3p12.1), bp 83,951,945 - 86,126,470, GRCh37/hg19). Per sample genotyping, imputation 
and quality control (QC) procedures can be found in Supplementary Table S1. Variants 
with a minor allele frequency (MAF) below 1%, a genotype missingness rate above 5%, or 
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removing ambiguous SNPs and SNPs that had a MAF that diverged more than 0.15 from 
that in the reference panel. Following these procedures, n25Up=297, nS4S=2,972 , nNTR=6,166, 
nUKB=4,638 SNPs were available and retained for analysis. Genetic data and data on at 
least one phenotype were available for N25Up=2,133, NS4S=2,994, NNTR=12,120, and 
NUKB=426,446 individuals (total N = 443,693). The per-phenotype sample size range was 
N25Up=419-2,071, NS4S=503-2,384, NNTR=581-9,432, and NUKB=23,423-362,018 individuals. 
 
Outcome measures 
In this study, we adopted a PHeWAS approach, meaning that we tested the association 
between CADM2 and all risk behavior and self-control measures that were available in the 
datasets. In order to provide an overview of all measures, we grouped them into six 
categories: lifetime experience with substance use (regarding tobacco, cannabis, and 
other substances), age at initiation of substance use (regarding alcohol, tobacco, 
cannabis, and other substances), average substance use level (regarding alcohol and 
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tobacco), regular substance (ab)use (including regular alcohol, tobacco, and cannabis 
use, and any behavioral/substance addiction), sexual risk behavior (including the number 
of sexual partners, sexual risk-taking, and age at first sexual intercourse) and self-control 
(including disinhibition, sensation seeking, risk-taking proneness, and symptoms of 
ADHD). Variables with a total N of < 1,000 were excluded as they could not be analyzed 
due to a lack of statistical power. Preprocessing of the data included combining measures 
(e.g., across different waves), removing outliers, and excluding inconsistent or invalid 
response patterns. An overview of all 23 outcome measures included can be found in 
Table 1. More detailed information about the (cleaning and combining of the) measures 
is given in Supplementary Table S2. 
 
2.3  |  Data-analysis 
 
Primary analyses were performed separately within each cohort and combined in meta-
analyses. Identical analysis procedures were used in all individual datasets. Phenotype 
data cleaning, preparation, and descriptive analyses were conducted using the Statistical 
Package for the Social Sciences (SPSS; version 25).38  
 To test whether CADM2 SNPs were associated with separate risk behavior 
outcomes, association analyses were firstly conducted in PLINK (version 1.9).39 For 
dichotomous phenotypes, logistic regression was used; for continuous variables, we used 
linear regression. Covariates included sex, age, and highest level of education, as we 
aimed to capture the influence of CADM2 on risk behavior and self-control, that was 
independent of these factors (e.g. education has shown to be associated both with CADM2 
and risk behavior).40 Furthermore, principal components for ancestry (PCs) were 
included. PCs are used to control for possible stratification effects that arise when a 
genetic factor and a trait show a spurious correlation due to systematic differences in 
allele frequencies between groups of different genetic ancestry. We used the PCs as 
calculated by the institute we received the data from, following their recommendations 
on how many PCs were appropriate to control for ancestry stratification effects within 
their specific sample. Because S4S participants were recruited at university, parental 
rather than own education level was included as a covariate in this sample. In 25Up, S4S, 
and NTR we used ten PCs to control for population stratification, while in UKB we included 
40 PCs. We controlled for clustering due to genetic relatedness in the twin datasets (25Up 
and NTR) by using the --family option in PLINK and excluded individuals that showed high 
genetic relatedness in the other datasets (see Supplementary Table S1). 
 Second, to assess the overall effect of the variants at the gene-level, the 
association results were analyzed using Multi-marker Analysis of GenoMic Annotation 
gene-based tests (MAGMA, version 2).41 Because not all phenotypes were present in all 
cohorts, we conducted these analyses separately per cohort. SNPs were mapped to 

CADM2 and risk behavior 
 
CADM2 using 1000Genomes phase 3 data. We used the snp-wise = top procedure, which is 
more sensitive when only a small proportion of SNPs in the gene shows an association. 
To control for the number of phenotypes tested, we computed the Benjamini-Hochberg 
False Discovery Rate (FDR)42 p-values within each variable category, using R (version 
3.6.2).43 When reporting the results, we present uncorrected p-values with an asterisk 
indicating if the FDR-corrected p-value was below p=.05. 
 Thirdly, we conducted two meta-analyses for those phenotypes that were 
present in multiple datasets in order to maximize power to detect associations. The first 
meta-analysis was performed on the results from the per-cohort gene-based tests using 
the meta-analysis procedure in MAGMA. This method aggregates the Z-values for the 
gene-based associations within the individual cohorts while taking sample size into 
account, in a procedure similar to ‘normal’ meta-analysis. The results give an indication 
of the strength of the association with CADM2 across cohorts. The second meta-analysis 
was used to get per-SNP effects, that can be used to estimate the variance in the 
phenotype explained by SNPs in the gene (R2). To conduct these meta-analyses, odds 
ratios for binary outcome variables were converted to betas with corresponding standard 
errors in the input files and all continuous variables were standardized. The meta-analysis 
was conducted in METAL44 based on standard errors and effect estimates (rather than on 
sample size) so that β and se(β) could be obtained.  
 Using the results from the SNP-based meta-analysis we computed R2 (the 
procedure is described in Supplementary Methods II). To give an indication of how the 
resulting effect size estimates impacted power, we conducted post-hoc power analyses 
for the meta-analysis. The analysis was conducted based on the observed effect sizes as 
a function of the minimum and maximum sample size. We used the compromise power 
analysis option from the G*power package for the F test family with a single predictor.45   
 
Mediation analysis with latent factors 
A secondary aim of this study was to test whether the association between CADM2 and 
risky behavior would be mediated by one or more indices of self-control. Assuming that 
latent factors would be stronger measures of underlying risky behavior propensity than 
the separate phenotypes (and to limit the number of analyses), we used factor scores in 
the mediation analyses. Assuming that CADM2 is associated with risky behavior and 
reduced self-control in general rather than specific behaviors or constructs per se, such 
latent factors might show stronger relationships with CADM2. We used a data-driven 
approach without a priori specifying the nature of the factors or the number of factors to 
extract. We expect clustering due to the overlap in the measures, but the actual clustering 
could differ per sample. We used principal component analysis with principal axis 
factoring (PAF/PFA)  including oblique (oblimin) rotation; missing values were replaced 
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tobacco), regular substance (ab)use (including regular alcohol, tobacco, and cannabis 
use, and any behavioral/substance addiction), sexual risk behavior (including the number 
of sexual partners, sexual risk-taking, and age at first sexual intercourse) and self-control 
(including disinhibition, sensation seeking, risk-taking proneness, and symptoms of 
ADHD). Variables with a total N of < 1,000 were excluded as they could not be analyzed 
due to a lack of statistical power. Preprocessing of the data included combining measures 
(e.g., across different waves), removing outliers, and excluding inconsistent or invalid 
response patterns. An overview of all 23 outcome measures included can be found in 
Table 1. More detailed information about the (cleaning and combining of the) measures 
is given in Supplementary Table S2. 
 
2.3  |  Data-analysis 
 
Primary analyses were performed separately within each cohort and combined in meta-
analyses. Identical analysis procedures were used in all individual datasets. Phenotype 
data cleaning, preparation, and descriptive analyses were conducted using the Statistical 
Package for the Social Sciences (SPSS; version 25).38  
 To test whether CADM2 SNPs were associated with separate risk behavior 
outcomes, association analyses were firstly conducted in PLINK (version 1.9).39 For 
dichotomous phenotypes, logistic regression was used; for continuous variables, we used 
linear regression. Covariates included sex, age, and highest level of education, as we 
aimed to capture the influence of CADM2 on risk behavior and self-control, that was 
independent of these factors (e.g. education has shown to be associated both with CADM2 
and risk behavior).40 Furthermore, principal components for ancestry (PCs) were 
included. PCs are used to control for possible stratification effects that arise when a 
genetic factor and a trait show a spurious correlation due to systematic differences in 
allele frequencies between groups of different genetic ancestry. We used the PCs as 
calculated by the institute we received the data from, following their recommendations 
on how many PCs were appropriate to control for ancestry stratification effects within 
their specific sample. Because S4S participants were recruited at university, parental 
rather than own education level was included as a covariate in this sample. In 25Up, S4S, 
and NTR we used ten PCs to control for population stratification, while in UKB we included 
40 PCs. We controlled for clustering due to genetic relatedness in the twin datasets (25Up 
and NTR) by using the --family option in PLINK and excluded individuals that showed high 
genetic relatedness in the other datasets (see Supplementary Table S1). 
 Second, to assess the overall effect of the variants at the gene-level, the 
association results were analyzed using Multi-marker Analysis of GenoMic Annotation 
gene-based tests (MAGMA, version 2).41 Because not all phenotypes were present in all 
cohorts, we conducted these analyses separately per cohort. SNPs were mapped to 

CADM2 and risk behavior 
 
CADM2 using 1000Genomes phase 3 data. We used the snp-wise = top procedure, which is 
more sensitive when only a small proportion of SNPs in the gene shows an association. 
To control for the number of phenotypes tested, we computed the Benjamini-Hochberg 
False Discovery Rate (FDR)42 p-values within each variable category, using R (version 
3.6.2).43 When reporting the results, we present uncorrected p-values with an asterisk 
indicating if the FDR-corrected p-value was below p=.05. 
 Thirdly, we conducted two meta-analyses for those phenotypes that were 
present in multiple datasets in order to maximize power to detect associations. The first 
meta-analysis was performed on the results from the per-cohort gene-based tests using 
the meta-analysis procedure in MAGMA. This method aggregates the Z-values for the 
gene-based associations within the individual cohorts while taking sample size into 
account, in a procedure similar to ‘normal’ meta-analysis. The results give an indication 
of the strength of the association with CADM2 across cohorts. The second meta-analysis 
was used to get per-SNP effects, that can be used to estimate the variance in the 
phenotype explained by SNPs in the gene (R2). To conduct these meta-analyses, odds 
ratios for binary outcome variables were converted to betas with corresponding standard 
errors in the input files and all continuous variables were standardized. The meta-analysis 
was conducted in METAL44 based on standard errors and effect estimates (rather than on 
sample size) so that β and se(β) could be obtained.  
 Using the results from the SNP-based meta-analysis we computed R2 (the 
procedure is described in Supplementary Methods II). To give an indication of how the 
resulting effect size estimates impacted power, we conducted post-hoc power analyses 
for the meta-analysis. The analysis was conducted based on the observed effect sizes as 
a function of the minimum and maximum sample size. We used the compromise power 
analysis option from the G*power package for the F test family with a single predictor.45   
 
Mediation analysis with latent factors 
A secondary aim of this study was to test whether the association between CADM2 and 
risky behavior would be mediated by one or more indices of self-control. Assuming that 
latent factors would be stronger measures of underlying risky behavior propensity than 
the separate phenotypes (and to limit the number of analyses), we used factor scores in 
the mediation analyses. Assuming that CADM2 is associated with risky behavior and 
reduced self-control in general rather than specific behaviors or constructs per se, such 
latent factors might show stronger relationships with CADM2. We used a data-driven 
approach without a priori specifying the nature of the factors or the number of factors to 
extract. We expect clustering due to the overlap in the measures, but the actual clustering 
could differ per sample. We used principal component analysis with principal axis 
factoring (PAF/PFA)  including oblique (oblimin) rotation; missing values were replaced 
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with the mean.46 The analyses were conducted separately for each cohort and factors with 
an Eigenvalue >1 that explained >10% of the variance were extracted from the dataset 
(see Supplementary Table S3). Subsequently, individual factor scores were computed 
using regression. 
 To test if a self-control trait can explain the association between CADM2 and risky 
behavior we tested mediation following Baron & Kenny’s procedure (see Figure 1, 
including p-values rather than regression weights as MAGMA does not provide such 
estimates). 47 We first tested the relationship between CADM2 and the risk behavior factor 
(path c) in MAGMA, and if that was significant, we tested the association between the self-
control trait (mediator) and the risk behavior factor in SPSS (path b). If path b and c were 
significant, and there was an association between a self-control trait and CADM2 in the 
gene-based test (path a) we tested in a final step the relationship between CADM2 and the 
risk behavior factor outcome, while controlling for the self-control mediator, in MAGMA 
(path c’). When in path c’ the relationship between the risk behavior and CADM2 was 
attenuated while controlling for self-control, mediation was assumed.48 In all paths, we 
controlled for the effects of age, sex, and education, and in the analyses involving genetic 
data, we controlled for the PCs.  
 As an addition to see if common propensity would indeed show a stronger 
association with CADM2 we also meta-analyzed factors that were made up of similar 
indicators in different cohorts. We used similar procedures for these analyses as for the 
separate phenotypes in MAGMA.  
 

  

CADM2 and risk behavior 
 
3  |  RESULTS 
 
3.1  |  Demographics and descriptives 
 
The sample size of people included in at least one analysis consisted of 443,693 
individuals (maximum sample size per analysis N=362,018). Slightly more than half of the 
participants (54%) were female (25Up: 61%, S4S: 58%, NTR: 62%, UKB: 54%) and age 
ranged from 18 to 94 with a weighted mean age of 38 years (25Up: M=30.1, SD=4.3; S4S: 
M=20.7, SD=1.5; NTR: M=44.8, SD=16.9; UKB: M=54.7, SD=8.0). Furthermore, most 
participants had a moderate (49%) or high (33%) level of education (largest group 25Up: 
41.7% moderately high, S4S: 77.5% high, NTR: 45.7% high, UKB: 32.4% high education).  
Cohort descriptions are provided in Table 1, including a description of the mean 
(continuous variables) and prevalence rates (dichotomous variables) for all outcome 
measures. Due to different operationalizations and sample compositions in the four 
cohorts, most descriptives cannot be directly compared. In the association analyses we 
controlled for age, sex, and education level, and we conducted meta-analysis either on 
per-sample Z-scores for the association (in MAGMA) or on standardized regression 
weights (in METAL) to control for sample differences. 
 
3.2  |  Associations for CADM2 with risk behavior and self-control 
 
The associations between CADM2 and risk behavior and indices of self-control are shown 
in Table 2. Associations that were significant after FDR-correction for multiple testing (at 
p<.05) are indicated with an asterisk. Both lifetime tobacco use and lifetime cannabis use 
were associated with CADM2 in the meta-analyses. In the individual samples, these 
associations were significant in NTR and UKB, but not in 25Up and S4S. No significant 
associations were found for lifetime use of other substances (i.e., recreational drugs), 
although it must be noted that this variable was not present in the largest sample (UKB). 
None of the age at initiation of substance use variables were associated with CADM2. The 
smallest p-value was .049 in the NTR sample for age at alcohol initiation. After correction 
for multiple testing, this finding was no longer significant. The meta-analyses revealed 
associations between both average alcohol consumption and average number of 
cigarettes per day and CADM2 that seem to be largely driven by significant associations in 
the UKB sample. Regular alcohol use, problematic alcohol use, regular tobacco use, and 
nicotine dependence were all associated with CADM2 in the meta-analyses. In the 
individual study analyses, only regular alcohol use was after correction significantly 
associated with CADM2 in a sample (S4S) other than the UKB. The number of sexual 
partners was associated with CADM2 in 25Up, UKB and the meta-analysis, age at first 
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with the mean.46 The analyses were conducted separately for each cohort and factors with 
an Eigenvalue >1 that explained >10% of the variance were extracted from the dataset 
(see Supplementary Table S3). Subsequently, individual factor scores were computed 
using regression. 
 To test if a self-control trait can explain the association between CADM2 and risky 
behavior we tested mediation following Baron & Kenny’s procedure (see Figure 1, 
including p-values rather than regression weights as MAGMA does not provide such 
estimates). 47 We first tested the relationship between CADM2 and the risk behavior factor 
(path c) in MAGMA, and if that was significant, we tested the association between the self-
control trait (mediator) and the risk behavior factor in SPSS (path b). If path b and c were 
significant, and there was an association between a self-control trait and CADM2 in the 
gene-based test (path a) we tested in a final step the relationship between CADM2 and the 
risk behavior factor outcome, while controlling for the self-control mediator, in MAGMA 
(path c’). When in path c’ the relationship between the risk behavior and CADM2 was 
attenuated while controlling for self-control, mediation was assumed.48 In all paths, we 
controlled for the effects of age, sex, and education, and in the analyses involving genetic 
data, we controlled for the PCs.  
 As an addition to see if common propensity would indeed show a stronger 
association with CADM2 we also meta-analyzed factors that were made up of similar 
indicators in different cohorts. We used similar procedures for these analyses as for the 
separate phenotypes in MAGMA.  
 

  

CADM2 and risk behavior 
 
3  |  RESULTS 
 
3.1  |  Demographics and descriptives 
 
The sample size of people included in at least one analysis consisted of 443,693 
individuals (maximum sample size per analysis N=362,018). Slightly more than half of the 
participants (54%) were female (25Up: 61%, S4S: 58%, NTR: 62%, UKB: 54%) and age 
ranged from 18 to 94 with a weighted mean age of 38 years (25Up: M=30.1, SD=4.3; S4S: 
M=20.7, SD=1.5; NTR: M=44.8, SD=16.9; UKB: M=54.7, SD=8.0). Furthermore, most 
participants had a moderate (49%) or high (33%) level of education (largest group 25Up: 
41.7% moderately high, S4S: 77.5% high, NTR: 45.7% high, UKB: 32.4% high education).  
Cohort descriptions are provided in Table 1, including a description of the mean 
(continuous variables) and prevalence rates (dichotomous variables) for all outcome 
measures. Due to different operationalizations and sample compositions in the four 
cohorts, most descriptives cannot be directly compared. In the association analyses we 
controlled for age, sex, and education level, and we conducted meta-analysis either on 
per-sample Z-scores for the association (in MAGMA) or on standardized regression 
weights (in METAL) to control for sample differences. 
 
3.2  |  Associations for CADM2 with risk behavior and self-control 
 
The associations between CADM2 and risk behavior and indices of self-control are shown 
in Table 2. Associations that were significant after FDR-correction for multiple testing (at 
p<.05) are indicated with an asterisk. Both lifetime tobacco use and lifetime cannabis use 
were associated with CADM2 in the meta-analyses. In the individual samples, these 
associations were significant in NTR and UKB, but not in 25Up and S4S. No significant 
associations were found for lifetime use of other substances (i.e., recreational drugs), 
although it must be noted that this variable was not present in the largest sample (UKB). 
None of the age at initiation of substance use variables were associated with CADM2. The 
smallest p-value was .049 in the NTR sample for age at alcohol initiation. After correction 
for multiple testing, this finding was no longer significant. The meta-analyses revealed 
associations between both average alcohol consumption and average number of 
cigarettes per day and CADM2 that seem to be largely driven by significant associations in 
the UKB sample. Regular alcohol use, problematic alcohol use, regular tobacco use, and 
nicotine dependence were all associated with CADM2 in the meta-analyses. In the 
individual study analyses, only regular alcohol use was after correction significantly 
associated with CADM2 in a sample (S4S) other than the UKB. The number of sexual 
partners was associated with CADM2 in 25Up, UKB and the meta-analysis, age at first 
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sexual intercourse in UKB and the meta-analysis, but not in the individual 25Up, S4S or 
NTR samples.  
 As for the analyses of indices of self-control, a significant association between 
CADM2 and disinhibition (significant in the NTR and meta-analysis), sensation seeking (in 
NTR) and risk-taking personality (in UKB) was observed. As the constructs of sensation 
seeking and risk-taking personality were only measured in one study, no meta-analyses 
could be performed.  
 SNP-based meta-analyses were conducted in order to get per-SNP estimates that 
could be used to compute explained variances. Results show little overlap between the 
top-SNPs for different phenotypes (see Supplementary Table S4). Only 31 SNPs showed a 
significant association with multiple independent phenotypes. 
 
Effect sizes of the associations and power analyses  
The variance explained by all independently associated SNPs in CADM2 taken together 
ranged from 0.07% for regular alcohol use to 3.02% for regular cannabis use (M=1.05%, 
SD=1.09%, Mdn=0.45%). The sample sizes included in the analyses ranged from 2,094 to 
362,018 individuals (see Table 2). It does not seem to be the case that phenotypes from a 
particular sample or specific category have higher R2 than the others. Also, there does not 
seem to be an effect of the number of SNPs in the analysis on the size of R2 (r= -.27, p>.05). 
As most effect sizes were below 1% we set the power analysis parameters at R2=0.001% to 
1% as a range for the effect size and 2,000-400,000 as a range for the sample size. For an 
effect size of 0.001% even a sample size of 400,000 results in a power level of only 50%, 
whereas for an effect size of 1% a sample size of 8,000 suffices to achieve 80% power. In 
our study, the average observed effect size of the top SNP was R2=0.11%, resulting in 
sufficient (>80%) power levels at sample sizes of at least N=7,100. A visualization of power 
as a function of effect size and the SNP sample size is provided in Supplementary Figure 
S1a and S1b.  

 
Mediation analysis with latent factors 
Factor analysis of the 14-20 outcomes per sample overall identified five factors with 
Eigenvalues above 1 and explained variance >10%, of which two appeared to be made up 
by similar variables in multiple cohorts (see Supplementary Table S3). The latent factor 
lifetime substance use was present in 25Up and S4S and was not significantly associated 
with CADM2. A tobacco (ab)use factor could be discerned in all datasets, but was only 
significantly associated with CADM2 in UKB with p=8.45e-06. In UKB there were two other 
factors, one for lifetime smoking and one for regular alcohol use, which were both 
associated with CADM2 (p=1.01e-22 and p=5.84e-13, respectively). Finally, in NTR there 
was a self-control factor that was associated with CADM2 (p=2.28e-08). 

CADM2 and risk behavior 
 
Thus, there were three risk behavior factors that could be used for the mediation 
analyses, all extracted from the UKB. There was only one measure of self-control included 
in the UKB, namely risk-taking proneness (yes/no). Results of the analysis using this 
measure as a mediator between CADM2 and the three risk-taking behavior factors, are 
presented in Figure 1 (with p-values rather than regression weights as MAGMA does not 
provide such estimates). Path a for the association between CADM2 and risk-taking 
proneness controlling for sex, age, and PCs was tested earlier and found to be significant 
(see Table 2). Paths c1-c3 for the associations between CADM2 and the outcomes (risk 
behavior factors) were reported in Table 3. Paths b1-b3 between risk-taking proneness 
and the risk behavior factors were all significant (tobacco [ab]use factor OR=1.27, p<.001; 
lifetime smoking factor, OR=1.27,  p<.001; and alcohol abuse factor OR=1.21, p<.001). In 
step c’, the associations between CADM2 and lifetime smoking and risky alcohol use 
factors were attenuated when including the mediator (p=1.01e-22 to 1.51e-18 and 5.84e-
13 to 5.05e-09, respectively), suggesting partial mediation by risk-taking proneness. The 
association between tobacco (ab)use and CADM2 was enhanced (p=4.34e-05 to 9.14e-07) 
when controlling for risk-taking proneness, which suggests that there was no mediation 
effect. 
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sexual intercourse in UKB and the meta-analysis, but not in the individual 25Up, S4S or 
NTR samples.  
 As for the analyses of indices of self-control, a significant association between 
CADM2 and disinhibition (significant in the NTR and meta-analysis), sensation seeking (in 
NTR) and risk-taking personality (in UKB) was observed. As the constructs of sensation 
seeking and risk-taking personality were only measured in one study, no meta-analyses 
could be performed.  
 SNP-based meta-analyses were conducted in order to get per-SNP estimates that 
could be used to compute explained variances. Results show little overlap between the 
top-SNPs for different phenotypes (see Supplementary Table S4). Only 31 SNPs showed a 
significant association with multiple independent phenotypes. 
 
Effect sizes of the associations and power analyses  
The variance explained by all independently associated SNPs in CADM2 taken together 
ranged from 0.07% for regular alcohol use to 3.02% for regular cannabis use (M=1.05%, 
SD=1.09%, Mdn=0.45%). The sample sizes included in the analyses ranged from 2,094 to 
362,018 individuals (see Table 2). It does not seem to be the case that phenotypes from a 
particular sample or specific category have higher R2 than the others. Also, there does not 
seem to be an effect of the number of SNPs in the analysis on the size of R2 (r= -.27, p>.05). 
As most effect sizes were below 1% we set the power analysis parameters at R2=0.001% to 
1% as a range for the effect size and 2,000-400,000 as a range for the sample size. For an 
effect size of 0.001% even a sample size of 400,000 results in a power level of only 50%, 
whereas for an effect size of 1% a sample size of 8,000 suffices to achieve 80% power. In 
our study, the average observed effect size of the top SNP was R2=0.11%, resulting in 
sufficient (>80%) power levels at sample sizes of at least N=7,100. A visualization of power 
as a function of effect size and the SNP sample size is provided in Supplementary Figure 
S1a and S1b.  

 
Mediation analysis with latent factors 
Factor analysis of the 14-20 outcomes per sample overall identified five factors with 
Eigenvalues above 1 and explained variance >10%, of which two appeared to be made up 
by similar variables in multiple cohorts (see Supplementary Table S3). The latent factor 
lifetime substance use was present in 25Up and S4S and was not significantly associated 
with CADM2. A tobacco (ab)use factor could be discerned in all datasets, but was only 
significantly associated with CADM2 in UKB with p=8.45e-06. In UKB there were two other 
factors, one for lifetime smoking and one for regular alcohol use, which were both 
associated with CADM2 (p=1.01e-22 and p=5.84e-13, respectively). Finally, in NTR there 
was a self-control factor that was associated with CADM2 (p=2.28e-08). 

CADM2 and risk behavior 
 
Thus, there were three risk behavior factors that could be used for the mediation 
analyses, all extracted from the UKB. There was only one measure of self-control included 
in the UKB, namely risk-taking proneness (yes/no). Results of the analysis using this 
measure as a mediator between CADM2 and the three risk-taking behavior factors, are 
presented in Figure 1 (with p-values rather than regression weights as MAGMA does not 
provide such estimates). Path a for the association between CADM2 and risk-taking 
proneness controlling for sex, age, and PCs was tested earlier and found to be significant 
(see Table 2). Paths c1-c3 for the associations between CADM2 and the outcomes (risk 
behavior factors) were reported in Table 3. Paths b1-b3 between risk-taking proneness 
and the risk behavior factors were all significant (tobacco [ab]use factor OR=1.27, p<.001; 
lifetime smoking factor, OR=1.27,  p<.001; and alcohol abuse factor OR=1.21, p<.001). In 
step c’, the associations between CADM2 and lifetime smoking and risky alcohol use 
factors were attenuated when including the mediator (p=1.01e-22 to 1.51e-18 and 5.84e-
13 to 5.05e-09, respectively), suggesting partial mediation by risk-taking proneness. The 
association between tobacco (ab)use and CADM2 was enhanced (p=4.34e-05 to 9.14e-07) 
when controlling for risk-taking proneness, which suggests that there was no mediation 
effect. 
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4  |  DISCUSSION 

In this multi-cohort study, it was shown that CADM2 is associated with multiple substance 
use and abuse traits, sex-related risky behavior, and different indices of self-control. Meta-
analyses showed significant associations between CADM2 and lifetime experience with 
tobacco and cannabis use, average alcohol and cigarette consumption, 
regular/problematic alcohol and tobacco use, number of sexual partners, age at first 
sexual intercourse, and disinhibition. Furthermore, in the per-sample analyses there were 
significant associations with sensation seeking, behavioral or substance addiction, and 
risk-taking proneness. The variance explained by a single CADM2 SNP ranged from 0.01% 
(for average alcohol consumption, cigarettes per day, nicotine dependence, and the 
number of sexual partners) to 0.26% (sensation seeking). Independent top SNPs together 
explained between 0.07% (regular alcohol use) and 3.02% (regular cannabis use) of the 
variance. Finally, the self-control trait ‘risk-taking proneness’ was found to be a significant 
partial mediator of the associations between CADM2 and latent factors for lifetime 
smoking and regular alcohol use. 
 The results of this study are in line with results from recent GWAS, indicating 
associations of CADM2 with substance use and abuse (including alcohol consumption, 
lifetime cannabis use, and general drug experimentation),16,17,23,49 sexual risk behavior 
(such as age at first sexual intercourse and number of sexual partners),16,28 and different 
aspects of self-control (sensation seeking, hyperactivity, and risk-taking 
propensity).17,18,23,25 Our study finds support for these findings in a large, hypothesis-
driven, multi-cohort and phenome-wide study for risk behavior, indicating that the role 
of CADM2 in risky behaviors and reduced self-control is robust. This is also in line with 
some earlier reported genetic correlations for various forms of risky behaviors,40 
suggesting overlapping genes directly or indirectly influence these behaviors. The 
observed mediation effect of risk-taking proneness is in line with previous suggestions 
that the association between substance use and CADM2 might be (partially) mediated by 
reduced self-control.49 Our results suggest that variability in CADM2 may give rise to 
various aspects of reduced self-control underlying multiple expressions of risky behavior. 
This corresponds with proposed shared genetic and neurobiological mechanisms 
underlying various risky behaviors.13,14  
 CADM2 is mainly expressed in the brain (predominantly prefrontal and anterior 
cingulate cortices (PFC and ACC)), the central nervous system and its peripheral nerve 
fibers.23,50 The PFC and ACC are generally involved in cognitive functions concerned with 
motivation and controlling behavior.51 The ACC has been associated with error detection 
and response inhibition, whereas several regions within the PFC are involved in reward 
learning and decision-making processes, which can all be linked to self-control and risky 
behavior.52-54 By affecting brain functions in these regions, variation in CADM2 may result 
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in different manifestations of reduced self-control and risky behavior. Future research 
could further delineate which neurobiological mechanisms are involved in the link 
between CADM2, reduced self-control and risky behaviors.   
 Looking at the individual SNPs (see Supplementary Table S4), we observe that 
most top SNPs cluster in the region roughly around 85,500,000 (see Supplementary Figure 
S2). This is a region containing large numbers of expression quantitative trait loci (eQTLs; 
panel C). eQTLs are places in the genome that influence to what extent a gene comes to 
expression, that is, how much is transcribed to messenger RNA. Only a few SNPs are 
among the top ten independent SNPs for more than one phenotype. This suggests that 
the effects of CADM2 were not driven by one strong causal SNP. Six SNPs were associated 
with three different (but overlapping) primary phenotypes (sensation seeking, any 
behavioral/substance addiction, and risk-taking proneness). Another SNP that was a top 
SNP more than twice was rs1271459, associated with ever tobacco use, regular tobacco 
use, and age at first sexual intercourse. SNPs associated with multiple distinct 
phenotypes might be more central to the functioning of the gene. As an illustration, we 
looked up this rs1271459. No information was available for this SNP itself, but Its proxy 
rs9820373 is a significant eQTL for CADM2 expression in the subcutaneous adipose tissue 
(pfdr=5.4E-4).55 This is interesting as CADM2 has been associated with BMI 56, potentially 
through impulsive over-eating. 
 
4.1  |  Strengths and limitations  
 
This study has to be viewed in light of its strengths and limitations. Data from separate 
cohorts with different characteristics were used, which results in a large sample size and 
high generalizability. It also induces measure heterogeneity, which on the one hand may 
have limited the power to detect effects in the meta-analyses, and on the other hand 
further substantiates the robustness of findings. This study included a range of risky 
behavior and self-control phenotypes, potentially expanding the findings. Furthermore, 
previous research also indicates that CADM2 may play a role in phenotypically 
heterogeneous risk-taking behaviors and personality.17,23 Future studies might further 
explore the role of CADM2 in other potentially related phenotypes, such as (a lack of) 
physical activity, eating patterns or overweight, gambling, reckless driving etc.1 and 
should investigate if these results generalize to populations with different age ranges or 
different genetic ancestry. 
 In this study, we observed explained variances between 0.01 and 3.02%. The 
25UP and S4S samples were too small to detect significant effects in the individual 
samples. Virtually all phenotypes reached significance only after adding data from the 
larger samples (NTR and UKB). The comparison of 4 cohorts with different sample sizes 
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4  |  DISCUSSION 

In this multi-cohort study, it was shown that CADM2 is associated with multiple substance 
use and abuse traits, sex-related risky behavior, and different indices of self-control. Meta-
analyses showed significant associations between CADM2 and lifetime experience with 
tobacco and cannabis use, average alcohol and cigarette consumption, 
regular/problematic alcohol and tobacco use, number of sexual partners, age at first 
sexual intercourse, and disinhibition. Furthermore, in the per-sample analyses there were 
significant associations with sensation seeking, behavioral or substance addiction, and 
risk-taking proneness. The variance explained by a single CADM2 SNP ranged from 0.01% 
(for average alcohol consumption, cigarettes per day, nicotine dependence, and the 
number of sexual partners) to 0.26% (sensation seeking). Independent top SNPs together 
explained between 0.07% (regular alcohol use) and 3.02% (regular cannabis use) of the 
variance. Finally, the self-control trait ‘risk-taking proneness’ was found to be a significant 
partial mediator of the associations between CADM2 and latent factors for lifetime 
smoking and regular alcohol use. 
 The results of this study are in line with results from recent GWAS, indicating 
associations of CADM2 with substance use and abuse (including alcohol consumption, 
lifetime cannabis use, and general drug experimentation),16,17,23,49 sexual risk behavior 
(such as age at first sexual intercourse and number of sexual partners),16,28 and different 
aspects of self-control (sensation seeking, hyperactivity, and risk-taking 
propensity).17,18,23,25 Our study finds support for these findings in a large, hypothesis-
driven, multi-cohort and phenome-wide study for risk behavior, indicating that the role 
of CADM2 in risky behaviors and reduced self-control is robust. This is also in line with 
some earlier reported genetic correlations for various forms of risky behaviors,40 
suggesting overlapping genes directly or indirectly influence these behaviors. The 
observed mediation effect of risk-taking proneness is in line with previous suggestions 
that the association between substance use and CADM2 might be (partially) mediated by 
reduced self-control.49 Our results suggest that variability in CADM2 may give rise to 
various aspects of reduced self-control underlying multiple expressions of risky behavior. 
This corresponds with proposed shared genetic and neurobiological mechanisms 
underlying various risky behaviors.13,14  
 CADM2 is mainly expressed in the brain (predominantly prefrontal and anterior 
cingulate cortices (PFC and ACC)), the central nervous system and its peripheral nerve 
fibers.23,50 The PFC and ACC are generally involved in cognitive functions concerned with 
motivation and controlling behavior.51 The ACC has been associated with error detection 
and response inhibition, whereas several regions within the PFC are involved in reward 
learning and decision-making processes, which can all be linked to self-control and risky 
behavior.52-54 By affecting brain functions in these regions, variation in CADM2 may result 
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in different manifestations of reduced self-control and risky behavior. Future research 
could further delineate which neurobiological mechanisms are involved in the link 
between CADM2, reduced self-control and risky behaviors.   
 Looking at the individual SNPs (see Supplementary Table S4), we observe that 
most top SNPs cluster in the region roughly around 85,500,000 (see Supplementary Figure 
S2). This is a region containing large numbers of expression quantitative trait loci (eQTLs; 
panel C). eQTLs are places in the genome that influence to what extent a gene comes to 
expression, that is, how much is transcribed to messenger RNA. Only a few SNPs are 
among the top ten independent SNPs for more than one phenotype. This suggests that 
the effects of CADM2 were not driven by one strong causal SNP. Six SNPs were associated 
with three different (but overlapping) primary phenotypes (sensation seeking, any 
behavioral/substance addiction, and risk-taking proneness). Another SNP that was a top 
SNP more than twice was rs1271459, associated with ever tobacco use, regular tobacco 
use, and age at first sexual intercourse. SNPs associated with multiple distinct 
phenotypes might be more central to the functioning of the gene. As an illustration, we 
looked up this rs1271459. No information was available for this SNP itself, but Its proxy 
rs9820373 is a significant eQTL for CADM2 expression in the subcutaneous adipose tissue 
(pfdr=5.4E-4).55 This is interesting as CADM2 has been associated with BMI 56, potentially 
through impulsive over-eating. 
 
4.1  |  Strengths and limitations  
 
This study has to be viewed in light of its strengths and limitations. Data from separate 
cohorts with different characteristics were used, which results in a large sample size and 
high generalizability. It also induces measure heterogeneity, which on the one hand may 
have limited the power to detect effects in the meta-analyses, and on the other hand 
further substantiates the robustness of findings. This study included a range of risky 
behavior and self-control phenotypes, potentially expanding the findings. Furthermore, 
previous research also indicates that CADM2 may play a role in phenotypically 
heterogeneous risk-taking behaviors and personality.17,23 Future studies might further 
explore the role of CADM2 in other potentially related phenotypes, such as (a lack of) 
physical activity, eating patterns or overweight, gambling, reckless driving etc.1 and 
should investigate if these results generalize to populations with different age ranges or 
different genetic ancestry. 
 In this study, we observed explained variances between 0.01 and 3.02%. The 
25UP and S4S samples were too small to detect significant effects in the individual 
samples. Virtually all phenotypes reached significance only after adding data from the 
larger samples (NTR and UKB). The comparison of 4 cohorts with different sample sizes 
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has shown that in general samples of over 7,000 individuals are needed to find significant 
effects with these effect sizes (see Supplementary Figure S1).45,49 This means that for the 
phenotypes that were available in UK Biobank, the addition of the other samples has not 
led to a substantial increase in information over and above what we already learned from 
previous studies. This is the first study to our knowledge, using this method to give a 
concrete indication of what sample sizes are needed to detect the effect of a single gene. 
We may conclude that we must be cautious to draw conclusions from individual small 
samples, but that these smaller samples can be combined in meta-analyses, especially 
for (possibly more detailed) phenotypes that are not available in large-scale data sets.  
 This is the first study aiming to shed light on effect sizes that can be expected on 
the level of genes. Although small, these effects are substantially larger than those of 
single variants, as have traditionally been investigated in candidate-gene research. Also, 
given that behavior arises as a result of a complex interplay between environment and a 
large number of genes with small effects, the effect sizes of CADM2 that we find could 
actually be considered substantial. Looking at the level of genes rather than SNPs is 
biologically more meaningful and could provide clues on underlying biological 
mechanisms, which in turn will contribute to a better understanding of transgenerational 
transmission of risky behaviors and provide clues for designing treatment and prevention 
programs. 
 This study shows the feasibility and added value of novel variations of the more 
common analyses in the field of behavior genetics, including genetic association analyses 
on factor analyzed traits and mediation analyses. New questions might be answered 
using such techniques, providing more insight into underlying common vulnerability 
patterns and etiological mechanisms. However, there were some limitations to the 
mediation analyses, including the lack of control for family relatedness and covariates in 
the PCA, and the impossibility of calculating regression weights for the associations with 
CADM2. Also, we used Baron & Kenny’s procedure to test for mediation only for outcomes 
that showed a significant relationship with CADM2.47 Technically, mediation could arise in 
the absence of such a relationship. Bootstrapping is a more recently developed non-
parametric method that can increase power to detect mediation. However, this approach 
has not yet been implemented in the area of genetic association analysis. Future research 
might develop techniques to tackle these limitations. In conclusion, the mediation results 
in this study suggest mediation testing may be feasible, but improved statistical tools 
applicable to behavioral genetics need to be developed. 
 Next to the genetic etiology of risk behaviors, we recognize the generally known 
influence of environmental factors.12 For example cultural, parenting or peer norms can 
influence substance- and sex-related risky behaviors. What remains largely unknown is to 
what extent the impact of genetic and environmental risks are additive or interactive. The 
variants in CADM2 identified here lend themselves well to future gene-environment 
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interaction testing, provided a multi-cohort study and a combined SNP measure are used 
to ensure sufficient power. 
 
4.2  |  Conclusions 
 
This comprehensive multi-cohort study has shown the feasibility of a phenome-wide 
association study for risky behavior to confirm previous findings on associations between 
CADM2 and manifestations of risky behavior and reduced self-control from GWASs on 
individual phenotypes. It was shown that single SNPs in CADM2 could explain 0.01 to 
0.26% of the variance and a combination of independent top SNPs together 0.07 to 3.02%. 
This study provides more insight into the relatively small effect sizes that can be expected 
from association studies. Furthermore, results revealed that a self-control trait might 
partially mediate the associations between CADM2 and substance-related risky behavior 
(lifetime smoking and regular alcohol use). Future studies should further explore the 
biological underpinnings of the observed relationships between CADM2, reduced self-
control, and various risky behaviors.   
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has shown that in general samples of over 7,000 individuals are needed to find significant 
effects with these effect sizes (see Supplementary Figure S1).45,49 This means that for the 
phenotypes that were available in UK Biobank, the addition of the other samples has not 
led to a substantial increase in information over and above what we already learned from 
previous studies. This is the first study to our knowledge, using this method to give a 
concrete indication of what sample sizes are needed to detect the effect of a single gene. 
We may conclude that we must be cautious to draw conclusions from individual small 
samples, but that these smaller samples can be combined in meta-analyses, especially 
for (possibly more detailed) phenotypes that are not available in large-scale data sets.  
 This is the first study aiming to shed light on effect sizes that can be expected on 
the level of genes. Although small, these effects are substantially larger than those of 
single variants, as have traditionally been investigated in candidate-gene research. Also, 
given that behavior arises as a result of a complex interplay between environment and a 
large number of genes with small effects, the effect sizes of CADM2 that we find could 
actually be considered substantial. Looking at the level of genes rather than SNPs is 
biologically more meaningful and could provide clues on underlying biological 
mechanisms, which in turn will contribute to a better understanding of transgenerational 
transmission of risky behaviors and provide clues for designing treatment and prevention 
programs. 
 This study shows the feasibility and added value of novel variations of the more 
common analyses in the field of behavior genetics, including genetic association analyses 
on factor analyzed traits and mediation analyses. New questions might be answered 
using such techniques, providing more insight into underlying common vulnerability 
patterns and etiological mechanisms. However, there were some limitations to the 
mediation analyses, including the lack of control for family relatedness and covariates in 
the PCA, and the impossibility of calculating regression weights for the associations with 
CADM2. Also, we used Baron & Kenny’s procedure to test for mediation only for outcomes 
that showed a significant relationship with CADM2.47 Technically, mediation could arise in 
the absence of such a relationship. Bootstrapping is a more recently developed non-
parametric method that can increase power to detect mediation. However, this approach 
has not yet been implemented in the area of genetic association analysis. Future research 
might develop techniques to tackle these limitations. In conclusion, the mediation results 
in this study suggest mediation testing may be feasible, but improved statistical tools 
applicable to behavioral genetics need to be developed. 
 Next to the genetic etiology of risk behaviors, we recognize the generally known 
influence of environmental factors.12 For example cultural, parenting or peer norms can 
influence substance- and sex-related risky behaviors. What remains largely unknown is to 
what extent the impact of genetic and environmental risks are additive or interactive. The 
variants in CADM2 identified here lend themselves well to future gene-environment 
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interaction testing, provided a multi-cohort study and a combined SNP measure are used 
to ensure sufficient power. 
 
4.2  |  Conclusions 
 
This comprehensive multi-cohort study has shown the feasibility of a phenome-wide 
association study for risky behavior to confirm previous findings on associations between 
CADM2 and manifestations of risky behavior and reduced self-control from GWASs on 
individual phenotypes. It was shown that single SNPs in CADM2 could explain 0.01 to 
0.26% of the variance and a combination of independent top SNPs together 0.07 to 3.02%. 
This study provides more insight into the relatively small effect sizes that can be expected 
from association studies. Furthermore, results revealed that a self-control trait might 
partially mediate the associations between CADM2 and substance-related risky behavior 
(lifetime smoking and regular alcohol use). Future studies should further explore the 
biological underpinnings of the observed relationships between CADM2, reduced self-
control, and various risky behaviors.   
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TABLE 1   Descriptive statistics of participant characteristics and study variables for the four cohort studies. 

Note. The variations in sample sizes are due to question branching and the pooling of data of several 
measurement waves. N = total number of participants with phenotypic and genetic data available per variable 
and subsample; Range = minimum and maximum score/answer; n = number of participants scoring positive on 
this variable within the subsample; M = mean within this cohort; SD = standard deviation within this cohort; % 

= percentage of the total number of participants in a subsample. a Education levels of participants or their 
parents in the S4S study. b Includes the use of other substances than alcohol, tobacco, and cannabis.  

 
 
 

 
 
 

CADM2 and risk behavior 
 

TABLE 2   Results from the MAGMA gene-based tests per sample, with meta-analysis results for variables that 
were present in two or more datasets. Explained variance is given for the top SNP and the independent SNPs 
together, for significant associations in the meta-analysis (or cohort analysis for phenotypes present in only 

one cohort). 
 

p = MAGMA p-value (when bold: p < .05, when bold and underscored: p < .01.); * = p-value is also significant 
when corrected for false discovery rate (FDR); N = sample size per variable and subsample; %R2 top = 

percentage of variance explained by the top SNP; #SNPs = number of independent SNPs in CADM2 (LD 
R2=0.1%) included in the meta-analysis; % R2 based on those independent SNPs (SNP IDs are shown in 

Supplementary Table S4); AUDIT = Alcohol Use Disorders Identification Test; FTND = Fagerström Test for 
Nicotine Dependence.  
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TABLE 3   Results for gene-based analyses between CADM2 and factors from the PCA. Factors were extracted if 
they had an Eigenvalue above 1 and explained ≥ 10% of the variance in the data, resulting in 5 factors in total, 
of which 2 could be detected in multiple cohorts. Below the table, the factor indicators (variables with factor 

loading > 0.4 on the factor) per sample are given. 

 
p = MAGMA p-value (when bold: p < .05, when bold and underscored: p < .01.); N = sample size per factor and 
cohort; %R2 top = percentage of variance explained by the top SNP; #SNPs = number of independent SNPs in 

CADM2 (LD R2=0.1%) included in the meta-analysis; % R2 based on those independent SNPs (SNP IDs are shown 
in Supplementary Table S4). 

 

a Lifetime substance use was defined by ever used cannabis, ever used tobacco and ever used other 
substances in 25UP and by ever used cannabis and ever used other substances in S4S. 

b Tobacco (ab)use was defined by nicotine dependence and average cigarettes per day in 25UP, by regular 
tobacco use, average tobacco using days and ever used tobacco in S4S, by the same variables in NTR, and by 

nicotine dependence, average cigarettes per day, and age at smoking initiation in UKB. 
c Lifetime smoking was defined by regular tobacco use and ever used tobacco in UKB. 

d Risky alcohol use was defined by problematic alcohol use (AUDIT), regular alcohol use, and average alcohol 
units per month in UKB. 

e Self-control was defined by disinhibition, sensation seeking, and ADHD in NTR. 

 25Up S4S NTR UKB Meta-analysis 

Factor p N p N p N p N p N % R2 top #SNPs % R2 

Lifetime substance usea .581 2076 .733 2389     .723 4465 0.09% 12 0.58% 

Tobacco (ab)useb .057 2076 .085 2389 .084 9471 4e-05 348950 8e-06 362886 0.13% 44 2.47% 

Lifetime smokingc       1e-22 348950   0.02% 80 0.24% 

Risky alcohol use       6e-13 348950   0.01% 63 0.10% 

Self-control     2e-08 9471     0.24% 44 2.76% 

CADM2 and risk behavior 
 
Figure 1   Significance of associations between CADM2 and risk behavior factors, with and without a mediating 

effect of risk-taking proneness. Path a: the effect of the predictor (CADM2) on the mediator (risk-taking 
proneness); path b: the effect of the mediator on the outcome factors (tobacco (ab)use, lifetime smoking, and 

risky alcohol use); path c: the effect of the predictor on the outcome variables; path c’: the effect of the 
predictor on the outcome variables controlling for the mediator 

 
 

 
 

† C’ paths with attenuated p-values, indicating a partial mediation effect.   
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Supplementary Materials 
 
Supplemental materials can also be found online: 
Chapter 5 – CADM2 and risk behavior 
 
or copy this link into the browser: 
https://drive.google.com/drive/folders/1Y1Jk4y2JjjQI4MNtLGmqVv-ZH5CzJ6Lm 

 
Supplementary methods I – Study details 
 
25Up study 
This study is an extension of previous Brisbane Longitudinal Twin Studies. The data was 
collected between 2016 and 2018 from twins and their non-twin siblings. The main aim of 
these studies was to longitudinally assess genetic, psychological, behavioral, and 
demographic risk factors for various mental disorders in a large cohort of Australian twins 
and their non-twin siblings, by using questionnaire, genome-wide genetic and pedigree 
information. Content and methods of the 25Up study are further described in a recent 
article.1 
 
S4S study  
The Spit for Science (S4S) study is a prospective, longitudinal study of the genetic and 
environmental influences on behavioral and emotional health among undergraduate 
students at a large urban university in the mid-Atlantic region.2 The study examined 
questions concerning for instance demographic topics, mental health, life experiences, 
and various (risk) behaviors. In total, there were 7 waves of data collection used in this 
study. We selected adult Caucasian students that had survey and genetic data available. 
 
NTR study 
This sample comprised participants registered at the Netherlands Twin Register,3 an 
ongoing longitudinal study of Dutch twins and their family members. Survey questions 
encompass topics as physical and mental health, lifestyle, and personality. NTR 
participants were included in this study for whom genotype data were available and who 
completed questions related to risk behavior (substance use and sexual risk behavior) 
and indices of self-control in one or more waves of the longitudinal survey project. We 
used data from the adult sample (ANTR) wave 1 to 8 (1991-2010) and 10 (2013-2014) to 12 
(2013-2016) and the young (YNTR) sample at age 18. DNA collection procedures have been 
described elsewhere.3 
  
  

CADM2 and risk behavior 
 
UKB study 
The UK-Biobank constitutes a large nationwide effort to follow the (psychological) health 
of half a million UK individuals.4 Genetic, behavioral, medical, and imaging data were 
collected from 2006 onwards, and more data is still being collected. Data from 
participants was included in this study if genetic information was available and someone 
filled in at least one questionnaire on one wave (regarding substance use, sexual risk 
factors or self-control).  
 
Supplementary methods II – Procedure for estimating effect size 
 
Using the results from the SNP-based meta-analysis we computed explained variance 
based on previously reported procedures.5 For continuous phenotypes, we used the 

formula R2= 2𝛽𝛽𝛽𝛽2𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝐹𝐹𝐹𝐹(1−𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝐹𝐹𝐹𝐹)
2𝛽𝛽𝛽𝛽2𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝐹𝐹𝐹𝐹(1−𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝐹𝐹𝐹𝐹)+(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝛽𝛽𝛽𝛽))22𝑁𝑁𝑁𝑁 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝐹𝐹𝐹𝐹(1−𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝐹𝐹𝐹𝐹)

 to estimate the explained variance of the 

top SNP, with MAF being the minor allele frequency from the 1000 Genomes reference 
panel6, β the effect estimate from the meta-analysis, and se the corresponding standard 
error.7 For the binary phenotypes, we first estimated the t-value corresponding to the p-
value using the quantile function of the student t-distribution, with the degrees of 

freedom based on the effective sample size N= 4/( 1
𝑁𝑁𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

+ 1
𝑁𝑁𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

) , and calculated 

R2=( 𝑡𝑡𝑡𝑡
�𝑁𝑁𝑁𝑁+𝑡𝑡𝑡𝑡2−2

)2. To check if considering multiple SNPs in the gene would increase explained 

variance we calculated and summed R2 for independent SNPs (r2≤0.10%) that showed an 
association with two-sided p<.100. This lenient threshold was used in order to integrate 
effect sizes that did not reach significance in the smaller cohorts, in an approach 
equivalent to what is often done for polygenic risk scores.8 For the binary phenotypes, the 

summed R2 was approached using 2𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝐹𝐹𝐹𝐹(1−𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝐹𝐹𝐹𝐹)𝛽𝛽𝛽𝛽2

𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑟𝑟𝑟𝑟(𝑦𝑦𝑦𝑦)
 with var(y)= 2𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝐹𝐹𝐹𝐹(1−𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝐹𝐹𝐹𝐹)𝛽𝛽𝛽𝛽2

𝑅𝑅𝑅𝑅2
 from the top 

SNP.  

https://drive.google.com/drive/folders/1Y1Jk4y2JjjQI4MNtLGmqVv-ZH5CzJ6Lm
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Supplementary Materials 
 
Supplemental materials can also be found online: 
Chapter 5 – CADM2 and risk behavior 
 
or copy this link into the browser: 
https://drive.google.com/drive/folders/1Y1Jk4y2JjjQI4MNtLGmqVv-ZH5CzJ6Lm 

 
Supplementary methods I – Study details 
 
25Up study 
This study is an extension of previous Brisbane Longitudinal Twin Studies. The data was 
collected between 2016 and 2018 from twins and their non-twin siblings. The main aim of 
these studies was to longitudinally assess genetic, psychological, behavioral, and 
demographic risk factors for various mental disorders in a large cohort of Australian twins 
and their non-twin siblings, by using questionnaire, genome-wide genetic and pedigree 
information. Content and methods of the 25Up study are further described in a recent 
article.1 
 
S4S study  
The Spit for Science (S4S) study is a prospective, longitudinal study of the genetic and 
environmental influences on behavioral and emotional health among undergraduate 
students at a large urban university in the mid-Atlantic region.2 The study examined 
questions concerning for instance demographic topics, mental health, life experiences, 
and various (risk) behaviors. In total, there were 7 waves of data collection used in this 
study. We selected adult Caucasian students that had survey and genetic data available. 
 
NTR study 
This sample comprised participants registered at the Netherlands Twin Register,3 an 
ongoing longitudinal study of Dutch twins and their family members. Survey questions 
encompass topics as physical and mental health, lifestyle, and personality. NTR 
participants were included in this study for whom genotype data were available and who 
completed questions related to risk behavior (substance use and sexual risk behavior) 
and indices of self-control in one or more waves of the longitudinal survey project. We 
used data from the adult sample (ANTR) wave 1 to 8 (1991-2010) and 10 (2013-2014) to 12 
(2013-2016) and the young (YNTR) sample at age 18. DNA collection procedures have been 
described elsewhere.3 
  
  

CADM2 and risk behavior 
 
UKB study 
The UK-Biobank constitutes a large nationwide effort to follow the (psychological) health 
of half a million UK individuals.4 Genetic, behavioral, medical, and imaging data were 
collected from 2006 onwards, and more data is still being collected. Data from 
participants was included in this study if genetic information was available and someone 
filled in at least one questionnaire on one wave (regarding substance use, sexual risk 
factors or self-control).  
 
Supplementary methods II – Procedure for estimating effect size 
 
Using the results from the SNP-based meta-analysis we computed explained variance 
based on previously reported procedures.5 For continuous phenotypes, we used the 

formula R2= 2𝛽𝛽𝛽𝛽2𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝐹𝐹𝐹𝐹(1−𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝐹𝐹𝐹𝐹)
2𝛽𝛽𝛽𝛽2𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝐹𝐹𝐹𝐹(1−𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝐹𝐹𝐹𝐹)+(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝛽𝛽𝛽𝛽))22𝑁𝑁𝑁𝑁 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝐹𝐹𝐹𝐹(1−𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝐹𝐹𝐹𝐹)

 to estimate the explained variance of the 

top SNP, with MAF being the minor allele frequency from the 1000 Genomes reference 
panel6, β the effect estimate from the meta-analysis, and se the corresponding standard 
error.7 For the binary phenotypes, we first estimated the t-value corresponding to the p-
value using the quantile function of the student t-distribution, with the degrees of 

freedom based on the effective sample size N= 4/( 1
𝑁𝑁𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

+ 1
𝑁𝑁𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

) , and calculated 

R2=( 𝑡𝑡𝑡𝑡
�𝑁𝑁𝑁𝑁+𝑡𝑡𝑡𝑡2−2

)2. To check if considering multiple SNPs in the gene would increase explained 

variance we calculated and summed R2 for independent SNPs (r2≤0.10%) that showed an 
association with two-sided p<.100. This lenient threshold was used in order to integrate 
effect sizes that did not reach significance in the smaller cohorts, in an approach 
equivalent to what is often done for polygenic risk scores.8 For the binary phenotypes, the 

summed R2 was approached using 2𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝐹𝐹𝐹𝐹(1−𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝐹𝐹𝐹𝐹)𝛽𝛽𝛽𝛽2

𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑟𝑟𝑟𝑟(𝑦𝑦𝑦𝑦)
 with var(y)= 2𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝐹𝐹𝐹𝐹(1−𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝐹𝐹𝐹𝐹)𝛽𝛽𝛽𝛽2

𝑅𝑅𝑅𝑅2
 from the top 

SNP.  
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SUPPLEMENTARY TABLE S1   Genotyping and imputation procedures used 

 25Up S4S NTR UKB 

bp start (GRCh37/hg19) 83,901.945 83,951,945  84,068,424  83,951,956  

bp stop (GRCh37/hg19) 85,568,580 86,126,470 86,031,960 86,126,239 

genotyping platform Illumina 610k 
SNP 

Affymetrix 
BioBank 

Affymetrix 6.0a 

Illumina 660  
Illumina 1M  
Perlegen-
Affymetrix  
Typed using 
GONL sequence 
data 

UK-Biobank 
Axiom UKBiLEVE 

imputation platform PLINK  
HapMap 

SHAPEIT2/ 
IMPUTE2 
1000 genomes  

Minimac3/ Eagle 
HRC 

SHAPEIT3/ 
IMPUTE 4 
HRC/ 1000 
genomes / UK10K 

sample QC procedures Described by 
Gillespie et al.9 

Described by 
Peterson et al.10 

Described by 
Willemsen et al.3 

Described by 
Bycroft et al.11 

relatedness threshold NAb 𝜋𝜋𝜋𝜋�  = 0.35 NAb KING = .0625 

Nethnic_outliers 74 3,307 1,591 63,144 

Nindividuals after QC 2,133 2,994 12,120 426,446 

NSNPs before QC 321 3,312 7,021 7,290 

NSNPs after QC 297 2,972 6,166 4,638 

 

NA = not applicable; QC = quality control; PMID = PubMed identifier. 
a Genotyping platform was included as a covariate in the NTR association analyses. 

b In the family-based samples from 25Up and NTR related individuals were not excluded (the analyses 
controlled for family structure in the data). 

 
 
  

CADM2 and risk behavior 
 

SUPPLEMENTARY TABLE S2   Overview of included variables and used measures in the 25Up, S4S, NTR, and 
UKB studies. For each construct the composite measure, the number of items it was based on, and the number 
of times these items were measured. If an item was measured on multiple waves, we checked the consistency 

of reporting where possible (e.g. age at initiation variables) and took the highest or average of the reported 
instances (indicated with ‘maximum’ or ‘average’ in the table) depending on the type of measure. Outliers and 

unreliable response patterns were removed and data were standardized before analysis 
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SUPPLEMENTARY TABLE S1   Genotyping and imputation procedures used 

 25Up S4S NTR UKB 

bp start (GRCh37/hg19) 83,901.945 83,951,945  84,068,424  83,951,956  

bp stop (GRCh37/hg19) 85,568,580 86,126,470 86,031,960 86,126,239 

genotyping platform Illumina 610k 
SNP 

Affymetrix 
BioBank 

Affymetrix 6.0a 

Illumina 660  
Illumina 1M  
Perlegen-
Affymetrix  
Typed using 
GONL sequence 
data 

UK-Biobank 
Axiom UKBiLEVE 

imputation platform PLINK  
HapMap 

SHAPEIT2/ 
IMPUTE2 
1000 genomes  

Minimac3/ Eagle 
HRC 

SHAPEIT3/ 
IMPUTE 4 
HRC/ 1000 
genomes / UK10K 

sample QC procedures Described by 
Gillespie et al.9 

Described by 
Peterson et al.10 

Described by 
Willemsen et al.3 

Described by 
Bycroft et al.11 

relatedness threshold NAb 𝜋𝜋𝜋𝜋�  = 0.35 NAb KING = .0625 

Nethnic_outliers 74 3,307 1,591 63,144 

Nindividuals after QC 2,133 2,994 12,120 426,446 

NSNPs before QC 321 3,312 7,021 7,290 

NSNPs after QC 297 2,972 6,166 4,638 

 

NA = not applicable; QC = quality control; PMID = PubMed identifier. 
a Genotyping platform was included as a covariate in the NTR association analyses. 

b In the family-based samples from 25Up and NTR related individuals were not excluded (the analyses 
controlled for family structure in the data). 
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SUPPLEMENTARY TABLE S2   Overview of included variables and used measures in the 25Up, S4S, NTR, and 
UKB studies. For each construct the composite measure, the number of items it was based on, and the number 
of times these items were measured. If an item was measured on multiple waves, we checked the consistency 

of reporting where possible (e.g. age at initiation variables) and took the highest or average of the reported 
instances (indicated with ‘maximum’ or ‘average’ in the table) depending on the type of measure. Outliers and 

unreliable response patterns were removed and data were standardized before analysis 
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CADM2 and risk behavior 
 

Note. ADHD/ADD= attention deficit (hyperactivity) disorder; ASRS= ADHD Self-Report Scale12; AUDIT= Alcohol 
Use Disorders Identification Test13; FTND= Fagerström Test for Nicotine Dependence14; UPPS-P= Urgency, 
Premeditation (lack of), Perseverance (lack of), Sensation Seeking, Positive Urgency, Impulsive Behavior 

Scale,15 SSS= Sensation Seeking Scale.16  
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CADM2 and risk behavior 
 

Note. ADHD/ADD= attention deficit (hyperactivity) disorder; ASRS= ADHD Self-Report Scale12; AUDIT= Alcohol 
Use Disorders Identification Test13; FTND= Fagerström Test for Nicotine Dependence14; UPPS-P= Urgency, 
Premeditation (lack of), Perseverance (lack of), Sensation Seeking, Positive Urgency, Impulsive Behavior 

Scale,15 SSS= Sensation Seeking Scale.16  
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SUPPLEMENTARY TABLE S3   Results of factor-analyses including explained variances and pattern matrices of 
(A) 25Up, (B) S4S, (C) NTR and (D) UKB study data. Pattern matrices show results for factors with eigenvalues ≥ 

1.00 indicating more explained variance than a single observed variable, and variable loadings < .30 are not 
considered significant 17 and therefore not reported.   

 
 

A) 25Up data. 
 Factor Eigenvalue % of Variance Cumulative % 

1 2.84 17.75 17.75 
2 1.98 12.34 30.09 
3 1.47 9.17 39.26 
4 1.35 8.43 47.70 
5 1.08 6.76 54.45 
6 1.05 6.57 61.02 
   

 
 

 Variable 

Factor  

1 2 3 4 5 6 Factor label 

Ever used cannabis .90      Lifetime substance use 
Ever used tobacco .69      
Ever used other substance(s) .40      
Age alcohol initiation -.37      
Average cigarettes per day  .90     Tobacco (ab)use 
Average tobacco using days  .84     
Age cannabis initiation   .60    Age at initiation of substance use 
Age other substance initiation   .34    
Age tobacco initiation   .33    
Regular alcohol use    .79   Alcohol (ab)use 
Average alcohol units per month    .77   
Regular  tobacco use     .76  NA 
Regular cannabis use     .35  
ADHD         *   
Number of sexual partners      .55 Sexual risk behavior 
Sexual risk behavior      .51 

 * Variable loading < .30 
 

 

CADM2 and risk behavior 
 

 
C) NTR data. 

 

B) S4S data 
 Factor Eigenvalue % of Variance Cumulative % 

1 4.10 20.52 20.52 
2 2.10 10.52 31.04 
3 1.30 6.49 37.52 
4 1.24 6.19 43.72 
5 1.20 98 49.70 
6 1.04 5.20 54.90 
7 1.02 5.08 59.97 

Variable 

Factor  

1 2 3 4 5 6 7 Factor label 

Ever used cannabis .73       Lifetime substance use 
Ever used tobacco .72        
Ever use other substance(s) .45        
Disinhibition *        
Nicotine dependence (FTND)  .78      Tobacco (ab)use 
Average cigarettes per day  .71       
Risk score ADHD  *       
Average alcohol units per month   .82     Alcohol (ab)use 
Regular alcohol use   .60      
Problematic alcohol use (AUDIT)   .39      
Number of sexual partners    .67    Sexual risk behavior 
Sexual risk behavior    .45     
Age first sexual intercourse    *     
Age tobacco initiation     .59   Age at initiation of substance use 
Age alcohol initiation     .51    
Age cannabis initiation     *    
Age other substance initiation     *    
Regular tobacco use      .80  Tobacco (ab)use 
Average tobacco using days      .73   
Regular cannabis use       -.64 - 

 * Variable loading < .30 
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SUPPLEMENTARY TABLE S3   Results of factor-analyses including explained variances and pattern matrices of 
(A) 25Up, (B) S4S, (C) NTR and (D) UKB study data. Pattern matrices show results for factors with eigenvalues ≥ 

1.00 indicating more explained variance than a single observed variable, and variable loadings < .30 are not 
considered significant 17 and therefore not reported.   

 
 

A) 25Up data. 
 Factor Eigenvalue % of Variance Cumulative % 

1 2.84 17.75 17.75 
2 1.98 12.34 30.09 
3 1.47 9.17 39.26 
4 1.35 8.43 47.70 
5 1.08 6.76 54.45 
6 1.05 6.57 61.02 
   

 
 

 Variable 

Factor  

1 2 3 4 5 6 Factor label 

Ever used cannabis .90      Lifetime substance use 
Ever used tobacco .69      
Ever used other substance(s) .40      
Age alcohol initiation -.37      
Average cigarettes per day  .90     Tobacco (ab)use 
Average tobacco using days  .84     
Age cannabis initiation   .60    Age at initiation of substance use 
Age other substance initiation   .34    
Age tobacco initiation   .33    
Regular alcohol use    .79   Alcohol (ab)use 
Average alcohol units per month    .77   
Regular  tobacco use     .76  NA 
Regular cannabis use     .35  
ADHD         *   
Number of sexual partners      .55 Sexual risk behavior 
Sexual risk behavior      .51 

 * Variable loading < .30 
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C) NTR data. 

 

B) S4S data 
 Factor Eigenvalue % of Variance Cumulative % 

1 4.10 20.52 20.52 
2 2.10 10.52 31.04 
3 1.30 6.49 37.52 
4 1.24 6.19 43.72 
5 1.20 98 49.70 
6 1.04 5.20 54.90 
7 1.02 5.08 59.97 

Variable 

Factor  

1 2 3 4 5 6 7 Factor label 

Ever used cannabis .73       Lifetime substance use 
Ever used tobacco .72        
Ever use other substance(s) .45        
Disinhibition *        
Nicotine dependence (FTND)  .78      Tobacco (ab)use 
Average cigarettes per day  .71       
Risk score ADHD  *       
Average alcohol units per month   .82     Alcohol (ab)use 
Regular alcohol use   .60      
Problematic alcohol use (AUDIT)   .39      
Number of sexual partners    .67    Sexual risk behavior 
Sexual risk behavior    .45     
Age first sexual intercourse    *     
Age tobacco initiation     .59   Age at initiation of substance use 
Age alcohol initiation     .51    
Age cannabis initiation     *    
Age other substance initiation     *    
Regular tobacco use      .80  Tobacco (ab)use 
Average tobacco using days      .73   
Regular cannabis use       -.64 - 

 * Variable loading < .30 
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 Factor Eigenvalue % of Variance Cumulative % 

1 2.72 14.33 14.33 
2 2.06 10.87 25.20 
3 1.65 8.66 33.85 
4 1.42 7.47 41.32 
5 1.22 6.40 47.72 
6 1.12 5.87 53.59 
7 1.02 5.36 58.95 

 
 
 

 Variable 
  
1 2 3 4 5 6 7 Factor label 

Sensation seeking .92       Self-control 
Impulsivity/disinhibition .81        
ADHD *        
Regular tobacco use  1.0

0 
     Tobacco (ab)use 

Average tobacco using days  .43       
Ever used tobacco  .33       
Average alcohol units per month   .79     Alcohol (ab)use 
Regular alcohol use   .60      
Problematic alcohol use (AUDIT)   .55      
Average cigarettes per day    .76    Tobacco (ab)use 
Nicotine dependence (FTND)    .74     
Age alcohol initiation     .60   Age at initiation 
Age tobacco initiation     .43    
Age at first sexual intercourse     *    
Ever other substance(s)      .70  Lifetime substance use 
Ever used cannabis      .56   
Age cannabis initiation       -.57 - 
Regular cannabis use       *  
Age other substance initiation       *  

 * Variable loading < .30 
 
 

D) UKB data. 
 

 Factor Eigenvalue % of Variance Cumulative % 

CADM2 and risk behavior 
 

1 2.35 16.80 16.80 
2 1.53 10.93 27.72 
3 1.47 10.47 38.20 
4 1.18 8.42 46.61 
5 1.04 7.46 54.07 

 
 

 Variable 
Factor  
1 2 3 4 5 Factor label 

Regular tobacco use .96     Tobacco (ab)use 
Ever used tobacco .91      
Problematic alcohol use (AUDIT)  .77    Alcohol (ab)use 
Regular alcohol use  .71     
Average alcohol units per month  *     
Nicotine dependence (FTND)   .70   Tobacco (ab)use 
Average cigarettes per day   .56    
Age tobacco initiation   *    
Number of sexual partners    .57  (Sexual) risk behavior 
Age at first sexual intercourse    -.34   
Risk-taking proneness    *   
Any behavioral/substance addiction     .52 - 
Ever used cannabis     *  
Regular cannabis use     *  

 * Variable loading < .30 
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 Factor Eigenvalue % of Variance Cumulative % 

1 2.72 14.33 14.33 
2 2.06 10.87 25.20 
3 1.65 8.66 33.85 
4 1.42 7.47 41.32 
5 1.22 6.40 47.72 
6 1.12 5.87 53.59 
7 1.02 5.36 58.95 

 
 
 

 Variable 
  
1 2 3 4 5 6 7 Factor label 

Sensation seeking .92       Self-control 
Impulsivity/disinhibition .81        
ADHD *        
Regular tobacco use  1.0

0 
     Tobacco (ab)use 

Average tobacco using days  .43       
Ever used tobacco  .33       
Average alcohol units per month   .79     Alcohol (ab)use 
Regular alcohol use   .60      
Problematic alcohol use (AUDIT)   .55      
Average cigarettes per day    .76    Tobacco (ab)use 
Nicotine dependence (FTND)    .74     
Age alcohol initiation     .60   Age at initiation 
Age tobacco initiation     .43    
Age at first sexual intercourse     *    
Ever other substance(s)      .70  Lifetime substance use 
Ever used cannabis      .56   
Age cannabis initiation       -.57 - 
Regular cannabis use       *  
Age other substance initiation       *  

 * Variable loading < .30 
 
 

D) UKB data. 
 

 Factor Eigenvalue % of Variance Cumulative % 

CADM2 and risk behavior 
 

1 2.35 16.80 16.80 
2 1.53 10.93 27.72 
3 1.47 10.47 38.20 
4 1.18 8.42 46.61 
5 1.04 7.46 54.07 

 
 

 Variable 
Factor  
1 2 3 4 5 Factor label 

Regular tobacco use .96     Tobacco (ab)use 
Ever used tobacco .91      
Problematic alcohol use (AUDIT)  .77    Alcohol (ab)use 
Regular alcohol use  .71     
Average alcohol units per month  *     
Nicotine dependence (FTND)   .70   Tobacco (ab)use 
Average cigarettes per day   .56    
Age tobacco initiation   *    
Number of sexual partners    .57  (Sexual) risk behavior 
Age at first sexual intercourse    -.34   
Risk-taking proneness    *   
Any behavioral/substance addiction     .52 - 
Ever used cannabis     *  
Regular cannabis use     *  

 * Variable loading < .30 
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SUPPLEMENTARY TABLE S4   The number of SNPs that was present in at least one sample in the analysis 
(#SNPs), the number of independent SNPs (with R2=0.1, LD merging distance 250kb, and a two-sided p<.1), and 

the name of the 10 independent SNP(s) with the smallest p-values and the corresponding bp position. SNPs 
that occur among the top-ten for multiple phenotypes are denoted with a superscript number. SNPs with a red 

superscript appear more than two times in primary phenotypes, green appear twice in primary phenotypes, 
and blue appear multiple times, but only once in a primary phenotype (the other time(s) in a factor) 

 
Variable #SNPs  #independent  

SNPs 
SNPs bp 

LIFETIME SUBSTANCE USE 

Ever used tobacco 1,756 63 rs1433708 
rs11127908 
rs12714592 1 

rs1248857 2 

rs1448602 
rs1485582 
rs113364248 3 

rs13319945 
rs1248809 
rs12637371 

85481979 
85869285 
84387950 
85018612 
85780454 
84688653 
85741923 
84025580 
84934915 
84219156 
85472033 
85893048 
85018612 
84808756 
84424761 
85487124 
85468913 
85135013 
85143307 
84048375 
85086455 
85841743 
85409260 
84668629 
84210507 
85153235 
84299389 
85381838 
85465561 
85345197 

Ever used cannabis 6,383 83 rs7636243 
rs4473564 4 

rs1248857 2 

rs9868293 
rs9856889 
rs9821126 
rs6804996 
rs9832634 
rs114226996 5 

rs9869787 
Ever used other substance(s) 6,214 58 rs74928832 

rs79337314 
rs74569441 
rs60859036 
rs116240880 
rs4635723 
rs9846520 6 

rs60407397 
rs73136796 
rs34584686 

AGE AT INITIATION OF SUBSTANCE USE 

Age alcohol initiation 6,215 41 rs60538752 
rs78355395 
rs9816329 
rs74332784 

84043066 
84906860 
86115541 
84313596 

CADM2 and risk behavior 
 

rs57547677 
rs111993139 
rs9861858 
rs3887138 
rs17501983 
rs2123163 

84981296 
85266708 
83998003 
85648957 
84833794 
85243797 

Age tobacco initiation 6,383 35 rs10514735 
rs12489914 
rs7625608 
rs9826386 
rs79077228 
rs7625199 
rs13076735 
rs55829275 
rs74337284 7 

rs76446023 
rs76578522 
rs114612207 
rs114382596 
rs114226996 5 

rs980333 
rs7622685 
rs77687507 
rs78495499 
rs115454880 
rs116593166 

85798950 
84987790 
84964399 
84265870 
84093466 
85721301 
84160147 
85804632 
84564209 
85997149 

Age cannabis initiation 6,215 38 85392436 
86063849 
85683952 
85143307 
84838485 
84692835 
84171360 
84586445 
85628672 
84356123 

Age other substance initiation 6,215 37 rs114228638 
rs79526794 
rs11713922 
rs73136106 
rs79664787 
rs11127830 
rs73147245 
rs74355494 
rs4261889 
rs116230250 

84028252 
85006615 
84294532 
86070879 
84498183 
84024847 
85759865 
85258972 
84741624 
84991998 

AVERAGE SUBSTANCE USE 

Average alcohol units 6,383 69 rs9839708 8 

rs9990096 9 

rs76363701 
rs7611991 10 

rs7616936 
rs80134033 
rs78223691 

85058885 
85411193 
85436059 
85759558 
85803785 
85816461 
84976059 
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SUPPLEMENTARY TABLE S4   The number of SNPs that was present in at least one sample in the analysis 
(#SNPs), the number of independent SNPs (with R2=0.1, LD merging distance 250kb, and a two-sided p<.1), and 

the name of the 10 independent SNP(s) with the smallest p-values and the corresponding bp position. SNPs 
that occur among the top-ten for multiple phenotypes are denoted with a superscript number. SNPs with a red 

superscript appear more than two times in primary phenotypes, green appear twice in primary phenotypes, 
and blue appear multiple times, but only once in a primary phenotype (the other time(s) in a factor) 

 
Variable #SNPs  #independent  

SNPs 
SNPs bp 

LIFETIME SUBSTANCE USE 

Ever used tobacco 1,756 63 rs1433708 
rs11127908 
rs12714592 1 

rs1248857 2 

rs1448602 
rs1485582 
rs113364248 3 

rs13319945 
rs1248809 
rs12637371 

85481979 
85869285 
84387950 
85018612 
85780454 
84688653 
85741923 
84025580 
84934915 
84219156 
85472033 
85893048 
85018612 
84808756 
84424761 
85487124 
85468913 
85135013 
85143307 
84048375 
85086455 
85841743 
85409260 
84668629 
84210507 
85153235 
84299389 
85381838 
85465561 
85345197 

Ever used cannabis 6,383 83 rs7636243 
rs4473564 4 

rs1248857 2 

rs9868293 
rs9856889 
rs9821126 
rs6804996 
rs9832634 
rs114226996 5 

rs9869787 
Ever used other substance(s) 6,214 58 rs74928832 

rs79337314 
rs74569441 
rs60859036 
rs116240880 
rs4635723 
rs9846520 6 

rs60407397 
rs73136796 
rs34584686 

AGE AT INITIATION OF SUBSTANCE USE 

Age alcohol initiation 6,215 41 rs60538752 
rs78355395 
rs9816329 
rs74332784 

84043066 
84906860 
86115541 
84313596 

CADM2 and risk behavior 
 

rs57547677 
rs111993139 
rs9861858 
rs3887138 
rs17501983 
rs2123163 

84981296 
85266708 
83998003 
85648957 
84833794 
85243797 

Age tobacco initiation 6,383 35 rs10514735 
rs12489914 
rs7625608 
rs9826386 
rs79077228 
rs7625199 
rs13076735 
rs55829275 
rs74337284 7 

rs76446023 
rs76578522 
rs114612207 
rs114382596 
rs114226996 5 

rs980333 
rs7622685 
rs77687507 
rs78495499 
rs115454880 
rs116593166 

85798950 
84987790 
84964399 
84265870 
84093466 
85721301 
84160147 
85804632 
84564209 
85997149 

Age cannabis initiation 6,215 38 85392436 
86063849 
85683952 
85143307 
84838485 
84692835 
84171360 
84586445 
85628672 
84356123 

Age other substance initiation 6,215 37 rs114228638 
rs79526794 
rs11713922 
rs73136106 
rs79664787 
rs11127830 
rs73147245 
rs74355494 
rs4261889 
rs116230250 

84028252 
85006615 
84294532 
86070879 
84498183 
84024847 
85759865 
85258972 
84741624 
84991998 

AVERAGE SUBSTANCE USE 

Average alcohol units 6,383 69 rs9839708 8 

rs9990096 9 

rs76363701 
rs7611991 10 

rs7616936 
rs80134033 
rs78223691 

85058885 
85411193 
85436059 
85759558 
85803785 
85816461 
84976059 
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rs111594685 11 

rs76517098 
rs115217146 
rs116772105 12 

rs7652808 
rs9814165 
rs73125330 
rs9836564 
rs55765801 
rs115888131 
rs77025486 
rs62250660 
rs17735321 13 

86070777 
84303077 
84906889 

Average cigarettes per day 6,383 53 84202337 
85603643 
84223116 
84288773 
83997097 
85685077 
84498841 
85830581 
85446954 
85113612 

Average tobacco using days 6,215 25 rs77114692 

rs28366554 
rs76813943 
rs73141532 
rs9876301 
rs73130743 14 

rs12633811 
rs111468253 
rs12637767 
rs114807292 

85076445 
84185799 
83961148 
85652614 
85991634 
85288268 
83962883 
84297075 
85206681 
85599240 

REGULAR SUBSTANCE (AB)USE 

Regular alcohol use  6,281 52 rs12495758 15 

rs4301023 
rs116559208 16 

rs114242255 
rs79187939 
rs13085678 
rs75504236 
rs375750 
rs115730277 
rs9872971 

85554262 
85057281 
84462556 
84201642 
84191354 
85358591 
84030818 
84987517 
84173238 
85344951 

Problematic alcohol use (AUDIT) 6,379 67 rs12495758 15 

rs1248860 
rs4473564 4 

rs114375956 
rs76873181 
rs75902824 
rs72919209 
rs13060392 
rs2326267 
rs117898875 

85554262 
85015779 
85893048 
85193798 
84208185 
84343551 
85318295 
84880419 
85394420 
84272987 

CADM2 and risk behavior 
 
Regular tobacco use 6,380 90 rs7650284 

rs62261746 17 

rs7611991 10 

rs9834688 
rs12714592 1 

rs515207 
rs9835484 
rs113364248 3 

rs6773147 
rs9864886 

85472227 
85958954 
85759558 
85035279 
84387950 
84926866 
84742570 
85741923 
83988022 
84133542 

Nicotine dependence (FTND) 6,379 59 rs73131909 18 

rs116383974 
rs9990096 9 

rs114011108 
rs116772105 12 

rs116240935 
rs74745315 19 

rs79749903 
rs9832119 
rs78780329 20 

83960956 
84576787 
85411193 
85693334 
84202337 
85285448 
85012608 
85249455 
84972676 
85100973 

Regular cannabis use 5,676 50 rs2044723 
rs113817396 
rs74337284 7 

rs114185016 
rs1988552 
rs2172846 
rs2875889 
rs1454089 
rs4513464 
rs6549016 
rs1003985 21 

rs10049108 22 

rs10084664 23 

rs1013839 24 

rs1014796 25 

rs10154865 26 

rs1017638 27 

rs10212311 28 

rs10212377 29 

rs10212504 30 

85646002 
83973343 
84564209 
84313475 
85849851 
85004637 
85394742 
84852101 
83966741 
85180270 

Any behavioral/substance addiction  4,557 37 85870303 
85702021 
85964737 
85243777 
85544470 
85409299 
84751572 
84297635 
84299345 
84299387 

SEXUAL RISK BEHAVIOR 

Number of sexual partners 5,677 54 rs9824301 
rs4856269 

85682888 
85406735 



562882-L-bw-Pasman562882-L-bw-Pasman562882-L-bw-Pasman562882-L-bw-Pasman
Processed on: 4-8-2021Processed on: 4-8-2021Processed on: 4-8-2021Processed on: 4-8-2021 PDF page: 155PDF page: 155PDF page: 155PDF page: 155

155Part 2 – Chapter 5 

rs111594685 11 

rs76517098 
rs115217146 
rs116772105 12 

rs7652808 
rs9814165 
rs73125330 
rs9836564 
rs55765801 
rs115888131 
rs77025486 
rs62250660 
rs17735321 13 

86070777 
84303077 
84906889 

Average cigarettes per day 6,383 53 84202337 
85603643 
84223116 
84288773 
83997097 
85685077 
84498841 
85830581 
85446954 
85113612 

Average tobacco using days 6,215 25 rs77114692 

rs28366554 
rs76813943 
rs73141532 
rs9876301 
rs73130743 14 

rs12633811 
rs111468253 
rs12637767 
rs114807292 

85076445 
84185799 
83961148 
85652614 
85991634 
85288268 
83962883 
84297075 
85206681 
85599240 

REGULAR SUBSTANCE (AB)USE 

Regular alcohol use  6,281 52 rs12495758 15 

rs4301023 
rs116559208 16 

rs114242255 
rs79187939 
rs13085678 
rs75504236 
rs375750 
rs115730277 
rs9872971 

85554262 
85057281 
84462556 
84201642 
84191354 
85358591 
84030818 
84987517 
84173238 
85344951 

Problematic alcohol use (AUDIT) 6,379 67 rs12495758 15 

rs1248860 
rs4473564 4 

rs114375956 
rs76873181 
rs75902824 
rs72919209 
rs13060392 
rs2326267 
rs117898875 

85554262 
85015779 
85893048 
85193798 
84208185 
84343551 
85318295 
84880419 
85394420 
84272987 

CADM2 and risk behavior 
 
Regular tobacco use 6,380 90 rs7650284 

rs62261746 17 

rs7611991 10 

rs9834688 
rs12714592 1 

rs515207 
rs9835484 
rs113364248 3 

rs6773147 
rs9864886 

85472227 
85958954 
85759558 
85035279 
84387950 
84926866 
84742570 
85741923 
83988022 
84133542 

Nicotine dependence (FTND) 6,379 59 rs73131909 18 

rs116383974 
rs9990096 9 

rs114011108 
rs116772105 12 

rs116240935 
rs74745315 19 

rs79749903 
rs9832119 
rs78780329 20 

83960956 
84576787 
85411193 
85693334 
84202337 
85285448 
85012608 
85249455 
84972676 
85100973 

Regular cannabis use 5,676 50 rs2044723 
rs113817396 
rs74337284 7 

rs114185016 
rs1988552 
rs2172846 
rs2875889 
rs1454089 
rs4513464 
rs6549016 
rs1003985 21 

rs10049108 22 

rs10084664 23 

rs1013839 24 

rs1014796 25 

rs10154865 26 

rs1017638 27 

rs10212311 28 

rs10212377 29 

rs10212504 30 

85646002 
83973343 
84564209 
84313475 
85849851 
85004637 
85394742 
84852101 
83966741 
85180270 

Any behavioral/substance addiction  4,557 37 85870303 
85702021 
85964737 
85243777 
85544470 
85409299 
84751572 
84297635 
84299345 
84299387 

SEXUAL RISK BEHAVIOR 

Number of sexual partners 5,677 54 rs9824301 
rs4856269 

85682888 
85406735 
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rs66680800 
rs73132094 31 

rs114398534 
rs62250579 
rs62250575 
rs73130743 14 

rs7646381 
rs17735321 13 

85985324 
84893889 
84219421 
85024652 
84987256 
85288268 
85705615 
85113612 

Sexual risk behavior a NA NA NA 
rs2044725 
rs12714592 1 

rs62261746 17 

rs12714603 
rs13316157 
rs74843558 
rs9839708 8 

rs79314616 
rs62255523 
rs67028245 

NA 
85645873 
84387950 
85958954 
84656669 
84115210 
85655439 
85058885 
84801526 
84804511 
85394772 

Age at first sexual intercourse 6,379 91 

SELF-CONTROL 

Disinhibition 6,211 45 rs10212294 
rs9816652 
rs79361329 
rs76062229 
rs76508707 
rs79874755 
rs17437928 
rs13088475 
rs74446005 
rs114307462 

85668496 
85067018 
84594046 
84211693 
85397049 
84116343 
85406521 
85019056 
85733229 
84764593 

Sensation seeking 6,109 35 rs1003984 32 
rs1003985 21 

rs1003986 33 

rs10049108 22 

rs10049397 34 

rs1005690 35 

rs10084664 23 

rs10084716 36 

rs1013839 24 

rs1014796 25 

85870199 
85870303 
85870363 
85702021 
84857250 
85358806 
85964737 
85964639 
85243777 
85544470 

Risk-taking proneness 4,557 69 rs1003985 21 

rs10049108 22 

rs10084664 23 

rs1013839 24 

85870303 
85702021 
85964737 
85243777 

CADM2 and risk behavior 
 

rs1014796 25 

rs10154865 26 

rs1017638 27 

rs10212311 28 

rs10212377 29 

rs10212504 30 

85544470 
85409299 
84751572 
84297635 
84299345 
84299387 

ADHD 3,436  rs17023190 
rs111594685 11 

rs114459574 
rs73132094 31 

rs7615964 
rs116559208 16 

rs77423946 
rs3860559 
rs112117757 
rs17021771 

85752400 
86070777 
84931784 
84893889 
85660567 
84462556 
85644855 
84765953 
84525528 
84796650 

FACTORS  

Lifetime substance use (meta-analysis) 2,464 12 rs6419760 
rs60750563 
rs116351045 
rs77430012 
rs2171140 
rs75892230 
rs6764254 
rs61555026 
rs73843277 
rs9864651 

84870987 
84489985 
85507460 
85473111 
85126955 
85506121 
84613365 
84685842 
85122712 
85514116 

Tobacco (ab)use (meta-analysis) 6,352 44 rs73131909 18 

rs9863620 
rs13059122 
rs9846520 6 

rs78780329 20 

rs12629798 
rs62250718 
rs1874866 
rs1773532113 

rs74745315 19 

83960956 
85448493 
84181443 
84299389 
85100973 
85905591 
85523783 
84988633 
85113612 
85012608 

Lifetime smoking (UKB) 4,557 81 rs1003985 21 

rs10049108 22 

rs10084664 23 

rs1013839 24 

rs1014796 25 

rs10154865 26 

rs1017638 27 

85870303 
85702021 
85964737 
85243777 
85544470 
85409299 
84751572 
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rs66680800 
rs73132094 31 

rs114398534 
rs62250579 
rs62250575 
rs73130743 14 

rs7646381 
rs17735321 13 

85985324 
84893889 
84219421 
85024652 
84987256 
85288268 
85705615 
85113612 

Sexual risk behavior a NA NA NA 
rs2044725 
rs12714592 1 

rs62261746 17 

rs12714603 
rs13316157 
rs74843558 
rs9839708 8 

rs79314616 
rs62255523 
rs67028245 

NA 
85645873 
84387950 
85958954 
84656669 
84115210 
85655439 
85058885 
84801526 
84804511 
85394772 

Age at first sexual intercourse 6,379 91 

SELF-CONTROL 

Disinhibition 6,211 45 rs10212294 
rs9816652 
rs79361329 
rs76062229 
rs76508707 
rs79874755 
rs17437928 
rs13088475 
rs74446005 
rs114307462 

85668496 
85067018 
84594046 
84211693 
85397049 
84116343 
85406521 
85019056 
85733229 
84764593 

Sensation seeking 6,109 35 rs1003984 32 
rs1003985 21 

rs1003986 33 

rs10049108 22 

rs10049397 34 

rs1005690 35 

rs10084664 23 

rs10084716 36 

rs1013839 24 

rs1014796 25 

85870199 
85870303 
85870363 
85702021 
84857250 
85358806 
85964737 
85964639 
85243777 
85544470 

Risk-taking proneness 4,557 69 rs1003985 21 

rs10049108 22 

rs10084664 23 

rs1013839 24 

85870303 
85702021 
85964737 
85243777 

CADM2 and risk behavior 
 

rs1014796 25 

rs10154865 26 

rs1017638 27 

rs10212311 28 

rs10212377 29 

rs10212504 30 

85544470 
85409299 
84751572 
84297635 
84299345 
84299387 

ADHD 3,436  rs17023190 
rs111594685 11 

rs114459574 
rs73132094 31 

rs7615964 
rs116559208 16 

rs77423946 
rs3860559 
rs112117757 
rs17021771 

85752400 
86070777 
84931784 
84893889 
85660567 
84462556 
85644855 
84765953 
84525528 
84796650 

FACTORS  

Lifetime substance use (meta-analysis) 2,464 12 rs6419760 
rs60750563 
rs116351045 
rs77430012 
rs2171140 
rs75892230 
rs6764254 
rs61555026 
rs73843277 
rs9864651 

84870987 
84489985 
85507460 
85473111 
85126955 
85506121 
84613365 
84685842 
85122712 
85514116 

Tobacco (ab)use (meta-analysis) 6,352 44 rs73131909 18 

rs9863620 
rs13059122 
rs9846520 6 

rs78780329 20 

rs12629798 
rs62250718 
rs1874866 
rs1773532113 

rs74745315 19 

83960956 
85448493 
84181443 
84299389 
85100973 
85905591 
85523783 
84988633 
85113612 
85012608 

Lifetime smoking (UKB) 4,557 81 rs1003985 21 

rs10049108 22 

rs10084664 23 

rs1013839 24 

rs1014796 25 

rs10154865 26 

rs1017638 27 

85870303 
85702021 
85964737 
85243777 
85544470 
85409299 
84751572 
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rs10212311 28 

rs10212377 29 

rs10212504 30 

84297635 
84299345 
84299387 

Regular alcohol use (UKB) 4,557 64 rs1003985 21 

rs10049108 22 

rs10084664 23 

rs1013839 24 

rs1014796 25 

rs10154865 26 

rs1017638 27 

rs10212311 28 

rs10212377 29 

rs10212504 30 

85870303 
85702021 
85964737 
85243777 
85544470 
85409299 
84751572 
84297635 
84299345 
84299387 

Self-control (NTR) 6,109 45 rs1003984 32 

rs1003985 21 

rs1003986 33 

rs10049108 22 

rs10049397 34 

rs1005690 35 

rs10084664 23 

rs10084716 36 

rs1013839 24 

rs1014796 25 

85870199 
85870303 
85870363 
85702021 
84857250 
85358806 
85964737 
85964639 
85243777 
85544470 

a  Not available in the SNP-based meta-analysis  
 

  

CADM2 and risk behavior 
 

SUPPLEMENTARY FIGURE S1   (A) Power as a function of sample size (N) and effect size (%R2) (B) as well as 
reported in more detail for sample sizes below 10,000. 

 

A)  

B) 
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SUPPLEMENTARY FIGURE S2   Frequency distribution of the basepair positions of the independent SNPs that 
were most strongly associated with the included risk behavior phenotypes with (panel A) showing the 

distribution in 10 equal-sized bins (330,000 bp), (panel B) showing the distribution in 3 bins (780,000). Most of 
the associated top SNPs fell in the bins between 84,950,956 and 85,940,956, which is a region containing many 

cis eQTLs (panel C) 
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Abstract 
This phenome-wide association study examined SNP and gene–based associations of the 
CADM2 gene with 241 psycho-behavioral traits in the UK Biobank (N=12,160 – 453,496). We 
found significant associations for 56 traits, replicating previously reported associations 
with substance use, risk-taking and health behaviors, and uncovering novel associations 
with sleep and dietary traits. We conclude that CADM2 is involved in many psycho-
behavioral traits, suggesting a common denominator in the biology of these traits.  
  

Phenome-wide association study of CADM2 
 
In the last 15 years, genome-wide association studies (GWASs) have identified tens of 
thousands of associations between genetic variants and a range of human behavioral and 
physical traits. One gene that has popped up surprisingly often in behavioral GWASs is the 
Cell Adhesion Molecule 2 gene (CADM2). Common variations (single nucleotide 
polymorphisms, SNPs) in the CADM2 gene have been implicated in various traits, 
including personality1, cognition and educational attainment2,3, risk-taking behavior4, 
reproductive success5, autism spectrum disorders6, substance use7,8, physical activity9, 
and BMI/ obesity10.   
 
CADM2 encodes a member of the synaptic cell adhesion molecules (SynCAMs) involved in 
synaptic organization and signaling, suggesting that alterations in CADM2 expression 
affect neuronal connectivity. CADM2 is abundant in brain regions important for reward 
processing and addiction, including the frontal anterior cingulate cortex3, substantia 
nigra, and insula11. Given its common appearance in GWASs and its central role in brain 
functioning, CADM2 is a gene that warrants further exploration.  
 
In this study we perform a phenome-wide association analysis (PheWAS), in which we test 
for associations of CADM2 (on SNP and gene level) with a comprehensive selection of 
psycho-behavioral phenotypes as measured in the UK Biobank cohort. Results will 
provide insights about whether the role of CADM2 is confined to a specific set of traits or 
is involved in a wider range of phenotypes. This will inform future studies on the function 
of CADM2 and the neurobiological underpinnings of different psycho-behavioral traits. An 
additional advantage is that the multiple testing burden is reduced as compared to 
genome-wide studies, resulting in higher power levels. 
 
UK Biobank is a nationwide study in the United Kingdom containing phenotypic and 
genetic information for up to 500,000 individuals12.  We analyzed 12,218 to 453,496 UK 
Biobank participants with European ancestry for whom genetic and phenotypic data 
were available. About half (54.3%) of the sample was female, and mean age was M=56.8 
(range 39-73, SD=8.0). We extracted the CADM2 region 250 kb up- and downstream (bp 
84,758,133 to 86,373,579 on 3p12.1, GRCh37/hg19) and selected 4,265 SNPs with call 
rate>95%, minor allele frequency >1%, and p-value for violation of Hardy-Weinberg 
equilibrium of pHWE>10-6 (QC details are described in Abdellaoui, 202013). 
 
We selected 241 psychological and behavioral phenotypes from the UK Biobank with an 

effective sample size above N=10,000 (Neff=4/ 1/𝑁𝑁𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
1/𝑁𝑁𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

). In order to maximize sample size, 

we used the first available measurement for each individual; if the first instance was not 
available, we took the second, otherwise the third, etc. In addition, we included eight 
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(range 39-73, SD=8.0). We extracted the CADM2 region 250 kb up- and downstream (bp 
84,758,133 to 86,373,579 on 3p12.1, GRCh37/hg19) and selected 4,265 SNPs with call 
rate>95%, minor allele frequency >1%, and p-value for violation of Hardy-Weinberg 
equilibrium of pHWE>10-6 (QC details are described in Abdellaoui, 202013). 
 
We selected 241 psychological and behavioral phenotypes from the UK Biobank with an 

effective sample size above N=10,000 (Neff=4/ 1/𝑁𝑁𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
1/𝑁𝑁𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

). In order to maximize sample size, 

we used the first available measurement for each individual; if the first instance was not 
available, we took the second, otherwise the third, etc. In addition, we included eight 



562882-L-bw-Pasman562882-L-bw-Pasman562882-L-bw-Pasman562882-L-bw-Pasman
Processed on: 4-8-2021Processed on: 4-8-2021Processed on: 4-8-2021Processed on: 4-8-2021 PDF page: 166PDF page: 166PDF page: 166PDF page: 166

166 Part 2 – Chapter 6 

traits that were derived for recent genetic studies, including seven substance use traits 
and educational attainment (for an overview of all included traits, see Supplemental 
Table S1). Continuous phenotypes were cleaned such that theoretical implausible were 
set on missing and extreme values at 4 SDs from the mean were put on missing. Binary 
and ordinal variables were left unchanged. Ordinal were analyzed as continuous 
 
The SNP-based association analyses were performed in GCTA fastGWA14, taking into 
account genetic relatedness. Analyses were controlled for effects of age, sex, and 25 
principal components (PCs, to control for genetic ancestry15). We used linear mixed 
modeling for all traits and Haseman-Elston regression to estimate the genetic variance 
component. To test the significance of association on the level of the gene we conducted 
a MAGMA gene-based test16, which aggregates the SNP effects (regardless of direction) in 
a single test of association. We used the default SNP-wise mean procedure (averaging SNP 
effects across the gene) and check the results of the SNP-wise top procedure for 
comparison (more sensitive when only a small proportion of SNPs has an effect). As 
significance threshold for the SNP-based test we adopt a genome-wide significance 
threshold of p<5E-08. As this is rather stringent given that we test within a single gene, we 
also use a significance threshold of .05 corrected for the number of independent SNPs 
(n=133, at R2=0.10 and 250kb) and the number of traits, resulting in .05/(133*241)=1.56E-
06. For the gene-based test we used a threshold of 2.62E-05, corresponding to .05 divided 
by the total number of genes (19,082). To provide an estimation of the effect size, we used 

R2= 2𝛽𝛽𝛽𝛽2𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝐹𝐹𝐹𝐹(1−𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝐹𝐹𝐹𝐹)
2𝛽𝛽𝛽𝛽2𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝐹𝐹𝐹𝐹(1−𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝐹𝐹𝐹𝐹)+(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝛽𝛽𝛽𝛽))22𝑁𝑁𝑁𝑁 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝐹𝐹𝐹𝐹(1−𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝐹𝐹𝐹𝐹)

, as described in 17, with adaptations for 

binary traits as described in8. 
 
On the SNP-level, 38 traits reached significant associations at a genome-wide corrected 
p-value (5E-08), and 62 traits at the lenient threshold of p<1.56E-06 (Figure 1a, Table 1). In 
the gene-based test, 56 out of 241 traits showed significant associations under a p-value 
of 2.62E-06 (Figure 1b, Table 1). Of those, there were 48 traits whose top-SNP reached 
significance under p<1.56E-06. The strongest associations were found for cognitive 
ability, risk taking, diet, BMI, daytime sleeping, sedentary behaviors, nervousness-like 
traits, reproductive traits, and substance use. There were virtually no associations with 
occupational, traumatic experiences, social connection and non-worry related 
depression traits. Full SNP- and gene-based results are provided in Table S2 and S3a. 
Table S3b shows the gene-based results for the SNP-wise top procedure, showing some 
differences with the SNP-wise mean results (correlation between the p-values from the 
respective tests was r=.69).  
 

Phenome-wide association study of CADM2 
 
Figure 1. PheWAS results. Panel a) shows the subset of significant associations of the SNP-based test per trait . 

The x-axis shows the traits (colored by trait category) and the y-axis the p-values of the association. Each dot 
represents a SNP association. SNPs exceeding the red horizontal line have a p-value significant at a genome-

wide threshold of p=5E-08. The blue horizontal line represents the suggestive threshold of p=1.56E-06. Full 
SNP-based results are given in Supplementary Figure 1. Panel b) shows the subset of significant results of the 
MAGMA gene-based test, with p-values on the y-axis. The red dotted line represents a threshold of p=2.62E-06. 

The full gene-based results are depicted in Supplementary Figure S2. 
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Table S1). Continuous phenotypes were cleaned such that theoretical implausible were 
set on missing and extreme values at 4 SDs from the mean were put on missing. Binary 
and ordinal variables were left unchanged. Ordinal were analyzed as continuous 
 
The SNP-based association analyses were performed in GCTA fastGWA14, taking into 
account genetic relatedness. Analyses were controlled for effects of age, sex, and 25 
principal components (PCs, to control for genetic ancestry15). We used linear mixed 
modeling for all traits and Haseman-Elston regression to estimate the genetic variance 
component. To test the significance of association on the level of the gene we conducted 
a MAGMA gene-based test16, which aggregates the SNP effects (regardless of direction) in 
a single test of association. We used the default SNP-wise mean procedure (averaging SNP 
effects across the gene) and check the results of the SNP-wise top procedure for 
comparison (more sensitive when only a small proportion of SNPs has an effect). As 
significance threshold for the SNP-based test we adopt a genome-wide significance 
threshold of p<5E-08. As this is rather stringent given that we test within a single gene, we 
also use a significance threshold of .05 corrected for the number of independent SNPs 
(n=133, at R2=0.10 and 250kb) and the number of traits, resulting in .05/(133*241)=1.56E-
06. For the gene-based test we used a threshold of 2.62E-05, corresponding to .05 divided 
by the total number of genes (19,082). To provide an estimation of the effect size, we used 

R2= 2𝛽𝛽𝛽𝛽2𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝐹𝐹𝐹𝐹(1−𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝐹𝐹𝐹𝐹)
2𝛽𝛽𝛽𝛽2𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝐹𝐹𝐹𝐹(1−𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝐹𝐹𝐹𝐹)+(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝛽𝛽𝛽𝛽))22𝑁𝑁𝑁𝑁 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝐹𝐹𝐹𝐹(1−𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝐹𝐹𝐹𝐹)

, as described in 17, with adaptations for 

binary traits as described in8. 
 
On the SNP-level, 38 traits reached significant associations at a genome-wide corrected 
p-value (5E-08), and 62 traits at the lenient threshold of p<1.56E-06 (Figure 1a, Table 1). In 
the gene-based test, 56 out of 241 traits showed significant associations under a p-value 
of 2.62E-06 (Figure 1b, Table 1). Of those, there were 48 traits whose top-SNP reached 
significance under p<1.56E-06. The strongest associations were found for cognitive 
ability, risk taking, diet, BMI, daytime sleeping, sedentary behaviors, nervousness-like 
traits, reproductive traits, and substance use. There were virtually no associations with 
occupational, traumatic experiences, social connection and non-worry related 
depression traits. Full SNP- and gene-based results are provided in Table S2 and S3a. 
Table S3b shows the gene-based results for the SNP-wise top procedure, showing some 
differences with the SNP-wise mean results (correlation between the p-values from the 
respective tests was r=.69).  
 

Phenome-wide association study of CADM2 
 
Figure 1. PheWAS results. Panel a) shows the subset of significant associations of the SNP-based test per trait . 

The x-axis shows the traits (colored by trait category) and the y-axis the p-values of the association. Each dot 
represents a SNP association. SNPs exceeding the red horizontal line have a p-value significant at a genome-

wide threshold of p=5E-08. The blue horizontal line represents the suggestive threshold of p=1.56E-06. Full 
SNP-based results are given in Supplementary Figure 1. Panel b) shows the subset of significant results of the 
MAGMA gene-based test, with p-values on the y-axis. The red dotted line represents a threshold of p=2.62E-06. 

The full gene-based results are depicted in Supplementary Figure S2. 
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The SNPs that showed the highest number of significant trait-associations (with a 
maximum of 27 traits at p<1.56E-6, Table S4) clustered around loci at 85.53 and 85.62 Mb. 
As can be seen in Figure 2, most SNPs that were independently (LD R2<0.01, distance 
>250kb) significantly associated with at least one trait cluster in the middle of the gene, a 
region rich in eQTLs. 
 

 

  

Phenome-wide association study of CADM2 
 

Figure 2. The top 100 most significant SNPs for each trait with at least 1 significant SNP. The x-axis 
represents the base pair position, and the panel below shows information on the CADM2 transcripts as derived 

from https://www.ensembl.org/.
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The SNPs that showed the highest number of significant trait-associations (with a 
maximum of 27 traits at p<1.56E-6, Table S4) clustered around loci at 85.53 and 85.62 Mb. 
As can be seen in Figure 2, most SNPs that were independently (LD R2<0.01, distance 
>250kb) significantly associated with at least one trait cluster in the middle of the gene, a 
region rich in eQTLs. 
 

 

  

Phenome-wide association study of CADM2 
 

Figure 2. The top 100 most significant SNPs for each trait with at least 1 significant SNP. The x-axis 
represents the base pair position, and the panel below shows information on the CADM2 transcripts as derived 

from https://www.ensembl.org/.

https://www.ensembl.org/
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Phenome-wide association study of CADM2 
 

 

This PheWAS showed that CADM2 was involved in a wide spectrum of traits, thereby 
replicating and extending on previous findings. For most of the associations we find, 
similar associations have been reported in previous literature (Table S4). However, some 
specific associations, such as those with the specific dietary traits, daytime sleeping, and 
occupation, have not been reported before. Table S5 summarizes (functional implications 
of) putatively novel SNPs for which no phenotypic associations have been reported 
before. This study is the first that provides a comprehensive overview across a spectrum 
of psycho-behavioral traits. 
 
On the gene-level, 56 of 241 tested traits showed a significant association. All categories 
except the one for traumatic experiences contained traits that were associated with 
CADM2, with diet (7 out of 20 traits), substance use (17/60), risk taking (2/5), 
socioeconomic status and intelligence (4/8), and physical health (2/6) containing the 
most significantly associated traits. The variance explained by CADM2 was highest for 
lifetime cannabis use, followed by number of children fathered, age at first sexual 
intercourse, and risk taking. Overall, effect sizes were small (less than 0.05% for cannabis 
initiation). Few associations were found in the social interaction, sleep, and occupational 
categories. Also, there were not many mental health traits that showed an association (10 
out 53 traits). It is interesting to note the significant associations with worry and 
nervousness-like traits in the absence of association with (other) depression- and anxiety-
related traits. There may be something specific to these seemingly overlapping traits, 
translating to distinct biological pathways.  
 
Future (animal) research is needed to explain these links between CADM2 and this 
spectrum of psycho-behavioral traits in terms of biological processes. For example, it 
could be that CADM2 is important for the learning aspects of behavior, given its role in 
synaptic connectivity. Speculatively, CADM2 could be mainly involved in reward-learning 
and conditioning, giving rise to associations with risk behavior and substance use.  
 
It needs to be noted that sample sizes for the phenotypes differed substantially (from 
N=12,218 to 453,496), so that it is possible that the pattern of associations was driven in 
part by differences in power. The correlation between sample size and p-value of the 
gene-based test was moderate, r=-.38 (p=7E-10) showing that well-powered traits were 
more likely to result in a significant association. It is clear that high power was a 
requirement: the effect sizes of CADM2 were diminutive. Also, our tests were limited to the 
psycho-behavioral traits measured in the UK-Biobank; inclusion of more measures, such 
as longitudinal or non-self-report measures could contribute to a more complete picture. 
Still, the range of tested traits was quite broad and enabled us to discern interesting 
patterns. 
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Phenome-wide association study of CADM2 
 

 

This PheWAS showed that CADM2 was involved in a wide spectrum of traits, thereby 
replicating and extending on previous findings. For most of the associations we find, 
similar associations have been reported in previous literature (Table S4). However, some 
specific associations, such as those with the specific dietary traits, daytime sleeping, and 
occupation, have not been reported before. Table S5 summarizes (functional implications 
of) putatively novel SNPs for which no phenotypic associations have been reported 
before. This study is the first that provides a comprehensive overview across a spectrum 
of psycho-behavioral traits. 
 
On the gene-level, 56 of 241 tested traits showed a significant association. All categories 
except the one for traumatic experiences contained traits that were associated with 
CADM2, with diet (7 out of 20 traits), substance use (17/60), risk taking (2/5), 
socioeconomic status and intelligence (4/8), and physical health (2/6) containing the 
most significantly associated traits. The variance explained by CADM2 was highest for 
lifetime cannabis use, followed by number of children fathered, age at first sexual 
intercourse, and risk taking. Overall, effect sizes were small (less than 0.05% for cannabis 
initiation). Few associations were found in the social interaction, sleep, and occupational 
categories. Also, there were not many mental health traits that showed an association (10 
out 53 traits). It is interesting to note the significant associations with worry and 
nervousness-like traits in the absence of association with (other) depression- and anxiety-
related traits. There may be something specific to these seemingly overlapping traits, 
translating to distinct biological pathways.  
 
Future (animal) research is needed to explain these links between CADM2 and this 
spectrum of psycho-behavioral traits in terms of biological processes. For example, it 
could be that CADM2 is important for the learning aspects of behavior, given its role in 
synaptic connectivity. Speculatively, CADM2 could be mainly involved in reward-learning 
and conditioning, giving rise to associations with risk behavior and substance use.  
 
It needs to be noted that sample sizes for the phenotypes differed substantially (from 
N=12,218 to 453,496), so that it is possible that the pattern of associations was driven in 
part by differences in power. The correlation between sample size and p-value of the 
gene-based test was moderate, r=-.38 (p=7E-10) showing that well-powered traits were 
more likely to result in a significant association. It is clear that high power was a 
requirement: the effect sizes of CADM2 were diminutive. Also, our tests were limited to the 
psycho-behavioral traits measured in the UK-Biobank; inclusion of more measures, such 
as longitudinal or non-self-report measures could contribute to a more complete picture. 
Still, the range of tested traits was quite broad and enabled us to discern interesting 
patterns. 
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This study presents the first comprehensive and rigorous test of associations between 
CADM2 and psycho-behavioral traits, showing strong associations for a wide range of 
traits (many akin to health behavior). Results could be used as starting point for future 
(animal) research into the function of CADM2. Research on the trait-associations and 
function of CADM2 will further our understanding of the biology of behavior.  
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Abstract 
 
Background: Poor sleep quality and insomnia have been associated with the use of 
tobacco, alcohol, and cannabis, but it is unclear if there is a causal link. In this Mendelian 
Randomization (MR) study we examine if insomnia causes substance use and/or if 
substance use causes insomnia. 
Methods: MR uses summary effect estimates from a genome-wide association study 
(GWAS) to create a genetic instrumental variable for a proposed ‘exposure’ variable and 
then identifies that same genetic instrument in an ‘outcome’ GWAS. Using GWASs of 
insomnia, smoking (initiation, heaviness, cessation), alcohol use (drinks per week, 
dependence), and cannabis initiation, bi-directional causal effects were tested. Multiple 
sensitivity analyses were applied to assess the robustness of the findings. 
Results: There was strong evidence for positive causal effects of liability to insomnia on 
all substance use phenotypes (smoking traits, alcohol dependence, cannabis initiation), 
except alcohol per week. In the other direction, there was strong evidence that smoking 
initiation increased insomnia risk (smoking heaviness and cessation could not be tested 
as exposures). We found no evidence that alcohol use per week, alcohol dependence, or 
cannabis initiation causally affect insomnia risk. 
Conclusions: There were unidirectional effects of liability to insomnia on alcohol 
dependence and cannabis initiation, and bidirectional effects between liability to 
insomnia and smoking measures. Bidirectional effects between smoking and insomnia 
might give rise to a vicious circle. Future research should investigate if interventions 
aimed at insomnia are beneficial for substance use treatment.

Causal relationship between insomnia and substance use 
 
1. Introduction 
 
Insomnia (trouble falling and/or staying asleep) is associated with substance use, 
including alcohol, nicotine , and cannabis use. Worldwide, individuals drink on average a 
glass of alcohol per day. A fifth of US and European adults smoke (WHO, 2016a), and a 
quarter to half of them have tried cannabis (EMCDDA, 2011). Both insomnia (Bin et al., 
2012) and substance use (WHO 2016b, 2017, 2018) have serious consequences for health 
and well-being. Insight into the etiological processes underlying these associations might 
provide clues for prevention and intervention.  
 
Alcohol, nicotine, and/or cannabis use have been associated with increased prevalence 
of insomnia (Angarita et al., 2016; Sabanayagam and Shankar, 2011). These comorbidities 
may reflect overlapping genetic etiology and/or causal relationships. For smoking, 
previous studies showed a genetic correlation with insomnia (Gibson et al., 2018; Jansen 
et al., 2019). As for causal relationships, experimental studies have investigated the acute 
effects of substance use on insomnia. Alcohol use shortened sleep onset latency, but led 
to sleep disruptions in the second half of sleep (Ebrahim et al., 2013). Cannabis intake 
likewise resulted in reduced sleep onset latency, but the effects of cannabis on sleep 
quality were less clear (Babson et al., 2017). Although smokers often cite its relaxing 
effects, nicotine intake was found to actually disturb sleep (Irish et al., 2015). Reversed 
causation -from insomnia to substance use- may also play a role. For example, 
adolescents with low sleep quality have shown a stronger inclination for later substance 
use (Hasler et al., 2016), although strong causal inferences cannot be made based on 
observational designs.  
 
Mendelian Randomization (MR) can be used for causal inference in complex relationships 
(Lawlor et al., 2008). A previous MR study found that insomnia increased smoking 
heaviness and decreased chances of cessation and found no effects in the other direction 
(Gibson et al., 2018). We extend this work by using genetic data from the largest GWASs to 
date to examine genetic correlations and causal associations between insomnia and 
substance use, including alcohol and cannabis use. 
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Abstract 
 
Background: Poor sleep quality and insomnia have been associated with the use of 
tobacco, alcohol, and cannabis, but it is unclear if there is a causal link. In this Mendelian 
Randomization (MR) study we examine if insomnia causes substance use and/or if 
substance use causes insomnia. 
Methods: MR uses summary effect estimates from a genome-wide association study 
(GWAS) to create a genetic instrumental variable for a proposed ‘exposure’ variable and 
then identifies that same genetic instrument in an ‘outcome’ GWAS. Using GWASs of 
insomnia, smoking (initiation, heaviness, cessation), alcohol use (drinks per week, 
dependence), and cannabis initiation, bi-directional causal effects were tested. Multiple 
sensitivity analyses were applied to assess the robustness of the findings. 
Results: There was strong evidence for positive causal effects of liability to insomnia on 
all substance use phenotypes (smoking traits, alcohol dependence, cannabis initiation), 
except alcohol per week. In the other direction, there was strong evidence that smoking 
initiation increased insomnia risk (smoking heaviness and cessation could not be tested 
as exposures). We found no evidence that alcohol use per week, alcohol dependence, or 
cannabis initiation causally affect insomnia risk. 
Conclusions: There were unidirectional effects of liability to insomnia on alcohol 
dependence and cannabis initiation, and bidirectional effects between liability to 
insomnia and smoking measures. Bidirectional effects between smoking and insomnia 
might give rise to a vicious circle. Future research should investigate if interventions 
aimed at insomnia are beneficial for substance use treatment.

Causal relationship between insomnia and substance use 
 
1. Introduction 
 
Insomnia (trouble falling and/or staying asleep) is associated with substance use, 
including alcohol, nicotine , and cannabis use. Worldwide, individuals drink on average a 
glass of alcohol per day. A fifth of US and European adults smoke (WHO, 2016a), and a 
quarter to half of them have tried cannabis (EMCDDA, 2011). Both insomnia (Bin et al., 
2012) and substance use (WHO 2016b, 2017, 2018) have serious consequences for health 
and well-being. Insight into the etiological processes underlying these associations might 
provide clues for prevention and intervention.  
 
Alcohol, nicotine, and/or cannabis use have been associated with increased prevalence 
of insomnia (Angarita et al., 2016; Sabanayagam and Shankar, 2011). These comorbidities 
may reflect overlapping genetic etiology and/or causal relationships. For smoking, 
previous studies showed a genetic correlation with insomnia (Gibson et al., 2018; Jansen 
et al., 2019). As for causal relationships, experimental studies have investigated the acute 
effects of substance use on insomnia. Alcohol use shortened sleep onset latency, but led 
to sleep disruptions in the second half of sleep (Ebrahim et al., 2013). Cannabis intake 
likewise resulted in reduced sleep onset latency, but the effects of cannabis on sleep 
quality were less clear (Babson et al., 2017). Although smokers often cite its relaxing 
effects, nicotine intake was found to actually disturb sleep (Irish et al., 2015). Reversed 
causation -from insomnia to substance use- may also play a role. For example, 
adolescents with low sleep quality have shown a stronger inclination for later substance 
use (Hasler et al., 2016), although strong causal inferences cannot be made based on 
observational designs.  
 
Mendelian Randomization (MR) can be used for causal inference in complex relationships 
(Lawlor et al., 2008). A previous MR study found that insomnia increased smoking 
heaviness and decreased chances of cessation and found no effects in the other direction 
(Gibson et al., 2018). We extend this work by using genetic data from the largest GWASs to 
date to examine genetic correlations and causal associations between insomnia and 
substance use, including alcohol and cannabis use. 
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2. Materials and methods 

 
First, we estimated genetic correlations between insomnia and substance use with 
LDscore regression (Bulik-Sullivan et al., 2015). Second, we used MR to test for causal 
effects of insomnia on substance use and vice versa. We used the Two-Sample MR R-
package (Hemani et al., 2018) with GWAS summary statistics from non-overlapping 
samples (Table 1). The rationale behind MR is that genetic variants are randomly 
distributed in the population and therefore not affected by confounders. This makes them 
suited as instrumental variables to test causal effects of an ‘exposure’ on an ‘outcome’. 
Assumptions underlying MR are that the genetic instruments predict the exposure 
robustly (1) and are not independently associated with confounders (2) or the outcome 
(3). The latter two assumptions could be violated in case of horizontal pleiotropy (where 
one genetic variant directly affects multiple traits).  
 
Insomnia cases were people that reported they ‘usually’ had trouble falling asleep at night 
or often woke up in the middle of the night; controls ‘never/rarely’ or ‘sometimes’ 
experienced this. Smoking initiation was defined as ever having smoked regularly 
(yes/no), smoking heaviness as cigarettes smoked per day, smoking cessation as having 
quit smoking (yes/no), and alcohol per week as the number of standard drinks consumed 
per week. Alcohol dependence (yes/no) was based on clinician’s diagnosis or on a semi-
structured interview based on DSM-IV criteria. Cannabis initiation was defined as ever 
having used cannabis (yes/no). For the genetic instruments we selected independent 
SNPs that were genome-wide significantly associated with the exposure variable in the 
source GWAS (p<5E-8; Table 1). For cannabis initiation there were only 2 genome-wide 
significant variants after excluding the UK Biobank sample, so for this phenotype we 
included SNPs that reached a ‘suggestive’ threshold of p<1E-5. Smoking heaviness and 
cessation could not be used as exposures, as the insomnia summary statistics could not 
be stratified on smoking status. Instrument strength was estimated by summing the 
variance explained (R2) by each independent instrument SNP in the exposure (Table 1).  
 
The main analysis was an inverse-variance weighted (IVW) meta-analysis of the SNP-
outcome association divided by the SNP-exposure association for each SNP. Sensitivity 
analyses were used to assess the robustness of the IVW findings against violation of the 
MR assumptions. Weighted median and weighted mode regression correct for effect size 
outliers that could represent pleiotropic effects (Hartwig et al., 2017). MR-Egger 
regression provides an intercept that indicates the presence of pleiotropy, and adjusts 
the regression coefficient for such effects (Bowden et al., 2015). MR-Egger relies on the NO 
Measurement Error (NOME) assumption, violation of which can be tested with the I2-
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statistic. When I2 was between 0.6 and 0.9, simulation extrapolation (SIMEX) was used to 
correct the MR-Egger for NOME violation; if I2 was below 0.6 MR-Egger was not reported 
(Bowden et al., 2016). We also applied Generalised summary-data-based MR (GSMR), 
which gains statistical power by taking low levels of linkage disequilibrium between the 
included SNPs into account, and deletes effect size outliers. Using Steiger filtering, MR 
analyses were repeated excluding SNPs that explained more variance in the outcome 
than the exposure, and again retaining only SNPs that explained significantly (p<.05) more 
variance in the exposure (to rule out reverse causation; Hemani et al., 2017). Cochran’s Q-
statistic was used to assess SNP effect heterogeneity (Bowden et al., 2018) and the F-
statistic for weak instrument bias (Burgess et al., 2011). Finally, leave-one-out IVW 
analyses were used to give an indication of disproportional effects of single SNPs (Hemani 
et al., 2018). Rather than assessing the strength of the statistical evidence by p-values 
only, we also consider the effect sizes across the IVW and sensitivity analyses to inform 
our interpretation.  
 
Table 1. Sources of the genome-wide association summary statistics used for the two-sample MR, the number 
of SNPs in the IVW exposure instrument (being the independent lead SNPs as reported in the source GWAS that 

were also present in the outcome SNP set, #exposure SNPs), the variance explained in the respective 
phenotype by these instrument SNPs (Instrument R2), and the genetic correlation of each substance use trait 

with insomnia (rg) with its associated p-value. For the computation of rg we used the full GWAS summary 
statistics except for insomnia, where 23andMe participants were excluded.  

 Phenotype Source Sample  #exposure 
SNPsa  

Instrument 
R2 

rg, SE  
(p) 

Insomnia Jansen et al. (2019) excl. 23andMe 
N=386,533 

248 0.89% NA 

Smoking initiation Liu et al. (2019) excl. UKB* 
N=848,460 

360 1.16% .23, .02  
(2.09E-23) 

Smoking heaviness  Liu et al. (2019) excl. UKB 
N=143,210 

NAa NAa .27, .03  
(5.42E-17) 

Smoking cessation Liu et al. (2019) excl. UKB 
N=216,590 

NAa NAa .28, .04  
(5.56E-12) 

Alcohol per week Liu et al. (2019) excl. UKB 
N=630,154 

91 0.59% .03, .02  
(.029) 

Alcohol dependence Walters et al. (2018) N=46,568 8 0.36% .29, .07  
(1.42E-5) 

Cannabis initiation Pasman et al. (2018) excl. UKB 
N=57,980 

32b 1.33% .04, .03  
(.205) 

*UKB=UK Biobank 
a The effect of smoking heaviness and cessation on insomnia could not be tested because the insomnia GWAS 

could not be stratified on smoking status 
b p<1e05 

 
 



562882-L-bw-Pasman562882-L-bw-Pasman562882-L-bw-Pasman562882-L-bw-Pasman
Processed on: 4-8-2021Processed on: 4-8-2021Processed on: 4-8-2021Processed on: 4-8-2021 PDF page: 181PDF page: 181PDF page: 181PDF page: 181

181Part 2 – Chapter 7 
 
2. Materials and methods 

 
First, we estimated genetic correlations between insomnia and substance use with 
LDscore regression (Bulik-Sullivan et al., 2015). Second, we used MR to test for causal 
effects of insomnia on substance use and vice versa. We used the Two-Sample MR R-
package (Hemani et al., 2018) with GWAS summary statistics from non-overlapping 
samples (Table 1). The rationale behind MR is that genetic variants are randomly 
distributed in the population and therefore not affected by confounders. This makes them 
suited as instrumental variables to test causal effects of an ‘exposure’ on an ‘outcome’. 
Assumptions underlying MR are that the genetic instruments predict the exposure 
robustly (1) and are not independently associated with confounders (2) or the outcome 
(3). The latter two assumptions could be violated in case of horizontal pleiotropy (where 
one genetic variant directly affects multiple traits).  
 
Insomnia cases were people that reported they ‘usually’ had trouble falling asleep at night 
or often woke up in the middle of the night; controls ‘never/rarely’ or ‘sometimes’ 
experienced this. Smoking initiation was defined as ever having smoked regularly 
(yes/no), smoking heaviness as cigarettes smoked per day, smoking cessation as having 
quit smoking (yes/no), and alcohol per week as the number of standard drinks consumed 
per week. Alcohol dependence (yes/no) was based on clinician’s diagnosis or on a semi-
structured interview based on DSM-IV criteria. Cannabis initiation was defined as ever 
having used cannabis (yes/no). For the genetic instruments we selected independent 
SNPs that were genome-wide significantly associated with the exposure variable in the 
source GWAS (p<5E-8; Table 1). For cannabis initiation there were only 2 genome-wide 
significant variants after excluding the UK Biobank sample, so for this phenotype we 
included SNPs that reached a ‘suggestive’ threshold of p<1E-5. Smoking heaviness and 
cessation could not be used as exposures, as the insomnia summary statistics could not 
be stratified on smoking status. Instrument strength was estimated by summing the 
variance explained (R2) by each independent instrument SNP in the exposure (Table 1).  
 
The main analysis was an inverse-variance weighted (IVW) meta-analysis of the SNP-
outcome association divided by the SNP-exposure association for each SNP. Sensitivity 
analyses were used to assess the robustness of the IVW findings against violation of the 
MR assumptions. Weighted median and weighted mode regression correct for effect size 
outliers that could represent pleiotropic effects (Hartwig et al., 2017). MR-Egger 
regression provides an intercept that indicates the presence of pleiotropy, and adjusts 
the regression coefficient for such effects (Bowden et al., 2015). MR-Egger relies on the NO 
Measurement Error (NOME) assumption, violation of which can be tested with the I2-
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statistic. When I2 was between 0.6 and 0.9, simulation extrapolation (SIMEX) was used to 
correct the MR-Egger for NOME violation; if I2 was below 0.6 MR-Egger was not reported 
(Bowden et al., 2016). We also applied Generalised summary-data-based MR (GSMR), 
which gains statistical power by taking low levels of linkage disequilibrium between the 
included SNPs into account, and deletes effect size outliers. Using Steiger filtering, MR 
analyses were repeated excluding SNPs that explained more variance in the outcome 
than the exposure, and again retaining only SNPs that explained significantly (p<.05) more 
variance in the exposure (to rule out reverse causation; Hemani et al., 2017). Cochran’s Q-
statistic was used to assess SNP effect heterogeneity (Bowden et al., 2018) and the F-
statistic for weak instrument bias (Burgess et al., 2011). Finally, leave-one-out IVW 
analyses were used to give an indication of disproportional effects of single SNPs (Hemani 
et al., 2018). Rather than assessing the strength of the statistical evidence by p-values 
only, we also consider the effect sizes across the IVW and sensitivity analyses to inform 
our interpretation.  
 
Table 1. Sources of the genome-wide association summary statistics used for the two-sample MR, the number 
of SNPs in the IVW exposure instrument (being the independent lead SNPs as reported in the source GWAS that 

were also present in the outcome SNP set, #exposure SNPs), the variance explained in the respective 
phenotype by these instrument SNPs (Instrument R2), and the genetic correlation of each substance use trait 

with insomnia (rg) with its associated p-value. For the computation of rg we used the full GWAS summary 
statistics except for insomnia, where 23andMe participants were excluded.  

 Phenotype Source Sample  #exposure 
SNPsa  

Instrument 
R2 

rg, SE  
(p) 

Insomnia Jansen et al. (2019) excl. 23andMe 
N=386,533 

248 0.89% NA 

Smoking initiation Liu et al. (2019) excl. UKB* 
N=848,460 

360 1.16% .23, .02  
(2.09E-23) 

Smoking heaviness  Liu et al. (2019) excl. UKB 
N=143,210 

NAa NAa .27, .03  
(5.42E-17) 

Smoking cessation Liu et al. (2019) excl. UKB 
N=216,590 

NAa NAa .28, .04  
(5.56E-12) 

Alcohol per week Liu et al. (2019) excl. UKB 
N=630,154 

91 0.59% .03, .02  
(.029) 

Alcohol dependence Walters et al. (2018) N=46,568 8 0.36% .29, .07  
(1.42E-5) 

Cannabis initiation Pasman et al. (2018) excl. UKB 
N=57,980 

32b 1.33% .04, .03  
(.205) 

*UKB=UK Biobank 
a The effect of smoking heaviness and cessation on insomnia could not be tested because the insomnia GWAS 

could not be stratified on smoking status 
b p<1e05 
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3. Results 
 
There were moderate genetic correlations between the insomnia GWAS and all substance 
use GWASs except alcohol per week (small overlap) and cannabis initiation (no significant 
overlap; Table 1).  
 
Insomnia to substance use 
The IVW analyses showed strong evidence for causal effects of liability to insomnia on all 
substance use traits except alcohol use per week (Table 2). For all analyses except 
insomnia-on-cannabis initiation there was evidence for SNP-effect heterogeneity, 
although leave-one-out analyses did not show the effects were driven by a single SNP 
(Figures S1-S6). The insomnia instrument had low explained variance, but did not suffer 
from weak instrument bias (F>10). I2, F, and Q statistics are presented in Table S1. The 
effect of insomnia on substance use retained similar effect sizes across the weighted 
mode, median, and GSMR analyses (although effect estimates became less precise). MR-
Egger results were not reported because the I2 statistic was below 0.6. For smoking and 
alcohol use per week outcomes the proportion of SNPs that explained more variance in 
the outcome than in insomnia varied from 5.4 to 20.6% (Table S2). The Steiger-filtered 
IVW with those SNPs excluded showed only slightly attenuated effect sizes. However, 
when retaining only SNPs that significantly explained more variance in insomnia than in 
the outcome, strong evidence remained only for an effect on smoking initiation. For 
alcohol dependence (36.0%) and cannabis initiation (25.4%) large proportions of SNPs 
explained more variance in the outcome than in the exposure. Filtering those out led to 
substantial attenuation of effects (Table 2).  
 
Substance use to insomnia 
The IVW analyses showed a causal effect of smoking initiation on insomnia risk, and no 
effects of other traits. In the weighted median, mode, and GSMR sensitivity analyses the 
effect size of smoking initiation was roughly equal, although statistical evidence was 
slightly weaker (substantially weaker in the weighted mode). Smoking initiation-on-
insomnia was the only analysis with sufficiently high I2 to allow for MR-Egger intercept 
interpretation, showing no evidence for pleiotropy (p=.347), although the MR-Egger 
estimate was substantially attenuated. Less than 4% of the instrument SNPs explained 
more variance in insomnia outcome than in smoking initiation (Table S2). Filtering those 
out hardly changed results, although retaining only SNPs that explained significantly 
more variance in the exposure did attenuate the effects (Table 2). There was no evidence 
for heterogeneity or weak instrument bias (Table S1, Figures S7-S10). 
 

Causal relationship between insomnia and substance use 
 
4. Discussion 
 
There were moderate genetic correlations between insomnia and smoking traits and 
alcohol dependence, such that insomnia was genetically associated with higher levels of 
substance use. The genetic correlation with alcohol per week was small but significant, 
and there was no significant correlation with cannabis initiation.  
 
Overall, we found more evidence for causal effects from liability to insomnia to substance 
use than vice versa. MR results suggest that insomnia leads to heavier smoking, increased 
chances of smoking initiation, alcohol dependence, and cannabis initiation, and 
decreased chances of smoking cessation. The finding that insomnia caused heavier 
smoking and lowers chances of smoking cessation confirms results from Jansen et al. 
(2019) and Gibson et al. (2018) on smoking. As a possible interpretation, a desire to smoke 
may be induced by sleep deprivation (Hamidovic and de Wit, 2009). The causal effects of 
insomnia on alcohol use may be interpreted in light of a self-medication framework, as 
alcohol has somnolent properties (Goodhines et al., 2019). For cannabis the same 
reasoning might apply, although this interpretation seems more likely for a measure of 
cannabis use frequency rather than lifetime use. While we found an effect of insomnia on 
alcohol dependence, we found no effect on alcohol use. This might be due to the measure 
of alcohol use in quantity per week, which does not distinguish drinking large quantities 
in one evening from drinking one glass with dinner daily; the first would impair sleep 
quality more than the latter. The genetic architecture of drinking frequency seems to 
differ from that of drinking quantity (Marees et al., 2019). 
 
In the other direction, we found an effect of smoking initiation on insomnia. A previous 
study testing this relationship did not find this effect, possibly due to lower power (Gibson 
et al., 2018). The effect of smoking on insomnia might be due to nicotine’s stimulant 
properties (Greenland et al., 1998), although we could not test the effect of smoking 
heaviness. The absence of an effect of alcohol use and dependence on insomnia is in 
contrast with experimental literature that suggested a negative effect of alcohol on sleep 
quality (Ebrahim et al., 2013). Our results might be due to low instrument strength for the 
alcohol phenotypes. Also, the genetic instruments capture lifetime vulnerability to 
alcohol use and dependence, which is not directly comparable to the immediate effects 
of alcohol tested in experiments.  
 
Results were reasonably robust against MR assumption violation. However, the effects of 
insomnia on alcohol dependence and cannabis initiation were in part driven by 
pleiotropic SNPs, suggesting caution in interpreting these findings. Although the analysis 
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3. Results 
 
There were moderate genetic correlations between the insomnia GWAS and all substance 
use GWASs except alcohol per week (small overlap) and cannabis initiation (no significant 
overlap; Table 1).  
 
Insomnia to substance use 
The IVW analyses showed strong evidence for causal effects of liability to insomnia on all 
substance use traits except alcohol use per week (Table 2). For all analyses except 
insomnia-on-cannabis initiation there was evidence for SNP-effect heterogeneity, 
although leave-one-out analyses did not show the effects were driven by a single SNP 
(Figures S1-S6). The insomnia instrument had low explained variance, but did not suffer 
from weak instrument bias (F>10). I2, F, and Q statistics are presented in Table S1. The 
effect of insomnia on substance use retained similar effect sizes across the weighted 
mode, median, and GSMR analyses (although effect estimates became less precise). MR-
Egger results were not reported because the I2 statistic was below 0.6. For smoking and 
alcohol use per week outcomes the proportion of SNPs that explained more variance in 
the outcome than in insomnia varied from 5.4 to 20.6% (Table S2). The Steiger-filtered 
IVW with those SNPs excluded showed only slightly attenuated effect sizes. However, 
when retaining only SNPs that significantly explained more variance in insomnia than in 
the outcome, strong evidence remained only for an effect on smoking initiation. For 
alcohol dependence (36.0%) and cannabis initiation (25.4%) large proportions of SNPs 
explained more variance in the outcome than in the exposure. Filtering those out led to 
substantial attenuation of effects (Table 2).  
 
Substance use to insomnia 
The IVW analyses showed a causal effect of smoking initiation on insomnia risk, and no 
effects of other traits. In the weighted median, mode, and GSMR sensitivity analyses the 
effect size of smoking initiation was roughly equal, although statistical evidence was 
slightly weaker (substantially weaker in the weighted mode). Smoking initiation-on-
insomnia was the only analysis with sufficiently high I2 to allow for MR-Egger intercept 
interpretation, showing no evidence for pleiotropy (p=.347), although the MR-Egger 
estimate was substantially attenuated. Less than 4% of the instrument SNPs explained 
more variance in insomnia outcome than in smoking initiation (Table S2). Filtering those 
out hardly changed results, although retaining only SNPs that explained significantly 
more variance in the exposure did attenuate the effects (Table 2). There was no evidence 
for heterogeneity or weak instrument bias (Table S1, Figures S7-S10). 
 

Causal relationship between insomnia and substance use 
 
4. Discussion 
 
There were moderate genetic correlations between insomnia and smoking traits and 
alcohol dependence, such that insomnia was genetically associated with higher levels of 
substance use. The genetic correlation with alcohol per week was small but significant, 
and there was no significant correlation with cannabis initiation.  
 
Overall, we found more evidence for causal effects from liability to insomnia to substance 
use than vice versa. MR results suggest that insomnia leads to heavier smoking, increased 
chances of smoking initiation, alcohol dependence, and cannabis initiation, and 
decreased chances of smoking cessation. The finding that insomnia caused heavier 
smoking and lowers chances of smoking cessation confirms results from Jansen et al. 
(2019) and Gibson et al. (2018) on smoking. As a possible interpretation, a desire to smoke 
may be induced by sleep deprivation (Hamidovic and de Wit, 2009). The causal effects of 
insomnia on alcohol use may be interpreted in light of a self-medication framework, as 
alcohol has somnolent properties (Goodhines et al., 2019). For cannabis the same 
reasoning might apply, although this interpretation seems more likely for a measure of 
cannabis use frequency rather than lifetime use. While we found an effect of insomnia on 
alcohol dependence, we found no effect on alcohol use. This might be due to the measure 
of alcohol use in quantity per week, which does not distinguish drinking large quantities 
in one evening from drinking one glass with dinner daily; the first would impair sleep 
quality more than the latter. The genetic architecture of drinking frequency seems to 
differ from that of drinking quantity (Marees et al., 2019). 
 
In the other direction, we found an effect of smoking initiation on insomnia. A previous 
study testing this relationship did not find this effect, possibly due to lower power (Gibson 
et al., 2018). The effect of smoking on insomnia might be due to nicotine’s stimulant 
properties (Greenland et al., 1998), although we could not test the effect of smoking 
heaviness. The absence of an effect of alcohol use and dependence on insomnia is in 
contrast with experimental literature that suggested a negative effect of alcohol on sleep 
quality (Ebrahim et al., 2013). Our results might be due to low instrument strength for the 
alcohol phenotypes. Also, the genetic instruments capture lifetime vulnerability to 
alcohol use and dependence, which is not directly comparable to the immediate effects 
of alcohol tested in experiments.  
 
Results were reasonably robust against MR assumption violation. However, the effects of 
insomnia on alcohol dependence and cannabis initiation were in part driven by 
pleiotropic SNPs, suggesting caution in interpreting these findings. Although the analysis 
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of smoking initiation on insomnia did not show strong evidence for it, pleiotropy might 
also play a role in this association. For example, smoking initiation was found to be 
positively associated with ADHD liability in children that have not started smoking yet, 
indicating that it might represent something different than only the inclination to smoke 
(Treur et al., 2019). A limitation might be the use of instruments that explained limited 
amounts of variance in their respective phenotype (0.36-1.33%). Sensitivity analyses 
correcting for this showed attenuation in effect sizes. Another limitation is that we 
investigated a simplistic measure of cannabis use (ever vs, never); however, to date no 
suitable, sufficiently powered GWAS are available on more in-depth cannabis use 
phenotypes, such as use frequency or quantity. For cannabis initiation we used a more 
inclusive p-value threshold, which might have increased chances of pleiotropy. However, 
filtering out instruments that explained more variance in the exposure than the outcome 
did not have strong effects on the results.  
 
To summarize, we find genetic overlap between insomnia and substance use, evidence 
for causal effects from insomnia to most substance use traits, and a causal effect of 
smoking initiation on insomnia. Future research should focus on underlying mechanisms 
and potential implications for clinical practice. As has been found previously (Patterson 
et al., 2017), our results suggest that treatment for substance use and insomnia could be 
optimized when attention is devoted to both issues. 
 
 

C
au

sa
l r

el
at

io
n

sh
ip

 b
et

w
ee

n
 in

so
m

n
ia

 a
n

d
 s

u
b

st
an

ce
 u

se
 

  
Ta

bl
e 

2.
 R

es
ul

ts
 fo

r t
he

 M
R 

an
al

ys
es

 w
ith

 th
e 

IV
W

 re
pr

es
en

tin
g 

th
e 

m
ai

n 
an

al
ys

is
 a

nd
 th

e 
re

m
ai

ni
ng

 re
pr

es
en

tin
g 

th
e 

re
su

lts
 fo

r t
he

 se
ns

iti
vi

ty
 

an
al

ys
es

.  
 

 
in

so
m

> 
in

so
m

> 
in

so
m

 >
 

in
so

m
 >

 
in

so
m

 >
 

in
so

m
 >

 
sm

ok
 in

it>
  

al
c 

w
ee

k>
  

al
c 

de
p 

> 
ca

n 
in

it 
> 

 
 

sm
ok

 in
it

 
sm

ok
 h

ea
v 

sm
ok

 c
es

 
al

c 
w

ee
k 

al
c 

de
p 

ca
n 

in
it

 
in

so
m

 
in

so
m

 
in

so
m

 
in

so
m

 

IV
W

 
N

SN
Ps

 
20

5 
20

4 
20

5 
20

5 
20

3 
20

1 
31

6 
78

 
5 

28
 

be
ta

 (S
E)

 
0.

13
 (0

.0
2)

 
0.

11
 (0

.0
2)

 
-0

.0
8 

(0
.0

2)
 

-0
.0

1 
(4

E-
3)

 
0.

16
 (0

.0
4)

 
0.

18
 (0

.0
6)

 
0.

11
 (0

.0
3)

 
0.

12
 (0

.1
3)

 
0.

05
 (0

.0
5)

 
7E

-4
 (0

.0
1)

 

O
R 

(S
E)

 
N

A 
N

A 
N

A 
N

A 
1.

18
 (0

.0
9)

 
1.

20
 (0

.1
4)

 
1.

11
 (0

.0
6)

 
1.

13
 (0

.2
5)

 
1.

05
 (0

.0
9)

 
1.

00
 (0

.0
2)

 

p-
va

lu
e 

1.
58

E-
12

 
1.

67
E-

12
 

6.
37

E-
8 

.1
15

 
5.

43
E-

5 
.0

03
 

3.
68

E-
5 

.3
49

 
.2

92
 

.9
37

 

W
ei

gh
te

d 
m

ed
ia

n 
N

SN
Ps

 
20

5 
20

4 
20

5 
20

5 
20

3 
20

1 
31

6 
78

 
5 

28
 

be
ta

 (S
E)

 
0.

08
 (0

.0
2)

 
0.

08
 (0

.0
2)

 
-0

.0
7 

(0
.0

2)
 

-0
.0

1 
(5

E-
3)

 
0.

19
 (0

.0
6)

 
0.

16
 (0

.0
9)

 
0.

11
 (0

.0
4)

 
0.

09
 (0

.1
9)

 
0.

04
 (0

.0
6)

 
-2

E-
3 

(0
.0

1)
 

O
R 

(S
E)

 
N

A 
N

A 
N

A 
N

A 
1.

21
 (0

.1
4)

 
1.

17
 (0

.1
9)

 
1.

11
 (0

.0
8)

 
1.

10
 (0

.3
4)

 
1.

05
 (0

.1
1)

 
1.

00
 (0

.0
3)

 

p-
va

lu
e 

3.
70

E-
7 

1.
41

E-
5 

6.
42

E-
4 

.2
63

 
1.

64
E-

3 
.0

86
 

3.
79

E-
3 

.6
24

 
.4

56
 

.8
66

 

W
ei

gh
te

d 
m

od
e 

N
SN

Ps
 

20
4 

20
4 

20
5 

20
5 

20
3 

20
1 

31
6 

78
 

5 
28

 

be
ta

 (S
E)

 
0.

10
 (0

.0
3)

 
0.

07
 (0

.0
4)

 
-0

.0
8 

(0
.0

4)
 

-0
.0

1 
(1

0E
-3

) 
0.

28
 (0

.1
3)

 
0.

20
 (0

.1
8)

 
0.

10
 (0

.1
1)

 
0.

09
 (0

.4
6)

 
0.

04
 (0

.0
8)

 
3E

-3
 (0

.0
1)

 

O
R 

(S
E)

 
N

A 
N

A 
N

A 
N

A 
1.

32
 (0

.2
9)

 
1.

22
 (0

.3
5)

 
1.

11
 (0

.2
1)

 
1.

10
 (0

.6
5)

 
1.

04
 (0

.1
5)

 
1.

00
 (0

.0
3)

 

p-
va

lu
e 

4.
15

E-
4 

.0
60

 
.0

59
 

.4
70

 
.0

31
 

.2
46

 
.3

54
 

.8
43

 
.6

34
 

.8
16

 

M
R-

Eg
ge

r 
N

SN
Ps

 
a 

a  
a  

a  
a  

a  
31

6 
78

 
5b 

28
b 

be
ta

 (S
E)

 
 

 
 

 
 

 
0.

03
 (0

.0
9)

 
0.

11
 (0

.2
1)

 
0.

02
 (0

.0
4)

 
-4

E-
3 

(9
E-

3)
 

O
R 

(S
E)

 
 

 
 

 
 

 
1.

03
 (0

.1
6)

 
1.

12
 (0

.9
6)

 
1.

02
 (4

E-
3)

 
1.

00
 (0

.0
1)

 

p-
va

lu
e 

 
 

 
 

 
 

.7
37

 
.5

79
 

.7
03

 
.6

71
 

GS
M

R 
N

SN
Ps

 
19

4 
20

0 
20

1 
20

0 
20

2 
20

0 
30

6 
71

 
c 

28
 

be
ta

 (S
E)

 
0.

11
 (0

.0
1)

 
0.

09
 (0

.0
1)

 
-0

.0
7 

(0
.0

1)
 

-0
.0

1 
(3

E-
3)

 
0.

13
 (0

.0
4)

 
0.

16
  (

0.
06

) 
0.

11
 (0

.0
2)

 
0.

10
 (0

.1
3)

 
 

7E
-4

 (0
.0

1)
 

O
R 

(S
E)

 
N

A 
N

A 
N

A 
N

A 
1.

14
 (0

.0
4)

 
1.

17
 (0

.0
7)

 
1.

12
 (0

.0
3)

 
1.

11
 (0

.1
3)

 
 

1.
00

 (0
.0

1)
 

p-
va

lu
e 

5.
00

E-
26

 
4.

08
E-

14
 

2.
92

E-
7 

.0
76

 
8.

85
E-

4 
.0

12
 

3.
29

E-
5 

.4
24

 
 

.9
39

 



562882-L-bw-Pasman562882-L-bw-Pasman562882-L-bw-Pasman562882-L-bw-Pasman
Processed on: 4-8-2021Processed on: 4-8-2021Processed on: 4-8-2021Processed on: 4-8-2021 PDF page: 185PDF page: 185PDF page: 185PDF page: 185

185Part 2 – Chapter 7 
 
of smoking initiation on insomnia did not show strong evidence for it, pleiotropy might 
also play a role in this association. For example, smoking initiation was found to be 
positively associated with ADHD liability in children that have not started smoking yet, 
indicating that it might represent something different than only the inclination to smoke 
(Treur et al., 2019). A limitation might be the use of instruments that explained limited 
amounts of variance in their respective phenotype (0.36-1.33%). Sensitivity analyses 
correcting for this showed attenuation in effect sizes. Another limitation is that we 
investigated a simplistic measure of cannabis use (ever vs, never); however, to date no 
suitable, sufficiently powered GWAS are available on more in-depth cannabis use 
phenotypes, such as use frequency or quantity. For cannabis initiation we used a more 
inclusive p-value threshold, which might have increased chances of pleiotropy. However, 
filtering out instruments that explained more variance in the exposure than the outcome 
did not have strong effects on the results.  
 
To summarize, we find genetic overlap between insomnia and substance use, evidence 
for causal effects from insomnia to most substance use traits, and a causal effect of 
smoking initiation on insomnia. Future research should focus on underlying mechanisms 
and potential implications for clinical practice. As has been found previously (Patterson 
et al., 2017), our results suggest that treatment for substance use and insomnia could be 
optimized when attention is devoted to both issues. 
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Supplementary Table S1. Robustness checks for the two-sample MR analyses. 
 

Shaded columns indicate values that meet criteria for NOME assumption violation, heterogeneity, or weak 
instrument bias, respectively (I2<0.6, significant Q, F<10) 

 
 
 

Table S2a.Number of SNPs that explained more variance in the outcome than in the exposure (Steiger filtered) 
with percentage of the original number of SNPs (original IVW). In addition, the number of SNPs that explained 

more variance in the outcome with p<.05  
       

 #SNPs original IVW Steiger filtered (%) 

insom > smok init 205 24 (11.71%) 131 (63.90%) 
insom > cig day 204 42 (20.59%) 176 (86.27%) 
insom > smok ces 205 11 (5.37%) 145 (70.73%) 
insom > alc week 205 14 (6.83%) 115 (56.10%) 
insom > alc dep 203 73 (35.69%) 203 (100%) 
insom > can init 201 51 (25.37%) 200 (99.50%) 
smok init > insom 316 11 (3.48%) 173 (54.75%) 
alc week > insom 78 9 (11.54%) 48 (61.54%) 
alc dep > insom 5 0 (0%) 0 (0%) 
can init > insom 28 0 (0%) 0 (0%) 

*Odds ratios are given for binary outcomes (note that smoking initiation and cessation were not binary 
because in the summary statistics they were rescaled to SD units)    

  

 
I-squared Cochran's Q (p) F 

insom > smok init 0.49 1025.40 (1.43E-109) 11.54 

insom > cig day 0.51 369.63 (8.07E-12) 11.58 

insom > smok ces 0.49 316.84 (6.83E-07) 11.54 

insom > alc week 0.49 465.90 (1.57E-22) 11.54 

insom > alc dep 0.49 236.45 (.049) 11.35 

insom > can init 0.48 219.86 (.160) 11.59 

smok init > insom 0.9 127.66 (>.999) 27.74 

alc week > insom 0.97 33.62 (>.999) 38.23 

alc dep > insom 0.79 20.87 (.995) 29.17 

can init > insom 0.77 6.11 (>.999) 21.57 
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Supplementary Figure S1a. Scatter plot for insomnia to smoking initiation 
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Supplementary Figure S1a. Scatter plot for insomnia to smoking initiation 
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Supplementary Figure S2a. Scatter plot for insomnia to cigarettes per day 
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Supplementary Figure S3a. Scatter plot for insomnia to smoking cessation 
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Supplementary Figure S2a. Scatter plot for insomnia to cigarettes per day 
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Supplementary Figure S3a. Scatter plot for insomnia to smoking cessation 
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Supplementary Figure S4a. Scatter plot for insomnia to alcohol per week 
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Supplementary Figure S5a. Scatter plot for insomnia to alcohol dependence 
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Supplementary Figure S4a. Scatter plot for insomnia to alcohol per week 
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Supplementary Figure S5a. Scatter plot for insomnia to alcohol dependence 
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Supplementary Figure S6a. Scatter plot for insomnia to cannabis initiation 
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Supplementary Figure S7a. Scatter plot for smoking initiation to insomnia 
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Supplementary Figure S6a. Scatter plot for insomnia to cannabis initiation 
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Supplementary Figure S7a. Scatter plot for smoking initiation to insomnia 
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Supplementary Figure S8a. Scatter plot for alcohol per week to insomnia 
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Supplementary Figure S9a. Scatter plot for alcohol dependence to insomnia 
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Supplementary Figure S8a. Scatter plot for alcohol per week to insomnia 
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Supplementary Figure S9a. Scatter plot for alcohol dependence to insomnia 
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Supplementary Figure S10a. Scatter plot for cannabis initiation to insomnia 
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Corrigendum  
 
It has come to the attention of the authors that a correction is needed to our paper 
“Causal relationships between substance use and insomnia”. For our alcohol and 
smoking genetic instruments and outcomes we used summary statistics from the GSCAN 
meta-analyses (Liu et al., 2019). As the full summary statistics including data from 
23andMe could not be provided by the GSCAN authors, we performed our own meta-
analyses of 23andMe data (which we obtained from 23andMe through application) with 
summary statistics from all other GSCAN samples, excluding UK-Biobank. We could not 
replicate the exact method that GSCAN used for their meta-analyses (rareGWAMA), as that 
would have required information from the individual contributing cohorts. We rather 
used METAL to conduct the meta-analyses (Willer et al., 2010), and weighted the SNP-
effects by the inverse of the standard errors. However, as the phenotype measurements 
in the original samples were heterogeneous, effect sizes and standard errors were not on 
the same scale, so SNP effects should have been weighted by their sample sizes.  
 
We re-conducted the meta-analyses, now based on sample size. As N-weighted meta-
analysis results in z-scores rather than betas and standard errors, we had to derive these 
using procedures described before (Taylor et al., 2016). For beta, we used 𝛽𝛽𝛽𝛽 =

𝑧𝑧𝑧𝑧−𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑠𝑠𝑠𝑠

√𝑁𝑁𝑁𝑁∗ 1
�𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸(1−𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸)

, with EAF representing the frequency of the effect allele in a European 

ancestry reference panel (The 1000 Genomes Project Consortium, 2015). The 

corresponding standard error was computed using 𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖 = 𝛽𝛽𝛽𝛽
𝑧𝑧𝑧𝑧−𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑠𝑠𝑠𝑠

. We observed genomic 

inflation in the summary statistics for some of the traits, in which case the standard error 
was corrected using the LD-score regression intercept with 𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑐𝑐𝑐𝑐 =
�𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖2 ∗ 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 and corresponding p-values were computed. The genetic correlations 
between the old and new summary statistics were high (for smoking initiation rg=.98, 
cigarettes per day rg=.82, smoking cessation rg=.96, alcohol per week rg>.99). Using the 
new summary statistics, we recreated the genetic instruments and reran the MR analyses 
following identical procedures as before. 
 
The new instruments had slightly higher instrument R2 and showed similar genetic 
correlations with insomnia (see Table 1). Results from the MR analyses are presented in 
Table 2. Comparing the results with the original ones, there are some fluctuations in betas 
and p-values in both directions, but the overall patterns were the same; i.e., for all 
analyses the direction and significance of effects and remained the same, such that the 
new results do not lead to alternative interpretations. Additional statistics for robustness 
checks and sensitivity analyses can be found in the updated Supplementary Material. The 
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Supplementary Figure S10a. Scatter plot for cannabis initiation to insomnia 
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statistics show only minor differences from the previous results. One notable exception 
was the lower I2 for the analysis from smoking initiation on insomnia (indicating 
substantial NOME violation), so that MR Egger analysis for this relationship could no 
longer be interpreted. Figures S1a-S10a display the scatter plots for the MR analyses.  
 
Overall, we conclude that changes in results were negligible and did not merit different 
interpretations. Thus, the conclusions of our original publication stand: we found 
evidence for positive causal effects of liability to insomnia on all substance use 
phenotypes (smoking traits, alcohol dependence, cannabis initiation), except alcohol per 
week. Also, we found strong evidence that smoking initiation increased insomnia risk. 
  

Causal relationship between insomnia and substance use 
 
Table 1. Sources of the genome-wide association summary statistics used for the two-sample MR, the number 
of SNPs in the IVW exposure instrument (being the independent lead SNPs as reported in the source GWAS that 

were also present in the outcome SNP set, #exposure SNPs), the variance explained in the respective 
phenotype by these instrument SNPs (Instrument R2), and the genetic correlation of each substance use trait 

with insomnia (rg) with its associated p-value. For the computation of rg we used the full GWAS summary 
statistics except for insomnia, where 23andMe participants were excluded.  

a The effect of smoking heaviness and cessation on insomnia could not be tested because the insomnia GWAS  
could not be stratified on smoking status 

 

  #exposure SNPsa  Instrument R2  rg, SE (p) 

Phenotype Old New  Old New  Old New 
Smoking initiation 360 366  1.16% 1.49%  .23, .02 (2.09E-23) .22, .02 (2.88E-23) 
Smoking heaviness  NAa NAa  NAa NAa  .27, .03 (5.42E-17) .30, .04 (7.07E-12) 
Smoking cessation NAa NAa  NAa NAa  .28, .04 (5.56E-12) .25, .04 (5.92E-12) 
Alcohol per week 91 99  0.59% 0.68%  .03, .02 (.029) .02, .03 (.058) 
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Abstract 

 
Background: Structural variation in subcortical brain regions has been linked to 
substance use, including the most prevalent substances nicotine and alcohol. It may be 
that pre-existing differences in subcortical brain volume affect smoking and alcohol use, 
but there is also evidence that smoking and alcohol use can lead to structural changes. 
We assess the causal nature of this complex relationship with bi-directional Mendelian 
randomization (MR). Methods: MR uses genetic variants predictive of a certain trait 
(‘exposure’) as instrumental variables to test causal effects on a certain outcome. Due to 
random assortment at meiosis, genetic variants shouldn’t be associated with 
confounders, allowing less biased causal inference. We employed summary-level data of 
the largest available genome-wide association studies of subcortical brain region 
volumes (nucleus accumbens, amygdala, caudate nucleus, hippocampus, pallidum, 
putamen, and thalamus; n=50,290) and smoking and alcohol use (smoking initiation, 
n=848,460; cigarettes per day, n=216,590; smoking cessation, n=378,249; alcohol drinks 
per week, n=630,154; alcohol dependence, n=46,568). The main analysis, inverse-variance 
weighted regression, was verified by a wide range of sensitivity methods. Results: There 
was strong evidence that alcohol dependence decreased amygdala and hippocampal 
volume and that smoking more cigarettes per day decreased hippocampal volume. From 
subcortical brain volumes to substance use, there was no or weak evidence for causal 
effects. Conclusions: Our findings suggest that alcohol dependence and smoking can 
causally reduce subcortical brain volume. This adds to accumulating evidence that 
alcohol and smoking can be detrimental to the brain, and subsequently mental health, 
warranting more recognition in public health efforts. 
  

Causal relationship between brain region volumes and substance use 

Introduction 

Subcortical brain regions have consistently been implicated in substance use, playing a 
crucial role in the brain’s reward system1. It is thought that addiction reflects a vicious 
cycle of intoxication, withdrawal and craving, with (subcortical) brain circuits mediating 
these three stages2. However, the causal nature of the relationship between structural 
variation in subcortical brain regions and substance use is largely unclear. Subcortical 
brain volume and substance use are both substantially genetically influenced, and there 
is evidence that they share (part of) their genetic aetiology3. Alternatively, the 
relationship may be causal, such that pre-existing differences in subcortical brain volume 
assert a direct effect on substance use. Causal effects in the other direction are also 
plausible, i.e., substance use affecting brain structure. Most likely, the complex 
relationship between subcortical brain volume and substance use is due to a combination 
of these mechanisms, making it challenging to identify causal relationships. 
 
The two addictive substances which are responsible for the majority of substance use 
related morbidity and mortality worldwide, are nicotine and alcohol4,5. Most literature 
on the relationship of subcortical brain volumes with smoking and alcohol use is based 
on relatively small cross-sectional studies, reporting mixed findings. Smoking has been 
linked to smaller nucleus accumbens6,7, amygdala7–9, hippocampus10, pallidum9 and 
thalamus7,9,11 volumes, to smaller8 and larger12 caudate volume, and to larger 
putamen volume6. Alcohol (ab)use has been associated with smaller nucleus 
accumbens13,14, amygdala15, hippocampus13,14,16, pallidum14,17 and with smaller18 
and larger19 caudate, smaller13,14,16 and larger20 thalamus and smaller14 and larger20 
putamen volumes. Recently, the ENIGMA addiction working group attempted to resolve 
these inconsistent findings with a mega-analysis of subcortical thickness and surface area 
(volume being its product), among 1,628 controls and 2,277 individuals with dependence 
on alcohol, nicotine, cocaine, methamphetamine, and/or cannabis21. Smoking was 
associated with greater thickness and surface area for all subcortical regions, with the 
strongest associations found for the nucleus accumbens and the hippocampus, while 
alcohol dependence was associated with lower thickness and surface area, with the 
strongest associations found for the hippocampus, amygdala, thalamus, and putamen.  
 
Few longitudinal imaging studies have investigated relationships between subcortical 
brain volume and substance use. Recently, a study was published that obtained structural 
brain measures and extensive survey-data for 714 individuals at ages 14 and 19. Using a 
machine learning method, the authors found that alcohol and cannabis use were 
associated with accelerated cortical thinning and a (mild) increase in subcortical 
volumes22. While these were longitudinal analyses, the study’s observational nature 
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associated with accelerated cortical thinning and a (mild) increase in subcortical 
volumes22. While these were longitudinal analyses, the study’s observational nature 



562882-L-bw-Pasman562882-L-bw-Pasman562882-L-bw-Pasman562882-L-bw-Pasman
Processed on: 4-8-2021Processed on: 4-8-2021Processed on: 4-8-2021Processed on: 4-8-2021 PDF page: 212PDF page: 212PDF page: 212PDF page: 212

212 Part 2 – Chapter 8 

means there is potential for bias due to (unmeasured) confounding and reverse causality. 
Whereas a randomized controlled trial (RCT) to assess causal relationships between 
subcortical brain volume and substance use would be unfeasible, a promising alternative 
is Mendelian randomization (MR)23. Instead of experimental manipulation, MR uses 
genetic variants as proxies for the proposed independent variable. Because genes are 
randomly transmitted from parents to offspring at conception, genetic variants should 
not be associated with confounders (e.g. socio-economic status). Reverse causation is 
also not possible, as the genetic independent variable is fixed at birth. 
 
MR has already been applied to assess the relationship of smoking and alcohol use with 
psychiatric disorders. For instance, there was evidence that ADHD increases the odds of 
smoking and alcohol dependence and also that smoking causally increases ADHD risk24. 
Bi-directional causal relationships were also reported between smoking and 
depression25, while depression was found to causally increase the odds of alcohol 
dependence with no evidence for the reverse26. Individuals with psychiatric disorders, 
including ADHD27 and depression28, are known to have smaller subcortical volumes 
compared to health controls. It may be that subcortical brain volume mediates causal 
relationships of smoking and alcohol with psychiatric disorders. A recent MR study found 
no clear evidence for a causal effect of smoking on hippocampal volume29, but the 
analyses were based on much smaller genetic samples than currently available and other 
subcortical regions were not included. We conduct the first comprehensive MR study 
using the largest genetic data-sets available on the volume of seven subcortical brain 
regions (nucleus accumbens, amygdala, caudate nucleus, hippocampus, pallidum, 
putamen, thalamus) and substance use (smoking initiation, cigarettes smoked per day, 
smoking cessation, alcohol drinks per week, and alcohol dependence), to probe bi-
directional, causal relationships.  
 

  

Causal relationship between brain region volumes and substance use 

Methods and materials 

 
Mendelian randomization 
Mendelian randomization (MR) is based on the premise that genetic markers can be used 
as proxies for a variable that is hypothesized to be a risk factor, or ‘exposure’, for another 
‘outcome’ variable. Single Nucleotide Polymorphisms (SNPs) are the most commonly 
used genetic markers. The validity of MR relies on three core assumptions: 1) the 
association of the genetic instrument with the exposure is robust (ensured by selecting 
SNPs that reached genome-wide significance, i.e. p<5e-08); 2) the instrument is not 
associated with confounding variables; 3) the instrument does not influence the outcome 
through any other path than the exposure. Horizontal pleiotropy, where a SNP directly 
affects multiple traits, could lead to the second and third assumptions being violated. In 
order to assess whether the assumptions were met, we applied a range of sensitivity 
methods, described below.  
 
Data 
We took summary-level data from a published GWAS on subcortical brain volumes 
(n=13,17130) and meta-analyzed these with summary-level data from a GWAS we ran 
using data from 37,119 UK Biobank participants (Supplementary Methods). This resulted 
in a total sample of 50,290 for the volume of subcortical brain structures nucleus 
accumbens, amygdala, caudate nucleus, hippocampus, pallidum, putamen, and 
thalamus. For substance use, we used summary-level data from the single largest 
available GWAS on smoking and alcohol use31 (smoking initiation n=848,460, cigarettes 
per day n=216,590, smoking cessation n=378,249, drinks per week n=630,154; note that 
UK Biobank was excluded to prevent sample overlap and we meta-analyzed data from 
the remaining cohorts with data from 23andme, see Supplementary Methods) and a 
separate GWAS on alcohol dependence32 (n=46,568). Our meta-analyses were n-
weighted, due to measurement variance in the original samples, resulting in z-scores. To 
allow MR analysis, we constructed beta coefficients and standard errors using these z-
scores, the effect allele frequencies and sample size33. While the unit of MR estimates 
based on such constructed betas and standard errors cannot be reliably interpreted, the 
direction of effect and statistical strength of the evidence can.  
 
Because we obtained the exposure estimates and the outcome estimates from separate 
samples, it’s impossible to verify if individuals in the outcome sample were affected by 
said exposure. Therefore, when we refer to an exposure causally affecting an outcome, 
this should be interpreted as an effect of the ‘liability to’ that exposure. 
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relationships of smoking and alcohol with psychiatric disorders. A recent MR study found 
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directional, causal relationships.  
 

  

Causal relationship between brain region volumes and substance use 

Methods and materials 

 
Mendelian randomization 
Mendelian randomization (MR) is based on the premise that genetic markers can be used 
as proxies for a variable that is hypothesized to be a risk factor, or ‘exposure’, for another 
‘outcome’ variable. Single Nucleotide Polymorphisms (SNPs) are the most commonly 
used genetic markers. The validity of MR relies on three core assumptions: 1) the 
association of the genetic instrument with the exposure is robust (ensured by selecting 
SNPs that reached genome-wide significance, i.e. p<5e-08); 2) the instrument is not 
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through any other path than the exposure. Horizontal pleiotropy, where a SNP directly 
affects multiple traits, could lead to the second and third assumptions being violated. In 
order to assess whether the assumptions were met, we applied a range of sensitivity 
methods, described below.  
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(n=13,17130) and meta-analyzed these with summary-level data from a GWAS we ran 
using data from 37,119 UK Biobank participants (Supplementary Methods). This resulted 
in a total sample of 50,290 for the volume of subcortical brain structures nucleus 
accumbens, amygdala, caudate nucleus, hippocampus, pallidum, putamen, and 
thalamus. For substance use, we used summary-level data from the single largest 
available GWAS on smoking and alcohol use31 (smoking initiation n=848,460, cigarettes 
per day n=216,590, smoking cessation n=378,249, drinks per week n=630,154; note that 
UK Biobank was excluded to prevent sample overlap and we meta-analyzed data from 
the remaining cohorts with data from 23andme, see Supplementary Methods) and a 
separate GWAS on alcohol dependence32 (n=46,568). Our meta-analyses were n-
weighted, due to measurement variance in the original samples, resulting in z-scores. To 
allow MR analysis, we constructed beta coefficients and standard errors using these z-
scores, the effect allele frequencies and sample size33. While the unit of MR estimates 
based on such constructed betas and standard errors cannot be reliably interpreted, the 
direction of effect and statistical strength of the evidence can.  
 
Because we obtained the exposure estimates and the outcome estimates from separate 
samples, it’s impossible to verify if individuals in the outcome sample were affected by 
said exposure. Therefore, when we refer to an exposure causally affecting an outcome, 
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Main analysis 
For clarifying purposes, we describe the exact analysis approach for one specific 
relationship, where hippocampal volume is the exposure (i.e., the independent variable) 
and smoking initiation is the outcome (i.e., the dependent variable). First, SNPs that 
robustly predict hippocampal volume (p<5E-08) were identified in the hippocampus 
GWAS, and their effect size estimates and standard errors extracted. These same SNPs – 
i.e., the genetic instrument – were then identified in the smoking initiation GWAS, and 
their effect size estimates and standard errors extracted. To estimate the causal effect, 
the SNP-smoking initiation association was divided by the SNP-hippocampal volume 
association for each individual SNP, and the estimates of multiple SNPs combined with 
Inverse-Variance Weighted (IVW) regression. IVW provides the first indication of a causal 
effect by indicating the degree to which SNPs that predict the exposure (hippocampal 
volume), also predict the outcome (smoking initiation). We tested causal relationships 
with subcortical brain volumes as the exposures and smoking initiation, cigarettes per 
day, smoking cessation, alcohol per week and alcohol dependence as the outcomes – and 
in the other direction, with smoking initiation, alcohol per week and alcohol dependence 
as the exposures and subcortical volumes as the outcomes. If less than 10 SNPs p<5e-08 
were available, we additionally constructed a genetic instrument containing SNPs under 
a more lenient p-value threshold of p<1e-05. We clumped SNPs for independence at 
r2<0.01 and 10,000 kb34. 
 
Because the GWAS for cigarettes per day consisted of smokers only31, genome-wide 
significant SNPs from that study aren’t appropriate to use as proxies for cigarettes per day 
in never smokers. Therefore, the complete subcortical brain volume dataset (n=50,290), 
consisting of both smokers and never smokers, could not be used. For UK Biobank 
participants (n=37,119), we had information on smoking behaviour available and could 
perform GWASs of subcortical brain volumes in never smokers (n=22,555) and in ever 
smokers (n=14,564). We then applied summary-level MR with cigarettes per day as the 
exposure, in never and ever smokers separately. This approach provides an additional 
test of horizontal pleiotropy, as it allowed us to check MR assumptions 2 and 3 – the 
genetic instrument should not be associated with the outcome through other routes than 
the exposure. If the genetic instrument for cigarettes per day predicts subcortical brain 
volume in never smokers, this indicates horizontal pleiotropy because there can’t be a 
true causal effect35.  
 
Sensitivity analyses 
The F-statistic was computed to assess instrument strength for all exposures, with F>10 
reflecting a sufficiently strong instrument36. In order to test the robustness of a potential 
causal finding with IVW, we performed six sensitivity methods with different and partly 
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contrasting assumptions. First, we applied weighted median regression, which produces 
a reliable causal estimate as long as 50% or more of the total weight of the genetic 
instrument comes from SNPs that are valid (not biased)37. Second, we applied weighted 
mode regression, which clusters the SNPs in the genetic instrument based on their causal 
estimates, and selects the estimate of the SNP-cluster with the largest weight as the final 
causal estimate. This results in an unbiased value if the SNPs in that cluster are valid and 
the most common causal effect estimate is indeed the true causal effect38. Third, we 
conducted MR-Egger, which permits the intercept to deviate from zero, allowing a formal 
test of horizontal pleiotropy (when there is no horizontal pleiotropy, the intercept should 
be zero)39. MR-Egger is reliable as long as the InSIDE (Instrument Strength Independent 
of Direct Effect) assumption is met, meaning that the strength of the instrument (SNP-
exposure association) should not correlate with the direct effect of the SNPs on the 
outcome. MR-Egger also requires sufficiently strong genetic instruments, indicated as the 
NOME (No Measurement Error) assumption. This can be assessed with the IGX2 
(regression dilution) statistic, which ranges between 0 and 1. A lower value represents a 
higher chance that the NOME assumption is violated40. If IGX2 is ≥0.9 NOME is unlikely to 
be violated and the results can be reliably interpreted. If IGX2 is 0.6 – 0.9, NOME may have 
been violated but this can be corrected for with MR-Egger simulation extrapolation 
(SIMEX). If IGX2 is <0.6, MR-Egger results are likely biased and can’t be reliably interpreted. 
Fourth, we conducted GSMR (Generalised Summary-data-based Mendelian 
Randomization), which accounts for very low levels of linkage disequilibrium (LD) 
between SNPs and sampling variance in the estimated SNP effects, to attain higher 
statistical power. GSMR identifies and removes SNPs that are likely outliers based on their 
effect size (HEIDI-filtering)41. Fifth, we applied MR-PRESSO (Pleiotropy Residual Sum and 
Outlier), which compares the observed residual sum of squares to the expected residual 
sum of squares for each SNP, and re-runs outlier-corrected IVW analyses42. Sixth, we 
performed Steiger filtering, a method that is used to identify potential bias from reverse 
causation. It calculates the amount of variance that each SNP explains in both the 
exposure and the outcome and tests whether the explained variance is, as would be 
expected, higher for the exposure than the outcome. SNPs that explain more variance in 
the outcome than the exposure are excluded after which MR is repeated43.  
 
We computed Cochran’s Q statistic to assess heterogeneity across the causal estimates 
of the SNPs included in each instrument36 – high heterogeneity points to horizontal 
pleiotropy. It should be noted that it is also possible for a true causal effect to run through 
multiple, very separate biological pathways, resulting in heterogeneity. To assess 
variability in the power of the genetic instruments, we computed the amount of variance 
that each instrument explained in the proposed exposure variable44. 
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Main analysis 
For clarifying purposes, we describe the exact analysis approach for one specific 
relationship, where hippocampal volume is the exposure (i.e., the independent variable) 
and smoking initiation is the outcome (i.e., the dependent variable). First, SNPs that 
robustly predict hippocampal volume (p<5E-08) were identified in the hippocampus 
GWAS, and their effect size estimates and standard errors extracted. These same SNPs – 
i.e., the genetic instrument – were then identified in the smoking initiation GWAS, and 
their effect size estimates and standard errors extracted. To estimate the causal effect, 
the SNP-smoking initiation association was divided by the SNP-hippocampal volume 
association for each individual SNP, and the estimates of multiple SNPs combined with 
Inverse-Variance Weighted (IVW) regression. IVW provides the first indication of a causal 
effect by indicating the degree to which SNPs that predict the exposure (hippocampal 
volume), also predict the outcome (smoking initiation). We tested causal relationships 
with subcortical brain volumes as the exposures and smoking initiation, cigarettes per 
day, smoking cessation, alcohol per week and alcohol dependence as the outcomes – and 
in the other direction, with smoking initiation, alcohol per week and alcohol dependence 
as the exposures and subcortical volumes as the outcomes. If less than 10 SNPs p<5e-08 
were available, we additionally constructed a genetic instrument containing SNPs under 
a more lenient p-value threshold of p<1e-05. We clumped SNPs for independence at 
r2<0.01 and 10,000 kb34. 
 
Because the GWAS for cigarettes per day consisted of smokers only31, genome-wide 
significant SNPs from that study aren’t appropriate to use as proxies for cigarettes per day 
in never smokers. Therefore, the complete subcortical brain volume dataset (n=50,290), 
consisting of both smokers and never smokers, could not be used. For UK Biobank 
participants (n=37,119), we had information on smoking behaviour available and could 
perform GWASs of subcortical brain volumes in never smokers (n=22,555) and in ever 
smokers (n=14,564). We then applied summary-level MR with cigarettes per day as the 
exposure, in never and ever smokers separately. This approach provides an additional 
test of horizontal pleiotropy, as it allowed us to check MR assumptions 2 and 3 – the 
genetic instrument should not be associated with the outcome through other routes than 
the exposure. If the genetic instrument for cigarettes per day predicts subcortical brain 
volume in never smokers, this indicates horizontal pleiotropy because there can’t be a 
true causal effect35.  
 
Sensitivity analyses 
The F-statistic was computed to assess instrument strength for all exposures, with F>10 
reflecting a sufficiently strong instrument36. In order to test the robustness of a potential 
causal finding with IVW, we performed six sensitivity methods with different and partly 
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contrasting assumptions. First, we applied weighted median regression, which produces 
a reliable causal estimate as long as 50% or more of the total weight of the genetic 
instrument comes from SNPs that are valid (not biased)37. Second, we applied weighted 
mode regression, which clusters the SNPs in the genetic instrument based on their causal 
estimates, and selects the estimate of the SNP-cluster with the largest weight as the final 
causal estimate. This results in an unbiased value if the SNPs in that cluster are valid and 
the most common causal effect estimate is indeed the true causal effect38. Third, we 
conducted MR-Egger, which permits the intercept to deviate from zero, allowing a formal 
test of horizontal pleiotropy (when there is no horizontal pleiotropy, the intercept should 
be zero)39. MR-Egger is reliable as long as the InSIDE (Instrument Strength Independent 
of Direct Effect) assumption is met, meaning that the strength of the instrument (SNP-
exposure association) should not correlate with the direct effect of the SNPs on the 
outcome. MR-Egger also requires sufficiently strong genetic instruments, indicated as the 
NOME (No Measurement Error) assumption. This can be assessed with the IGX2 
(regression dilution) statistic, which ranges between 0 and 1. A lower value represents a 
higher chance that the NOME assumption is violated40. If IGX2 is ≥0.9 NOME is unlikely to 
be violated and the results can be reliably interpreted. If IGX2 is 0.6 – 0.9, NOME may have 
been violated but this can be corrected for with MR-Egger simulation extrapolation 
(SIMEX). If IGX2 is <0.6, MR-Egger results are likely biased and can’t be reliably interpreted. 
Fourth, we conducted GSMR (Generalised Summary-data-based Mendelian 
Randomization), which accounts for very low levels of linkage disequilibrium (LD) 
between SNPs and sampling variance in the estimated SNP effects, to attain higher 
statistical power. GSMR identifies and removes SNPs that are likely outliers based on their 
effect size (HEIDI-filtering)41. Fifth, we applied MR-PRESSO (Pleiotropy Residual Sum and 
Outlier), which compares the observed residual sum of squares to the expected residual 
sum of squares for each SNP, and re-runs outlier-corrected IVW analyses42. Sixth, we 
performed Steiger filtering, a method that is used to identify potential bias from reverse 
causation. It calculates the amount of variance that each SNP explains in both the 
exposure and the outcome and tests whether the explained variance is, as would be 
expected, higher for the exposure than the outcome. SNPs that explain more variance in 
the outcome than the exposure are excluded after which MR is repeated43.  
 
We computed Cochran’s Q statistic to assess heterogeneity across the causal estimates 
of the SNPs included in each instrument36 – high heterogeneity points to horizontal 
pleiotropy. It should be noted that it is also possible for a true causal effect to run through 
multiple, very separate biological pathways, resulting in heterogeneity. To assess 
variability in the power of the genetic instruments, we computed the amount of variance 
that each instrument explained in the proposed exposure variable44. 
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Analyses were conducted using the TwoSampleMR package for R34, the GSMR package 
for R41 and the MR-PRESSO package for R42. 
 
Appraisal of the evidence  
We didn’t correct for multiple testing explicitly because we analyse phenotypes for which, 
a priori, there are plausible hypotheses why they are (causally) associated and we want 
to avoid appraising the evidence based on an arbitrary threshold. We ascribe a finding as 
showing strong evidence, evidence, weak evidence, or no clear evidence for a causal 
effect, based on both the IVW regression – adhering to the interpretation of p-values 
suggested by Sterne and Davey Smith (2001)45 – and the sensitivity methods. Because 
sensitivity methods rely on stricter assumptions than IVW their statistical power is lower. 
It is to be expected that the statistical evidence, but not the effect size, decreases with 
stricter sensitivity methods, even for a true causal effect. 
 

  

Causal relationship between brain region volumes and substance use 

Results 

 
All genetic instruments showed sufficient strength as indicated by the mean F-statistic, 
ranging between 15.23 and 68.94 (Table S1). Based on the IGX2 statistic, MR-Egger could 
reliably be performed for all relationships, except when smoking initiation was the 
exposure (Tables S2 and S3). The amount of variance that the genetic instruments for 
substance use explained in the corresponding substance use variables ranged between 
0.56% and 1.43%. For subcortical brain volumes it ranged between 0.17% and 3.97% 
(Table S4). A graphical display of all relationships with (weak or strong) evidence for 
causality is provided in Figure 1. 

 
 

 
Figure 1. Graphical display of the relationships for which there was evidence 
for causality. Minus (–) signifies a negative, decreasing effect, while plus (+) 

signifies a positive, increasing effect. The thicker lines reflect evidence or 
strong evidence while the dotted, thinner lines signify weak evidence for 

causality. Note that for all relationships causal effects were tested in both 
directions, except for smoking cessation which was only tested as an 

outcome variable. 

 
  



562882-L-bw-Pasman562882-L-bw-Pasman562882-L-bw-Pasman562882-L-bw-Pasman
Processed on: 4-8-2021Processed on: 4-8-2021Processed on: 4-8-2021Processed on: 4-8-2021 PDF page: 217PDF page: 217PDF page: 217PDF page: 217

217Part 2 – Chapter 8 

Analyses were conducted using the TwoSampleMR package for R34, the GSMR package 
for R41 and the MR-PRESSO package for R42. 
 
Appraisal of the evidence  
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Causal relationships from subcortical volumes to substance use  
There was weak evidence that a larger pallidum volume decreased the odds of initiating 
smoking (betaIVW=-0.04, p=0.053). Weighted median, weighted mode, and GSMR 
corroborated this finding, showing similar effect sizes and stronger statistical evidence 
(Table 1). While there was no clear evidence for horizontal pleiotropy (Egger-intercept=-
0.003, p=0.332; Table S5), the regression coefficient of MR-Egger did not indicate a causal 
effect (Table 1). There was strong evidence for heterogeneity among the SNP-effects 
(Cochran’s Q p=2.4E-05; Table S6). MR-PRESSO identified 2 SNP-outliers but there was no 
distortion of the causal estimate after outlier removal (Table S7). Steiger filtering did not 
identify SNPs that explained more variance in the outcome than the exposure (Table S8).  
There was weak evidence that a larger amygdala volume increased alcohol dependence 
risk (p<1E-05 betaIVW=0.08, p=0.046), corroborated by weighted median, weighted mode 
and GSMR sensitivity methods, but not MR-Egger. There was no clear evidence for 
horizontal pleiotropy (Egger-intercept=0.003, p=0.400), nor for heterogeneity (p=0.621). 
MR-PRESSO did not identify any SNP-outliers nor did Steiger filtering identify SNPs that 
explained more variance in the outcome than the exposure. With a 2-SNP instrument 
(p<5E-08), there was a similar sized, positive effect, but no clear statistical evidence 
(betaIVW=0.09, p=0.522).  
 
There was very weak evidence that a larger amygdala volume increased the number of 
alcohol drinks per week (betaIVW=0.06, p=0.098), but sensitivity analyses were not 
possible due to the p<5E-08 instrument only containing 2 SNPs, and with 40 SNPs under 
p<1E-05 there was no clear evidence for an effect (betaIVW=0.01, p=0.289).  
 
None of the other analyses showed clear evidence for causal effects of subcortical 
volumes on substance use. 
 
Causal relationships from substance use to subcortical volumes 
There was weak evidence that smoking initiation decreased amygdala volume (betaIVW=-
0.05, p=0.046), but the effect was only consistent with the GSMR method (Table 2). There 
was no clear evidence for horizontal pleiotropy (Egger-Intercept=-0.001 p=0.457), but 
strong evidence for heterogeneity (Cochran’s Q p=2.4E-07). MR-PRESSO identified 1 SNP-
outlier, which did not impact the results. Steiger filtering excluded 44 SNPs but after 
running the analyses with the 302 remaining SNPs evidence for a causal effect remained 
(betaIVW=-0.06, p=0.013).  
 
In the analyses stratified for smoking status, there was strong evidence that smoking 
more cigarettes per day decreased hippocampal volume in smokers (betaIVW=-94.73, 
p=1.8E-06; Table 3). Results were consistent with weighted median, weighted mode, MR-
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Egger and GSMR methods, albeit with a smaller effect size for the latter. There was no 
clear evidence for horizontal pleiotropy (Egger-intercept=0.633, p=0.568) nor 
heterogeneity (p=0.357). No SNP-outliers were identified with MR-PRESSO. Steiger 
filtering identified 9 SNPs that were more predictive of the outcome than the exposure, 
but after excluding these (leaving 40 SNPs) strong evidence for causality remained, 
consistent across sensitivity methods. There was also weak evidence for a negative effect 
of cigarettes smoked per day on hippocampal volume in never smokers – indicating 
horizontal pleiotropy – with a much smaller, less significant effect size (betaIVW=-30.40, 
p=0.050) and less consistency across sensitivity methods. Taken together, some 
horizontal pleiotropy exists, but on top of that, there is likely a decreasing effect of 
cigarettes smoked per day on hippocampal volume.  
 
There was evidence for a negative effect of cigarettes smoked per day on putamen 
volume, but this relationship seems pleiotropic, given that the effect size and statistical 
evidence in ever and never smokers are nearly indiscernible (betaIVW=-68.86, p=0.018 and 
betaIVW=-71.41, p=0.003, respectively). Similarly, there was weak evidence for an effect 
of cigarettes per day on amygdala and thalamus volume in never smokers, pointing to 
horizontal pleiotropy. 
 
There was strong evidence for a decreasing effect of liability to alcohol dependence on 
amygdala volume (betaIVW=-0.15, p=0.007) and evidence for a decreasing effect on 
hippocampal volume (betaIVW=-0.11, p=0.037). These results were consistent across 
weighted median, weighted mode, MR-Egger, and GSMR methods (Table 2). There was no 
clear evidence for horizontal pleiotropy for alcohol dependence-to-amygdala (Egger-
intercept=0.007, p=0.468) and weak evidence for alcohol dependence-to-hippocampus 
(Egger-intercept=0.023, p=0.080). There was no clear evidence for heterogeneity in the 
SNP-effects (p=0.950 and p=0.691, respectively). MR-PRESSO did not identify SNP-outliers 
nor did Steiger filtering exclude SNPs that explain more variance in the outcome than the 
exposure.  
 
There was weak evidence that alcohol dependence decreased thalamus volume 
(betaIVW=-0.09, p=0.097), which was corroborated by MR-Egger, but not the other 
sensitivity methods. There was no clear evidence for horizontal pleiotropy (Egger-
intercept=0.021, p=0.150), nor was there heterogeneity (p=0.493). No SNP-outliers were 
identified with MR-PRESSO and Steiger filtering did not exclude any SNPs. 
 
There was evidence that more alcoholic drinks per week increased caudate volume 
(betaIVW=0.20, p=0.032). The effect was consistent in size, albeit with lower statistical 
evidence, with weighted median, but attenuated with weighted mode, MR-Egger and 
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Causal relationships from subcortical volumes to substance use  
There was weak evidence that a larger pallidum volume decreased the odds of initiating 
smoking (betaIVW=-0.04, p=0.053). Weighted median, weighted mode, and GSMR 
corroborated this finding, showing similar effect sizes and stronger statistical evidence 
(Table 1). While there was no clear evidence for horizontal pleiotropy (Egger-intercept=-
0.003, p=0.332; Table S5), the regression coefficient of MR-Egger did not indicate a causal 
effect (Table 1). There was strong evidence for heterogeneity among the SNP-effects 
(Cochran’s Q p=2.4E-05; Table S6). MR-PRESSO identified 2 SNP-outliers but there was no 
distortion of the causal estimate after outlier removal (Table S7). Steiger filtering did not 
identify SNPs that explained more variance in the outcome than the exposure (Table S8).  
There was weak evidence that a larger amygdala volume increased alcohol dependence 
risk (p<1E-05 betaIVW=0.08, p=0.046), corroborated by weighted median, weighted mode 
and GSMR sensitivity methods, but not MR-Egger. There was no clear evidence for 
horizontal pleiotropy (Egger-intercept=0.003, p=0.400), nor for heterogeneity (p=0.621). 
MR-PRESSO did not identify any SNP-outliers nor did Steiger filtering identify SNPs that 
explained more variance in the outcome than the exposure. With a 2-SNP instrument 
(p<5E-08), there was a similar sized, positive effect, but no clear statistical evidence 
(betaIVW=0.09, p=0.522).  
 
There was very weak evidence that a larger amygdala volume increased the number of 
alcohol drinks per week (betaIVW=0.06, p=0.098), but sensitivity analyses were not 
possible due to the p<5E-08 instrument only containing 2 SNPs, and with 40 SNPs under 
p<1E-05 there was no clear evidence for an effect (betaIVW=0.01, p=0.289).  
 
None of the other analyses showed clear evidence for causal effects of subcortical 
volumes on substance use. 
 
Causal relationships from substance use to subcortical volumes 
There was weak evidence that smoking initiation decreased amygdala volume (betaIVW=-
0.05, p=0.046), but the effect was only consistent with the GSMR method (Table 2). There 
was no clear evidence for horizontal pleiotropy (Egger-Intercept=-0.001 p=0.457), but 
strong evidence for heterogeneity (Cochran’s Q p=2.4E-07). MR-PRESSO identified 1 SNP-
outlier, which did not impact the results. Steiger filtering excluded 44 SNPs but after 
running the analyses with the 302 remaining SNPs evidence for a causal effect remained 
(betaIVW=-0.06, p=0.013).  
 
In the analyses stratified for smoking status, there was strong evidence that smoking 
more cigarettes per day decreased hippocampal volume in smokers (betaIVW=-94.73, 
p=1.8E-06; Table 3). Results were consistent with weighted median, weighted mode, MR-

Causal relationship between brain region volumes and substance use 

Egger and GSMR methods, albeit with a smaller effect size for the latter. There was no 
clear evidence for horizontal pleiotropy (Egger-intercept=0.633, p=0.568) nor 
heterogeneity (p=0.357). No SNP-outliers were identified with MR-PRESSO. Steiger 
filtering identified 9 SNPs that were more predictive of the outcome than the exposure, 
but after excluding these (leaving 40 SNPs) strong evidence for causality remained, 
consistent across sensitivity methods. There was also weak evidence for a negative effect 
of cigarettes smoked per day on hippocampal volume in never smokers – indicating 
horizontal pleiotropy – with a much smaller, less significant effect size (betaIVW=-30.40, 
p=0.050) and less consistency across sensitivity methods. Taken together, some 
horizontal pleiotropy exists, but on top of that, there is likely a decreasing effect of 
cigarettes smoked per day on hippocampal volume.  
 
There was evidence for a negative effect of cigarettes smoked per day on putamen 
volume, but this relationship seems pleiotropic, given that the effect size and statistical 
evidence in ever and never smokers are nearly indiscernible (betaIVW=-68.86, p=0.018 and 
betaIVW=-71.41, p=0.003, respectively). Similarly, there was weak evidence for an effect 
of cigarettes per day on amygdala and thalamus volume in never smokers, pointing to 
horizontal pleiotropy. 
 
There was strong evidence for a decreasing effect of liability to alcohol dependence on 
amygdala volume (betaIVW=-0.15, p=0.007) and evidence for a decreasing effect on 
hippocampal volume (betaIVW=-0.11, p=0.037). These results were consistent across 
weighted median, weighted mode, MR-Egger, and GSMR methods (Table 2). There was no 
clear evidence for horizontal pleiotropy for alcohol dependence-to-amygdala (Egger-
intercept=0.007, p=0.468) and weak evidence for alcohol dependence-to-hippocampus 
(Egger-intercept=0.023, p=0.080). There was no clear evidence for heterogeneity in the 
SNP-effects (p=0.950 and p=0.691, respectively). MR-PRESSO did not identify SNP-outliers 
nor did Steiger filtering exclude SNPs that explain more variance in the outcome than the 
exposure.  
 
There was weak evidence that alcohol dependence decreased thalamus volume 
(betaIVW=-0.09, p=0.097), which was corroborated by MR-Egger, but not the other 
sensitivity methods. There was no clear evidence for horizontal pleiotropy (Egger-
intercept=0.021, p=0.150), nor was there heterogeneity (p=0.493). No SNP-outliers were 
identified with MR-PRESSO and Steiger filtering did not exclude any SNPs. 
 
There was evidence that more alcoholic drinks per week increased caudate volume 
(betaIVW=0.20, p=0.032). The effect was consistent in size, albeit with lower statistical 
evidence, with weighted median, but attenuated with weighted mode, MR-Egger and 
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GSMR. There was no clear evidence for horizontal pleiotropy (Egger-intercept=0.001, 
p=0.629), but strong evidence for heterogeneity (p=6.4E-10). MR-PRESSO identified 5 SNP-
outliers, which did not distort the causal estimate. Steiger filtering identified 26 SNPs that 
explained more variance in the outcome than in the exposure and after removing these 
(leaving 66 SNPs) there was no clear evidence for a causal effect. Taken together, the 
evidence that alcoholic drinks per week has a positive effect on caudate volume was 
weak.  
 
There was weak evidence that more drinks per week decreased pallidum volume 
(betaIVW=-0.15, p=0.096), an effect which was consistent and even stronger in size and 
statistical evidence across weighted median, weighted mode, MR-Egger and GSMR. There 
was evidence for horizontal pleiotropy (Egger-intercept=0.003, p=0.049) and strong 
evidence for heterogeneity (p=2.2E-08). MR-PRESSO identified 2 SNP-outliers, but there 
was no distortion in the causal estimate before and after outlier removal. With Steiger 
filtering 35 SNPs were excluded (leaving 58 SNPs), but after running the analyses again 
weak evidence for a causal effect remained.  
 
Finally, from drinks per week to both amygdala and thalamus volume there were sizable 
negative effects which, while there was no clear evidence for the main IVW method, 
appeared much stronger with the different sensitivity methods (Table 2). There was no 
indication of horizontal pleiotropy (Egger-intercept=0.001, p=0.537 and 0.001, p=0.459, 
respectively) but there was evidence for heterogeneity (p=0.005 and p=0.001, 
respectively). There were no SNP-outliers with MR-PRESSO and while Steiger filtering 
excluded 27 and 25 SNPs, respectively, weak evidence for causality remained. 
 

  

Causal relationship between brain region volumes and substance use 

Discussion 

 
This is the first study that applied Mendelian randomization to assess bi-directional, 
causal relationships between volume of subcortical brain regions and a range of 
substance use behaviours. Our most robust findings were that (liability to) alcohol 
dependence causally decreased amygdala and hippocampal volume, and smoking more 
cigarettes per day causally decreased hippocampal volume.  
 
The evidence that alcohol dependence decreased amygdala and hippocampal volume 
was particularly strong. This is in line with work showing that in individuals with alcohol 
dependence subcortical brain regions are smaller and have a lower thickness and surface 
area than in healthy controls – with the largest differences reported for the amygdala and 
hippocampus13–18,21,46. Given MR’s powerful premise and the consistency of our 
findings across many sensitivity analyses, we are able to make stronger conclusions that 
this is due to causal effects of alcohol. It had been previously hypothesised that alcohol 
can cause cell death or reduced cell density, subsequently resulting in volume loss46. For 
instance, chronic alcohol consumption is known to induce the release of tumour necrosis 
factor alpha (TNF-α), a cytokine involved in potentiating neuro-inflammation which in 
turn can cause neuronal death47. When number of alcoholic drinks per week was the 
exposure, we found weak evidence that more drinks per week decreases amygdala, 
pallidum, and thalamus volume. This discrepancy in strength of evidence is likely due to 
the fact that alcohol dependence is the more severe phenotype, reflecting prolonged and 
heavy exposure of the brain to alcohol. 
 
We found strong evidence that smoking more cigarettes per day (in smokers) decreases 
hippocampal volume and weak evidence that being a smoker versus being a non-smoker 
decreases amygdala volume – implying that exposure to cigarette smoking can induce 
structural subcortical brain changes. While the literature on potential biological 
mechanisms responsible for such effects is scarce, animal work has shown that exposure 
to nicotine can induce apoptosis in hippocampal cells48,49. In contrary to our findings, 
and to those of other observational studies6–11, a large ENIGMA study found smoking to 
be associated with greater thickness and surface area of all subcortical regions21. This 
discrepancy may be due to the fact that the ENIGMA-study was observational and its 
findings influenced by confounding factors. 
 
There is an ongoing discussion as to whether differences in brain structure between 
substance (ab)users and controls reflect pre-existing differences, or whether they are the 
result of alterations caused by substance use. Our results mostly point to the latter, with 
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GSMR. There was no clear evidence for horizontal pleiotropy (Egger-intercept=0.001, 
p=0.629), but strong evidence for heterogeneity (p=6.4E-10). MR-PRESSO identified 5 SNP-
outliers, which did not distort the causal estimate. Steiger filtering identified 26 SNPs that 
explained more variance in the outcome than in the exposure and after removing these 
(leaving 66 SNPs) there was no clear evidence for a causal effect. Taken together, the 
evidence that alcoholic drinks per week has a positive effect on caudate volume was 
weak.  
 
There was weak evidence that more drinks per week decreased pallidum volume 
(betaIVW=-0.15, p=0.096), an effect which was consistent and even stronger in size and 
statistical evidence across weighted median, weighted mode, MR-Egger and GSMR. There 
was evidence for horizontal pleiotropy (Egger-intercept=0.003, p=0.049) and strong 
evidence for heterogeneity (p=2.2E-08). MR-PRESSO identified 2 SNP-outliers, but there 
was no distortion in the causal estimate before and after outlier removal. With Steiger 
filtering 35 SNPs were excluded (leaving 58 SNPs), but after running the analyses again 
weak evidence for a causal effect remained.  
 
Finally, from drinks per week to both amygdala and thalamus volume there were sizable 
negative effects which, while there was no clear evidence for the main IVW method, 
appeared much stronger with the different sensitivity methods (Table 2). There was no 
indication of horizontal pleiotropy (Egger-intercept=0.001, p=0.537 and 0.001, p=0.459, 
respectively) but there was evidence for heterogeneity (p=0.005 and p=0.001, 
respectively). There were no SNP-outliers with MR-PRESSO and while Steiger filtering 
excluded 27 and 25 SNPs, respectively, weak evidence for causality remained. 
 

  

Causal relationship between brain region volumes and substance use 

Discussion 

 
This is the first study that applied Mendelian randomization to assess bi-directional, 
causal relationships between volume of subcortical brain regions and a range of 
substance use behaviours. Our most robust findings were that (liability to) alcohol 
dependence causally decreased amygdala and hippocampal volume, and smoking more 
cigarettes per day causally decreased hippocampal volume.  
 
The evidence that alcohol dependence decreased amygdala and hippocampal volume 
was particularly strong. This is in line with work showing that in individuals with alcohol 
dependence subcortical brain regions are smaller and have a lower thickness and surface 
area than in healthy controls – with the largest differences reported for the amygdala and 
hippocampus13–18,21,46. Given MR’s powerful premise and the consistency of our 
findings across many sensitivity analyses, we are able to make stronger conclusions that 
this is due to causal effects of alcohol. It had been previously hypothesised that alcohol 
can cause cell death or reduced cell density, subsequently resulting in volume loss46. For 
instance, chronic alcohol consumption is known to induce the release of tumour necrosis 
factor alpha (TNF-α), a cytokine involved in potentiating neuro-inflammation which in 
turn can cause neuronal death47. When number of alcoholic drinks per week was the 
exposure, we found weak evidence that more drinks per week decreases amygdala, 
pallidum, and thalamus volume. This discrepancy in strength of evidence is likely due to 
the fact that alcohol dependence is the more severe phenotype, reflecting prolonged and 
heavy exposure of the brain to alcohol. 
 
We found strong evidence that smoking more cigarettes per day (in smokers) decreases 
hippocampal volume and weak evidence that being a smoker versus being a non-smoker 
decreases amygdala volume – implying that exposure to cigarette smoking can induce 
structural subcortical brain changes. While the literature on potential biological 
mechanisms responsible for such effects is scarce, animal work has shown that exposure 
to nicotine can induce apoptosis in hippocampal cells48,49. In contrary to our findings, 
and to those of other observational studies6–11, a large ENIGMA study found smoking to 
be associated with greater thickness and surface area of all subcortical regions21. This 
discrepancy may be due to the fact that the ENIGMA-study was observational and its 
findings influenced by confounding factors. 
 
There is an ongoing discussion as to whether differences in brain structure between 
substance (ab)users and controls reflect pre-existing differences, or whether they are the 
result of alterations caused by substance use. Our results mostly point to the latter, with 
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robust evidence for negative effects of alcohol dependence and smoking on some 
subcortical volumes, without (similarly robust) evidence for causal effects from 
subcortical volumes to substance use. This is important knowledge with potentially far 
reaching consequences. Volume loss might lead to cognitive deficits and a higher chance 
of developing mental illness, given that smaller volume of the amygdala and 
hippocampus has been implicated in the most common psychiatric disorders50,51. For 
instance, it is thought plausible that smoking-related structural brain changes in regions 
that connect fear response areas (e.g. amygdala) impact trait anxiety states, subsequently 
leading to an anxiety disorder52. More research is needed to explicitly test pathways from 
smoking and alcohol use to subcortical brain volume, and subsequently to psychiatric 
symptoms. 
 
The current study has some important strengths. We used the largest available genetic 
datasets, which allowed us to test causal effects with sufficiently powered genetic 
instruments in both directions. We used a diverse and extensive set of sensitivity methods 
in order to assess the robustness of our findings and whether or not the assumptions 
underlying MR were met, allowing us to make claims about causality with considerable 
certainty. There are also limitations to note. While MR can provide less biased causal 
inference, there may be bias stemming from sources that have so far been less 
emphasised. One important source is ‘genetic nurturing’, which occurs when the 
genotype of parents directly affects offspring phenotypes even if the responsible genetic 
variants weren’t transmitted53. Second, assortative mating, i.e., spouses showing higher 
phenotypic similarity than expected by chance, may impact MR estimates if this similarity 
arises because individuals with a particular genetic predisposition choose their mate 
based on a genetically influenced phenotype53. The effect of both phenomena is that bias 
from confounding is reintroduced. Finally, while the GWASs we employed corrected for 
population structure, some geographic clustering may remain54. When these become 
available, large-scale within-family GWAS would be able to correct for more fine-grained 
(geographical/family) clusters, providing superior genetic estimates to use in MR53.  
 
In sum, we report robust evidence that heavy alcohol use causally affects the brain, 
decreasing subcortical brain volume (at least as it pertains to the  amygdala and the 
hippocampus). There was also considerable, but more tentative, evidence that smoking 
causally decreases amygdala and hippocampus volume. These findings provide 
additional proof that smoking and alcohol use can have a detrimental effect on the brain 
and it may implicate structural changes as a pathway connecting substance use to the 
development of (other) psychiatric disorders. We feel that, combined with accumulating 
evidence from other types of research, this justifies more recognition in public health 
efforts and clinical practice.
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robust evidence for negative effects of alcohol dependence and smoking on some 
subcortical volumes, without (similarly robust) evidence for causal effects from 
subcortical volumes to substance use. This is important knowledge with potentially far 
reaching consequences. Volume loss might lead to cognitive deficits and a higher chance 
of developing mental illness, given that smaller volume of the amygdala and 
hippocampus has been implicated in the most common psychiatric disorders50,51. For 
instance, it is thought plausible that smoking-related structural brain changes in regions 
that connect fear response areas (e.g. amygdala) impact trait anxiety states, subsequently 
leading to an anxiety disorder52. More research is needed to explicitly test pathways from 
smoking and alcohol use to subcortical brain volume, and subsequently to psychiatric 
symptoms. 
 
The current study has some important strengths. We used the largest available genetic 
datasets, which allowed us to test causal effects with sufficiently powered genetic 
instruments in both directions. We used a diverse and extensive set of sensitivity methods 
in order to assess the robustness of our findings and whether or not the assumptions 
underlying MR were met, allowing us to make claims about causality with considerable 
certainty. There are also limitations to note. While MR can provide less biased causal 
inference, there may be bias stemming from sources that have so far been less 
emphasised. One important source is ‘genetic nurturing’, which occurs when the 
genotype of parents directly affects offspring phenotypes even if the responsible genetic 
variants weren’t transmitted53. Second, assortative mating, i.e., spouses showing higher 
phenotypic similarity than expected by chance, may impact MR estimates if this similarity 
arises because individuals with a particular genetic predisposition choose their mate 
based on a genetically influenced phenotype53. The effect of both phenomena is that bias 
from confounding is reintroduced. Finally, while the GWASs we employed corrected for 
population structure, some geographic clustering may remain54. When these become 
available, large-scale within-family GWAS would be able to correct for more fine-grained 
(geographical/family) clusters, providing superior genetic estimates to use in MR53.  
 
In sum, we report robust evidence that heavy alcohol use causally affects the brain, 
decreasing subcortical brain volume (at least as it pertains to the  amygdala and the 
hippocampus). There was also considerable, but more tentative, evidence that smoking 
causally decreases amygdala and hippocampus volume. These findings provide 
additional proof that smoking and alcohol use can have a detrimental effect on the brain 
and it may implicate structural changes as a pathway connecting substance use to the 
development of (other) psychiatric disorders. We feel that, combined with accumulating 
evidence from other types of research, this justifies more recognition in public health 
efforts and clinical practice.
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GWAS and meta-analysis procedures 
GWAS subcortical brain volumes 
To perform the GWAS on subcortical brain volumes in UK Biobank participants, we first 
extracted UKB participants of European ancestry. Individuals of non-European ancestry, 
as determined by Principal Component Analysis in GCTA1, were excluded. We performed 
Single Nucleotide Polymorphism (SNP) quality control on unrelated Europeans 
(N=312,927) – using the Hapmap 3 reference panel – filtering out SNPs with MAF < 0.01, 
missingess > 0.05 and HWE p < 10-10, leaving 1,246,531 SNPs. After also adding related 
participants, we created a dataset of 1,246,531 common, QC-ed SNPs for 456,064 UK 
Biobank participants of European ancestry. For a more detailed description of our QC and 
data processing pipeline, see Abdellaoui et al., 20192. 
 
Of the total, QC-ed UK Biobank dataset, 37,119 participants had MRI-imaging data on 
subcortical brain volumes available. We performed GWAS for seven subcortical brain 
regions; nucleus accumbens (UKB data fields 25023 (left) and 25024 (right)), amygdala 
(25021 (left) and 25022 (right)), caudate (25013 (left) and 25014 (right)), hippocampus 
(25019 (left) and 25020 (right)), pallidum (25017 (left) and 25018 (right)), putamen (25015 
(left) and 25016 (right)), and thalamus (25011 (left) and 25012 (right)). For each brain 
region, we first summed the left and right volume measures (in mm3). For the GWAS, we 
ran a linear mixed model (LMM) GWAS using fastGWA3. As covariates, we added a sparse 
genetic relatedness matrix (GRM) which controls for cryptic relatedness as well as 
population stratification4 and the first 25 principle components (PCs), and we applied 
LDSC-intercept based genomic control (GC)2. Other covariates that were added were sex, 
age and total brain volume (UKB data field 25010).  
 
After performing GWAS for subcortical brain structures in all participants, we also ran 
GWAS for subcortical brain structures stratified for smoking status (to allow Mendelian 
randomization analyses with cigarettes per day as the exposure variable, see main paper). 
All 37,119 UK Biobank participants described above had provided information on their 
lifetime smoking behaviour (UKB data field 20160), falling into the category of either ever 



562882-L-bw-Pasman562882-L-bw-Pasman562882-L-bw-Pasman562882-L-bw-Pasman
Processed on: 4-8-2021Processed on: 4-8-2021Processed on: 4-8-2021Processed on: 4-8-2021 PDF page: 231PDF page: 231PDF page: 231PDF page: 231

231Part 2 – Chapter 8 

44. Pasman, J. A. et al. GWAS of lifetime cannabis use reveals new risk loci, genetic overlap with 
psychiatric traits, and a causal influence of schizophrenia. Nat. Neurosci. 21, 1161–1170 (2018). 

45. Sterne, J. A. C., Smith, G. D. & Cox, D. R. Sifting the evidence—what’s wrong with significance tests? 
BMJ 322, 226 (2001). 

46. Durazzo, T. C. et al. Cortical thickness, surface area, and volume of the brain reward system in 
alcohol dependence: Relationships to relapse and extended abstinence. Alcohol. Clin. Exp. Res. 35, 
1187–1200 (2011). 

47. Rao, R. & Topiwala, A. Alcohol use disorders and the brain. Addiction 115, add.15023 (2020). 
48. Vijayaraghavan, S. Nicotinic receptor-induced apoptotic cell death of hippocampal progenitor cells. 

J. Neurosci. 18, 6871–6881 (1998). 
49. Oliveira-da-Silva, A. et al. Increased apoptosis and reduced neuronal and glial densities in the 

hippocampus due to nicotine and ethanol exposure in adolescent mice. Int. J. Dev. Neurosci. 27, 
539–548 (2009). 

50. Kolesar, T. A., Bilevicius, E., Wilson, A. D. & Kornelsen, J. Systematic review and meta-analyses of 
neural structural and functional differences in generalized anxiety disorder and healthy controls 
using magnetic resonance imaging. NeuroImage: Clinical 24, (2019). 

51. Shepherd, A. M., Laurens, K. R., Matheson, S. L., Carr, V. J. & Green, M. J. Systematic meta-review 
and quality assessment of the structural brain alterations in schizophrenia. Neuroscience and 
Biobehavioral Reviews 36, 1342–1356 (2012). 

52. Moylan, S., Jacka, F. N., Pasco, J. A. & Berk, M. How cigarette smoking may increase the risk of 
anxiety symptoms and anxiety disorders: A critical review of biological pathways. Brain Behav. 3, 
302–326 (2013). 

53. Brumpton, B. et al. Within-family studies for Mendelian randomization: avoiding dynastic, 
assortative mating, and population stratification biases. bioRxiv 602516 (2019). 
doi:10.1101/602516 

54. Haworth, S. et al. Apparent latent structure within the UK Biobank sample has implications for 
epidemiological analysis. Nat. Commun. 10, (2019). 

 
 
 
 
 
 
 
 
 
  

Causal relationship between brain region volumes and substance use 

Supplementary Materials 
 
The full Supplementary Materials can also be viewed online at: 
Chapter 8 – Causal relationship between brain region volumes and substance use 
 
or past this link in the browser: 
https://drive.google.com/drive/folders/1FQ7MwF67QqE7XV1zi0tocNUiCKDWBVi1 

 

GWAS and meta-analysis procedures 
GWAS subcortical brain volumes 
To perform the GWAS on subcortical brain volumes in UK Biobank participants, we first 
extracted UKB participants of European ancestry. Individuals of non-European ancestry, 
as determined by Principal Component Analysis in GCTA1, were excluded. We performed 
Single Nucleotide Polymorphism (SNP) quality control on unrelated Europeans 
(N=312,927) – using the Hapmap 3 reference panel – filtering out SNPs with MAF < 0.01, 
missingess > 0.05 and HWE p < 10-10, leaving 1,246,531 SNPs. After also adding related 
participants, we created a dataset of 1,246,531 common, QC-ed SNPs for 456,064 UK 
Biobank participants of European ancestry. For a more detailed description of our QC and 
data processing pipeline, see Abdellaoui et al., 20192. 
 
Of the total, QC-ed UK Biobank dataset, 37,119 participants had MRI-imaging data on 
subcortical brain volumes available. We performed GWAS for seven subcortical brain 
regions; nucleus accumbens (UKB data fields 25023 (left) and 25024 (right)), amygdala 
(25021 (left) and 25022 (right)), caudate (25013 (left) and 25014 (right)), hippocampus 
(25019 (left) and 25020 (right)), pallidum (25017 (left) and 25018 (right)), putamen (25015 
(left) and 25016 (right)), and thalamus (25011 (left) and 25012 (right)). For each brain 
region, we first summed the left and right volume measures (in mm3). For the GWAS, we 
ran a linear mixed model (LMM) GWAS using fastGWA3. As covariates, we added a sparse 
genetic relatedness matrix (GRM) which controls for cryptic relatedness as well as 
population stratification4 and the first 25 principle components (PCs), and we applied 
LDSC-intercept based genomic control (GC)2. Other covariates that were added were sex, 
age and total brain volume (UKB data field 25010).  
 
After performing GWAS for subcortical brain structures in all participants, we also ran 
GWAS for subcortical brain structures stratified for smoking status (to allow Mendelian 
randomization analyses with cigarettes per day as the exposure variable, see main paper). 
All 37,119 UK Biobank participants described above had provided information on their 
lifetime smoking behaviour (UKB data field 20160), falling into the category of either ever 

https://drive.google.com/drive/folders/1FQ7MwF67QqE7XV1zi0tocNUiCKDWBVi1


562882-L-bw-Pasman562882-L-bw-Pasman562882-L-bw-Pasman562882-L-bw-Pasman
Processed on: 4-8-2021Processed on: 4-8-2021Processed on: 4-8-2021Processed on: 4-8-2021 PDF page: 232PDF page: 232PDF page: 232PDF page: 232

232 Part 2 – Chapter 8 

smoker (n=14,564) or never smoker (n=22,555). We performed GWAS using the exact same 
approach described above, in these two groups separately.  
 
Meta-analysis GWAS samples subcortical brain volumes 
We performed a meta-analysis of the summary statistics from our GWAS analyses on UK 
Biobank participants (the complete sample described above) and the summary statistics 
from a previous ENIGMA GWAS5 for all brain regions. We performed this meta-analysis in 
METAL6, and it was based on sample size (instead of standard error) because there was 
measurement variance in the original samples. SNPs with a sample size below 1,000 were 
not included in the meta-analysis. Subsequently, the LD score regression intercept was 
calculated using LDSC7. Z-scores resulting from the meta-analysis were converted to 
betas using the formula 𝛽𝛽𝛽𝛽 = 𝑧𝑧𝑧𝑧−𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑠𝑠𝑠𝑠

√𝑁𝑁𝑁𝑁∗ 1
�𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸(1−𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸)

 (following procedures from Taylor et al., 

20168). The corresponding standard error was computed using 𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖 = 𝛽𝛽𝛽𝛽
𝑧𝑧𝑧𝑧−𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑠𝑠𝑠𝑠

. We corrected 

the standard error for genomic inflation with the LD score regression intercept with 

𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑐𝑐𝑐𝑐 = �𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖2 ∗ 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖  and computed corresponding p-values in R. To create 
genetic instruments for exposures, we clumped significant (5e-08 / 1e-05) hits using 
PLINK, using R2 <0.01 and 10,000 kb as our independence threshold. 
 
Meta-analysis GWAS samples substance use 
We performed a meta-analysis of the summary statistics from the single largest available 
GWAS on smoking and alcohol use9 (excl. UK-Biobank) and the summary statistics from 
23andMe (requested from 23andMe, Inc) for smoking initiation, cigarettes per day, 
smoking cessation, and alcohol per week in METAL6, based on sample size. Subsequently, 
the LD score regression intercept was calculated using LDSC7. Z-scores resulting from the 
meta-analysis were converted to betas with similar procedures as described above. To 
create genetic instruments for exposures, we selected the SNPs (rs-numbers) that were 
reported to be significantly related with the traits in the original GSCAN paper9 and 
extracted their estimates (betas, standard errors and p-values) from our own meta-
analysis.    
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SNPs included in the various genetic instruments 
Below is an overview of the SNPs that were included in the various genetic instruments 
used for Mendelian randomization analyses. Note that we selected SNPs which had 
initially, that is, in the original, complete GWAS study, been reported as genome-wide 
associated (p<5E-08), to include in the instruments. In the case of smoking initiation, 
smoking cessation, cigarettes smoked per day and alcohol drinks per week, we excluded 
UK Biobank from the original GWAS study to prevent sample overlap (which causes bias 
in MR), and then took the effect estimates from a meta-analyses of the remaining samples. 
This means that for some of the included SNPs for those exposures the significance level 
may be higher than 5E-08. 
 

SNPs included for subcortical brain volumes as exposures: 
 Nucleus 

accumbens 
Amygdala 
5E-08 

Amygdala 1E-
05 

Caudate Hippocampus Pallidum Putamen Thalamus 

1 rs1178320 rs2347701 rs10130307 rs10439608 rs10494303 rs11196876 rs10439608 rs11827239 

2 rs11916858 rs79340609 rs10504722 rs10800064 rs11068205 rs11639504 rs10765500 rs12146713 

3 rs2153960  rs10850141 rs10887759 rs11245365 rs11976703 rs11196979 rs16956241 

4 rs2608301  rs10868746 rs112510871 rs11737577 rs12445022 rs11197861 rs1789167 

5 rs321414  rs111592563 rs115053453 rs12189145 rs12703184 rs11204421 rs321348 

6 rs34255419  rs11230889 rs11669745 rs12523793 rs1291602 rs11576262 rs385301 

7 rs34312154  rs116991338 rs11676147 rs13089287 rs1328360 rs11765218 rs429358 

8 rs3789364  rs11790097 rs117407140 rs2279681 rs196798 rs1187155 rs45499402 

9 rs4148557  rs118133428 rs1187155 rs2287509 rs2231142 rs12197456 rs62288104 

10 rs62288106  rs118182651 rs12256016 rs3111623 rs28439696 rs12457893 rs7026018 

11 rs6658111  rs12251016 rs12749024 rs429358 rs2844510 rs12806934 rs75179968 

12 rs66717543  rs12363897 rs12952581 rs58499557 rs2974367 rs13403450 rs76928645 

13 rs7940646  rs12586189 rs13172721 rs61921502 rs34658078 rs1346914 rs806794 

14   rs12605433 rs1347008 rs62063437 rs34736685 rs1430332  

15   rs13100173 rs1422191 rs62374671 rs4887023 rs1544528  

16   rs13124981 rs1743179 rs6664992 rs6037025 rs2139559  

17   rs132867 rs17764251 rs6876370 rs6058317 rs2244479  

18   rs17150071 rs17773700 rs7040792 rs62079082 rs2710880  

19   rs202923 rs208829 rs77956314 rs6723226 rs3131633  

20   rs2336943 rs2196448  rs73186053 rs314688  

21   rs2347701 rs2817145  rs76891681 rs3815071  

22   rs28399637 rs28366595  rs7950543 rs398652  

23   rs4586727 rs28535536  rs8014725 rs4714854  

24   rs4797344 rs2910056  rs9426738 rs4748999  

25   rs4818252 rs2926043  rs9922520 rs4916907  

26   rs61353762 rs34259020   rs556151  

27   rs61921502 rs34811474   rs6138937  

28   rs62282701 rs3820870   rs62136802  

29   rs62359209 rs4888010   rs634368  

30   rs6658111 rs4984975   rs6428671  

31   rs6979446 rs4985152   rs7101609  

32   rs7014578 rs55830072   rs7734654  
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smoker (n=14,564) or never smoker (n=22,555). We performed GWAS using the exact same 
approach described above, in these two groups separately.  
 
Meta-analysis GWAS samples subcortical brain volumes 
We performed a meta-analysis of the summary statistics from our GWAS analyses on UK 
Biobank participants (the complete sample described above) and the summary statistics 
from a previous ENIGMA GWAS5 for all brain regions. We performed this meta-analysis in 
METAL6, and it was based on sample size (instead of standard error) because there was 
measurement variance in the original samples. SNPs with a sample size below 1,000 were 
not included in the meta-analysis. Subsequently, the LD score regression intercept was 
calculated using LDSC7. Z-scores resulting from the meta-analysis were converted to 
betas using the formula 𝛽𝛽𝛽𝛽 = 𝑧𝑧𝑧𝑧−𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑠𝑠𝑠𝑠

√𝑁𝑁𝑁𝑁∗ 1
�𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸(1−𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸)

 (following procedures from Taylor et al., 

20168). The corresponding standard error was computed using 𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖 = 𝛽𝛽𝛽𝛽
𝑧𝑧𝑧𝑧−𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑠𝑠𝑠𝑠

. We corrected 

the standard error for genomic inflation with the LD score regression intercept with 

𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑐𝑐𝑐𝑐 = �𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖2 ∗ 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖  and computed corresponding p-values in R. To create 
genetic instruments for exposures, we clumped significant (5e-08 / 1e-05) hits using 
PLINK, using R2 <0.01 and 10,000 kb as our independence threshold. 
 
Meta-analysis GWAS samples substance use 
We performed a meta-analysis of the summary statistics from the single largest available 
GWAS on smoking and alcohol use9 (excl. UK-Biobank) and the summary statistics from 
23andMe (requested from 23andMe, Inc) for smoking initiation, cigarettes per day, 
smoking cessation, and alcohol per week in METAL6, based on sample size. Subsequently, 
the LD score regression intercept was calculated using LDSC7. Z-scores resulting from the 
meta-analysis were converted to betas with similar procedures as described above. To 
create genetic instruments for exposures, we selected the SNPs (rs-numbers) that were 
reported to be significantly related with the traits in the original GSCAN paper9 and 
extracted their estimates (betas, standard errors and p-values) from our own meta-
analysis.    
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SNPs included in the various genetic instruments 
Below is an overview of the SNPs that were included in the various genetic instruments 
used for Mendelian randomization analyses. Note that we selected SNPs which had 
initially, that is, in the original, complete GWAS study, been reported as genome-wide 
associated (p<5E-08), to include in the instruments. In the case of smoking initiation, 
smoking cessation, cigarettes smoked per day and alcohol drinks per week, we excluded 
UK Biobank from the original GWAS study to prevent sample overlap (which causes bias 
in MR), and then took the effect estimates from a meta-analyses of the remaining samples. 
This means that for some of the included SNPs for those exposures the significance level 
may be higher than 5E-08. 
 

SNPs included for subcortical brain volumes as exposures: 
 Nucleus 

accumbens 
Amygdala 
5E-08 

Amygdala 1E-
05 

Caudate Hippocampus Pallidum Putamen Thalamus 

1 rs1178320 rs2347701 rs10130307 rs10439608 rs10494303 rs11196876 rs10439608 rs11827239 

2 rs11916858 rs79340609 rs10504722 rs10800064 rs11068205 rs11639504 rs10765500 rs12146713 

3 rs2153960  rs10850141 rs10887759 rs11245365 rs11976703 rs11196979 rs16956241 

4 rs2608301  rs10868746 rs112510871 rs11737577 rs12445022 rs11197861 rs1789167 

5 rs321414  rs111592563 rs115053453 rs12189145 rs12703184 rs11204421 rs321348 

6 rs34255419  rs11230889 rs11669745 rs12523793 rs1291602 rs11576262 rs385301 

7 rs34312154  rs116991338 rs11676147 rs13089287 rs1328360 rs11765218 rs429358 

8 rs3789364  rs11790097 rs117407140 rs2279681 rs196798 rs1187155 rs45499402 

9 rs4148557  rs118133428 rs1187155 rs2287509 rs2231142 rs12197456 rs62288104 

10 rs62288106  rs118182651 rs12256016 rs3111623 rs28439696 rs12457893 rs7026018 

11 rs6658111  rs12251016 rs12749024 rs429358 rs2844510 rs12806934 rs75179968 

12 rs66717543  rs12363897 rs12952581 rs58499557 rs2974367 rs13403450 rs76928645 

13 rs7940646  rs12586189 rs13172721 rs61921502 rs34658078 rs1346914 rs806794 

14   rs12605433 rs1347008 rs62063437 rs34736685 rs1430332  

15   rs13100173 rs1422191 rs62374671 rs4887023 rs1544528  

16   rs13124981 rs1743179 rs6664992 rs6037025 rs2139559  

17   rs132867 rs17764251 rs6876370 rs6058317 rs2244479  

18   rs17150071 rs17773700 rs7040792 rs62079082 rs2710880  

19   rs202923 rs208829 rs77956314 rs6723226 rs3131633  

20   rs2336943 rs2196448  rs73186053 rs314688  

21   rs2347701 rs2817145  rs76891681 rs3815071  

22   rs28399637 rs28366595  rs7950543 rs398652  

23   rs4586727 rs28535536  rs8014725 rs4714854  

24   rs4797344 rs2910056  rs9426738 rs4748999  

25   rs4818252 rs2926043  rs9922520 rs4916907  

26   rs61353762 rs34259020   rs556151  

27   rs61921502 rs34811474   rs6138937  

28   rs62282701 rs3820870   rs62136802  

29   rs62359209 rs4888010   rs634368  

30   rs6658111 rs4984975   rs6428671  

31   rs6979446 rs4985152   rs7101609  

32   rs7014578 rs55830072   rs7734654  
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33   rs707097 rs56000151   rs79787807  

34   rs7539819 rs6135525   rs8017172  

35   rs7604451 rs62037364   rs806794  

36   rs76436457 rs62082217   rs9838026  

37   rs79340609 rs62365541     

38   rs80223973 rs6483195     

39   rs895330 rs6703416     

40   rs9853475 rs7040561     

41    rs7084454     

42    rs7198936     

43    rs7245004     

44    rs72631228     

45    rs73144681     

46    rs75268943     

47    rs7747401     

48    rs7949956     

49    rs8017172     

50    rs888234     

51    rs9369275     

52    rs9903088     

53    rs994539     

Note that if the number of SNPs differed slightly for different exposure-outcome combinations, we report the 
instrument with the largest amount of SNPs here. 
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SNPs included for substance use behaviours as exposures: 
 Smoking initiation Cigarettes per day Alcohol dependence Alcohol drinks per week 
1 rs10042827 rs1024323 rs113659074 rs10004020 
2 rs1004787 rs10454798 rs1154445 rs10028756 
3 rs10060196 rs10519203 rs1229863 rs1004787 
4 rs1008078 rs10742683 rs1229984 rs10085696 
5 rs1022376 rs1115019 rs34929220 rs10236149 
6 rs1022528 rs11264100 rs3811802 rs10438820 
7 rs10233018 rs113001570 rs4388946 rs10506274 
8 rs10272990 rs117824460 rs6827898 rs10750025 
9 rs10279261 rs11846838 rs79171978 rs10753661 
10 rs1030015 rs11940255 rs894368 rs10876188 
11 rs10446419 rs12438181  rs10978550 
12 rs10490159 rs12924872  rs11030084 
13 rs1050847 rs13253502  rs1123285 
14 rs1059490 rs143200968  rs113443718 
15 rs10698713 rs146009840  rs1154414 
16 rs10789369 rs1592485  rs11625650 
17 rs10805858 rs182317  rs11692435 
18 rs10853981 rs2084533  rs11739827 
19 rs10858334 rs215600  rs11940694 
20 rs10873871 rs2236951  rs12088813 
21 rs10885480 rs2273500  rs1217091 
22 rs10905461 rs258321  rs1229984 
23 rs10914684 rs2741351  rs12499107 
24 rs10935779 rs28681284  rs1260326 
25 rs10945141 rs28813180  rs12655091 
26 rs10953957 rs3025383  rs12795042 
27 rs10966092 rs34973462  rs12907323 
28 rs11057005 rs4144686  rs13024996 
29 rs1106363 rs4236926  rs13032049 
30 rs11076962 rs4485470  rs13066454 
31 rs11078713 rs56113850  rs13094887 
32 rs1108130 rs59208569  rs13107325 
33 rs1109480 rs6078373  rs13250583 
34 rs11162019 rs62447179  rs13383034 
35 rs1116690 rs632811  rs17029090 
36 rs11191269 rs699165  rs1713676 
37 rs11192347 rs7125588  rs17177078 
38 rs11258417 rs72740955  rs17665139 
39 rs1126757 rs7281463  rs2011092 
40 rs112725451 rs73229090  rs2165670 
41 rs113230003 rs7431710  rs2178197 
42 rs1139897 rs75596189  rs2180870 
43 rs114976176 rs7599488  rs2472297 
44 rs1150668 rs7766641  rs2764771 
45 rs11587399 rs78408772  rs281379 
46 rs11594623 rs790564  rs2854334 
47 rs11611651 rs7951365  rs28601761 
48 rs11642231 rs8040868  rs28680958 
49 rs11651955 rs8192726  rs28929474 
50 rs11678980   rs35034355 
51 rs11692435   rs35538052 
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34   rs7539819 rs6135525   rs8017172  

35   rs7604451 rs62037364   rs806794  

36   rs76436457 rs62082217   rs9838026  

37   rs79340609 rs62365541     

38   rs80223973 rs6483195     

39   rs895330 rs6703416     

40   rs9853475 rs7040561     

41    rs7084454     

42    rs7198936     

43    rs7245004     

44    rs72631228     

45    rs73144681     

46    rs75268943     

47    rs7747401     

48    rs7949956     

49    rs8017172     

50    rs888234     

51    rs9369275     

52    rs9903088     

53    rs994539     

Note that if the number of SNPs differed slightly for different exposure-outcome combinations, we report the 
instrument with the largest amount of SNPs here. 
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SNPs included for substance use behaviours as exposures: 
 Smoking initiation Cigarettes per day Alcohol dependence Alcohol drinks per week 
1 rs10042827 rs1024323 rs113659074 rs10004020 
2 rs1004787 rs10454798 rs1154445 rs10028756 
3 rs10060196 rs10519203 rs1229863 rs1004787 
4 rs1008078 rs10742683 rs1229984 rs10085696 
5 rs1022376 rs1115019 rs34929220 rs10236149 
6 rs1022528 rs11264100 rs3811802 rs10438820 
7 rs10233018 rs113001570 rs4388946 rs10506274 
8 rs10272990 rs117824460 rs6827898 rs10750025 
9 rs10279261 rs11846838 rs79171978 rs10753661 
10 rs1030015 rs11940255 rs894368 rs10876188 
11 rs10446419 rs12438181  rs10978550 
12 rs10490159 rs12924872  rs11030084 
13 rs1050847 rs13253502  rs1123285 
14 rs1059490 rs143200968  rs113443718 
15 rs10698713 rs146009840  rs1154414 
16 rs10789369 rs1592485  rs11625650 
17 rs10805858 rs182317  rs11692435 
18 rs10853981 rs2084533  rs11739827 
19 rs10858334 rs215600  rs11940694 
20 rs10873871 rs2236951  rs12088813 
21 rs10885480 rs2273500  rs1217091 
22 rs10905461 rs258321  rs1229984 
23 rs10914684 rs2741351  rs12499107 
24 rs10935779 rs28681284  rs1260326 
25 rs10945141 rs28813180  rs12655091 
26 rs10953957 rs3025383  rs12795042 
27 rs10966092 rs34973462  rs12907323 
28 rs11057005 rs4144686  rs13024996 
29 rs1106363 rs4236926  rs13032049 
30 rs11076962 rs4485470  rs13066454 
31 rs11078713 rs56113850  rs13094887 
32 rs1108130 rs59208569  rs13107325 
33 rs1109480 rs6078373  rs13250583 
34 rs11162019 rs62447179  rs13383034 
35 rs1116690 rs632811  rs17029090 
36 rs11191269 rs699165  rs1713676 
37 rs11192347 rs7125588  rs17177078 
38 rs11258417 rs72740955  rs17665139 
39 rs1126757 rs7281463  rs2011092 
40 rs112725451 rs73229090  rs2165670 
41 rs113230003 rs7431710  rs2178197 
42 rs1139897 rs75596189  rs2180870 
43 rs114976176 rs7599488  rs2472297 
44 rs1150668 rs7766641  rs2764771 
45 rs11587399 rs78408772  rs281379 
46 rs11594623 rs790564  rs2854334 
47 rs11611651 rs7951365  rs28601761 
48 rs11642231 rs8040868  rs28680958 
49 rs11651955 rs8192726  rs28929474 
50 rs11678980   rs35034355 
51 rs11692435   rs35538052 
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52 rs11713899   rs36052336 
53 rs1173461   rs3748034 
54 rs117657830   rs378421 
55 rs11766326   rs3803800 
56 rs11768481   rs3809162 
57 rs117734003   rs4092465 
58 rs11780471   rs4501255 
59 rs11783093   rs4548913 
60 rs11791671   rs4690727 
61 rs118202   rs4699791 
62 rs11872397   rs4815364 
63 rs1187820   rs4842786 
64 rs11889814   rs4916723 
65 rs11956866   rs4938230 
66 rs12022778   rs500321 
67 rs12027999   rs5024204 
68 rs12053870   rs55872084 
69 rs12130857   rs55932213 
70 rs12195240   rs56030824 
71 rs12244388   rs56337305 
72 rs12474587   rs58107686 
73 rs12517438   rs60654199 
74 rs12530388   rs62044525 
75 rs12563365   rs62250685 
76 rs12633090   rs6460047 
77 rs12642744   rs6787172 
78 rs12714017   rs682011 
79 rs12739243   rs6951574 
80 rs12740789   rs705687 
81 rs12755632   rs7074871 
82 rs12855717   rs7185555 
83 rs12878369   rs72859280 
84 rs12918191   rs77165542 
85 rs1291821   rs79139602 
86 rs13007361   rs7950166 
87 rs13066050   rs79616692 
88 rs13109980   rs823114 
89 rs13110073   rs828867 
90 rs13261666   rs9607814 
91 rs13319205   rs9838144 
92 rs13392222   rs9950000 
93 rs13437771    
94 rs1373178    
95 rs1381287    
96 rs1381775    
97 rs1385108    
98 rs1389171    
99 rs13906    
100 rs139896    
101 rs1413119    
102 rs1435479    
103 rs1435672    
104 rs1435741    

Causal relationship between brain region volumes and substance use 

105 rs1445649    
106 rs1449012    
107 rs147052174    
108 rs1514176    
109 rs1518393    
110 rs1549979    
111 rs1555445    
112 rs1561112    
113 rs1565735    
114 rs160631    
115 rs1632941    
116 rs16826827    
117 rs16828799    
118 rs1713676    
119 rs1714521    
120 rs17165769    
121 rs17197663    
122 rs1722666    
123 rs17229285    
124 rs1733760    
125 rs1737329    
126 rs1759433    
127 rs17616642    
128 rs17692129    
129 rs1772572    
130 rs1799068    
131 rs1811739    
132 rs181508347    
133 rs1834306    
134 rs1863161    
135 rs1889571    
136 rs1901477    
137 rs1910236    
138 rs1927901    
139 rs1930371    
140 rs1935571    
141 rs1944689    
142 rs2010921    
143 rs2028269    
144 rs2063976    
145 rs2155646    
146 rs2173019    
147 rs2196356    
148 rs221988    
149 rs2276825    
150 rs2279829    
151 rs2289791    
152 rs2306866    
153 rs2319545    
154 rs2344976    
155 rs2378662    
156 rs238896    
157 rs2526390    
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67 rs12027999   rs5024204 
68 rs12053870   rs55872084 
69 rs12130857   rs55932213 
70 rs12195240   rs56030824 
71 rs12244388   rs56337305 
72 rs12474587   rs58107686 
73 rs12517438   rs60654199 
74 rs12530388   rs62044525 
75 rs12563365   rs62250685 
76 rs12633090   rs6460047 
77 rs12642744   rs6787172 
78 rs12714017   rs682011 
79 rs12739243   rs6951574 
80 rs12740789   rs705687 
81 rs12755632   rs7074871 
82 rs12855717   rs7185555 
83 rs12878369   rs72859280 
84 rs12918191   rs77165542 
85 rs1291821   rs79139602 
86 rs13007361   rs7950166 
87 rs13066050   rs79616692 
88 rs13109980   rs823114 
89 rs13110073   rs828867 
90 rs13261666   rs9607814 
91 rs13319205   rs9838144 
92 rs13392222   rs9950000 
93 rs13437771    
94 rs1373178    
95 rs1381287    
96 rs1381775    
97 rs1385108    
98 rs1389171    
99 rs13906    
100 rs139896    
101 rs1413119    
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103 rs1435672    
104 rs1435741    
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105 rs1445649    
106 rs1449012    
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110 rs1549979    
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113 rs1565735    
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115 rs1632941    
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117 rs16828799    
118 rs1713676    
119 rs1714521    
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122 rs1722666    
123 rs17229285    
124 rs1733760    
125 rs1737329    
126 rs1759433    
127 rs17616642    
128 rs17692129    
129 rs1772572    
130 rs1799068    
131 rs1811739    
132 rs181508347    
133 rs1834306    
134 rs1863161    
135 rs1889571    
136 rs1901477    
137 rs1910236    
138 rs1927901    
139 rs1930371    
140 rs1935571    
141 rs1944689    
142 rs2010921    
143 rs2028269    
144 rs2063976    
145 rs2155646    
146 rs2173019    
147 rs2196356    
148 rs221988    
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153 rs2319545    
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156 rs238896    
157 rs2526390    
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158 rs2539706    
159 rs2587507    
160 rs2637869    
161 rs2710634    
162 rs2734390    
163 rs2796793    
164 rs281296    
165 rs28408682    
166 rs28441558    
167 rs28717373    
168 rs2901785    
169 rs290601    
170 rs2925128    
171 rs2938134    
172 rs2939756    
173 rs2952251    
174 rs2959084    
175 rs301807    
176 rs3098272    
177 rs3115418    
178 rs3172494    
179 rs3218116    
180 rs329124    
181 rs34342129    
182 rs34399632    
183 rs34553878    
184 rs34940743    
185 rs34970111    
186 rs35375873    
187 rs35656245    
188 rs357304    
189 rs359247    
190 rs359431    
191 rs3740977    
192 rs3764351    
193 rs3800227    
194 rs3810496    
195 rs3811038    
196 rs3820277    
197 rs3843905    
198 rs3847244    
199 rs3909281    
200 rs3934797    
201 rs4044321    
202 rs42417    
203 rs4264267    
204 rs4275621    
205 rs4310804    
206 rs4476253    
207 rs4543050    
208 rs45444697    
209 rs4674916    
210 rs4674993    
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211 rs4727189    
212 rs4752018    
213 rs4759229    
214 rs4785187    
215 rs4788676    
216 rs4790874    
217 rs4818005    
218 rs4822102    
219 rs4837631    
220 rs4877285    
221 rs4886207    
222 rs4912332    
223 rs540860    
224 rs55786907    
225 rs55913542    
226 rs55944129    
227 rs56208390    
228 rs56367474    
229 rs56902655    
230 rs57153235    
231 rs58400863    
232 rs586699    
233 rs59537158    
234 rs6011779    
235 rs6050446    
236 rs6058782    
237 rs6073075    
238 rs60833441    
239 rs61533748    
240 rs61884449    
241 rs61886926    
242 rs619087    
243 rs61959481    
244 rs62007780    
245 rs62052916    
246 rs62098013    
247 rs62106258    
248 rs62137126    
249 rs62180324    
250 rs62193862    
251 rs62246017    
252 rs62340589    
253 rs62618693    
254 rs6265    
255 rs6437769    
256 rs6438436    
257 rs644740    
258 rs6452785    
259 rs6497840    
260 rs6568832    
261 rs67050670    
262 rs6730325    
263 rs6731872    
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246 rs62098013    
247 rs62106258    
248 rs62137126    
249 rs62180324    
250 rs62193862    
251 rs62246017    
252 rs62340589    
253 rs62618693    
254 rs6265    
255 rs6437769    
256 rs6438436    
257 rs644740    
258 rs6452785    
259 rs6497840    
260 rs6568832    
261 rs67050670    
262 rs6730325    
263 rs6731872    
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264 rs6750107    
265 rs6750529    
266 rs6756212    
267 rs67777803    
268 rs6782116    
269 rs6874731    
270 rs6890961    
271 rs6936160    
272 rs6948707    
273 rs6968380    
274 rs6986430    
275 rs6993429    
276 rs7024924    
277 rs7026534    
278 rs7072776    
279 rs7134009    
280 rs71367544    
281 rs71592686    
282 rs71602617    
283 rs7188873    
284 rs7192140    
285 rs72780746    
286 rs72789626    
287 rs72790288    
288 rs72898831    
289 rs72938304    
290 rs73008357    
291 rs7333559    
292 rs73831818    
293 rs74697736    
294 rs748832    
295 rs7505855    
296 rs75210106    
297 rs75674569    
298 rs75919030    
299 rs7600835    
300 rs7631379    
301 rs7640107    
302 rs76460663    
303 rs7657022    
304 rs76608582    
305 rs76841737    
306 rs7696257    
307 rs77215829    
308 rs77283305    
309 rs7743165    
310 rs7802996    
311 rs7809303    
312 rs7836565    
313 rs7867822    
314 rs7901883    
315 rs7929518    
316 rs7943721    

Causal relationship between brain region volumes and substance use 

317 rs79476395    
318 rs7969559    
319 rs8005334    
320 rs80054503    
321 rs8027457    
322 rs8050598    
323 rs8083764    
324 rs8096225    
325 rs8103660    
326 rs876793    
327 rs910912    
328 rs925524    
329 rs9288999    
330 rs9302604    
331 rs9323328    
332 rs9331343    
333 rs951740    
334 rs9538162    
335 rs9540731    
336 rs9545155    
337 rs9627272    
338 rs963354    
339 rs9787523    
340 rs9826984    
341 rs9841807    
342 rs9850597    
343 rs9922607    
344 rs9936784    
345 rs9941217    
346 rs9987376    

Note that if the number of SNPs differed slightly for different exposure-outcome combinations, we report the 
instrument with the largest amount of SNPs here. 
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286 rs72789626    
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289 rs72938304    
290 rs73008357    
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294 rs748832    
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297 rs75674569    
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302 rs76460663    
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305 rs76841737    
306 rs7696257    
307 rs77215829    
308 rs77283305    
309 rs7743165    
310 rs7802996    
311 rs7809303    
312 rs7836565    
313 rs7867822    
314 rs7901883    
315 rs7929518    
316 rs7943721    

Causal relationship between brain region volumes and substance use 

317 rs79476395    
318 rs7969559    
319 rs8005334    
320 rs80054503    
321 rs8027457    
322 rs8050598    
323 rs8083764    
324 rs8096225    
325 rs8103660    
326 rs876793    
327 rs910912    
328 rs925524    
329 rs9288999    
330 rs9302604    
331 rs9323328    
332 rs9331343    
333 rs951740    
334 rs9538162    
335 rs9540731    
336 rs9545155    
337 rs9627272    
338 rs963354    
339 rs9787523    
340 rs9826984    
341 rs9841807    
342 rs9850597    
343 rs9922607    
344 rs9936784    
345 rs9941217    
346 rs9987376    

Note that if the number of SNPs differed slightly for different exposure-outcome combinations, we report the 
instrument with the largest amount of SNPs here. 
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Supplementary table 1. Mean F statistic for all SNPs included in the genetic instruments used for Mendelian 
randomization analyses  

 
Exposure Threshold  SNPs F statistic 

Accumbens  5.00E-08 13 39.05 

Amygdala 5.00E-08 2 36.77 

Amygdala* 1.00E-05 40 23.43 
  

39 23.47 

Caudate 5.00E-08 53 43.17 
  

52 42.60 

Hippocampus 5.00E-08 19 49.02 

Pallidum 5.00E-08 25 48.43 

Putamen* 5.00E-08 36 53.84 
  

35 54.44 
  

34 53.04 

Thalamus 5.00E-08 13 36.62 
  

12 36.62 

Smoking  initiation* 5.00E-08 346 15.23 
  

345 15.25 

Drinks per week 5.00E-08 92 39.48 

Alcohol dependence  5.00E-08 10 29.15 

Cigarettes per day 5.00E-08 49 68.94 

 
 
  

Causal relationship between brain region volumes and substance use 

Supplementary table 2. IGX2 (regression dilution) statistic which assesses the reliability of MR-Egger results - 
with subcortical brain volumes as the exposures  

  

Thres
hold 

  
Outcome 

  

Exposure Smoking 
initiation 

Smoking 
cessation 

Cigarettes per 
 day 

Alcohol 
dependency 

Drinks per 
 week 

Accumbens 5E-08 0.75 (u) 0.75 (u) 0.75 (u) 0.75 (u) 0.75 (u) 

Amygdala 5E-08 0.80 (u) 0.80 (u) 0.80 (u) 0.80 (u) 0.80 (u) 

Amygdala 1E-05 0.91 (w) 0.88 (w) 0.79 (u) 0.89 (w) 0.79 (u) 

Caudate 5E-08 0.86 (w) 0.81 (w) 0.81 (u) 0.81 (w) 0.81 (u) 

Hippocampus 5E-08 0.74 (w) 0.63 (w) 0.62 (u) 0.63 (w) 0.63 (u) 

Pallidum 5E-08 0.91 (w) 0.91 (u) 0.91 (u) 0.91 (u) 0.91 (u) 

Putamen 5E-08 0.94 (w) 0.93 (w) 0.89 (u) 0.93 (w) 0.89 (u) 

Thalamus 5E-08 0.71 (u) 0.84 (w) 0.71 (u) 0.84 (w) 0.71 (u) 

 The IGX2 statistic is a measure for violation of the NOME ('No Measurement Error') assumption. 
For all genetic instruments the highest IGX2 statistic was reported (either unweighted, or weighted for 

standard error). If both were ≥0.9 then weighted was reported as default. 
If IGX2 was 0.9 or higher, bias as a result of NOME violation is not likely, and MR-Egger results were reported in 
the manuscript. If IGX2 was lower than 0.9, SIMEX ('Simulation Extrapolation') was performed on MR-Egger to 

correct for possible bias resulting from NOME violation. 
If IGX2 was below 0.6, MR-Egger (SIMEX) was not reported since bias as result of NOME violation renders the 

results unreliable (u) and (w) represent the weighted and unweighted IGX2 respectively. 
 

Supplementary table 3. IGX2 (regression dilution) statistic which assesses the reliability of MR-Egger results - 
with substance use variables as the exposures 

     
Outcome 

   

Exposure Accumbens Amygdala  Caudate Hippocampus Pallidum  Putamen  Thalamus  

Smoking initiation 0.54 (w) 0.54 (w) 0.54 (w) 0.54 (w) 0.54 (w) 0.54 (w) 0.54 (w) 

Cigarettes per day 
(ever) 

0.97 (w) 0.97 (w) 0.97 (w) 0.97 (w) 0.97 (w) 0.97 (w) 0.97 (w) 

Cigarettes per day 
(never) 

0.97 (w) 0.97 (w) 0.97 (w) 0.97 (w) 0.97 (w) 0.97 (w) 0.97 (w) 

Drinks per week 0.91 (w) 0.91 (w) 0.91 (w) 0.91 (w) 0.91 (w) 0.91 (w) 0.91 (w) 

Alcohol dependency 0.77 (w) 0.77 (w) 0.77 (w) 0.77 (w) 0.77 (w) 0.77 (w) 0.77 (w) 

The IGX2 statistic is a measure for violation of the NOME ('No Measurement Error') assumption. 
For all genetic instruments the highest IGX2 statistic was reported (either unweighted, or weighted for 

standard error). If both were ≥0.9 then weighted was reported as default. 
If IGX2 was 0.9 or higher, bias as a result of NOME violation is not likely, and MR-Egger results were reported in 
the manuscript. If IGX2 was lower than 0.9, SIMEX ('Simulation Extrapolation') was performed on MR-Egger to 

correct for possible bias resulting from NOME violation. If IGX2 was below 0.6, MR-Egger (SIMEX) was not 
reported since bias as result of NOME violation renders the results unreliable 

(u) and (w) represent the weighted and unweighted IGX2 respectively. 
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Supplementary table 1. Mean F statistic for all SNPs included in the genetic instruments used for Mendelian 
randomization analyses  

 
Exposure Threshold  SNPs F statistic 

Accumbens  5.00E-08 13 39.05 

Amygdala 5.00E-08 2 36.77 

Amygdala* 1.00E-05 40 23.43 
  

39 23.47 

Caudate 5.00E-08 53 43.17 
  

52 42.60 

Hippocampus 5.00E-08 19 49.02 

Pallidum 5.00E-08 25 48.43 

Putamen* 5.00E-08 36 53.84 
  

35 54.44 
  

34 53.04 

Thalamus 5.00E-08 13 36.62 
  

12 36.62 

Smoking  initiation* 5.00E-08 346 15.23 
  

345 15.25 

Drinks per week 5.00E-08 92 39.48 

Alcohol dependence  5.00E-08 10 29.15 

Cigarettes per day 5.00E-08 49 68.94 

 
 
  

Causal relationship between brain region volumes and substance use 

Supplementary table 2. IGX2 (regression dilution) statistic which assesses the reliability of MR-Egger results - 
with subcortical brain volumes as the exposures  

  

Thres
hold 

  
Outcome 

  

Exposure Smoking 
initiation 

Smoking 
cessation 

Cigarettes per 
 day 

Alcohol 
dependency 

Drinks per 
 week 

Accumbens 5E-08 0.75 (u) 0.75 (u) 0.75 (u) 0.75 (u) 0.75 (u) 

Amygdala 5E-08 0.80 (u) 0.80 (u) 0.80 (u) 0.80 (u) 0.80 (u) 

Amygdala 1E-05 0.91 (w) 0.88 (w) 0.79 (u) 0.89 (w) 0.79 (u) 

Caudate 5E-08 0.86 (w) 0.81 (w) 0.81 (u) 0.81 (w) 0.81 (u) 

Hippocampus 5E-08 0.74 (w) 0.63 (w) 0.62 (u) 0.63 (w) 0.63 (u) 

Pallidum 5E-08 0.91 (w) 0.91 (u) 0.91 (u) 0.91 (u) 0.91 (u) 

Putamen 5E-08 0.94 (w) 0.93 (w) 0.89 (u) 0.93 (w) 0.89 (u) 

Thalamus 5E-08 0.71 (u) 0.84 (w) 0.71 (u) 0.84 (w) 0.71 (u) 

 The IGX2 statistic is a measure for violation of the NOME ('No Measurement Error') assumption. 
For all genetic instruments the highest IGX2 statistic was reported (either unweighted, or weighted for 

standard error). If both were ≥0.9 then weighted was reported as default. 
If IGX2 was 0.9 or higher, bias as a result of NOME violation is not likely, and MR-Egger results were reported in 
the manuscript. If IGX2 was lower than 0.9, SIMEX ('Simulation Extrapolation') was performed on MR-Egger to 

correct for possible bias resulting from NOME violation. 
If IGX2 was below 0.6, MR-Egger (SIMEX) was not reported since bias as result of NOME violation renders the 

results unreliable (u) and (w) represent the weighted and unweighted IGX2 respectively. 
 

Supplementary table 3. IGX2 (regression dilution) statistic which assesses the reliability of MR-Egger results - 
with substance use variables as the exposures 

     
Outcome 

   

Exposure Accumbens Amygdala  Caudate Hippocampus Pallidum  Putamen  Thalamus  

Smoking initiation 0.54 (w) 0.54 (w) 0.54 (w) 0.54 (w) 0.54 (w) 0.54 (w) 0.54 (w) 

Cigarettes per day 
(ever) 

0.97 (w) 0.97 (w) 0.97 (w) 0.97 (w) 0.97 (w) 0.97 (w) 0.97 (w) 

Cigarettes per day 
(never) 

0.97 (w) 0.97 (w) 0.97 (w) 0.97 (w) 0.97 (w) 0.97 (w) 0.97 (w) 

Drinks per week 0.91 (w) 0.91 (w) 0.91 (w) 0.91 (w) 0.91 (w) 0.91 (w) 0.91 (w) 

Alcohol dependency 0.77 (w) 0.77 (w) 0.77 (w) 0.77 (w) 0.77 (w) 0.77 (w) 0.77 (w) 

The IGX2 statistic is a measure for violation of the NOME ('No Measurement Error') assumption. 
For all genetic instruments the highest IGX2 statistic was reported (either unweighted, or weighted for 

standard error). If both were ≥0.9 then weighted was reported as default. 
If IGX2 was 0.9 or higher, bias as a result of NOME violation is not likely, and MR-Egger results were reported in 
the manuscript. If IGX2 was lower than 0.9, SIMEX ('Simulation Extrapolation') was performed on MR-Egger to 

correct for possible bias resulting from NOME violation. If IGX2 was below 0.6, MR-Egger (SIMEX) was not 
reported since bias as result of NOME violation renders the results unreliable 

(u) and (w) represent the weighted and unweighted IGX2 respectively. 
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Supplementary table 4. Overview of the amount of variance that the genetic instruments explained 
 

Exposure Threshold  SNPs Explained variance (%) 

Accumbens  5E-08 13 0.70 

Amygdala 5E-08 2 0.17 

Amygdala  1E-05 40 0.97 

Caudate 5E-08 53 3.97 

Hippocampus 5E-08 19 1.60 

Pallidum 5E-08 25 1.82 

Putamen 5E-08 35 2.18 

Thalamus 5E-08 12 0.70 

Smoking  initiation  5E-08 346 1.43 

Drinks per week 5E-08 92 0.56 

Alcohol dependence  5E-08 10 0.59 

Cigarettes per day (ever smokers) 5E-08 49 1.27 

 
Explained variance was computed as described by Pasman et al. Nature Neuroscience,2019, 21:1161-1170 

 
  

Causal relationship between brain region volumes and substance use 

Supplementary table 5. MR-egger intercepts, providing an estimation of horizontal pleiotropy.  
 

exposure Threshold  outcome intercept SE p 

Nucleus accumbens 5E-08 Smoking initiation 0.012 0.006 to 0.019 0.004 

Nucleus accumbens 5E-08 Smoking cessation -3E-03 -0.008 to 0.003 0.375 

Nucleus accumbens 5E-08 Cigarettes per day -0.002 -0.009 to 0.004 -0.002 

Nucleus accumbens 5E-08 Drinks per week 0.008 0.001 to 0.015 0.048 

Nucleus accumbens 5E-08 Alcohol dependency -0.013 -0.031 to 0.004 0.154 

Amygdala  5E-08 Smoking initiation - - - 

Amygdala  5E-08 Smoking cessation - - - 

Amygdala  5E-08 Cigarettes per day - - - 

Amygdala  5E-08 Drinks per week - - - 

Amygdala  5E-08 Alcohol dependency - - - 

Amygdala  1E-05 Smoking initiation -0.003 -0.006 to -3.0E-04 0.036 

Amygdala  1E-05 Smoking cessation 0.003 -0.001 to 0.007 0.105 

Amygdala  1E-05 Cigarettes per day -0.001 -0.006 to 0.003 0.552 

Amygdala  1E-05 Drinks per week 0.002 -0.001 to 0.005 0.142 

Amygdala  1E-05 Alcohol dependency 0.003 -0.004 to 0.011 0.400 

Caudate 5E-08 Smoking initiation -0.004 -0.009 to 0.002 0.190 

Caudate 5E-08 Smoking cessation 0.001 -0.004 to 0.005 0.692 

Caudate 5E-08 Cigarettes per day 2E-05 -0.006 to 0.006 0.993 

Caudate 5E-08 Drinks per week -0.001 -0.004 to 0.002 0.684 

Caudate 5E-08 Alcohol dependency 0.004 -0.004 to 0.012 0.293 

Hippocampus  5E-08 Smoking initiation 0.015 -0.008 to 0.039 0.227 

Hippocampus  5E-08 Smoking cessation 0.002 -0.009 to 0.014 0.708 

Hippocampus  5E-08 Cigarettes per day 0.003 -0.007 to 0.013 0.544 

Hippocampus  5E-08 Drinks per week 0.009 0.004 to 0.015 0.003 

Hippocampus  5E-08 Alcohol dependency 0.001 -0.018 to 0.019 0.939 

Pallidum  5E-08 Smoking initiation -0.003 -0.009 to 0.003 0.332 

Pallidum  5E-08 Smoking cessation 0.003 -0.001 to 0.007 0.183 

Pallidum  5E-08 Cigarettes per day -0.003 -0.007 to 0.001 0.209 

Pallidum  5E-08 Drinks per week 0.001 -0.002 to 0.004 0.561 

Pallidum  5E-08 Alcohol dependency 0.004 -0.005 to 0.014 0.384 

Putamen  5E-08 Smoking initiation -0.001 -0.007 to 0.004 0.653 

Putamen  5E-08 Smoking cessation 0.002 -0.002 to 0.007 0.335 

Putamen  5E-08 Cigarettes per day -2E-03 -0.006 to 0.002 0.430 

Putamen  5E-08 Drinks per week 2.27E-04 -0.003 to 0.004 0.894 

Putamen  5E-08 Alcohol dependency -0.003 -0.014 to 0.009 0.670 
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Supplementary table 4. Overview of the amount of variance that the genetic instruments explained 
 

Exposure Threshold  SNPs Explained variance (%) 

Accumbens  5E-08 13 0.70 

Amygdala 5E-08 2 0.17 

Amygdala  1E-05 40 0.97 

Caudate 5E-08 53 3.97 

Hippocampus 5E-08 19 1.60 

Pallidum 5E-08 25 1.82 

Putamen 5E-08 35 2.18 

Thalamus 5E-08 12 0.70 

Smoking  initiation  5E-08 346 1.43 

Drinks per week 5E-08 92 0.56 

Alcohol dependence  5E-08 10 0.59 

Cigarettes per day (ever smokers) 5E-08 49 1.27 

 
Explained variance was computed as described by Pasman et al. Nature Neuroscience,2019, 21:1161-1170 

 
  

Causal relationship between brain region volumes and substance use 

Supplementary table 5. MR-egger intercepts, providing an estimation of horizontal pleiotropy.  
 

exposure Threshold  outcome intercept SE p 

Nucleus accumbens 5E-08 Smoking initiation 0.012 0.006 to 0.019 0.004 

Nucleus accumbens 5E-08 Smoking cessation -3E-03 -0.008 to 0.003 0.375 

Nucleus accumbens 5E-08 Cigarettes per day -0.002 -0.009 to 0.004 -0.002 

Nucleus accumbens 5E-08 Drinks per week 0.008 0.001 to 0.015 0.048 

Nucleus accumbens 5E-08 Alcohol dependency -0.013 -0.031 to 0.004 0.154 

Amygdala  5E-08 Smoking initiation - - - 

Amygdala  5E-08 Smoking cessation - - - 

Amygdala  5E-08 Cigarettes per day - - - 

Amygdala  5E-08 Drinks per week - - - 

Amygdala  5E-08 Alcohol dependency - - - 

Amygdala  1E-05 Smoking initiation -0.003 -0.006 to -3.0E-04 0.036 

Amygdala  1E-05 Smoking cessation 0.003 -0.001 to 0.007 0.105 

Amygdala  1E-05 Cigarettes per day -0.001 -0.006 to 0.003 0.552 

Amygdala  1E-05 Drinks per week 0.002 -0.001 to 0.005 0.142 

Amygdala  1E-05 Alcohol dependency 0.003 -0.004 to 0.011 0.400 

Caudate 5E-08 Smoking initiation -0.004 -0.009 to 0.002 0.190 

Caudate 5E-08 Smoking cessation 0.001 -0.004 to 0.005 0.692 

Caudate 5E-08 Cigarettes per day 2E-05 -0.006 to 0.006 0.993 

Caudate 5E-08 Drinks per week -0.001 -0.004 to 0.002 0.684 

Caudate 5E-08 Alcohol dependency 0.004 -0.004 to 0.012 0.293 

Hippocampus  5E-08 Smoking initiation 0.015 -0.008 to 0.039 0.227 

Hippocampus  5E-08 Smoking cessation 0.002 -0.009 to 0.014 0.708 

Hippocampus  5E-08 Cigarettes per day 0.003 -0.007 to 0.013 0.544 

Hippocampus  5E-08 Drinks per week 0.009 0.004 to 0.015 0.003 

Hippocampus  5E-08 Alcohol dependency 0.001 -0.018 to 0.019 0.939 

Pallidum  5E-08 Smoking initiation -0.003 -0.009 to 0.003 0.332 

Pallidum  5E-08 Smoking cessation 0.003 -0.001 to 0.007 0.183 

Pallidum  5E-08 Cigarettes per day -0.003 -0.007 to 0.001 0.209 

Pallidum  5E-08 Drinks per week 0.001 -0.002 to 0.004 0.561 

Pallidum  5E-08 Alcohol dependency 0.004 -0.005 to 0.014 0.384 

Putamen  5E-08 Smoking initiation -0.001 -0.007 to 0.004 0.653 

Putamen  5E-08 Smoking cessation 0.002 -0.002 to 0.007 0.335 

Putamen  5E-08 Cigarettes per day -2E-03 -0.006 to 0.002 0.430 

Putamen  5E-08 Drinks per week 2.27E-04 -0.003 to 0.004 0.894 

Putamen  5E-08 Alcohol dependency -0.003 -0.014 to 0.009 0.670 
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Thalamus  5E-08 Smoking initiation 0.007 -0.196 to 0.210 0.222 

Thalamus  5E-08 Smoking cessation 0.006 -0.005 to 0.016 0.312 

Thalamus  5E-08 Cigarettes per day -0.002 -0.016 to 0.012 0.762 

Thalamus  5E-08 Drinks per week -0.009 -0.014 to -0.004 0.002 

Thalamus  5E-08 Alcohol dependency -0.019 -0.047 to 0.008 0.195 

Smoking initiation 5E-08 nucleus accumbens -3E-05 -0.003 to 0.002 0.978 

Smoking initiation 5E-08 Amygdala -0.001 -0.003 to 0.001 0.457 

Smoking initiation 5E-08 Caudate -0.001 -0.004 to 0.002 0.377 

Smoking initiation 5E-08 Hippocampus -3E-04 -0.003 to 0.002 0.815 

Smoking initiation 5E-08 pallidum -0.002 -0.004 to 0.001 0.227 

Smoking initiation 5E-08 Putamen -0.001 -0.004 to 0.002 0.412 

Smoking initiation 5E-08 Thalamus -0.003 -0.005 to -1.7E-04 0.037 

Drinks per week 5E-08 Nucleus accumbens 7E-04 -0.002 to 0.004 0.657 

Drinks per week 5E-08 Amygdala 0.001 -0.002 to 0.004 0.537 

Drinks per week 5E-08 Caudate 0.001 -0.003 to 0.004 0.629 

Drinks per week 5E-08 Hippocampus 0.001 -0.001 to 0.004 0.323 

Drinks per week 5E-08 pallidum 0.003 6.5E-05 to 0.007 0.049 

Drinks per week 5E-08 Putamen 0.001 -0.002 to 0.005 0.431 

Drinks per week 5E-08 Thalamus 0.001 -0.002 to 0.004 0.459 

Alcohol dependence  5E-08 nucleus accumbens 0.016 -0.010 to 0.041 0.258 

Alcohol dependence  5E-08 Amygdala 0.007 -0.012 to 0.026 0.468 

Alcohol dependence  5E-08 Caudate -0.027 -0.057 to 0.003 0.117 

Alcohol dependence  5E-08 Hippocampus 0.023 0.001 to 0.045 0.080 

Alcohol dependence  5E-08 pallidum 0.028 -0.004 to 0.061 0.129 

Alcohol dependence  5E-08 Putamen -0.009 -0.037 to 0.019 0.548 

Alcohol dependence  5E-08 Thalamus 0.021 -0.005 to 0.048 0.150 

Cigarettes per day  5E-08 NAc ever smokers -0.396 -0.966 to 0.174 0.179 

Cigarettes per day  5E-08 Amygdala ever smokers 0.175 -1.078 to 1.428 0.785 

Cigarettes per day  5E-08 Caudate ever smokers 2.097 -0.170 to 4.363 0.076 

Cigarettes per day  5E-08 Hippocampus ever smokers 0.633 -1.524 to 2.790 0.568 

Cigarettes per day  5E-08 pallidum ever smokers -0.597 -2.334 to 1.140 0.504 

Cigarettes per day  5E-08 Putamen ever smokers -3.166 -6.200 to -0.132 0.046 

Cigarettes per day  5E-08 Thalamus ever smokers 0.169 -2.798 to 3.137 0.911 

Cigarettes per day  5E-08 NAc never smokers 0.349 -0.109 to 0.807 0.142 

Cigarettes per day  5E-08 Amygdala never smokers 0.275 -0.754 to 1.303 0.603 

Cigarettes per day  5E-08 Caudate never smokers 1.263 -0.858 to 3.385 0.249 

Cigarettes per day  5E-08 Hippocampus never smokers -1.093 -2.778 to 0.592 0.210 

Causal relationship between brain region volumes and substance use 

Cigarettes per day  5E-08 pallidum never smokers 0.021 -1.564 to 1.606 0.979 

Cigarettes per day  5E-08 Putamen never smokers 0.290 -2.392 to 2.972 0.833 

Cigarettes per day  5E-08 Thalamus never smokers 1.029 -1.578 to 3.635 0.443 

Note that the reported intercept is taken from SIMEX-corrected analyses if the IGX2 value was 0.6-0.9 
 

Supplementary table 6. Cochran’s Q statistic as a measure of heterogeneity between individual SNP-effects. 
  

Exposure Threshold  Outcome  Q df p 

nucleus accumbens 5E-08 Smoking initiation 25.63 12 0.012 

nucleus accumbens 5E-08 Smoking cessation 12.91 12 0.376 

nucleus accumbens 5E-08 Cigarettes per day 7.81 12 0.800 

nucleus accumbens 5E-08 Drinks per week 57.11 12 7.56E-08 

nucleus accumbens 5E-08 Alcohol dependency 12.15 12 0.434 

Amygdala  5E-08 Smoking initiation 3.18 1 0.074 

Amygdala  5E-08 Smoking cessation 3.39 1 0.066 

Amygdala  5E-08 Cigarettes per day 4.19E-03 1 0.948 

Amygdala  5E-08 Drinks per week 0.06 1 0.807 

Amygdala  5E-08 Alcohol dependency 0.10 1 0.755 

Amygdala  1E-05 Smoking initiation 72.87 39 0.001 

Amygdala  1E-05 Smoking cessation 61.81 38 0.009 

Amygdala  1E-05 Cigarettes per day 62.06 39 0.011 

Amygdala  1E-05 Drinks per week 63.28 39 0.008 

Amygdala  1E-05 Alcohol dependency 34.73 38 0.621 

Caudate 5E-08 Smoking initiation 127.77 52 2.56E-08 

Caudate 5E-08 Smoking cessation 125.64 52 4.94E-08 

Caudate 5E-08 Cigarettes per day 126.58 52 3.69E-08 

Caudate 5E-08 Drinks per week 159.65 51 4E-13 

Caudate 5E-08 Alcohol dependency 56.35 52 0.316 

Hippocampus  5E-08 Smoking initiation 97.88 18 5.40E-13 

Hippocampus  5E-08 Smoking cessation 35.01 18 0.009 

Hippocampus  5E-08 Cigarettes per day 32.87 18 0.017 

Hippocampus  5E-08 Drinks per week 58.41 18 3.69E-06 

Hippocampus  5E-08 Alcohol dependency 10.09 18 0.929 

pallidum  5E-08 Smoking initiation 62.99 24 2.39E-05 

pallidum  5E-08 Smoking cessation 37.16 24 0.042 

pallidum  5E-08 Cigarettes per day 31.09 24 0.151 

pallidum  5E-08 Drinks per week 69.97 24 2.21E-06 

pallidum  5E-08 Alcohol dependency 24.70 24 0.422 
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Thalamus  5E-08 Smoking initiation 0.007 -0.196 to 0.210 0.222 

Thalamus  5E-08 Smoking cessation 0.006 -0.005 to 0.016 0.312 

Thalamus  5E-08 Cigarettes per day -0.002 -0.016 to 0.012 0.762 

Thalamus  5E-08 Drinks per week -0.009 -0.014 to -0.004 0.002 

Thalamus  5E-08 Alcohol dependency -0.019 -0.047 to 0.008 0.195 

Smoking initiation 5E-08 nucleus accumbens -3E-05 -0.003 to 0.002 0.978 

Smoking initiation 5E-08 Amygdala -0.001 -0.003 to 0.001 0.457 

Smoking initiation 5E-08 Caudate -0.001 -0.004 to 0.002 0.377 

Smoking initiation 5E-08 Hippocampus -3E-04 -0.003 to 0.002 0.815 

Smoking initiation 5E-08 pallidum -0.002 -0.004 to 0.001 0.227 

Smoking initiation 5E-08 Putamen -0.001 -0.004 to 0.002 0.412 

Smoking initiation 5E-08 Thalamus -0.003 -0.005 to -1.7E-04 0.037 

Drinks per week 5E-08 Nucleus accumbens 7E-04 -0.002 to 0.004 0.657 

Drinks per week 5E-08 Amygdala 0.001 -0.002 to 0.004 0.537 

Drinks per week 5E-08 Caudate 0.001 -0.003 to 0.004 0.629 

Drinks per week 5E-08 Hippocampus 0.001 -0.001 to 0.004 0.323 

Drinks per week 5E-08 pallidum 0.003 6.5E-05 to 0.007 0.049 

Drinks per week 5E-08 Putamen 0.001 -0.002 to 0.005 0.431 

Drinks per week 5E-08 Thalamus 0.001 -0.002 to 0.004 0.459 

Alcohol dependence  5E-08 nucleus accumbens 0.016 -0.010 to 0.041 0.258 

Alcohol dependence  5E-08 Amygdala 0.007 -0.012 to 0.026 0.468 

Alcohol dependence  5E-08 Caudate -0.027 -0.057 to 0.003 0.117 

Alcohol dependence  5E-08 Hippocampus 0.023 0.001 to 0.045 0.080 

Alcohol dependence  5E-08 pallidum 0.028 -0.004 to 0.061 0.129 

Alcohol dependence  5E-08 Putamen -0.009 -0.037 to 0.019 0.548 

Alcohol dependence  5E-08 Thalamus 0.021 -0.005 to 0.048 0.150 

Cigarettes per day  5E-08 NAc ever smokers -0.396 -0.966 to 0.174 0.179 

Cigarettes per day  5E-08 Amygdala ever smokers 0.175 -1.078 to 1.428 0.785 

Cigarettes per day  5E-08 Caudate ever smokers 2.097 -0.170 to 4.363 0.076 

Cigarettes per day  5E-08 Hippocampus ever smokers 0.633 -1.524 to 2.790 0.568 

Cigarettes per day  5E-08 pallidum ever smokers -0.597 -2.334 to 1.140 0.504 

Cigarettes per day  5E-08 Putamen ever smokers -3.166 -6.200 to -0.132 0.046 

Cigarettes per day  5E-08 Thalamus ever smokers 0.169 -2.798 to 3.137 0.911 

Cigarettes per day  5E-08 NAc never smokers 0.349 -0.109 to 0.807 0.142 

Cigarettes per day  5E-08 Amygdala never smokers 0.275 -0.754 to 1.303 0.603 

Cigarettes per day  5E-08 Caudate never smokers 1.263 -0.858 to 3.385 0.249 

Cigarettes per day  5E-08 Hippocampus never smokers -1.093 -2.778 to 0.592 0.210 

Causal relationship between brain region volumes and substance use 

Cigarettes per day  5E-08 pallidum never smokers 0.021 -1.564 to 1.606 0.979 

Cigarettes per day  5E-08 Putamen never smokers 0.290 -2.392 to 2.972 0.833 

Cigarettes per day  5E-08 Thalamus never smokers 1.029 -1.578 to 3.635 0.443 

Note that the reported intercept is taken from SIMEX-corrected analyses if the IGX2 value was 0.6-0.9 
 

Supplementary table 6. Cochran’s Q statistic as a measure of heterogeneity between individual SNP-effects. 
  

Exposure Threshold  Outcome  Q df p 

nucleus accumbens 5E-08 Smoking initiation 25.63 12 0.012 

nucleus accumbens 5E-08 Smoking cessation 12.91 12 0.376 

nucleus accumbens 5E-08 Cigarettes per day 7.81 12 0.800 

nucleus accumbens 5E-08 Drinks per week 57.11 12 7.56E-08 

nucleus accumbens 5E-08 Alcohol dependency 12.15 12 0.434 

Amygdala  5E-08 Smoking initiation 3.18 1 0.074 

Amygdala  5E-08 Smoking cessation 3.39 1 0.066 

Amygdala  5E-08 Cigarettes per day 4.19E-03 1 0.948 

Amygdala  5E-08 Drinks per week 0.06 1 0.807 

Amygdala  5E-08 Alcohol dependency 0.10 1 0.755 

Amygdala  1E-05 Smoking initiation 72.87 39 0.001 

Amygdala  1E-05 Smoking cessation 61.81 38 0.009 

Amygdala  1E-05 Cigarettes per day 62.06 39 0.011 

Amygdala  1E-05 Drinks per week 63.28 39 0.008 

Amygdala  1E-05 Alcohol dependency 34.73 38 0.621 

Caudate 5E-08 Smoking initiation 127.77 52 2.56E-08 

Caudate 5E-08 Smoking cessation 125.64 52 4.94E-08 

Caudate 5E-08 Cigarettes per day 126.58 52 3.69E-08 

Caudate 5E-08 Drinks per week 159.65 51 4E-13 

Caudate 5E-08 Alcohol dependency 56.35 52 0.316 

Hippocampus  5E-08 Smoking initiation 97.88 18 5.40E-13 

Hippocampus  5E-08 Smoking cessation 35.01 18 0.009 

Hippocampus  5E-08 Cigarettes per day 32.87 18 0.017 

Hippocampus  5E-08 Drinks per week 58.41 18 3.69E-06 

Hippocampus  5E-08 Alcohol dependency 10.09 18 0.929 

pallidum  5E-08 Smoking initiation 62.99 24 2.39E-05 

pallidum  5E-08 Smoking cessation 37.16 24 0.042 

pallidum  5E-08 Cigarettes per day 31.09 24 0.151 

pallidum  5E-08 Drinks per week 69.97 24 2.21E-06 

pallidum  5E-08 Alcohol dependency 24.70 24 0.422 
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Putamen  5E-08 Smoking initiation 132.44 34 1.49E-13 

Putamen  5E-08 Smoking cessation 81.37 34 9.28E-06 

Putamen  5E-08 Cigarettes per day 48.55 34 0.051 

Putamen  5E-08 Drinks per week 76.25 33 2.82E-05 

Putamen  5E-08 Alcohol dependency 63.09 35 0.002 

Thalamus  5E-08 Smoking initiation 44.15 11 6.85E-06 

Thalamus  5E-08 Smoking cessation 26.80 12 0.008 

Thalamus  5E-08 Cigarettes per day 37.88 11 8.21E-05 

Thalamus  5E-08 Drinks per week 27.20 12 0.007 

Thalamus  5E-08 Alcohol dependency 21.90 12 0.039 

Smoking initiation 5E-08 NAc 555.36 345 4.71E-12 

Smoking initiation 5E-08 Amygdala 493.82 345 2.40E-07 

Smoking initiation 5E-08 Caudate 730.97 345 7.35E-30 

Smoking initiation 5E-08 Hippocampus 562.30 345 1.21E-12 

Smoking initiation 5E-08 pallidum 543.66 345 4.39E-11 

Smoking initiation 5E-08 Putamen 809.26 345 2.56E-39 

Smoking initiation 5E-08 Thalamus 541.70 344 5.02E-11 

Drinks per week 5E-08 NAc 163.45 91 4.85E-06 

Drinks per week 5E-08 Amygdala 129.55 91 0.005 

Drinks per week 5E-08 Caudate 198.05 91 6.42E-10 

Drinks per week 5E-08 Hippocampus 115.61 91 0.042 

Drinks per week 5E-08 pallidum 185.08 91 2.18E-08 

Drinks per week 5E-08 Putamen 225.19 91 2.28E-13 

Drinks per week 5E-08 Thalamus 136.94 91 0.001 

Alcohol dependence  5E-08 NAc 7.30 9 0.605 

Alcohol dependence  5E-08 Amygdala 3.33 9 0.950 

Alcohol dependence  5E-08 Caudate 11.87 9 0.221 

Alcohol dependence  5E-08 Hippocampus 6.48 9 0.691 

Alcohol dependence  5E-08 pallidum 14.79 9 0.097 

Alcohol dependence  5E-08 Putamen 8.22 9 0.513 

Alcohol dependence  5E-08 Thalamus 8.41 9 0.493 

Cigarettes per day 5E-08 NAc ever smokers 67.16 48 0.035 

Cigarettes per day 5E-08 Amygdala ever smokers 57.30 48 0.168 

Cigarettes per day 5E-08 Caudate ever smokers 67.99 48 0.030 

Cigarettes per day 5E-08 Hippocampus ever smokers 51.00 48 0.357 

Cigarettes per day 5E-08 pallidum ever smokers 115.85 48 1.55E-07 

Cigarettes per day 5E-08 Putamen ever smokers 83.74 48 0.001 

Causal relationship between brain region volumes and substance use 

Cigarettes per day 5E-08 Thalamus ever smokers 63.19 48 0.070 

Cigarettes per day 5E-08 NAc never smokers 67.71 48 0.032 

Cigarettes per day 5E-08 Amygdala never smokers 60.77 48 0.102 

Cigarettes per day 5E-08 Caudate never smokers 89.23 48 2.79E-04 

Cigarettes per day 5E-08 Hippocampus never smokers 47.93 48 0.476 

Cigarettes per day 5E-08 pallidum never smokers 155.19 48 3.19E-13 

Cigarettes per day 5E-08 Putamen never smokers 96.92 48 3.73E-05 

Cigarettes per day 5E-08 Thalamus never smokers 77.82 48 4.16E-03 

df=degrees of freedom 
 

table S7. MR-PRESSO distortion test and outlier corrected IVW estimates 
 

exposur
e 

thres
hold 

outcome nb  n MR-PRESSO 
  

 outlier-corrected IVW 
     

distrib
ution 

outli
ers 

dis-rtion 
test 

n SN
Ps 

beta 95% CI p 

     
beta p 

 
      

accumbe
ns 

5E-08 SI 1000 1 47266.3 0.001 13 0.00 -0.05-0.05 0.998 

amygdal
a 

1E-05 SI 1000 2 -102.99 0.391 41 0.02 -0.01-0.04 0.242 

caudate 5E-08 SI 10000 2 -286.21 0.144 51 0.00 -0.04-0.03 0.778 

hippoca
mpus 

5E-08 SI 1000 2 195.84 0.193 17 -2E-02 -0.08-0.04 0.523 

pallidum 5E-08 SI 1000 2 15.21 0.718 24 -0.04 -0.07--0.01 0.014 

putamen 5E-08 SI 1000 5 47.03 0.905 31 -0.01 -0.03-0.02 0.712 

thalamus 5E-08 SI 1000 1 -377.30 0.097 16 -0.01 -0.07-0.05 0.767 

accumbe
ns 

5E-08 SC 1000 - - - - - - - 

amygdal
a 

1E-05 SC 1000 - - - - - - - 

caudate 5E-08 SC 10000 2 686.98 0.041 51 0.00 -0.03-0.03 0.944 

hippoca
mpus 

5E-08 SC 1000 - - - - - - - 

pallidum 5E-08 SC 1000 - - - - - - - 

putamen 5E-08 SC 1000 1 -53.03 0.598 35 0.02 -0.01-0.06 0.163 

thalamus 5E-08 SC 1000 - - - - - - - 

accumbe
ns 

5E-08 CPD 1000 - - - - - - - 

amygdal
a 

1E-05 CPD 1000 1 -1053.53 0.041 42 0.00 -0.03-0.03 0.956 

caudate 5E-08 CPD 10000 4 95.27 0.723 49 -0.01 -0.04-0.02 0.382 
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Putamen  5E-08 Smoking initiation 132.44 34 1.49E-13 

Putamen  5E-08 Smoking cessation 81.37 34 9.28E-06 

Putamen  5E-08 Cigarettes per day 48.55 34 0.051 

Putamen  5E-08 Drinks per week 76.25 33 2.82E-05 

Putamen  5E-08 Alcohol dependency 63.09 35 0.002 

Thalamus  5E-08 Smoking initiation 44.15 11 6.85E-06 

Thalamus  5E-08 Smoking cessation 26.80 12 0.008 

Thalamus  5E-08 Cigarettes per day 37.88 11 8.21E-05 

Thalamus  5E-08 Drinks per week 27.20 12 0.007 

Thalamus  5E-08 Alcohol dependency 21.90 12 0.039 

Smoking initiation 5E-08 NAc 555.36 345 4.71E-12 

Smoking initiation 5E-08 Amygdala 493.82 345 2.40E-07 

Smoking initiation 5E-08 Caudate 730.97 345 7.35E-30 

Smoking initiation 5E-08 Hippocampus 562.30 345 1.21E-12 

Smoking initiation 5E-08 pallidum 543.66 345 4.39E-11 

Smoking initiation 5E-08 Putamen 809.26 345 2.56E-39 

Smoking initiation 5E-08 Thalamus 541.70 344 5.02E-11 

Drinks per week 5E-08 NAc 163.45 91 4.85E-06 

Drinks per week 5E-08 Amygdala 129.55 91 0.005 

Drinks per week 5E-08 Caudate 198.05 91 6.42E-10 

Drinks per week 5E-08 Hippocampus 115.61 91 0.042 

Drinks per week 5E-08 pallidum 185.08 91 2.18E-08 

Drinks per week 5E-08 Putamen 225.19 91 2.28E-13 

Drinks per week 5E-08 Thalamus 136.94 91 0.001 

Alcohol dependence  5E-08 NAc 7.30 9 0.605 

Alcohol dependence  5E-08 Amygdala 3.33 9 0.950 

Alcohol dependence  5E-08 Caudate 11.87 9 0.221 

Alcohol dependence  5E-08 Hippocampus 6.48 9 0.691 

Alcohol dependence  5E-08 pallidum 14.79 9 0.097 

Alcohol dependence  5E-08 Putamen 8.22 9 0.513 

Alcohol dependence  5E-08 Thalamus 8.41 9 0.493 

Cigarettes per day 5E-08 NAc ever smokers 67.16 48 0.035 

Cigarettes per day 5E-08 Amygdala ever smokers 57.30 48 0.168 

Cigarettes per day 5E-08 Caudate ever smokers 67.99 48 0.030 

Cigarettes per day 5E-08 Hippocampus ever smokers 51.00 48 0.357 

Cigarettes per day 5E-08 pallidum ever smokers 115.85 48 1.55E-07 

Cigarettes per day 5E-08 Putamen ever smokers 83.74 48 0.001 

Causal relationship between brain region volumes and substance use 

Cigarettes per day 5E-08 Thalamus ever smokers 63.19 48 0.070 

Cigarettes per day 5E-08 NAc never smokers 67.71 48 0.032 

Cigarettes per day 5E-08 Amygdala never smokers 60.77 48 0.102 

Cigarettes per day 5E-08 Caudate never smokers 89.23 48 2.79E-04 

Cigarettes per day 5E-08 Hippocampus never smokers 47.93 48 0.476 

Cigarettes per day 5E-08 pallidum never smokers 155.19 48 3.19E-13 

Cigarettes per day 5E-08 Putamen never smokers 96.92 48 3.73E-05 

Cigarettes per day 5E-08 Thalamus never smokers 77.82 48 4.16E-03 

df=degrees of freedom 
 

table S7. MR-PRESSO distortion test and outlier corrected IVW estimates 
 

exposur
e 

thres
hold 

outcome nb  n MR-PRESSO 
  

 outlier-corrected IVW 
     

distrib
ution 

outli
ers 

dis-rtion 
test 

n SN
Ps 

beta 95% CI p 

     
beta p 

 
      

accumbe
ns 

5E-08 SI 1000 1 47266.3 0.001 13 0.00 -0.05-0.05 0.998 

amygdal
a 

1E-05 SI 1000 2 -102.99 0.391 41 0.02 -0.01-0.04 0.242 

caudate 5E-08 SI 10000 2 -286.21 0.144 51 0.00 -0.04-0.03 0.778 

hippoca
mpus 

5E-08 SI 1000 2 195.84 0.193 17 -2E-02 -0.08-0.04 0.523 

pallidum 5E-08 SI 1000 2 15.21 0.718 24 -0.04 -0.07--0.01 0.014 

putamen 5E-08 SI 1000 5 47.03 0.905 31 -0.01 -0.03-0.02 0.712 

thalamus 5E-08 SI 1000 1 -377.30 0.097 16 -0.01 -0.07-0.05 0.767 

accumbe
ns 

5E-08 SC 1000 - - - - - - - 

amygdal
a 

1E-05 SC 1000 - - - - - - - 

caudate 5E-08 SC 10000 2 686.98 0.041 51 0.00 -0.03-0.03 0.944 

hippoca
mpus 

5E-08 SC 1000 - - - - - - - 

pallidum 5E-08 SC 1000 - - - - - - - 

putamen 5E-08 SC 1000 1 -53.03 0.598 35 0.02 -0.01-0.06 0.163 

thalamus 5E-08 SC 1000 - - - - - - - 

accumbe
ns 

5E-08 CPD 1000 - - - - - - - 

amygdal
a 

1E-05 CPD 1000 1 -1053.53 0.041 42 0.00 -0.03-0.03 0.956 

caudate 5E-08 CPD 10000 4 95.27 0.723 49 -0.01 -0.04-0.02 0.382 
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hippoca
mpus 

5E-08 CPD 1000 1 -34.13 0.666 18 0.04 -5E-3-0.08 0.100 

pallidum 5E-08 CPD 1000 - - - - - - - 

putamen 5E-08 CPD 1000 - - - - - - - 

thalamus 5E-08 CPD 1000 1 -40.71 0.617 16 6E-02 -0.01-0.12 0.095 

accumbe
ns 

5E-08 ALC 1000 3 38534.15 <0.001 11 0.00 -0.03-0.03 0.998 

amygdal
a 

1E-05 ALC 1000 - - - - - - - 

caudate 5E-08 ALC 10000 3 240.19 0.133 49 0.00 -0.02-0.02 0.821 

hippoca
mpus 

5E-08 ALC 1000 1 645.11 0.080 18 2E-03 -0.03-0.03 0.916 

pallidum 5E-08 ALC 1000 2 16.46 0.835 24 -0.01 -0.03-0.01 0.235 

putamen 5E-08 ALC 1000 1 37.54 0.770 34 -0.01 -0.03-0.01 0.375 

thalamus 5E-08 ALC 1000 1 50.91 0.513 16 -2E-02 -0.05--10E-
4 

0.059 

accumbe
ns 

5E-08 AD 1000 - - - - - - - 

amygdal
a 

1E-05 AD 1000 - - - - - - - 

caudate 5E-08 AD 1000 - - - - - - - 

hippoca
mpus 

5E-08 AD 1000 - - - - - - - 

pallidum 5E-08 AD 1000 - - - - - - - 

putamen 5E-08 AD 1000 - - - - - - - 

thalamus 5E-08 AD 1000 - - - - - - - 

SI 5E-08 accumbe
ns 

10000 4 13.18 0.793 35
9 

-0.05 -0.10--5E-
03 

0.033 

SI 5E-08 amygdal
a 

10000 1 -7.66 0.872 36
2 

-0.05 -0.10-1E-03 0.057 

SI 5E-08 caudate 10000 9 22.91 0.969 35
4 

0.00 -0.05-0.06 0.895 

SI 5E-08 hippoca
mpus 

10000 2 63.02 0.786 36
1 

-0.02 -0.07-0.03 0.449 

SI 5E-08 pallidum 10000 4 -2.02 0.972 35
9 

-0.05 -0.10-0.01 0.080 

SI 5E-08 putamen 10000 5 331.47 0.129 35
8 

-0.01 -0.06-0.05 0.794 

SI 5E-08 thalamus 10000 3 -46.64 0.471 35
9 

-0.02 -0.08-0.03 0.363 

ALC 5E-08 accumbe
ns 

10000 - - - - - - - 

ALC 5E-08 amygdal
a 

10000 - - - - - - - 

ALC 5E-08 caudate 10000 5 34.60 0.320 89 0.14 -0.02-0.29 0.083 

Causal relationship between brain region volumes and substance use 

ALC 5E-08 hippoca
mpus 

10000 - - - - - - - 

ALC 5E-08 pallidum 10000 2 26.62 0.628 92 -0.19 -0.36--0.03 0.026 

ALC 5E-08 putamen 10000 3 68.00 0.816 91 -0.05 -0.22-0.13 0.595 

ALC 5E-08 thalamus 10000 - - - - - - - 

AD 5E-08 accumbe
ns 

1000 - - - - - - - 

AD 5E-08 amygdal
a 

1000 - - - - - - - 

AD 5E-08 caudate 1000 - - - - - - - 

AD 5E-08 hippoca
mpus 

1000 - - - - - - - 

AD 5E-08 pallidum 1000 - - - - - - - 

AD 5E-08 putamen 1000 - - - - - - - 

AD 5E-08 thalamus 1000 - - - - - - - 

CPD 5E-08 accumbe
ns ever 

10000 - - - - - - - 

CPD 5E-08 amygdal
a ever 

1000 - - - - - - - 

CPD 5E-08 caudate 
ever 

10000 - - - - - - - 

CPD 5E-08 hippoca
mpus 
ever 

1000 - - - - - - - 

CPD 5E-08 pallidum 
ever 

10000 1 -11.64 0.875 50 -11.65 -35.78-
12.49 

0.349 

CPD 5E-08 putamen 
ever 

10000 1 -8.21 0.774 50 -61.73 -115.56--
7.90 

0.029 

CPD 5E-08 thalamus 
never 

1000 - - - - - - - 

CPD 5E-08 accumbe
ns never 

10000 - - - - - - - 

CPD 5E-08 amygdal
a never 

1000 - - - - - - - 

CPD 5E-08 caudate 
never 

10000 1 45.18 0.811 50 -14.64 -48.43-
19.16 

0.400 

CPD 5E-08 hippoca
mpus 
never 

1000 - - - - - - - 

CPD 5E-08 pallidum 
never 

10000 2 2.20 0.971 49 -18.38 -37.69-0.93 0.068 

CPD 5E-08 putamen 
never 

10000 2 -17.49 0.352 49 -59.20 -96.78--
21.62 

- 

CPD 5E-08 thalamus 
neve 

10000 3 6.70 0.825 48 -45.93 -81.55--
10.30 

0.015 
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hippoca
mpus 

5E-08 CPD 1000 1 -34.13 0.666 18 0.04 -5E-3-0.08 0.100 

pallidum 5E-08 CPD 1000 - - - - - - - 

putamen 5E-08 CPD 1000 - - - - - - - 

thalamus 5E-08 CPD 1000 1 -40.71 0.617 16 6E-02 -0.01-0.12 0.095 

accumbe
ns 

5E-08 ALC 1000 3 38534.15 <0.001 11 0.00 -0.03-0.03 0.998 

amygdal
a 

1E-05 ALC 1000 - - - - - - - 

caudate 5E-08 ALC 10000 3 240.19 0.133 49 0.00 -0.02-0.02 0.821 

hippoca
mpus 

5E-08 ALC 1000 1 645.11 0.080 18 2E-03 -0.03-0.03 0.916 

pallidum 5E-08 ALC 1000 2 16.46 0.835 24 -0.01 -0.03-0.01 0.235 

putamen 5E-08 ALC 1000 1 37.54 0.770 34 -0.01 -0.03-0.01 0.375 

thalamus 5E-08 ALC 1000 1 50.91 0.513 16 -2E-02 -0.05--10E-
4 

0.059 

accumbe
ns 

5E-08 AD 1000 - - - - - - - 

amygdal
a 

1E-05 AD 1000 - - - - - - - 

caudate 5E-08 AD 1000 - - - - - - - 

hippoca
mpus 

5E-08 AD 1000 - - - - - - - 

pallidum 5E-08 AD 1000 - - - - - - - 

putamen 5E-08 AD 1000 - - - - - - - 

thalamus 5E-08 AD 1000 - - - - - - - 

SI 5E-08 accumbe
ns 

10000 4 13.18 0.793 35
9 

-0.05 -0.10--5E-
03 

0.033 

SI 5E-08 amygdal
a 

10000 1 -7.66 0.872 36
2 

-0.05 -0.10-1E-03 0.057 

SI 5E-08 caudate 10000 9 22.91 0.969 35
4 

0.00 -0.05-0.06 0.895 

SI 5E-08 hippoca
mpus 

10000 2 63.02 0.786 36
1 

-0.02 -0.07-0.03 0.449 

SI 5E-08 pallidum 10000 4 -2.02 0.972 35
9 

-0.05 -0.10-0.01 0.080 

SI 5E-08 putamen 10000 5 331.47 0.129 35
8 

-0.01 -0.06-0.05 0.794 

SI 5E-08 thalamus 10000 3 -46.64 0.471 35
9 

-0.02 -0.08-0.03 0.363 

ALC 5E-08 accumbe
ns 

10000 - - - - - - - 

ALC 5E-08 amygdal
a 

10000 - - - - - - - 

ALC 5E-08 caudate 10000 5 34.60 0.320 89 0.14 -0.02-0.29 0.083 

Causal relationship between brain region volumes and substance use 

ALC 5E-08 hippoca
mpus 

10000 - - - - - - - 

ALC 5E-08 pallidum 10000 2 26.62 0.628 92 -0.19 -0.36--0.03 0.026 

ALC 5E-08 putamen 10000 3 68.00 0.816 91 -0.05 -0.22-0.13 0.595 

ALC 5E-08 thalamus 10000 - - - - - - - 

AD 5E-08 accumbe
ns 

1000 - - - - - - - 

AD 5E-08 amygdal
a 

1000 - - - - - - - 

AD 5E-08 caudate 1000 - - - - - - - 

AD 5E-08 hippoca
mpus 

1000 - - - - - - - 

AD 5E-08 pallidum 1000 - - - - - - - 

AD 5E-08 putamen 1000 - - - - - - - 

AD 5E-08 thalamus 1000 - - - - - - - 

CPD 5E-08 accumbe
ns ever 

10000 - - - - - - - 

CPD 5E-08 amygdal
a ever 

1000 - - - - - - - 

CPD 5E-08 caudate 
ever 

10000 - - - - - - - 

CPD 5E-08 hippoca
mpus 
ever 

1000 - - - - - - - 

CPD 5E-08 pallidum 
ever 

10000 1 -11.64 0.875 50 -11.65 -35.78-
12.49 

0.349 

CPD 5E-08 putamen 
ever 

10000 1 -8.21 0.774 50 -61.73 -115.56--
7.90 

0.029 

CPD 5E-08 thalamus 
never 

1000 - - - - - - - 

CPD 5E-08 accumbe
ns never 

10000 - - - - - - - 

CPD 5E-08 amygdal
a never 

1000 - - - - - - - 

CPD 5E-08 caudate 
never 

10000 1 45.18 0.811 50 -14.64 -48.43-
19.16 

0.400 

CPD 5E-08 hippoca
mpus 
never 

1000 - - - - - - - 

CPD 5E-08 pallidum 
never 

10000 2 2.20 0.971 49 -18.38 -37.69-0.93 0.068 

CPD 5E-08 putamen 
never 

10000 2 -17.49 0.352 49 -59.20 -96.78--
21.62 

- 

CPD 5E-08 thalamus 
neve 

10000 3 6.70 0.825 48 -45.93 -81.55--
10.30 

0.015 
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CPD 5E-08 caudate 
never 

10000 1 141.93 0.106 50 -4.37 -40.04-
31.30 

0.811 

CPD 5E-08 hippoca
mpus 
never 

1000 0  - - - - - - 

CPD 5E-08 pallidum 
never 

10000 2 -2.71 0.948 49 -23.97 -43.83--
4.10 

0.022 

CPD 5E-08 putamen 
never 

10000 2 -16.33 0.365 49 -62.37 -101.79--
22.95 

0.003 

CPD 5E-08 thalamus 
neve 

10000 2 -3.85 0.918 49 -39.87 -81.19-1.46 0.065 

for all unstable calculations due to too low nbdistribution with nbdistribution =1000, we repeated calculations 
with nbdistribution 10000. 
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CPD 5E-08 caudate 
never 

10000 1 141.93 0.106 50 -4.37 -40.04-
31.30 

0.811 

CPD 5E-08 hippoca
mpus 
never 

1000 0  - - - - - - 

CPD 5E-08 pallidum 
never 

10000 2 -2.71 0.948 49 -23.97 -43.83--
4.10 

0.022 

CPD 5E-08 putamen 
never 

10000 2 -16.33 0.365 49 -62.37 -101.79--
22.95 

0.003 

CPD 5E-08 thalamus 
neve 

10000 2 -3.85 0.918 49 -39.87 -81.19-1.46 0.065 

for all unstable calculations due to too low nbdistribution with nbdistribution =1000, we repeated calculations 
with nbdistribution 10000. 
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Abstract 
 
Studies testing the effect of single genetic variants on substance use have had modest 
success. This paper reviewed 39 studies using polygenic measures to test interaction with 
any type of environmental exposure (GxE) in alcohol, tobacco, and cannabis use. Studies 
using haplotype combinations, sum scores of candidate-gene risk alleles, and polygenic 
scores (PS) were included. Overall study quality was moderate, with lower ratings for the 
polygenic methods in the haplotype and candidate-gene score studies. Heterogeneity in 
investigated environmental exposures, genetic factors, and outcomes was substantial. 
Most studies (N=30) reported at least one significant GxE interaction, but overall evidence 
was weak. The majority (N=26) found results in line with differential susceptibility and 
diathesis-stress frameworks. Future studies should pay more attention to 
methodological and statistical rigor, and focus on replication efforts. Additional work is 
needed before firm conclusions can be drawn about the importance of GxE in the etiology 
of substance use. 
 
    

Review of gene-environment interaction 

Introduction 
 
The use of tobacco, alcohol, and cannabis continues to be widespread. Global smoking 
prevalence in individuals above age 15 is around 23% (World Health Organization 2016). 
On average, people drink a glass of alcohol per day, with higher estimates for America and 
Europe (World Health Organization 2014). Lifetime prevalence of cannabis use is 26% in 
the European Union and up to 44% in the United States (European Monitoring Centre for 
Drugs and Drug Addiction 2017;  U.S. Department of Health and Human Services 2016). 
Risk factors on biological, social, and psychological level have been found to contribute 
to individual differences in substance use behaviors. 
 
Genetic vulnerability is an important risk factor. Traditionally, this factor has been 
investigated using family and twin designs to determine how much variance in a trait is 
explained by genetic factors (Boomsma et al. 2002). Heritability estimates for substance 
use, abuse and dependence derived from these types of studies are moderate to high 
(about 30%-75%; Ducci and Goldman 2012;  Vink 2016).  
 
Genetic molecular studies have tried to identify specific genetic variants underlying this 
heritability. In early studies the focus was on candidate-genes, selected based on their 
proposed biological function. In recent years, researchers have tried to identify genetic 
variants in a hypothesis-free manner in genome-wide association studies (GWASs), 
thereby focusing on single-nucleotide polymorphisms (SNPs). Although GWASs have had 
more success than candidate-gene studies, results are modest: only a handful of variants 
have been identified for substance use. 
 
To increase power and because behavior is highly polygenic, studies have tried to test the 
effect of multiple genetic variants simultaneously. Some studies have used combinations 
of variants that are strongly related (i.e., are in high linkage disequilibrium (LD)) and are 
transmitted to offspring together in so-called LD blocks. The exact combination of alleles 
a person has on the variants in such a block is called a haplotype. It has been assumed 
that the effects of haplotypes are larger and thus easier to detect than those of single 
variants. Other studies have sought to increase power by combining several (unrelated) 
candidate-gene variants in a single sum score. A newer method uses summary statistics 
of GWASs to create weighted sums of the number of risk variants an individual carries, 
often called polygenic scores (PS). Research using haplotypes, candidate-gene sum 
scores, or PS has had some success in predicting substance use phenotypes. However, for 
all approaches, explained variance is still much smaller than expected based on the 
heritability estimates from twin research. 
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variants in a hypothesis-free manner in genome-wide association studies (GWASs), 
thereby focusing on single-nucleotide polymorphisms (SNPs). Although GWASs have had 
more success than candidate-gene studies, results are modest: only a handful of variants 
have been identified for substance use. 
 
To increase power and because behavior is highly polygenic, studies have tried to test the 
effect of multiple genetic variants simultaneously. Some studies have used combinations 
of variants that are strongly related (i.e., are in high linkage disequilibrium (LD)) and are 
transmitted to offspring together in so-called LD blocks. The exact combination of alleles 
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that the effects of haplotypes are larger and thus easier to detect than those of single 
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candidate-gene variants in a single sum score. A newer method uses summary statistics 
of GWASs to create weighted sums of the number of risk variants an individual carries, 
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all approaches, explained variance is still much smaller than expected based on the 
heritability estimates from twin research. 
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Possibly, explained variance can be increased by taking into account the interplay 
between genetic factors and the environment. In gene-environment interaction (GxE), the 
effect of a genetic factor depends on the presence of an environmental factor. The 
premise is that genetic factors underlie biological mechanisms (e.g., stress system 
responsivity) that make a person more or less vulnerable to environmental circumstances 
(Belsky and Pluess, 2009). Indeed, twin research has shown that the extent to which 
genetic risk contributes to substance use can depend on environmental factors (Dick 
2011). Early molecular genetic studies investigated GxE using single candidate-genes. For 
example, it was found that childhood maltreatment increased chances of early alcohol 
initiation more in carriers of the s-allele of the 5-HTTLPR polymorphism of the serotonin 
transporter gene than in non-carriers (Kaufman et al. 2007). This finding is one of many in 
line with the diathesis-stress model, stating that adverse environmental circumstances 
enhance the chance that genetic vulnerability comes to expression (Monroe and Simons 
1991). Other GxE frameworks include the differential susceptibility model, posing that 
genetic predisposition might enhance the effect of adverse, but also of positive 
environmental factors (Belsky and Pluess 2009). Less commonly it has been predicted 
that more adverse outcomes arise when genetic plasticity is high and environmental risk 
is either high or low, as both might lead to high stress reactivity (Boyce and Ellis 2005).  
 
Studies using single candidate-genes to test GxE in substance use and other complex 
phenotypes have yielded mixed findings (see e.g. Do and Maes 2016; Milaniak et al. 2015 
for recent reviews). Non-replication and contradicting results seem the rule rather than 
the exception. The merits of the different theoretical GxE models remain unclear. Low 
powered study designs and publication bias are likely to have contributed to these mixed 
findings (Duncan and Keller 2011). To increase power, the logical next step has been to 
use polygenic rather than single-variant measures in GxE designs.  
 
Whereas previous reviews focused on GxE with single (candidate) genes, this review 
presents a summary of GxE studies that used a polygenic measure, including haplotype-
based measures, sum scores of risk alleles in candidate-genes, and PS based on SNPs 
identified in GWASs. We focused on (ab)use of and dependence on tobacco, alcohol, and 
cannabis, as these are the most frequently used substances, and most literature was 
available for these substances. No previous studies to our knowledge have attempted a 
review of GxE with polygenic measures, or developed a method to systematically review 
study quality. Because this field is relatively new, we included all GxE studies, regardless 
of the type of environmental exposure under investigation, ranging from cohort effects to 
childhood trauma. Based on our findings, methodological and theoretical 
recommendations for future research were formulated. 

Review of gene-environment interaction 

Methods  
 
For this review, PRISMA guidelines were used (Moher et al. 2009). The study method was 
preregistered in PROSPERO (CRD42017057478).  
 
Search strategy 
Literature searches were conducted in Web of Science, PubMed and Google Scholar, and 
based on title and abstract potentially relevant articles were added. Only articles 
published in peer-reviewed journals were considered. Keywords included substance use, 
gene-environment interaction, and polygenic risk. The exact keyword combinations used 
can be found in supplemental Table SI. Reference lists were checked for additional 
articles. The last search was conducted February 1st, 2018. 
 
Study eligibility  
Inclusion criteria were met if a) the study included human subjects; b) the outcome was 
some form of tobacco, alcohol, or cannabis use, or a combination thereof; c) the study 
was an original research report; d) the measure of genetic risk comprised a combination 
of multiple risk variants (i.e., no single variant designs); and e) an interaction with an 
environmental variable was tested statistically. Criterion d allowed for studies that 
looked at multiple variants within one gene. Although this kind of study does not meet 
the strict definition of ‘polygenic’, it might be more powerful than studies looking at only 
one variant (Oroszi et al. 2009). Earlier reviews of candidate-gene studies have not 
explicitly investigated the merits of this method. Criterion e allowed for any 
demographic/environmental factor that has been investigated in this context, including 
for example birth cohort and as specific as roommate’s alcohol use levels in high school.  
 
Assessment of study quality 
For each study, quality characteristics were assessed. Important hallmarks included 
study design, sample size, power (sample sizes necessary to achieve different levels of 
power are described in Supplementary Table SII), the method for controlling for 
confounders (sex, age, population stratification/ ethnicity, gene-environment 
correlation), and phenotype measurement. The quality of the operationalization of the 
polygenic measure was assessed separately for the haplotype, candidate-gene score, and 
PS studies. 
 
As no scale exists for assessing the characteristics of this specific type of study, study 
quality was visualized using symbols (-, +-, +). Symbol allocations for study characteristics 
are summarized in Table I. Although literature was consulted for handholds (Table I),  
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As no scale exists for assessing the characteristics of this specific type of study, study 
quality was visualized using symbols (-, +-, +). Symbol allocations for study characteristics 
are summarized in Table I. Although literature was consulted for handholds (Table I),  



562882-L-bw-Pasman562882-L-bw-Pasman562882-L-bw-Pasman562882-L-bw-Pasman
Processed on: 4-8-2021Processed on: 4-8-2021Processed on: 4-8-2021Processed on: 4-8-2021 PDF page: 266PDF page: 266PDF page: 266PDF page: 266

266 Part 3 – Chapter 9 

Table I. Symbol allocation for quality characteristics of the GxE studies 
method characteristic - -+ + not applicable 

all  study type correlational case control randomized  
 sample size <1,000 1,000-2,500 >2,500  
 power calculation no - yes  
 control for age and 

sexa 

none descriptive statistical homogenous 
sample/ age as 
predictor or 
outcome 

 control for 
ethnicityb 

none descriptive statistical homogenous 
sample 

 control for rGEc none descriptive statistical interventions/ 
cohort effects 

 phenotype 
measures 

self-developed 
short survey 

validated 
survey/ 
interview 

biological/combined 
measures 

interventions/ 
cohort effects 

haplotype # of blocksd 1-4 - >4  
 # of genesd 1-3 - >3  
 # of variantsd <5 5-10 >10  
 rationale for risk 

haplotypee 

debatable - solid  

candidate  # of genesd 1-3 - >3  
 # of variantsd <5 5-10 >10  
 rationale for risk 

allele 
debatable - solid   

polygenic 
score (PS) 

based on overlapping 
sample GWAS  

- independent GWAS  

 discovery sample 
size 

<10,000 10,000-25,000 >25,000  

 p-value thresholdf p<.0001 - p>=.0001  
 correspondence 

phenotypesg 

weak moderate strong  

a genetic associations may vary in different age and sex groups (Kendler et al. 2008;  The Wellcome Trust Case Control 
Consortium 2007). 

b population stratification resulting from ancestry differences can distort genetic association results (Price et al. 2006); 
statistical control using principal component analysis is preferable to control for these effects. 

c in gene-environment correlation (rGE) genetic make-up influences to what environment an individual is exposed (only 
possible in non-randomized studies). These effects can muddle GxE findings (Rathouz et al. 2008). 

d inclusion of more genetic factors in the aggregate predictor was considered better. Cut-offs were based on commonly 
chosen numbers of variants for these studies. 

e the rationale for defining which haplotype or allele was the active (risk/protective) allele was deemed less strong when it 
was based on the results of the main analyses in the same sample, rather than on theory or results from independent 

samples. 
f this threshold most commonly concerns the p-value for the association between the SNPs and the phenotype in the original 
GWAS. The lower this value, the fewer SNPs are included in the PS. We considered PS including only a few SNPs as less strong 

than PS including more SNPs, although the exact optimal threshold depends on several other study characteristics 
(Chatterjee et al. 2013;  Dudbridge 2013).  

g the more similar the outcome variable is to the original GWAS phenotype on which the PS was based, the better the 
predictive value (Wray et al. 2014). 

 

Review of gene-environment interaction 

quality cut-offs had to be chosen without objective reference points. Assessment of study 
quality was done in duplicate (JP, KV); any disagreement was solved through discussion 
with a third assessor (JV).  
 

Data extraction and evaluation of results 
The studies were categorized according to a) the measure of genetic risk (haplotype, 
candidate-gene score, or PS), and b) the nature of the environmental exposure 
(intervention or other, e.g., traumatic experiences). Further categorization could not be 
realized due to heterogeneity in environmental factors, outcomes, and study designs. No 
meta-analysis nor formal publication bias assessment could be attempted because of 
study heterogeneity, inconsistent statistical reporting, and absence of report of 
(standardized) effect sizes. 
 
As most studies did report p-values for the GxE analysis, a p-curve analysis could be 
conducted (Simonsohn, Nelson, & Simmons, 2014) to give an indication of the strength of 
the evidence and of the probability that p-hacking occurred in the included studies. The 
assumption of the p-curve method is that if the investigated effect is real, there should be 
more small p-values than large p-values reported in the literature. If there are more large 
than small p-values, this might be seen as evidence for p-hacking or selective reporting; it 
is more likely that investigators have been conducting tests until they reached a p-value 
just below .05. Supplementary Table SIII summarizes what GxE test statistics were 
selected from each study. The analysis was conducted twice, once using all the reported 
GxE p-values in each study, and once using only the first reported p-value in each study. If 
a study only reported that the p-value was smaller than some threshold (e.g., p<.05, 
p<.001), we included this threshold minus one decimal (e.g., p=.049, p=.00099) as the 
estimated p-value in the analysis.  
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Table I. Symbol allocation for quality characteristics of the GxE studies 
method characteristic - -+ + not applicable 

all  study type correlational case control randomized  
 sample size <1,000 1,000-2,500 >2,500  
 power calculation no - yes  
 control for age and 

sexa 

none descriptive statistical homogenous 
sample/ age as 
predictor or 
outcome 

 control for 
ethnicityb 

none descriptive statistical homogenous 
sample 

 control for rGEc none descriptive statistical interventions/ 
cohort effects 

 phenotype 
measures 

self-developed 
short survey 

validated 
survey/ 
interview 

biological/combined 
measures 

interventions/ 
cohort effects 

haplotype # of blocksd 1-4 - >4  
 # of genesd 1-3 - >3  
 # of variantsd <5 5-10 >10  
 rationale for risk 

haplotypee 

debatable - solid  

candidate  # of genesd 1-3 - >3  
 # of variantsd <5 5-10 >10  
 rationale for risk 

allele 
debatable - solid   

polygenic 
score (PS) 

based on overlapping 
sample GWAS  

- independent GWAS  

 discovery sample 
size 

<10,000 10,000-25,000 >25,000  

 p-value thresholdf p<.0001 - p>=.0001  
 correspondence 

phenotypesg 

weak moderate strong  

a genetic associations may vary in different age and sex groups (Kendler et al. 2008;  The Wellcome Trust Case Control 
Consortium 2007). 

b population stratification resulting from ancestry differences can distort genetic association results (Price et al. 2006); 
statistical control using principal component analysis is preferable to control for these effects. 

c in gene-environment correlation (rGE) genetic make-up influences to what environment an individual is exposed (only 
possible in non-randomized studies). These effects can muddle GxE findings (Rathouz et al. 2008). 

d inclusion of more genetic factors in the aggregate predictor was considered better. Cut-offs were based on commonly 
chosen numbers of variants for these studies. 

e the rationale for defining which haplotype or allele was the active (risk/protective) allele was deemed less strong when it 
was based on the results of the main analyses in the same sample, rather than on theory or results from independent 

samples. 
f this threshold most commonly concerns the p-value for the association between the SNPs and the phenotype in the original 
GWAS. The lower this value, the fewer SNPs are included in the PS. We considered PS including only a few SNPs as less strong 

than PS including more SNPs, although the exact optimal threshold depends on several other study characteristics 
(Chatterjee et al. 2013;  Dudbridge 2013).  

g the more similar the outcome variable is to the original GWAS phenotype on which the PS was based, the better the 
predictive value (Wray et al. 2014). 

 

Review of gene-environment interaction 

quality cut-offs had to be chosen without objective reference points. Assessment of study 
quality was done in duplicate (JP, KV); any disagreement was solved through discussion 
with a third assessor (JV).  
 

Data extraction and evaluation of results 
The studies were categorized according to a) the measure of genetic risk (haplotype, 
candidate-gene score, or PS), and b) the nature of the environmental exposure 
(intervention or other, e.g., traumatic experiences). Further categorization could not be 
realized due to heterogeneity in environmental factors, outcomes, and study designs. No 
meta-analysis nor formal publication bias assessment could be attempted because of 
study heterogeneity, inconsistent statistical reporting, and absence of report of 
(standardized) effect sizes. 
 
As most studies did report p-values for the GxE analysis, a p-curve analysis could be 
conducted (Simonsohn, Nelson, & Simmons, 2014) to give an indication of the strength of 
the evidence and of the probability that p-hacking occurred in the included studies. The 
assumption of the p-curve method is that if the investigated effect is real, there should be 
more small p-values than large p-values reported in the literature. If there are more large 
than small p-values, this might be seen as evidence for p-hacking or selective reporting; it 
is more likely that investigators have been conducting tests until they reached a p-value 
just below .05. Supplementary Table SIII summarizes what GxE test statistics were 
selected from each study. The analysis was conducted twice, once using all the reported 
GxE p-values in each study, and once using only the first reported p-value in each study. If 
a study only reported that the p-value was smaller than some threshold (e.g., p<.05, 
p<.001), we included this threshold minus one decimal (e.g., p=.049, p=.00099) as the 
estimated p-value in the analysis.  
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Results 

 
Selection 
The study selection process is summarized in the flow chart in Figure 1. In total, 34 articles 
describing 39 studies were left for inclusion in the systematic review. These studies 
described results from 27 independent samples. 
 

 
Figure 1. Flow-chart of study selection for inclusion in the review. Exclusion 
criteria: a) non-human subjects; b) no substance use outcome; c) no original 
research; d) no polygenic risk predictor; e) no statistical test of interaction 
with environmental 

Study description 
In Table IIa-IIc key features and GxE findings are summarized separately for studies using 
(a) haplotype, (b) candidate-gene score, and (c) PS measures. Symbols are used to 
annotate what studies used data from overlapping samples. 
 
Sample characteristics for each study are given in Supplementary Table SIV. Samples 
consisting of only European descent individuals were overrepresented (51%). Studies 
included clinical (N=8), clinically ascertained (N=5), and general populations (N=26). 
Eleven studies included family-related individuals. Studies comprised various age ranges 
starting from adolescence, with 19 studies specifically focusing on adolescents or young 
adults and two on older adults. There was an approximately equal representation of 
female and male subjects within the studies. Sample sizes ranged from N=81 to N=11,423, 
with an average of 𝑁𝑁𝑁𝑁=1,865.  
 
Fifteen studies used some form of correlational design (7 longitudinal), 12 were case-
control studies, 11 were RCTs and 1 was a randomized longitudinal design. Twenty 

Review of gene-environment interaction 

studies included alcohol and 16 included tobacco outcomes (among others), 4 focused 
on combined phenotypes (e.g., substance use disorder), and only 3 included cannabis 
outcomes. There were 11 intervention studies, 12 studies that included measures of 
trauma-like experiences, and 16 that focused exclusively on typical environmental 
exposures in for example the family or peer context. Most haplotype studies focused on 
interventions or psychological trauma as environmental exposures, whereas the 
candidate-gene score and PS studies more often focused on common environmental 
factors. 
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Fifteen studies used some form of correlational design (7 longitudinal), 12 were case-
control studies, 11 were RCTs and 1 was a randomized longitudinal design. Twenty 

Review of gene-environment interaction 

studies included alcohol and 16 included tobacco outcomes (among others), 4 focused 
on combined phenotypes (e.g., substance use disorder), and only 3 included cannabis 
outcomes. There were 11 intervention studies, 12 studies that included measures of 
trauma-like experiences, and 16 that focused exclusively on typical environmental 
exposures in for example the family or peer context. Most haplotype studies focused on 
interventions or psychological trauma as environmental exposures, whereas the 
candidate-gene score and PS studies more often focused on common environmental 
factors. 
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Quality 
General quality characteristics per study type are summarized in Table IIIa. Quality of the 
implementation of the polygenic method is summarized in Table IIIb. Full details on 
quality characteristics per study are given in Supplementary Tables SVa-SVc. 
 
Haplotype method 
Haplotype studies (N=16) were on average published 7 years before the date of inclusion 
in this review. They used a strong experimental design (i.e., RCT or case control) more 
often than both other study types. Sample sizes were quite low given the expected small 
effects, with an average of N�=771 and almost half of the studies using a sample of less 
than N=500 individuals. In many cases, exact sample sizes were only reported for the main 
effects analysis and not for the GxE analysis. Power calculations were not reported in 10 
out of 16 studies. 
 
Only 3 studies controlled statistically for both age and sex, although other studies often 
reported that outcomes and predictors did not vary for different sexes or age groups 
(‘descriptive’ control). In a few cases, statistical control was unnecessary as the sample 
was sufficiently homogeneous (e.g., all female or all within the same 2-year age range). 
Control for ethnicity was absent or rudimentary in all but one study (16), for example 
consisting of self-reported ‘white/non-white’ racial background. In 9 studies the sample 
was reasonably ethnically homogeneous. In non-randomized studies (N=10) gene-
environment correlation (rGE) might confound the GxE interaction results. Only 4 of the 
10 studies reported on rGE and no studies controlled for these effects. 
 
The quality of the application of the haplotype method was limited. Almost all studies 
tested haplotypes in one or two LD blocks, with the number of tested variants ranging 
between 2 and 18. Many studies looked at 1 or 2 blocks in a single gene or a few genes in 
high LD, so that they are hardly more ‘polygenic’ than single candidate-gene studies. Most 
studies did not formulate a literature-based directional prediction. In many cases, only 
haplotypes that showed a main effect on the outcome were included in the GxE analysis.  
 
For severe outcomes (e.g., clinical diagnosis) or environmental exposures (e.g., traumatic 
experiences) interviews were used as a measurement instrument. In the smoking 
cessation trials, biological measures were employed to validate self-reported abstinence. 
Other outcomes and exposures were mostly measured using validated questionnaires or 
more crudely using short questionnaires that were developed for the purpose of this or 
an earlier study. 
 

Review of gene-environment interaction 

Most haplotypes investigated were located in genes involved in in (dopamine-related) 
reward and inhibition processes in the brain (e.g. COMT, ANKK1, DRD2, DAT1, OPRM1, HTR6, 
HTR1B, and GABA- and MAO-related genes). Other candidate-genes included CRHR1 and 
FKBP5, related to the stress system. Genes such as the nicotine metabolism, cannabinoid 
receptor, or the alcohol dehydrogenase genes seem equally suitable candidates, but 
received much less research attention.  
 
Summarizing, weaknesses of the haplotype studies included small sample sizes, low 
statistical control, and limitations in the implementation of the polygenic method. 
Strengths included the use of strong designs and phenotypical measures. 
 
Candidate-gene method 
Studies using candidate-gene scores were on average 3 years old at the time of inclusion 
in this review. The study designs were somewhat less strong than those used in the 
haplotype studies, with 4 out of 10 using some randomization procedure. Average sample 
size was larger than for the haplotype studies (N�=2,141), although for 2 studies exact 
sample size for the GxE analyses were not reported and the average was boosted by one 
study with N=11,423. Three out of 10 studies reported power calculations. 
 
Control for confounders was more stringent than in the haplotype studies, with 8 studies 
exerting statistical control for both age and sex. Five studies used some control for genetic 
ancestry and another 4 used a relatively homogenous sample. One of the 7 studies that 
did not use a randomization procedure statistically controlled for rGE effects and 3 
studies reported on them. 
 
All but one candidate-gene score study used an unweighted sum score of the number of 
risk alleles as a predictor. Sum scores were based on risk alleles in on average 7 variants. 
Almost all variants were located in previously investigated candidate-genes related to 
dopamine-signaling. The rationale for selecting the risk allele was debatable in 3 cases. 
Many studies did omitted a description of conflicting literature on the risk allele of the 
candidate-gene. Outcome and environmental exposure measures were generally of lower 
quality than those in the haplotype studies and mostly comprised self-developed short 
questionnaires.  
 
Candidate-gene studies scored slightly better than the haplotype studies on sample sizes, 
control for confounding, and the implementation of the polygenic method. 
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Quality 
General quality characteristics per study type are summarized in Table IIIa. Quality of the 
implementation of the polygenic method is summarized in Table IIIb. Full details on 
quality characteristics per study are given in Supplementary Tables SVa-SVc. 
 
Haplotype method 
Haplotype studies (N=16) were on average published 7 years before the date of inclusion 
in this review. They used a strong experimental design (i.e., RCT or case control) more 
often than both other study types. Sample sizes were quite low given the expected small 
effects, with an average of N�=771 and almost half of the studies using a sample of less 
than N=500 individuals. In many cases, exact sample sizes were only reported for the main 
effects analysis and not for the GxE analysis. Power calculations were not reported in 10 
out of 16 studies. 
 
Only 3 studies controlled statistically for both age and sex, although other studies often 
reported that outcomes and predictors did not vary for different sexes or age groups 
(‘descriptive’ control). In a few cases, statistical control was unnecessary as the sample 
was sufficiently homogeneous (e.g., all female or all within the same 2-year age range). 
Control for ethnicity was absent or rudimentary in all but one study (16), for example 
consisting of self-reported ‘white/non-white’ racial background. In 9 studies the sample 
was reasonably ethnically homogeneous. In non-randomized studies (N=10) gene-
environment correlation (rGE) might confound the GxE interaction results. Only 4 of the 
10 studies reported on rGE and no studies controlled for these effects. 
 
The quality of the application of the haplotype method was limited. Almost all studies 
tested haplotypes in one or two LD blocks, with the number of tested variants ranging 
between 2 and 18. Many studies looked at 1 or 2 blocks in a single gene or a few genes in 
high LD, so that they are hardly more ‘polygenic’ than single candidate-gene studies. Most 
studies did not formulate a literature-based directional prediction. In many cases, only 
haplotypes that showed a main effect on the outcome were included in the GxE analysis.  
 
For severe outcomes (e.g., clinical diagnosis) or environmental exposures (e.g., traumatic 
experiences) interviews were used as a measurement instrument. In the smoking 
cessation trials, biological measures were employed to validate self-reported abstinence. 
Other outcomes and exposures were mostly measured using validated questionnaires or 
more crudely using short questionnaires that were developed for the purpose of this or 
an earlier study. 
 

Review of gene-environment interaction 

Most haplotypes investigated were located in genes involved in in (dopamine-related) 
reward and inhibition processes in the brain (e.g. COMT, ANKK1, DRD2, DAT1, OPRM1, HTR6, 
HTR1B, and GABA- and MAO-related genes). Other candidate-genes included CRHR1 and 
FKBP5, related to the stress system. Genes such as the nicotine metabolism, cannabinoid 
receptor, or the alcohol dehydrogenase genes seem equally suitable candidates, but 
received much less research attention.  
 
Summarizing, weaknesses of the haplotype studies included small sample sizes, low 
statistical control, and limitations in the implementation of the polygenic method. 
Strengths included the use of strong designs and phenotypical measures. 
 
Candidate-gene method 
Studies using candidate-gene scores were on average 3 years old at the time of inclusion 
in this review. The study designs were somewhat less strong than those used in the 
haplotype studies, with 4 out of 10 using some randomization procedure. Average sample 
size was larger than for the haplotype studies (N�=2,141), although for 2 studies exact 
sample size for the GxE analyses were not reported and the average was boosted by one 
study with N=11,423. Three out of 10 studies reported power calculations. 
 
Control for confounders was more stringent than in the haplotype studies, with 8 studies 
exerting statistical control for both age and sex. Five studies used some control for genetic 
ancestry and another 4 used a relatively homogenous sample. One of the 7 studies that 
did not use a randomization procedure statistically controlled for rGE effects and 3 
studies reported on them. 
 
All but one candidate-gene score study used an unweighted sum score of the number of 
risk alleles as a predictor. Sum scores were based on risk alleles in on average 7 variants. 
Almost all variants were located in previously investigated candidate-genes related to 
dopamine-signaling. The rationale for selecting the risk allele was debatable in 3 cases. 
Many studies did omitted a description of conflicting literature on the risk allele of the 
candidate-gene. Outcome and environmental exposure measures were generally of lower 
quality than those in the haplotype studies and mostly comprised self-developed short 
questionnaires.  
 
Candidate-gene studies scored slightly better than the haplotype studies on sample sizes, 
control for confounding, and the implementation of the polygenic method. 
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Polygenic score method 
Studies using PS were the newest, on average 2 years old at the time of inclusion. Study 
designs were more often simple correlational designs. Sample size was N� =3,001 on 
average, with only two samples smaller than N=500. Five out of 13 studies reported power 
calculations. 
 
Control for confounding was most rigorous in this type of studies, with 7 studies 
controlling statistically for both age and sex, and the rest using some procedure rendering 
statistical control less necessary. In PS studies it is possible to control statistically for 
ethnicity using ancestry-informative principal components. Eight of the 10 studies used 
this procedure, with an additional 2 using a more rudimentary approximation of this 
method and the final 3 using a reasonably homogenous sample. Of the 10 studies where 
rGE could have played a role, 1 exerted statistical control for rGE and 8 described the 
effects without controlling for them. 
Half the studies constructed the PS based on results from larger GWASs (average 
discovery N�=58,447, range N=31,266 -74,053), while the others based it on results from 
GWASs with limited sample size (N�=3,140). One of the latter calculated the PS based on a 
GWAS in a sample that was genetically related to the target sample, which could have 
biased results (35). The similarity between the study outcome and the source GWAS 
phenotype was in most cases reasonably high. The specific score calculation method 
differed somewhat across studies, with 3 preselecting a subset of SNPs to include in the 
score. Most studies used the PLINK program to calculate the PS, using pruning or 
clumping to remove variants that were in high LD. One study used LDpred to calculate PS 
while accounting for this LD (36). The p-value thresholds for including SNPs in the PS 
varied widely from p<1*10-8 (resulting in a score of only 2 variants) to p=1 (retaining all 
SNPs in the score), and 5 studies tested multiple PS with different thresholds. 
 
Overall, the phenotype measures were of limited quality, with most studies using short 
self-developed questionnaires.  
 
Overall, the PS studies scored higher than the other study types on sample size, control 
for confounding, and the implementation of the polygenic method, but similar or worse 
on study design and phenotypical measures.  
 
In general, study quality appeared somewhat higher for studies that found a significant 
GxE result than for studies that did not. This might have been driven by the higher quality 
of the PS studies, that could also have yielded more significant findings because of higher 
power. Study quality did not seem to influence what kind of GxE pattern was found.  
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279Part 3 – Chapter 9 

Polygenic score method 
Studies using PS were the newest, on average 2 years old at the time of inclusion. Study 
designs were more often simple correlational designs. Sample size was N� =3,001 on 
average, with only two samples smaller than N=500. Five out of 13 studies reported power 
calculations. 
 
Control for confounding was most rigorous in this type of studies, with 7 studies 
controlling statistically for both age and sex, and the rest using some procedure rendering 
statistical control less necessary. In PS studies it is possible to control statistically for 
ethnicity using ancestry-informative principal components. Eight of the 10 studies used 
this procedure, with an additional 2 using a more rudimentary approximation of this 
method and the final 3 using a reasonably homogenous sample. Of the 10 studies where 
rGE could have played a role, 1 exerted statistical control for rGE and 8 described the 
effects without controlling for them. 
Half the studies constructed the PS based on results from larger GWASs (average 
discovery N�=58,447, range N=31,266 -74,053), while the others based it on results from 
GWASs with limited sample size (N�=3,140). One of the latter calculated the PS based on a 
GWAS in a sample that was genetically related to the target sample, which could have 
biased results (35). The similarity between the study outcome and the source GWAS 
phenotype was in most cases reasonably high. The specific score calculation method 
differed somewhat across studies, with 3 preselecting a subset of SNPs to include in the 
score. Most studies used the PLINK program to calculate the PS, using pruning or 
clumping to remove variants that were in high LD. One study used LDpred to calculate PS 
while accounting for this LD (36). The p-value thresholds for including SNPs in the PS 
varied widely from p<1*10-8 (resulting in a score of only 2 variants) to p=1 (retaining all 
SNPs in the score), and 5 studies tested multiple PS with different thresholds. 
 
Overall, the phenotype measures were of limited quality, with most studies using short 
self-developed questionnaires.  
 
Overall, the PS studies scored higher than the other study types on sample size, control 
for confounding, and the implementation of the polygenic method, but similar or worse 
on study design and phenotypical measures.  
 
In general, study quality appeared somewhat higher for studies that found a significant 
GxE result than for studies that did not. This might have been driven by the higher quality 
of the PS studies, that could also have yielded more significant findings because of higher 
power. Study quality did not seem to influence what kind of GxE pattern was found.  
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Review of gene-environment interaction 

P-curve analysis 
To get an indication of the overall evidence for GxE in substance use, a p-curve analysis 
was conducted. The analysis was based on 82 p-values (34 significant) derived from 28 
studies (see Supplementary Table SIII). The other 11 studies did not report p-values for 
the GxE term specifically (or for the simple effects in the case of cross-over interactions) 
or statistics by which these could be calculated. As can be seen in Figure 2, there were 
more small p-values than expected under the null hypothesis. The p-curve is flatter than 
expected if studies had at least 70% power, such that there were not many more small p-
values than medium to large p-values. This indicates that there was evidential value, but 
this was not very strong. Moreover, if only the first p-value reported in each study was 
taken into account, results deteriorated, indicating that they were driven by a few studies 
that reported many small p-values (data not shown). Results did not change if non-exact 
p-values (e.g., p<.05) were excluded from analysis (results not shown). There was no clear 
evidence for p-hacking, which would be indicated by a substantially higher proportion of 
p-values just below 0.05. 
 

 
Figure 2. Percentage (y-axis) of reported p-values in the studies that fell in 

the range specified on the x-axis (p-curve), against the percentage that 
would be expected under the null hypothesis (nil effect) and under the 
alternative hypothesis given a power level of 70% (70% power curve). 

GxE patterns 
The GxE findings from each of the 39 studies were summarized in the last column of Table 
IIa-IIc. Thirty studies reported at least 1 significant GxE finding and 9 did not. Twenty-five 
of the significant GxE findings followed a pattern as depicted in Figure 3a (22 studies) or 
3b (3 studies). The pattern in panel a indicates that environmental risk enhances the effect 
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P-curve analysis 
To get an indication of the overall evidence for GxE in substance use, a p-curve analysis 
was conducted. The analysis was based on 82 p-values (34 significant) derived from 28 
studies (see Supplementary Table SIII). The other 11 studies did not report p-values for 
the GxE term specifically (or for the simple effects in the case of cross-over interactions) 
or statistics by which these could be calculated. As can be seen in Figure 2, there were 
more small p-values than expected under the null hypothesis. The p-curve is flatter than 
expected if studies had at least 70% power, such that there were not many more small p-
values than medium to large p-values. This indicates that there was evidential value, but 
this was not very strong. Moreover, if only the first p-value reported in each study was 
taken into account, results deteriorated, indicating that they were driven by a few studies 
that reported many small p-values (data not shown). Results did not change if non-exact 
p-values (e.g., p<.05) were excluded from analysis (results not shown). There was no clear 
evidence for p-hacking, which would be indicated by a substantially higher proportion of 
p-values just below 0.05. 
 

 
Figure 2. Percentage (y-axis) of reported p-values in the studies that fell in 

the range specified on the x-axis (p-curve), against the percentage that 
would be expected under the null hypothesis (nil effect) and under the 
alternative hypothesis given a power level of 70% (70% power curve). 

GxE patterns 
The GxE findings from each of the 39 studies were summarized in the last column of Table 
IIa-IIc. Thirty studies reported at least 1 significant GxE finding and 9 did not. Twenty-five 
of the significant GxE findings followed a pattern as depicted in Figure 3a (22 studies) or 
3b (3 studies). The pattern in panel a indicates that environmental risk enhances the effect 
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of genetic risk, further increasing the chance of unfavorable outcomes. Or, likewise, a 
protective genetic predisposition might enhance the effects of a positive environment or 
counteract the effects of an adverse environment. Thus, in these cases, genetic and 
environmental factors reinforce each other’s effects. In panel b the pattern is similar, only 
now a genetic factor that is a risk factor in one situation, is protective in the other 
situation, or likewise, an environmental exposure that is a risk factor for individuals with 
a certain genetic make-up is a protective factor for individuals with a different genetic 
make-up. Thus, genetic and environmental factors reverse each other’s effects (cross-
over interaction).  

 
Figure 3. General pattern of GxE. Panel a: genetic factors and environmental 

factors reinforce each other (green-blue shades in Table Ia-c, N=21). ME 
represents the main effect of environmental exposure, MG that of the 

genetic factor. Panel b: the effect of a genetic factor is reversed as a function 
of an environmental factor (or vice versa; orange findings in Table Ia-c, N=2). 

 
The colors in Table IIa-IIc correspond to specific patterns of results as summarized in 
Figure 3. The light green color indicates that the study interpreted the GxE effects such 
that the genetic and environmental factors reinforce each other (study 1-3, 21, 26-31, 33). 
For example, in study 22 a genetic risk factor (associated with substance use) enhances 
the effect of an adverse environmental factor (high peer substance use), yielding a 
negative outcome (substance use disorder). 
 
Studies marked in darker green are similar, but did not find (or report) a main effect of 
environment (‘ME’ in Figure 3a) or a main effect of the genetic factor (‘M’ in Figure 3a; 
study 4-5, 9, 15-16, 18-19, 36). The interpretation in these cases is that genetic risk only 
has an adverse effect in an adverse situation (study 9, 15, 16, 36) or when there is no 
intervention to counteract it (study 4, 5, 18, & 19). Likewise, the blue studies find that 
environmental risk only has an adverse effect in the absence of a protective genetic factor. 
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The 3 studies finding this pattern are all haplotype studies where a specific combination 
of alleles protects for the effect of psychological trauma (studies 8, 10, 11). 
 
Studies marked in orange (14, 23, & 38) showed that a genetic risk factor becomes a 
protective factor depending on the environment as depicted in Figure 3b. For example, in 
study 14, certain haplotype combinations were risk factors for alcoholism in controls, but 
protective factors in traumatized individuals.  
 
The yellow studies find patterns that correspond with neither Figure 3a nor 3b. Study 20 
and 21 find that medium levels of genetic risk predict adverse outcomes for high 
environmental risk. Study 25 reports that high genetic risk predicts favorable outcomes 
for an adverse environmental characteristic (low parental education). Study 29 found a 
PS for smoking heaviness to be related to less alcohol use for older cohorts, whereas it 
was related to more smoking in this group. Another cohort study (33) reported that 
genetic risk marginally predicted adverse outcomes more strongly for young cohorts, 
even though being in such a cohort is generally viewed as protective for substance use. 
 
Patterns substances, genes, and environments 
Patterns of GxE did not seem to differ depending on the substance under investigation. 
Fourteen of the 20 studies including alcohol outcomes, and 13 of the 16 studies including 
smoking outcomes found at least one significant GxE effect. 
 
Results did not seem to differ depending on the kind of variants investigated. For 
example, studies looking at dopamine-related genes were not more likely to find 
significant GxE patterns than studies focusing on other candidate-genes. However, it was 
difficult to compare findings across gene-groups, as most studies used aggregates of 
genes from different groups.   
 
Intervention studies and studies looking at trauma exposure seemed more likely to yield 
patterns corresponding to Figure 3a or 3b, but not more likely to show significant results. 
The 16 studies focusing on common environmental exposures yielded more diverse 
patterns. For example, all 5 yellow outcomes fell in this category, investigating birth 
cohort, peer substance use, and parental education level. 
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a certain genetic make-up is a protective factor for individuals with a different genetic 
make-up. Thus, genetic and environmental factors reverse each other’s effects (cross-
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protective factor depending on the environment as depicted in Figure 3b. For example, in 
study 14, certain haplotype combinations were risk factors for alcoholism in controls, but 
protective factors in traumatized individuals.  
 
The yellow studies find patterns that correspond with neither Figure 3a nor 3b. Study 20 
and 21 find that medium levels of genetic risk predict adverse outcomes for high 
environmental risk. Study 25 reports that high genetic risk predicts favorable outcomes 
for an adverse environmental characteristic (low parental education). Study 29 found a 
PS for smoking heaviness to be related to less alcohol use for older cohorts, whereas it 
was related to more smoking in this group. Another cohort study (33) reported that 
genetic risk marginally predicted adverse outcomes more strongly for young cohorts, 
even though being in such a cohort is generally viewed as protective for substance use. 
 
Patterns substances, genes, and environments 
Patterns of GxE did not seem to differ depending on the substance under investigation. 
Fourteen of the 20 studies including alcohol outcomes, and 13 of the 16 studies including 
smoking outcomes found at least one significant GxE effect. 
 
Results did not seem to differ depending on the kind of variants investigated. For 
example, studies looking at dopamine-related genes were not more likely to find 
significant GxE patterns than studies focusing on other candidate-genes. However, it was 
difficult to compare findings across gene-groups, as most studies used aggregates of 
genes from different groups.   
 
Intervention studies and studies looking at trauma exposure seemed more likely to yield 
patterns corresponding to Figure 3a or 3b, but not more likely to show significant results. 
The 16 studies focusing on common environmental exposures yielded more diverse 
patterns. For example, all 5 yellow outcomes fell in this category, investigating birth 
cohort, peer substance use, and parental education level. 
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Discussion 

 
The aim of this review was to provide an overview of all available studies (N=39) using 
measures of polygenic risk (haplotypes, candidate-gene scores, and polygenic scores) to 
investigate gene-environment interaction in substance use. There was some support for 
the existence of GxE in substance use, but the evidential value was weak. 
 
Theoretical interpretation 
Most GxE results followed the pattern as depicted in Figure 3a. These patterns nicely fit in 
the diathesis-stress framework (Monroe and Simons 1991), stating that individuals who 
are at risk genetically show higher levels of some adverse outcome when they are exposed 
to a risk environment. Although not stated in the original model, the same seems to apply 
for individuals who have a protective genetic predisposition in that they have more 
positive outcomes in beneficial environments. It is important to point out that this would 
fit equally well in the differential susceptibility framework (Belsky and Pluess 2009), but it 
is rarely found (or reported) within studies that the same genetic factor has a positive 
effect in one situation and a negative effect in the other. Only 3 studies report such an 
effect (14, 23, & 38), providing direct evidence for a ‘genetic plasticity factor’ yielding 
differential susceptibility.  
 
Many studies did not provide a strong theoretical framework for predicting one GxE 
pattern rather than another. It seems that a fitting theoretical explanation can be found 
regardless of the pattern that was discovered. For example, findings that environmental 
factors have a stronger effect at medium levels of genetic risk have been explained lending 
from a ‘social push’ model framework, stating that a risk factor is overruled at particularly 
low or high levels of another risk factor (Guo et al. 2015). Researchers may be tempted to 
place their findings in a theoretical framework a posteriori, rather than formulating 
hypotheses beforehand. Pre-registering hypotheses might be a good way to overcome 
these caveats. 
 
As heterogeneity in outcomes, genetic predictors, and environmental factors was 
substantial, it was difficult to discern patterns in the results. These did not appear to 
depend on gene group, environmental factor, or substance investigated. However, 
patterns were hard to discern, as there were many different (combinations of) factors 
investigated. 
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Limitations of included studies  
Study quality differed within and between genetic risk assessment methods, and was 
often limited. For all study types, power calculation was mostly omitted, and many 
studies are likely to have been underpowered (see Table SII). Interaction effects usually 
require more power to be detected than main effects, and given that main effects of 
genetic predictors are often small this is especially relevant in GxE studies (Duncan & 
Keller, 2011). For example, if the effect size of a GxE effect would be R2=0.5%, in order to 
achieve 80% power sample size would need to be N=2,185 (assuming 3 predictors and 
α=.05), and 31 out of 39 studies had smaller sample size than that (see Table SII). To put 
that in perspective, main effects of top SNPs in GWASs are often around 0.25%, and all 
measured SNPs together typically explain around 10% or less of the variance in substance 
use phenotypes (So et al., 2011). Also, control for gene-environment correlation was 
limited, and where it was tested, the test often entailed a simple correlation without 
controlling for the effects of covariates, or for interaction effects between the genetic 
predictor and covariates (Keller, 2014). This is problematic, as many environmental 
factors (such as parenting behaviors) are in fact influenced by genes themselves (Krapohl 
et al. 2017), and this covariation would decrease chances of detecting GxE and impede its 
interpretation (Rathouz et al. 2008). Over all study types, heterogeneous designs, lack of 
replication studies, and inconsistent statistical reporting made assessment of publication 
bias impossible. In candidate-gene GxE studies such bias to underreporting negative 
results has been demonstrated (Duncan and Keller 2011). As the number of p-values just 
below the significance threshold was not higher than the number of small p-values, we 
concluded that p-hacking did not seem to be an issue.  
 
The haplotype method was limited as a measure of polygenic risk because many studies 
looked at a few variants in one gene, which is strictly speaking not ‘polygenic’ (but 
‘polyvariant’) and will not capture much variation. The investigated genes were mostly 
plausible candidates for substance use because of their biological function. The benefits 
of this method compared to the traditional single candidate-gene method are modest. 
This might be reflected in the results, as more haplotype than other studies did not find a 
GxE interaction or found results that are difficult to interpret (i.e., did not follow a pattern 
as depicted in Figure 3). 
 
Studies using candidate-gene score methods appeared of somewhat better quality than 
the haplotype studies. Sample sizes and the number of investigated variants still seem 
(too) low to detect small effects (Luan et al. 2001). A more fundamental drawback of the 
candidate-gene method in general is that the selection of variants and risk alleles by 
definition has to rely on a limited body of knowledge, that might or might not include 
information on the causally most important genetic variants (Zhu and Zhao 2007). As an 
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example, previous research has shown that candidate-genes for schizophrenia did not 
predict schizophrenia better than candidate-genes for an unrelated phenotype (diabetes; 
Johnson et al., 2017). Indeed, few of the proposed candidates in haplotype or candidate-
gene score studies have actually been identified in hypothesis-free GWASs (e.g., Liu et al. 
2019, Pasman et al. 2018, Walters et al. 2018). This might have added to the finding that 
studies using these methods more often yielded unexpected patterns.  
 
Technical advances and decreasing costs have made it possible to consider the whole 
genome for risk prediction, and studies using such PS seem to become more popular than 
those using haplotype and candidate-gene methods. PS studies yielded the highest 
quality ratings, with sample sizes more adequate to capture small effects, although study 
design and phenotype measurements were less strong. It is important to note that PS 
studies are not necessarily appropriate for testing differential vulnerability hypotheses, 
as SNPs that operate through that mechanism would not necessarily have large main 
effects likely to be detected in a GWAS (Fox and Beevers 2016). It is an interesting 
possibility that different variants are important for interaction effects than for main 
effects, and this might contribute to the fact that GxE studies show disappointing results 
in comparison with GWASs. Furthermore, even the qualitatively better studies reviewed 
here show only small effects. 
 
Recommendations for future studies 
Following from the limitations of the included studies, important recommendations for 
future research can be made. A roadmap for future research is summarized in Figure 4. 
First, more attention should be given to hypothesis selection. Although addiction 
research would be advanced by a further expansion of the scope of research, direct 
replication attempts might be even more important at this stage (Duncan and Keller 
2011). Replication and original studies alike should focus on formulating and pre-
registering sharp predictions and give attention to the exact direction of the GxE effects 
(Belsky et al. 2013;  Munafò et al. 2017).   
 
Second, high quality study methods should be used. Despite having limitations, the PS 
studies yielded more consistent results than the other two study types. GWASs with 
substantial sample sizes for alcohol (N≈941,000) and tobacco use (N≈1,232,000; Liu et al. 
2019), and cannabis use (Pasman et al., 2018; N≈184,000) are increasingly available, 
enhancing the predictive power of PS.   
 
It is interesting to note that studies are emerging testing SNP by environment interactions 
in GWASs, making it possible to explore GxE in a hypothesis-free manner. This would 
circumvent the difficulty that SNPs captured in GWASs do not necessarily measure 
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differential susceptibility. For instance, Polimanti and colleagues (2017) showed a SNP by 
trauma exposure interaction on the risk of alcohol misuse. As the multiple testing burden 
for this kind of design is substantial, large sample sizes are needed to test GxE on a 
genome-wide level. However, as these samples are becoming increasingly available, the 
merits of this method might be further explored.  Other important characteristics of 
high quality study methods include using better phenotypical measures, using large 
discovery and target sample sizes, controlling for covariates and taking into account 
possible rGE. Authors should report on rGE analysis (that controlled for covariates), and 
ideally the GxE analysis should control for the effects (for example using structural 
equation modeling).  
 
Third, future studies should report more completely and transparently on statistics, such 
as effect size and achieved power level. Also, more attention should be given to null 
results, so that in future meta-analyses unbiased effect sizes can be estimated (see Figure 
4).  
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high quality study methods include using better phenotypical measures, using large 
discovery and target sample sizes, controlling for covariates and taking into account 
possible rGE. Authors should report on rGE analysis (that controlled for covariates), and 
ideally the GxE analysis should control for the effects (for example using structural 
equation modeling).  
 
Third, future studies should report more completely and transparently on statistics, such 
as effect size and achieved power level. Also, more attention should be given to null 
results, so that in future meta-analyses unbiased effect sizes can be estimated (see Figure 
4).  
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Figure 4. Road map for future studies with recommended steps for 

improving the stance of the substance use GxE literature. 

 
 
Strengths and limitations 
This is the first review focusing on and comparing multiple polygenic methods for 
assessing GxE in multiple substance use outcomes. Patterns of results could be compared 
across different methods, outcomes, and predictors. The quality assessment provided 
insight in important lacunas in study methodology and gave some suggestion that study 
quality influences the patterns of results.  
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The heterogeneity of the included studies introduced some important constraints for the 
review. No meta-analysis could be attempted and we had to devise our own method to 
visualize study quality. As we tried to integrate all findings in one comprehensive 
interpretation, some detail was inevitably lost. Another limitation lies in the fact that 
some of the studies did not set out to test GxE, but rather included it as a secondary 
analysis. This might have contributed to the fact that details on methods and results 
could sometimes be retrieved only with difficulty. Also, it may have biased results, as 
studies in some cases seemed to test an interaction with a variable that proved to have a 
main effect, rather than a GxE effect predicted based on the literature.  
 
Conclusion 
The current review summarized literature investigating if environmental and polygenic 
factors interact in influencing alcohol, tobacco, and cannabis use phenotypes. There are 
important limitations to the literature, concerning overall study quality, failure to 
formulate directional hypotheses, inconsistent reports of statistics (effect sizes), and a 
great lack of replication studies. It is likely that some publication bias exists. 
 
Because of these limitations, it is difficult to draw conclusions about the existence of GxE 
effects in substance use. Before any substantive claims can be made, it is crucial that 
some steps are undertaken, such as using more sophisticated methods and direct 
replication attempts of GxE findings. Although still weak, there is some evidence that 
polygenic GxE effects are a factor in the etiology of substance use, with PS being the best 
measure of polygenic risk. Studies suggest that environmental factors can influence the 
effect of genetic predisposition, either by enlarging its (positive or negative) effects, or by 
reversing those.  Additional work is needed before firm conclusions can be drawn about 
the importance of GxE in the etiology of substance use. 
 
GxE research has the potential to give crucial insight in biopsychosocial mechanisms 
underlying substance use that might be leveraged for clinical applications. For example, 
polygenic scores (Musci et al. 2015) and even single genetic variants in the nicotinic 
receptor genes (Sarginson et al. 2011) can predict who will respond favorably to smoking 
interventions. In the future, well-conducted GxE studies have the potential to improve 
possibilities for clinical applications   
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Supplementary Table SII. Power (in %) under different assumed effect size and sample size. 
  R2 (%) 

  0.1 0.2 0.4 0.6 0.8 1 2.5 5 10 

sa
m

pl
e 

si
ze

 

N=100 5.6 6.2 7.4 8.6 9.9 11.3 22.5 42.5 74.2 

N=250 6.5 8.1 11.5 15.1 19.0 23.0 52.9 85.0 99.3 

N=500 8.0 11.5 19.1 27.2 35.6 43.7 85.3 99.3 >99.9 

N=1000 11.5 19.2 35.7 51.6 65.2 75.9 99.3 >99.9 >99.9 

N=2000 19.1 35.8 65.3 83.9 93.3 97.5 >99.9 >99.9 >99.9 

N=5000 44.0 76.1 97.5 99.8 >99.9 >99.9 >99.9 >99.9 >99.9 

NB. To establish criteria for study sample size evaluation, power analysis was conducted. Effect sizes of 
individual genetic variants are commonly found to be between R2 = 0.1 to 1% (shaded part of table; So et 

al., 2011). Studies included in the review tested any number of variants between 2 and thousands, so power 
was calculated between R2=0.1 to 10%. In the analysis, a multiple regression model with at least 3 

predictors (2 main and 1 interaction effect) and an alpha level of .05 was assumed. Note that most studies 
included in the review used more than 3 predictors and will probably have reached slightly lower power 

levels. 
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Supplementary Table SIII. Reported test statistics for GxE terms in each study. When p was not reported, it 

was calculated when possible from the test statistics. 

ID year 1st 

author 

test finding 

1* 2007 Berrettini bupropion treatment x hap on smoking cessation at end of treatment 

bupropion treatment x hap on smoking cessation at follow-up 

χ2(7)=20.6, p=.004 

χ2(7)=16.1, p=.024 

2* 2007 Berrettini bupropion treatment x hap on smoking cessation at end of treatment 

bupropion treatment x hap on smoking cessation at follow-up 

χ2(7)=22.7, p=.002 

χ2(7)=8.88, p=.260 

3 2009 Oroszi naltrexone treatment x hap block 1 on alcohol abstinence 

naltrexone treatment x hap block 2 on alcohol abstinence 

p=.030 

p=.070 

4 2012 Chen intervention x hap on smoking cessation χ2(2)=8.97, p=.020 

5+ 2013 Brody prevention x hap in DRD2 on alcohol use 

prevention x hap in  ANKK1 block 1 on alcohol use 

prevention x hap in GABRG1 block 2 on alcohol use  

prevention x hap in GABRA2 on alcohol use 

p<.001 

p=.008 

p<.001 

p=.001 

6 2015 Tyndale intervention x hap on smoking abstinence 

 

NA 

7% 2006 Lerer trauma x haplotype on smoking initiation 

trauma x haplotype on nicotine dependence 

NA 

NA 

8% 2007 Segman trauma x haplotype on nicotine dependence 

trauma x haplotype on smoking initiation 

χ2(1)=6.22, p=.01 

NA 

9 2008 Ducci childhood abuse x MAOA-B haplotype on alcoholism 

childhood abuse x MAOB-C haplotype on alcoholism 

χ2(1)=4.47, p=.03 

χ2(1)=2.11, p=.14 

10 2010 Nelson childhood sexual abuse x haplotype on alcohol use 

childhood sexual abuse x haplotype on alcohol dependence 

t(1123)=-2.123, p<.017 

OR=0.42, p=.023 

11 2010 Enoch trauma x haplotype on substance dependence NA 
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NB. To establish criteria for study sample size evaluation, power analysis was conducted. Effect sizes of 
individual genetic variants are commonly found to be between R2 = 0.1 to 1% (shaded part of table; So et 

al., 2011). Studies included in the review tested any number of variants between 2 and thousands, so power 
was calculated between R2=0.1 to 10%. In the analysis, a multiple regression model with at least 3 

predictors (2 main and 1 interaction effect) and an alpha level of .05 was assumed. Note that most studies 
included in the review used more than 3 predictors and will probably have reached slightly lower power 

levels. 
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was calculated when possible from the test statistics. 

ID year 1st 

author 

test finding 
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χ2(7)=16.1, p=.024 
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6 2015 Tyndale intervention x hap on smoking abstinence 

 

NA 

7% 2006 Lerer trauma x haplotype on smoking initiation 

trauma x haplotype on nicotine dependence 

NA 

NA 

8% 2007 Segman trauma x haplotype on nicotine dependence 

trauma x haplotype on smoking initiation 

χ2(1)=6.22, p=.01 

NA 

9 2008 Ducci childhood abuse x MAOA-B haplotype on alcoholism 

childhood abuse x MAOB-C haplotype on alcoholism 

χ2(1)=4.47, p=.03 

χ2(1)=2.11, p=.14 

10 2010 Nelson childhood sexual abuse x haplotype on alcohol use 

childhood sexual abuse x haplotype on alcohol dependence 

t(1123)=-2.123, p<.017 
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trauma x haplotype on alcohol dependence NA 

12& 2011 Kranzler adverse events x haplotype on alcohol dependence in AA female 

sample 

adverse events x haplotype on alcohol dependence in AA male 

sample 

p=.17 

p=.61 

13& 2011 Kranzler adverse events x haplotype on alcohol dependence in EU female 

sample 

adverse events x haplotype on alcohol dependence in EU male 

sample 

p=.38 

p=.13 

14 2013 Ray trauma x  block 1 haplotype 1 versus 2 on alcoholisma 

haplotype 

trauma 

trauma x block 1 haplotype 3 versus 2  

 haplotype 

 trauma 

trauma x block 2 haplotype1 versus 4 on alcoholism 

 haplotype 

 trauma 

trauma x block 2 haplotype2 versus 4 on alcoholism 

 haplotype 

 trauma 

trauma x block 2 haplotype3 versus 4 on alcoholism 

 haplotype 

 trauma 

trauma x block 2 haplotype5 versus 4 on alcoholism 

 haplotype 

 trauma 

trauma x block 2 haplotype6 versus 4 on alcoholism 

 

p=.032 

p<.0001 

 

p=.43 

p<.0001 

 

p=.051 

p<.0001 

 

p=.43 

p<.0001 

 

p=.43 

p<.0001 

 

p=.99 

p<.0001 
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 haplotype 

 trauma 

trauma x block 2 haplotype7 versus 4 on alcoholism 

 haplotype 

 trauma 

p=.74 

p<.0001 

 

p=.040 

p<.0001 

15 2015 Handley childhood maltreatment x haplotype on marijuana dependence  z=2.00, p=.04 

16 2017 Handley childhood maltreatment x haplotype on alcohol problems via 

internalizing  

childhood maltreatment x haplotype on alcohol problems via 

externalizing  

NA 

NA 

17 2012 McGeary efficacy of bupropion x score on smoking cessation NA 

18+ 2013 Brody  prevention x score on alcohol use p<.001 

19 2013 David bupropion x score on time to first relapse in after smoking cessation 

bupropion x score smoking cessation at end of treatment 

z=-2.4, p=.016 

z=1.25, p=.213 

20 2015 Guo roommate's drinking x medium vs other score on binge drinking in 1st 

semester 

roommate's drinking x medium vs other score on binge drinking in 2nd 

semester 

NA 

NA 

21$ 2015 Guo  roommate's drinking x medium vs other score on drinking in past 2 

weeks 

roommate's drinking x medium vs other score on drinking in last year 

NA 

NA 

22 2016 Bountress parental knowledge x score on emerging adult substance use 

disorder, mother report of parental knowledge 

parental knowledge x score on emerging adult substance use 

disorder, adolescent report of parental knowledge 

peer substance use x score on emerging adult substance use 

disorder, mother report of parental knowledge 

β=-0.46, p<.05 

 

β=0.54, p<.01 

 

 

β=-0.19, p<.05 
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p=.61 
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14 2013 Ray trauma x  block 1 haplotype 1 versus 2 on alcoholisma 
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trauma 

trauma x block 1 haplotype 3 versus 2  

 haplotype 

 trauma 

trauma x block 2 haplotype1 versus 4 on alcoholism 

 haplotype 

 trauma 

trauma x block 2 haplotype2 versus 4 on alcoholism 

 haplotype 

 trauma 

trauma x block 2 haplotype3 versus 4 on alcoholism 

 haplotype 

 trauma 

trauma x block 2 haplotype5 versus 4 on alcoholism 

 haplotype 

 trauma 

trauma x block 2 haplotype6 versus 4 on alcoholism 

 

p=.032 

p<.0001 

 

p=.43 

p<.0001 

 

p=.051 

p<.0001 

 

p=.43 

p<.0001 

 

p=.43 

p<.0001 

 

p=.99 

p<.0001 
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 haplotype 

 trauma 

trauma x block 2 haplotype7 versus 4 on alcoholism 

 haplotype 

 trauma 

p=.74 

p<.0001 

 

p=.040 

p<.0001 

15 2015 Handley childhood maltreatment x haplotype on marijuana dependence  z=2.00, p=.04 

16 2017 Handley childhood maltreatment x haplotype on alcohol problems via 

internalizing  

childhood maltreatment x haplotype on alcohol problems via 

externalizing  

NA 

NA 

17 2012 McGeary efficacy of bupropion x score on smoking cessation NA 

18+ 2013 Brody  prevention x score on alcohol use p<.001 

19 2013 David bupropion x score on time to first relapse in after smoking cessation 

bupropion x score smoking cessation at end of treatment 

z=-2.4, p=.016 

z=1.25, p=.213 

20 2015 Guo roommate's drinking x medium vs other score on binge drinking in 1st 

semester 

roommate's drinking x medium vs other score on binge drinking in 2nd 

semester 

NA 

NA 

21$ 2015 Guo  roommate's drinking x medium vs other score on drinking in past 2 

weeks 

roommate's drinking x medium vs other score on drinking in last year 

NA 

NA 

22 2016 Bountress parental knowledge x score on emerging adult substance use 

disorder, mother report of parental knowledge 

parental knowledge x score on emerging adult substance use 

disorder, adolescent report of parental knowledge 

peer substance use x score on emerging adult substance use 

disorder, mother report of parental knowledge 

β=-0.46, p<.05 

 

β=0.54, p<.01 

 

 

β=-0.19, p<.05 
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peer substance use x score on emerging adult substance use 

disorder, adolescent report of parental knowledge 

β=0.51, p<.01 

23$ 2016 Stogner  parental rejection on adolescent alcohol use 

score on adolescent alcohol usea 

z=1.05, p=.294 

z=0.29, p=.772 

24@ 2017 Pasman  education level x score on moderate polysubstance use sample 1 

education level x score on problematic polysubstance use sample 1 

z=0.24, p.81 

z=0.19, p=.85 

25 2017 Pasman education level x score on moderate polysubstance use sample 2 

education level x score on problematic polysubstance use sample 2 

z=2.23, p=.03 

z=1.90, p=.06 

26 2017 Coley parental drinking x score on alcohol drinking days 

friend drinking x score on alcohol drinking days 

endogenous life events x score on alcohol drinking days 

exogenous life events x score on alcohol drinking days 

parental drinking x score on alcohol intoxication 

friend drinking x score on alcohol intoxication 

endogenous life events x score on alcohol intoxication 

exogenous life events x score on alcohol intoxication 

parental drinking x score on alcohol use disorder 

friend drinking x score on alcohol use disorder 

endogenous life events x score on alcohol use disorder 

exogenous life events x score on alcohol use disorder 

z=0.00, p=.951 

z=-0.20, p=.779 

z=-0.17, p=.912 

z=?, p=.414 

z=0.50, p=.668 

z=-0.10, p=.946 

z=-0.10, p=.970 

z=0.44, p=.655 

z=1.54, p=.134 

z=-0.67, p=.480 

z=0.36, p=.720 

z=0.92, p=.338 

27# 2015a Musci  prevention x PS on age of smoking initiation t(538)=-1.973, p=.049 

28# 2016 Musci  prevention x PS on age of cannabis initiation t(677)=-3.01, p=.003 

29 2012 Vrieze age cohort x PS on smoking heaviness 

age cohort x PS on alcohol use 

NA 

NA 

30 2013 Meyers neighborhood cohesion x PS on smoking heaviness 

trauma x PS on smoking heaviness 

p<.05 

p<.05 

31” 2014 Salvatore parental knowledge x PS on alcohol problems 

peer deviance x PS on alcohol problems 

t(1114)=2.27, p=.020 

t(1115)=2.11, p=.040 
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32# 2015b Musci  environmental risk x PS on smoking frequency 

environmental risk x PS on cannabis use frequency 

OR=1.33, p=.038 

OR=0.10, p=.046 

33~ 2016 Domingue  birth cohort x PS on smoking initiation 

birth cohort x PS on smoking initiation alternative statistical model 

p=.06 

p=.05 

34~ 2016 Schmitz  veteran status x PS on smoking initiation 

veteran status x PS on smoking heaviness 

NA 

NA 

35 2017 Li friend’s substance use x PS on heavy episodic drinking young age 

group male 

friend’s substance use x PS on heavy episodic drinking young age 

group female 

friend’s substance use x PS on heavy episodic drinking older age 

group male 

friend’s substance use x PS on heavy episodic drinking older age 

group female 

z=0.00, p=1.00 

z=-0.38, p=.70 

z=0.63, p=.52 

z=1.32, p=.19 

36@ 2017 Treur  childhood smoke exposure x PS on smoking heaviness 

childhood smoke exposure x PS on smoking initiation 

OR=0.97-1.09, CI=0.83-

1.26 

OR=1.05-1.44, CI=0.76-

1.88 

37@ 2018 Mies stress x PS on alcohol consumption 

life satisfaction x PS on alcohol consumption 

stress x PS on alcohol problems 

life satisfaction x PS on alcohol problems 

p=.963 

p=.406 

p=.568 

p=.392 

38 2018 Polimanti trauma x bipolar disorder PS on alcohol misusea 

trauma x major depressive disorder PS on alcohol misuse 

trauma x schizophrenia PS on alcohol misusea 

trauma x bipolar disorder PS on nicotine dependencea 

trauma x major depressive disorder PS on nicotine dependencea 

NA 

z=-2.29, p=.022 

NA 

NA 

NA   
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NA 
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t(1114)=2.27, p=.020 
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32# 2015b Musci  environmental risk x PS on smoking frequency 

environmental risk x PS on cannabis use frequency 

OR=1.33, p=.038 

OR=0.10, p=.046 

33~ 2016 Domingue  birth cohort x PS on smoking initiation 

birth cohort x PS on smoking initiation alternative statistical model 
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p=.05 

34~ 2016 Schmitz  veteran status x PS on smoking initiation 

veteran status x PS on smoking heaviness 

NA 

NA 

35 2017 Li friend’s substance use x PS on heavy episodic drinking young age 

group male 

friend’s substance use x PS on heavy episodic drinking young age 

group female 

friend’s substance use x PS on heavy episodic drinking older age 

group male 

friend’s substance use x PS on heavy episodic drinking older age 

group female 

z=0.00, p=1.00 

z=-0.38, p=.70 

z=0.63, p=.52 

z=1.32, p=.19 

36@ 2017 Treur  childhood smoke exposure x PS on smoking heaviness 

childhood smoke exposure x PS on smoking initiation 

OR=0.97-1.09, CI=0.83-

1.26 

OR=1.05-1.44, CI=0.76-

1.88 

37@ 2018 Mies stress x PS on alcohol consumption 

life satisfaction x PS on alcohol consumption 

stress x PS on alcohol problems 

life satisfaction x PS on alcohol problems 
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p=.406 
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38 2018 Polimanti trauma x bipolar disorder PS on alcohol misusea 
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trauma x schizophrenia PS on nicotine dependence z=1.45, p=.146 

39“ 2018 Salvatore romantic relationship status x PS on alcohol intoxication 

romantic relationship status x subset of PS on alcohol intoxication 

NA 

NA 

*+%&$@#” Studies denoted with the same symbol used data from identical or overlapping samples. 
In bold p-values that were below the traditional two-tailed significance level of p<.05 

Findings indicated with NA: p-value for the interaction term (or for the main effects in the case of reversed 
interaction) was not reported and could not be calculated 

a These findings followed a reversed pattern; thus, the p-values for the main effects are included in the 
analysis  
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Supplementary Table SIV. Sample characteristics for all included studies. 
ID year 1st author population ethnicity % female  

(cases|controls) 

Mean age 

(cases|controls)  

1* 2007 Berrettini clinical adult European 

American 

54|55b 45|45b 

2* 2007 Berrettini clinical adult African American 84|64b 45|48b 

3 2009 Oroszi clinical adult European  

American 

33|29b 45|45b 

4 2012 Chen clinical adult European 

American 

46 (total) 53 (total) 

5+ 2013 Brody adolescent, families African American 53-56 (total)b 11-17 (total) 

6 2015 Tyndale adult European 

American 

43 (total) 45 (total) 

7% 2006 Lerer college students Jews (mixed) 100|100 20-30 (total) 

8% 2007 Segman college students Jews (mixed) 100|100 24 (total) 

9 2008 Ducci adult native American 

(mixed) 

100|100 38 (total) 

10 2010 Nelson ascertained families 

with twins 

European 

Australian 

78|46 42 (total) 

11 2010 Enoch clinical adult African American 0|0 46|34b 

12& 2011 Kranzler ascertained families  African American 44 (total) 42 (total) 

13& 2011 Kranzler ascertained families  European 

American 

42 (total) 38 (total) 

14 2013 Ray clinical adult European 

American 

61|70b 38|39 

15 2015 Handley adolescent American (mixed) 44 (total) 16 (total) 
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Findings indicated with NA: p-value for the interaction term (or for the main effects in the case of reversed 
interaction) was not reported and could not be calculated 

a These findings followed a reversed pattern; thus, the p-values for the main effects are included in the 
analysis  
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9 2008 Ducci adult native American 

(mixed) 

100|100 38 (total) 

10 2010 Nelson ascertained families 

with twins 

European 

Australian 

78|46 42 (total) 
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12& 2011 Kranzler ascertained families  African American 44 (total) 42 (total) 
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16 2017 Handley young adult African American 53|? 20|? 

17 2012 McGeary clinical adult mixed American 16 (total) 50 (total) 

18+ 2013 Brody  families/ adolescent  African American 53-56 (total)b 11-17 (total) 

19 2013 David clinical adult European 

American 

52 | 52b 45 | 45b 

20 2015 Guo college student mixed American 61b not reported 

21$ 2015 Guo  high school student mixed American 51b 23b 

22 2016 Bountress ascertained young 

adult 

European 

American 

53 21 

23$ 2016 Stogner  adolescent mixed American 52 16 

24@ 2017 Pasman  families/ adult twins European Dutch 63 35 

25 2017 Pasman families/ adolescent European Dutch 49 33 

26 2017 Coley adolescent mixed American 53b 28 

27# 2015a Musci  adolescent/ young 

adult 

mixed American 46 (total) ±6-18 (total) 

28# 2016 Musci  adolescent/ young 

adult 

African American 47b ±6-18 (total) 

29 2012 Vrieze adolescent/ young 

adult twins 

European 

American 

52 20 

30 2013 Meyers adult African American 52 48 

31” 2014 Salvatore families/ adolescent 

twin 

European Finnish 53 14 

32# 2015b Musci  adolescent/ young 

adult  

mixed American 46b ±12-22 

33~ 2016 Domingue  older adult European 

American 

58 ±56-96 

34~ 2016 Schmitz  older adult European 

American 

0 ±64-68 (total) 
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35 2017 Li ascertained families/ 

adolescent 

European 

American 

57  23  

36@ 2017 Treur  families/ twin European Dutch 67 ±41 

37@ 2018 Mies families/ twin European Dutch 65 43 

38 2018 Polimanti adult soldiers European 

American 

9 23 

39“ 2018 Salvatore young adult twins European Finnish 54 22 

*+%&$@#” Studies denoted with the same symbol used data from identical or overlapping samples. In case-control or 
RCT designs, percentage female and average age are given separately for cases and controls when reported or 

calculable. Otherwise, numbers for the total sample and/or ranges are used, as indicated with (total). 
b True numbers and percentages might deviate, as not all individuals were included in the GxE analyses. 
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316 Part 3 – Chapter 10 

 

Abstract 
 
Background: Tobacco, alcohol, and cannabis use are prevalent behaviors that pose 
considerable health risks. Genetic vulnerability and characteristics of the neighborhood 
of residence form important risk factors for substance use. Possibly, these factors do not 
act in isolation. This study tested the interaction between neighborhood characteristics 
and genetic risk (gene-environment interaction, GxE) and the association between these 
classes of risk factors (gene-environment correlation, rGE) in substance use.  
Methods: Two polygenic scores (PGS) each (based on different discovery datasets) were 
created for smoking initiation, cigarettes per day, and glasses of alcohol per week based 
on summary statistics of different genome-wide association studies (GWAS). For cannabis 
initiation one PGS was created. These PGS were used to predict their respective 
phenotype in a large population-based sample from the Netherlands Twin Register 
(N=6,567). Neighborhood characteristics as retrieved from governmental registration 
systems were factor analyzed and resulting measures of socioeconomic status (SES) and 
metropolitanism were used as predictors.  
Results: There were (small) main effects of neighborhood characteristics and PGS on 
substance use. One of the 14 tested GxE effects was significant, such that the PGS was 
more strongly associated with alcohol use in individuals with high SES. This was effect 
was only significant for one out of two PGS. There were weak indications of rGE, mainly 
with age and cohort covariates. 
Conclusion: We conclude that both genetic and neighborhood-level factors are 
predictors for substance use. More research is needed to establish the robustness of the 
findings on the interplay between these factors. 
  

Gene-environment interaction with neighborhood SES 
 
1. Introduction 

 
Use of tobacco, alcohol, and cannabis is prevalent in the Western world. Twenty percent 
of European and US individuals older than 14 smoke on a regular basis (WHO, 2016a) . The 
worldwide average daily intake of alcohol is 13.9 grams in this age group (about one glass; 
WHO, 2018a). In Europe, around 23% has ever used cannabis (in the age group ≥15 years) 
versus 52% in the US (age ≥16; EMCDDA, 2011). Smoking, alcohol use, and cannabis use 
can have deleterious health effects (WHO, 2016b; WHO, 2017; WHO, 2018a), making the 
etiology of these behaviors an important topic of study. 
 
Heritability estimates for tobacco, alcohol, and cannabis use are substantial (Kendler et 
al., 2008), with even higher estimates for abuse and dependence (Ducci and Goldman, 
2012; Mbarek et al., 2015; Verweij et al., 2010; Vink et al., 2005). Molecular genetic studies 
aim to identify specific genetic variants that increase risk for substance use. Hypothesis-
free, large genome-wide association studies (GWASs) of smoking (Liu et al., 2019; The 
Tobacco and Genetics Consortium, 2010), alcohol use (Clarke et al., 2017; Liu et al., 2019), 
and lifetime cannabis use (Pasman et al., 2018) have had success in achieving this, but 
heritability estimates based on the accumulative effect of measured SNPs are still lower 
than estimates from twin and family studies. One of the causes of this ‘missing 
heritability’ might be the neglect of the interplay between the environment and genes 
(Manolio et al., 2009).  
 
Neighborhood characteristics might increase risk for substance use, although results are 
often mixed. For instance, urbanicity has been associated with higher rates of smoking 
(Idris et al., 2007), cannabis use  (Martino et al., 2008), and alcohol use (Atav and Spencer, 
2002), but there is also evidence for associations in the opposite direction (Donath et al., 
2011; Leatherdale et al., 2007; Lutfiyya et al., 2008). Some studies find that substance use 
is associated with a low average socioeconomic status (SES), but results seem to depend 
on study characteristics and the type of substance under investigation (for reviews, see 
Galea et al., 2004; Karriker-Jaffe, 2011). General measures of low neighborhood SES or 
deprivation have been shown to be positively associated to smoking (Stimpson et al., 
2007). Alcohol and cannabis use might be more prevalent in high SES neighborhoods, but 
results have been mixed (Karriker-Jaffe, 2011).  
 
Possibly, genetic vulnerability to substance use influences the relationship between these 
neighborhood characteristics and substance use. In the case of gene-environment 
interaction (GxE) adverse environmental circumstances may lead to deleterious 
outcomes only (or more strongly) in genetically vulnerable individuals (‘contextual 
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Abstract 
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triggering’), or reversely, a beneficial environment can protect against the effect of 
genetic vulnerability ('compensation,' Shanahan and Hofer, 2005). In other words, some 
individuals have a higher innate reactivity to environmental circumstances, meaning that 
there is ‘differential susceptibility’ (Belsky and Pluess, 2009). Previous studies into GxE 
have mainly used twin or candidate-gene methodology. For example, heritability of 
alcohol use was found to be higher when alcohol outlet density (selling points) was high 
in the neighborhood of residence than when the density was low (Slutske et al., 2018). 
Some twin studies have suggested that the genetic contribution to alcohol use and abuse 
is larger for people living in urban areas than for people living in rural areas (Davis et al., 
2017; Legrand et al., 2008; Rose, 1998; Rose et al., 2001). Few studies have investigated 
GxE in the neighborhood using polygenic scores. A polygenic score (PGS) is a weighted 
count of risk alleles for a trait, where the weights are based on the SNP effect sizes in a 
GWAS. PGS might be the best available measure of genetic risk to date for use in GxE 
studies (Pasman et al., 2019).  The only study to our knowledge that has used a PGS to test 
gene-neighborhood interaction focused on smoking and showed that more social 
cohesion in the neighborhood buffered against the effect of genetic risk (Meyers et al., 
2013). No interaction effect was found for a measure of neighborhood poverty and 
disrepair. 
 
Even less studied in this context is gene-environment correlation (rGE). In rGE, there is an 
association between genetic predisposition and the environment of a person, such that 
genetic factors are associated both with the outcome of interest and with the 
environmental context. For example, if lower intelligence is associated with both 
substance use and with living in low-SES environments (Fergusson et al., 2005) this can 
lead to rGE when a genetic measure for substance use includes variants that are also 
predictive of lower intelligence (i.e., variants that are pleiotropic). Also, ‘evocative’ rGE 
arises when genes contribute to some behavior (e.g., aggression) that elicits a response 
in the environment (e.g., rejection; Plomin et al., 1977). Few studies to our knowledge 
investigated rGE with neighborhood characteristics specifically. One study showed that a 
PGS for alcohol dependence was positively related to neighborhood social deprivation 
(Clarke et al., 2016). Another showed significant correlations between substance use PGS 
and Townsend neighborhood deprivation indices (Abdellaoui et al., 2019). Some GxE 
studies report the (uncorrected) correlation between their G and E factors (e.g., Meyers et 
al., 2013). Not accounting for rGE effects can lead to an overestimation of genetic or 
(shared) environmental variance (Blokland et al., 2013; Purcell, 2002), and to 
misinterpreted or even spurious GxE findings (Jaffee and Price, 2007).  
 

Gene-environment interaction with neighborhood SES 
 
The current study looked at the main effects of neighborhood characteristics and 
polygenic risk on substance use, and the interplay (interaction and correlation) between 
these factors. 
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2. Methods 

 
2.1 Participants 
We used cross-sectional data (survey 5, 6, 7, 8, and 10) collected between 2000 and 2014 
from an ongoing longitudinal study in twin pairs and their family members registered at 
the Netherlands Twin Register (NTR; Willemsen et al., 2013). For the current study, a 
subsample of 6,567 Dutch ancestry participants was selected. We linked the most recent 
substance use data to neighborhood information as obtained from governmental 
registration systems that was closest in time (either from 2010 or 2004; CBS, 2012), using 
postal code at time of survey completion. Table 1 summarizes this data selection 
procedure and the resulting sample composition. There were small differences in 
distributions or mean values for the variables depending on what survey was used 
(Supplementary Table S1). These differences in predictor and outcome variables may 
stem from cohort effects (for example due to the economic crisis), age effects, or they may 
represent random fluctuations. However, results did not change when we controlled for 
the effects of measurement wave (results not shown). 
 
About half (55%) of the sample consisted of twins. The sample included 65% females and 
38% highly educated individuals (higher vocational education or university). Mean age at 
the time of completing the survey was M=45.3 years (SD=15.7; range 18-91 years). Average 
birth year was 1964 (for more details on the NTR sample, see e.g.,  Geels et al., 2013; 
Willemsen et al., 2013). 
 

 
 
  

Table 1.  Participant data from each measurement year (survey number) per phenotype.  
 Phenotype 
 Year (survey) Smoking initiation Cigarettes/ day Alcohol/ week Cannabis initiation 

N
 fr

om
 su

rv
ey

 

2014 (10) 3,958 666 2,509 3,059 
2010 (8) 814 1,408 1,457 1,645 
2004 (7) 146 328 671 not available 

2002 (6) 1,326 586 1,308 not available 
2000 (5) 227 108 229 972 

Total* 6,471 3,096 6,174 5,676 

* For N=6,567 data were complete for at least one analysis 
Shaded rows: for these participants, postal code data were linked to information on neighborhood 

characteristics available from 2010; for the others, these data were linked to information available from 
2004. 

Gene-environment interaction with neighborhood SES 
 
2.2 Substance use outcomes 
Substance use outcomes were based on self-report measures (Supplementary Table S2). 
For smoking initiation, participants were coded as ever smokers if they classified as 
current smokers at any survey (smoking at least weekly) or ex-smokers. When answers to 
these questions were incomplete or inconsistent, information was complemented with 
answers to different questions (Treur et al., 2016).  
 
For tobacco use, we used an open-ended question asking how many cigarettes per day 
someone smoked at their heaviest period of smoking for survey 7, 8, and 10. For survey 5 
and 6, cigarettes per day was available only for current smokers and was measured on an 
ordinal scale. For these surveys, the mid-point of each answering category was analyzed 
on a continuous scale.  
 
For alcohol use, glasses of alcohol consumed per week was used as an outcome. If 
individuals drank less than 1 glass per week (N=1,297) their value was put to 0. Individuals 
who never drank alcohol (N=87) were excluded from analysis. We deemed it likely that a 
response of more than 70 glasses per week (N=7) represented an invalid answer rather 
than a true estimate; these responses were excluded. In survey 8 and 10 alcohol use was 
measured continuously; we used the midpoint of the answering categories in survey 7, 6, 
and 5.  
 
For lifetime cannabis use, participants were asked if they had ever used cannabis (yes/no). 
This measure was only available for survey 5, 8, and 10.  
 
2.3 Neighborhood characteristics 
In the Netherlands postal codes exist of four digits, identifying areas at the level of 
neighborhoods, and two letters, identifying areas at the level of streets. We linked the four 
digits of the postal codes to registered neighborhood characteristics from governmental 
registration systems (CBS, 2012). Information was available on urbanicity in 
addresses/km2, housing values, percentage of non-western immigrants (% immigrants), 
monthly income, percentage of inhabitants receiving low income (% low income), 
percentage receiving high income (% high income), and percentage receiving 
governmental benefit payments (% benefits; Table 2). For some variables, there were 
large proportions of missing data on the neighborhood characteristics. We selected 
variables that had less than 30% missing data: urbanicity, % immigrants, housing values, 
and monthly income. We used the automatic multiple imputation procedure in SPSS to 
complete missing data in these variables. Five imputed datasets were created and 
merged back to one dataset by averaging the estimations of the missing data points. 
Because of the conceptual and statistical overlap between the variables we performed 
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principal component analysis (PCA) in SPSS with an oblimin rotation. The PCA yielded two 
factors (see Table 2) with Eigenvalues of 1.62 and 1.34. The first factor was defined by high 
urbanicity and a high percentage of non-western immigrants; we dubbed this factor 
metropolitanism. The second factor was defined by housing values and monthly income; 
this variable was called socioeconomic status (SES). The factor solution explained 74% of 
the variance in these variables. 
 

Table 2. The neighborhood variables (with their components and measurement levels) for the main and 
exploratory analyses. For correlations between the original neighborhood variables, refer to Supplemental 

Table S3. 

Analysis Variable Comprises original 
variables 

Variable levels Loadings 

Main Metropolitan 
factor 

urbanicity: addresses/ km2  <500, 500-1000, 1001-1500, 
1501-2500, >2500 

.83 

% non-western immigrants <5%, 5-10%, 11-20%, 21-
40%, >40% 

.81 

SES factor  housing value continuous .90 

average monthly income continuous .89 

Exploratory SES index  housing value continuous  

average monthly income continuous  

% low income continuous  

% high income continuous  

% receiving governmental 
benefits payments 

continuous  

Urbanicity NA <500, 500-1000, 1000-1500, 
1500-2500, >2500 

 

% non-western 
immigrants 

NA <5%, 5-10%, 11-20%, 21-
40%, >40% 

 

 
2.4 Polygenic scores 
Genome-wide single-nucleotide polymorphism (SNP) data for NTR participants were 
obtained using several genotyping platforms over time (Lin et al., 2017; Willemsen et al., 
2010). The genotyping, imputation, and quality control procedures have been described 
earlier (Abdellaoui et al., 2018; Nivard et al., 2014). PGS were generated with PLINK 
(version 1.9; Purcell et al., 2007), summing the one- or two risk allele effects of the 
weighted beta's for each set of summary statistics. The weighted beta's were calculated 
with LDpred, taking into account the LD structure in the European population to improve 
prediction (described in detail in Abdellaoui et al., 2018; Vilhjálmsson et al., 2015). PGS 
can be calculated for several expected fractions of causal genetic markers to further 
optimize prediction accuracy; we present results for the 30% fraction, which has shown 
good results in previous studies on complex behavioral traits (Hugh-Jones et al., 2016; 
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Vilhjálmsson et al., 2015). We used multiple source GWAS to extrapolate our results 
because the quality and predictive power of summary statistics can differ. Predictive 
power does not depend solely on sample size, but for example also on the SNP-based 
heritability, which is the variance explained in the phenotype by the SNP effects in the 
GWAS (Dudbridge, 2013). For smoking, PGS were created for smoking initiation and for 
cigarettes per day. The first set was based on GWAS summary statistics from The Tobacco 
and Genetics Consortium (2010; excluding the NTR, NESDA and GAIN samples) with 
N=69,207 and a SNP-based heritability of h2SNP=12% for smoking initiation and 
N=35,173, h2SNP=6% for cigarettes per day. The second set was based on GSCAN 
summary statistics (excluding NTR; N=1,224,825, h2SNP=8% for smoking initiation and N= 
334,609, h2SNP=8% for cigarettes per day; Liu et al.,2019). For alcohol use, PGS were 
based on a 2017 GWAS on alcohol consumption in glasses per week (N=112,117, 
h2SNP=13%; Clarke et al.,2017), and the GSCAN GWAS on the same phenotype 
(N=936,196, h2SNP=4%; Liu et al., 2019). For cannabis initiation, the PGS was created 
based on GWAS data on lifetime cannabis use excluding NTR participants, (N=157,664, 
h2SNP=11%; Pasman et al., 2018).  
 
2.5 Covariates 
Sex and age were included as covariate. The participants’ birth year had a tri-modal 
distribution due to recruitment of different age groups. Therefore, we created two cohort 
dummy variables (for 1960-<1980 and ≥1980, with <1960 as the reference category) to 
correct for cohort effects. To control for stratification within the Dutch population, ten 
principal components (PCs) based on systematic ancestry differences were included in 
each analysis that included genetic predictors (models 2 and 3; Abdellaoui et al., 2013). As 
over time different genotyping platforms were used, dummy variables were included to 
control for genotype platform stratification (Boomsma et al., 2013). 
 
2.6 Statistical analyses 
We tested the effects of the neighborhood factors, PGS, and their interactions using the 
generalized estimating equations (GEE) procedure in SPSS, controlling for family 
relatedness. For the binary outcomes, binary logistic GEE was used. Groups of variables 
were entered in four blocks. We first regressed the substance use outcomes on sex, age, 
and cohort (model 0), then added neighborhood characteristics (model 1), and then 
genetic predictors (model 2). In model 3 we added the interaction terms. In a separate 
GEE analysis, we used the PGS as outcome and the neighborhood variables as predictors 
to test rGE while controlling for sex, age, cohort, batch (genotyping platform), and 
principal components. In all analyses we used standardized predictors. We applied a 
Bonferroni correction for four independent tests for the four outcomes (the PGS based on 
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prediction (described in detail in Abdellaoui et al., 2018; Vilhjálmsson et al., 2015). PGS 
can be calculated for several expected fractions of causal genetic markers to further 
optimize prediction accuracy; we present results for the 30% fraction, which has shown 
good results in previous studies on complex behavioral traits (Hugh-Jones et al., 2016; 

Gene-environment interaction with neighborhood SES 
 
Vilhjálmsson et al., 2015). We used multiple source GWAS to extrapolate our results 
because the quality and predictive power of summary statistics can differ. Predictive 
power does not depend solely on sample size, but for example also on the SNP-based 
heritability, which is the variance explained in the phenotype by the SNP effects in the 
GWAS (Dudbridge, 2013). For smoking, PGS were created for smoking initiation and for 
cigarettes per day. The first set was based on GWAS summary statistics from The Tobacco 
and Genetics Consortium (2010; excluding the NTR, NESDA and GAIN samples) with 
N=69,207 and a SNP-based heritability of h2SNP=12% for smoking initiation and 
N=35,173, h2SNP=6% for cigarettes per day. The second set was based on GSCAN 
summary statistics (excluding NTR; N=1,224,825, h2SNP=8% for smoking initiation and N= 
334,609, h2SNP=8% for cigarettes per day; Liu et al.,2019). For alcohol use, PGS were 
based on a 2017 GWAS on alcohol consumption in glasses per week (N=112,117, 
h2SNP=13%; Clarke et al.,2017), and the GSCAN GWAS on the same phenotype 
(N=936,196, h2SNP=4%; Liu et al., 2019). For cannabis initiation, the PGS was created 
based on GWAS data on lifetime cannabis use excluding NTR participants, (N=157,664, 
h2SNP=11%; Pasman et al., 2018).  
 
2.5 Covariates 
Sex and age were included as covariate. The participants’ birth year had a tri-modal 
distribution due to recruitment of different age groups. Therefore, we created two cohort 
dummy variables (for 1960-<1980 and ≥1980, with <1960 as the reference category) to 
correct for cohort effects. To control for stratification within the Dutch population, ten 
principal components (PCs) based on systematic ancestry differences were included in 
each analysis that included genetic predictors (models 2 and 3; Abdellaoui et al., 2013). As 
over time different genotyping platforms were used, dummy variables were included to 
control for genotype platform stratification (Boomsma et al., 2013). 
 
2.6 Statistical analyses 
We tested the effects of the neighborhood factors, PGS, and their interactions using the 
generalized estimating equations (GEE) procedure in SPSS, controlling for family 
relatedness. For the binary outcomes, binary logistic GEE was used. Groups of variables 
were entered in four blocks. We first regressed the substance use outcomes on sex, age, 
and cohort (model 0), then added neighborhood characteristics (model 1), and then 
genetic predictors (model 2). In model 3 we added the interaction terms. In a separate 
GEE analysis, we used the PGS as outcome and the neighborhood variables as predictors 
to test rGE while controlling for sex, age, cohort, batch (genotyping platform), and 
principal components. In all analyses we used standardized predictors. We applied a 
Bonferroni correction for four independent tests for the four outcomes (the PGS based on 
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different discovery GWAS not being strictly ‘independent’) resulting in a significance 
threshold of .0125.   
 

  

Gene-environment interaction with neighborhood SES 
 
3. Results 

45.3% of the participants had ever smoked. Current smokers smoked on average 13.9 
cigarettes per day and ex-smokers smoked 14.2 cigarettes per day in their period of most 
heavy smoking. Individuals drank on average 6.1 standard glasses of alcohol per week 
and 19.3% of the participants had ever used cannabis. The correlation between the 
metropolitan factor and SES factor was small (r=-0.05, p<.001).  
 
3.1 Main effects  
Sex, age, and cohort were entered in model 0 (see Supplementary Table S4). Effects of sex 
were significantly positive for all substances, indicating higher (chance of initiation of) use 
for males. The association with age was positive for alcohol per week, negative for lifetime 
cannabis use and not significant for smoking. Younger cohorts were less likely to have 
smoked and more likely to have used cannabis compared to the cohort born before 1960. 
The youngest cohort smoked more cigarettes per day than the oldest cohort (although in 
model 0 this did not survive correction for multiple testing). In model 1 to 3 there was an 
indication that the intermediate cohort drank less alcohol than the oldest cohort, but no 
such effects were observed for the youngest cohort. Variance explained by age, cohort, 
and sex ranged from 2.4% for cigarettes per day to 13.6% for lifetime cannabis use. 
 
The influence of the neighborhood factors on substance use outcomes differed per 
substance outcome and neighborhood predictor (model 1, Supplementary Table S4). 
Living in a metropolitan area was associated with higher chances of smoking initiation 
and higher levels of alcohol consumption, but not with cigarettes per day or cannabis use. 
Higher SES was related to smoking more cigarettes per day and higher chances of lifetime 
cannabis use. SES also showed a positive association with smoking initiation, but only in 
the models that included the genetic predictors (2-3, see Table 3). Variance explained by 
the neighborhood variables ranged from 0.3% for smoking initiation to 3.4% for lifetime 
cannabis use. 
 
In model 2, the effects of the PGS and genetic covariates were added to the model (Table 
3 and Supplementary Table S4). The PGS for smoking initiation, cigarettes per day, 
alcohol per week, and lifetime cannabis use significantly predicted their respective 
phenotypes, explaining 0.2% (TAG smoking initiation and GSCAN alcohol per week) to 
1.1% (lifetime cannabis use) of the variance (Table 3). 
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the models that included the genetic predictors (2-3, see Table 3). Variance explained by 
the neighborhood variables ranged from 0.3% for smoking initiation to 3.4% for lifetime 
cannabis use. 
 
In model 2, the effects of the PGS and genetic covariates were added to the model (Table 
3 and Supplementary Table S4). The PGS for smoking initiation, cigarettes per day, 
alcohol per week, and lifetime cannabis use significantly predicted their respective 
phenotypes, explaining 0.2% (TAG smoking initiation and GSCAN alcohol per week) to 
1.1% (lifetime cannabis use) of the variance (Table 3). 
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3.2 Gene-environment interaction and correlation 
One significant GxE effect was observed (model 3, Table 3), between the alcohol PGS 
based on Clarke et al. (2017) and the SES factor on alcohol per week. SES did not have a 
main effect on alcohol use. The slope for low SES (-1 SD) was not significantly different 
from zero (B=-0.20, p=.179), but the slope for high SES (+1 SD) was (B=0.27, p=.007), 
indicating that the PGS only had an effect on alcohol use for individuals with a high SES 
factor.  
 
There was no significant rGE with the neighborhood variables (Table 4). Furthermore, 
there was unexpected rGE of sex, age, and cohort with different PGS. The positive rGE 
between cohort and the GSCAN PGS for alcohol per week survived correction for multiple 
testing. 
  

  

Gene-environment interaction with neighborhood SES 
 
4. Discussion 

 
We found a negative association between the metropolitan factor and smoking initiation, 
indicating that chances of smoking initiation were lower in metropolitan areas. This 
finding follows patterns of higher smoking prevalence in rural areas as reported in some 
studies (Li et al., 2009) but contradicts those in others (Idris et al., 2007). Possibly, the 
urban-rural distinction means something different in different studies. For example, what 
constitutes a rural area in the Netherlands is quite different from that in countries with a 
lower population density. For cigarettes per day, in turn, there was a positive association 
with the metropolitan factor, suggesting that smokers in metropolitan areas smoke on 
average more cigarettes. Possibly, only individuals with a high vulnerability to becoming 
addicted start smoking in these areas, so that the average amount of smoked cigarettes 
becomes higher. Urban stress might contribute to these higher smoking levels (Idris et al., 
2007). The SES factor showed small positive associations with both smoking variables, 
which is opposite to the pattern that is commonly reported (e.g., Chuang et al., 2005). This 
finding might be spurious or might be due to some unique feature of the research 
population, such as its relatively high age. 
 
Alcohol use was higher in metropolitan areas, which may be due to a higher alcohol outlet 
density (Kuntsche et al., 2008). In contrast to studies showing positive (Galea et al., 2007) 
or negative (Karriker-Jaffe et al., 2013) association with neighborhood SES, we did not 
find an effect of our SES factor on alcohol use. This might be due to our use of an aggregate 
measure of alcohol consumption. One recent study showed that alcohol use frequency 
(how often someone drinks alcohol) was positively genetically correlated with SES 
measures, whereas alcohol use quantity (how much alcohol is consumed per occasion) 
was genetically negatively correlated with SES, suggesting these phenotypes represent 
distinct underlying vulnerabilities (Marees et al., 2019). In a similar vein, we only 
considered alcohol consumption levels ≤70 glasses per week, with most participants 
showing moderate alcohol use (M=6.0 glasses per week). Association patterns for 
measures of more extreme forms of alcohol use might be quite different (Karriker-Jaffe et 
al., 2018). 
 
For lifetime cannabis use, there was a significant positive effect of the SES factor, which 
is in line with some previous findings (Galea et al., 2007) but in contrast with a study in 
cannabis use disorder (Buu et al., 2009). It appears that different cannabis use phenotypes 
show different associations with SES measures. Indeed, experimentation with cannabis 
is higher among people with higher education levels (at least in the Netherlands, CBS, 
2010). 
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3.2 Gene-environment interaction and correlation 
One significant GxE effect was observed (model 3, Table 3), between the alcohol PGS 
based on Clarke et al. (2017) and the SES factor on alcohol per week. SES did not have a 
main effect on alcohol use. The slope for low SES (-1 SD) was not significantly different 
from zero (B=-0.20, p=.179), but the slope for high SES (+1 SD) was (B=0.27, p=.007), 
indicating that the PGS only had an effect on alcohol use for individuals with a high SES 
factor.  
 
There was no significant rGE with the neighborhood variables (Table 4). Furthermore, 
there was unexpected rGE of sex, age, and cohort with different PGS. The positive rGE 
between cohort and the GSCAN PGS for alcohol per week survived correction for multiple 
testing. 
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4. Discussion 
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finding might be spurious or might be due to some unique feature of the research 
population, such as its relatively high age. 
 
Alcohol use was higher in metropolitan areas, which may be due to a higher alcohol outlet 
density (Kuntsche et al., 2008). In contrast to studies showing positive (Galea et al., 2007) 
or negative (Karriker-Jaffe et al., 2013) association with neighborhood SES, we did not 
find an effect of our SES factor on alcohol use. This might be due to our use of an aggregate 
measure of alcohol consumption. One recent study showed that alcohol use frequency 
(how often someone drinks alcohol) was positively genetically correlated with SES 
measures, whereas alcohol use quantity (how much alcohol is consumed per occasion) 
was genetically negatively correlated with SES, suggesting these phenotypes represent 
distinct underlying vulnerabilities (Marees et al., 2019). In a similar vein, we only 
considered alcohol consumption levels ≤70 glasses per week, with most participants 
showing moderate alcohol use (M=6.0 glasses per week). Association patterns for 
measures of more extreme forms of alcohol use might be quite different (Karriker-Jaffe et 
al., 2018). 
 
For lifetime cannabis use, there was a significant positive effect of the SES factor, which 
is in line with some previous findings (Galea et al., 2007) but in contrast with a study in 
cannabis use disorder (Buu et al., 2009). It appears that different cannabis use phenotypes 
show different associations with SES measures. Indeed, experimentation with cannabis 
is higher among people with higher education levels (at least in the Netherlands, CBS, 
2010). 
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We confirmed that substance use can be predicted by PGS created based on an 
independent sample, but the PGS explained only 0.2-1.1% of the variance in their 
respective phenotype. Variance explained by PGS is often small, because PGS contain the 
sum of both true effects and error components. Also, their effect depends on the 
heritability of the trait, which is somewhat modest in the case of substance use. The PGS 
in this study were based on discovery GWAS with varying sample sizes.  In general, it is 
expected that PGS based on larger GWAS would be more powerful (Dudbridge, 2013). 
Therefore, it is remarkable that the use of a larger discovery GWAS (GSCAN) hardly 
increased the predictive power of the PGS. It must be noted that the PGS were based on 
partly overlapping discovery samples; results of PGS based on other independent 
samples might be different. This suggests that future GWAS should not focus solely on 
increasing sample sizes, but should for example also focus on using homogeneous, 
reliable phenotype measures (Dudbridge, 2013; Manolio et al., 2009; Wainschtein et al., 
2019).  
 
There was an interaction between the PGS based on Clarke et al. (2017) and SES on 
alcohol use, such that genetic risk only came to expression when neighborhood SES was 
high. As there was no main effect of SES it is difficult to interpret this finding. Assuming 
that high SES generally acts as a risk factor for alcohol use (Galea et al., 2007), our GxE 
finding is in line with diathesis-stress or differential susceptibility frameworks, stating 
that individuals that are already at risk genetically will react more strongly to 
environmental risk (Belsky and Pluess, 2009). The only previous study that used PGS to 
test GxE with neighborhood factors in substance use found indications for GxE in the same 
direction (Meyers et al., 2013).  
 
However, it needs to be pointed out that this was only one of the 14 tested interactions, 
and it explained a very small amount of variance in alcohol use (less than 0.1%). The same 
interaction did not reach significance when using the GSCAN PGS. This difficulty detecting 
GxE might be due to the fact that only SNPs that had a main effect on substance use in the 
GWAS ended up in the PGS, whereas potentially more relevant SNPs for GxE may be those 
that have an effect on differential susceptibility rather than on substance use per se (Fox 
and Beevers, 2016). It is also a possibility that GxE effects are different in other (earlier) 
developmental periods than during one’s late forties, which was the average age of our 
sample (Kendler et al., 2011; Samek et al., 2017). Although we controlled for age and 
cohort effects, we deemed sample size insufficient to test such three-way interactions. 
For main and two-way GxE effects power seemed reasonable: assuming an effect size of 
f2 = 0.005, power was estimated to range between 66-98% (see Supplementary Table S6), 
but it is possible that true effects are even smaller. If that is so, GxE might not be as 
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important in the etiology of substance use as has traditionally been predicted. Indeed, a 
recent review of studies that used polygenic measures of genetic risk showed that the 
evidence for GxE in substance use is still weak (Pasman et al., 2019). More studies will be 
needed to establish the robustness of GxE effects in this context.  
 
There was no strong evidence for gene-environment correlation (rGE), although there 
were some interesting patterns. First, there was small non-significant rGE between SES 
and the PGS for alcohol use based on Clarke et al. (2017; p=.069), which is potentially 
relevant  as there was also gene-environment interaction (GxE) between these variables 
in the alcohol use analysis. Secondly, there were some unexpected rGE relationships 
between the covariates and PGS. Although they did not survive correction for multiple 
testing, there was a pattern of rGE between age/ cohort and the different smoking PGS. 
These effects might be due to genetic overlap between smoking phenotypes and 
educational attainment, as education level was higher in the later cohorts (χ2[16]=2,409, 
p<.001) and for lower ages (b=-0.60, SD=.07, p<.001). It might also be the case that the PGS 
constituted a better measure for risk for smoking behavior in the older cohorts, as they 
were largely based on GWAS with earlier born participants (Tobacco and Genetics 
Consortium, 2010; Liu et al., 2019). The negative rGE between sex and the smoking PGS 
might be spurious or represent an actual gender difference in the genetic architecture of 
this trait (Gilks et al., 2014). The only rGE that survived correction for multiple testing was 
between the GSCAN PGS for alcohol per week and cohort, such that being born in 1980 or 
later was associated with a higher PGS as compared to being born before 1960. 
Speculatively, this might be due to decreasing alcohol use in western countries in recent 
years (World Health Organization, 2018). It might be the case that among younger cohorts 
only vulnerable individuals consume alcohol, which increases the genetic contribution to 
this phenotype and would result in higher PGS in this group. Regardless of the 
interpretation, these findings show that rGE might exist, and that these effects have to be 
taken into account when studying GxE. 
 
4.1 Conclusions 
The current study confirmed that substance use was associated with genetic risk and 
characteristics of the neighborhood. We found some indication for GxE, such that the 
effect of genetic risk for substance use could be augmented by environmental risk. 
Furthermore, there were weak indications of rGE effects. More research into the 
relationships between neighborhood characteristics and substance use outcomes might 
help to select stronger neighborhood predictors, increasing the chance to detect GxE 
effects. Furthermore, more attention should be given to possible rGE effects. Knowledge 
of gene-environment interplay could help prevent genetic vulnerability from coming to 
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We confirmed that substance use can be predicted by PGS created based on an 
independent sample, but the PGS explained only 0.2-1.1% of the variance in their 
respective phenotype. Variance explained by PGS is often small, because PGS contain the 
sum of both true effects and error components. Also, their effect depends on the 
heritability of the trait, which is somewhat modest in the case of substance use. The PGS 
in this study were based on discovery GWAS with varying sample sizes.  In general, it is 
expected that PGS based on larger GWAS would be more powerful (Dudbridge, 2013). 
Therefore, it is remarkable that the use of a larger discovery GWAS (GSCAN) hardly 
increased the predictive power of the PGS. It must be noted that the PGS were based on 
partly overlapping discovery samples; results of PGS based on other independent 
samples might be different. This suggests that future GWAS should not focus solely on 
increasing sample sizes, but should for example also focus on using homogeneous, 
reliable phenotype measures (Dudbridge, 2013; Manolio et al., 2009; Wainschtein et al., 
2019).  
 
There was an interaction between the PGS based on Clarke et al. (2017) and SES on 
alcohol use, such that genetic risk only came to expression when neighborhood SES was 
high. As there was no main effect of SES it is difficult to interpret this finding. Assuming 
that high SES generally acts as a risk factor for alcohol use (Galea et al., 2007), our GxE 
finding is in line with diathesis-stress or differential susceptibility frameworks, stating 
that individuals that are already at risk genetically will react more strongly to 
environmental risk (Belsky and Pluess, 2009). The only previous study that used PGS to 
test GxE with neighborhood factors in substance use found indications for GxE in the same 
direction (Meyers et al., 2013).  
 
However, it needs to be pointed out that this was only one of the 14 tested interactions, 
and it explained a very small amount of variance in alcohol use (less than 0.1%). The same 
interaction did not reach significance when using the GSCAN PGS. This difficulty detecting 
GxE might be due to the fact that only SNPs that had a main effect on substance use in the 
GWAS ended up in the PGS, whereas potentially more relevant SNPs for GxE may be those 
that have an effect on differential susceptibility rather than on substance use per se (Fox 
and Beevers, 2016). It is also a possibility that GxE effects are different in other (earlier) 
developmental periods than during one’s late forties, which was the average age of our 
sample (Kendler et al., 2011; Samek et al., 2017). Although we controlled for age and 
cohort effects, we deemed sample size insufficient to test such three-way interactions. 
For main and two-way GxE effects power seemed reasonable: assuming an effect size of 
f2 = 0.005, power was estimated to range between 66-98% (see Supplementary Table S6), 
but it is possible that true effects are even smaller. If that is so, GxE might not be as 
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important in the etiology of substance use as has traditionally been predicted. Indeed, a 
recent review of studies that used polygenic measures of genetic risk showed that the 
evidence for GxE in substance use is still weak (Pasman et al., 2019). More studies will be 
needed to establish the robustness of GxE effects in this context.  
 
There was no strong evidence for gene-environment correlation (rGE), although there 
were some interesting patterns. First, there was small non-significant rGE between SES 
and the PGS for alcohol use based on Clarke et al. (2017; p=.069), which is potentially 
relevant  as there was also gene-environment interaction (GxE) between these variables 
in the alcohol use analysis. Secondly, there were some unexpected rGE relationships 
between the covariates and PGS. Although they did not survive correction for multiple 
testing, there was a pattern of rGE between age/ cohort and the different smoking PGS. 
These effects might be due to genetic overlap between smoking phenotypes and 
educational attainment, as education level was higher in the later cohorts (χ2[16]=2,409, 
p<.001) and for lower ages (b=-0.60, SD=.07, p<.001). It might also be the case that the PGS 
constituted a better measure for risk for smoking behavior in the older cohorts, as they 
were largely based on GWAS with earlier born participants (Tobacco and Genetics 
Consortium, 2010; Liu et al., 2019). The negative rGE between sex and the smoking PGS 
might be spurious or represent an actual gender difference in the genetic architecture of 
this trait (Gilks et al., 2014). The only rGE that survived correction for multiple testing was 
between the GSCAN PGS for alcohol per week and cohort, such that being born in 1980 or 
later was associated with a higher PGS as compared to being born before 1960. 
Speculatively, this might be due to decreasing alcohol use in western countries in recent 
years (World Health Organization, 2018). It might be the case that among younger cohorts 
only vulnerable individuals consume alcohol, which increases the genetic contribution to 
this phenotype and would result in higher PGS in this group. Regardless of the 
interpretation, these findings show that rGE might exist, and that these effects have to be 
taken into account when studying GxE. 
 
4.1 Conclusions 
The current study confirmed that substance use was associated with genetic risk and 
characteristics of the neighborhood. We found some indication for GxE, such that the 
effect of genetic risk for substance use could be augmented by environmental risk. 
Furthermore, there were weak indications of rGE effects. More research into the 
relationships between neighborhood characteristics and substance use outcomes might 
help to select stronger neighborhood predictors, increasing the chance to detect GxE 
effects. Furthermore, more attention should be given to possible rGE effects. Knowledge 
of gene-environment interplay could help prevent genetic vulnerability from coming to 
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expression, providing clues on which people in which neighborhoods will need 
intervention the most. 
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Abstract 
 
During adolescence many youth start using tobacco, alcohol and cannabis, a pattern that 
can persist into adulthood and can have deleterious health consequences. Genetic 
vulnerability, parent characteristics in young adolescence, and interaction (GxE) and 
correlation (rGE) between these factors can contribute to the development of substance 
use.  
 
Using prospective data from the TRacking Adolescent Individuals’ Lives Survey (TRAILS, 
N=1,649), we model latent parent characteristics (involvement, substance use, and the 
parent-child relationship) in young adolescence to predict young adult substance use. 
Polygenic scores (PGS) are created based on GWAS summary statistics for smoking, 
alcohol use, and cannabis use. Using Structural Equation Modelling (SEM) we model the 
direct, GxE, and rGE effects of parent factors and PGS on young adult smoking, alcohol 
use, and cannabis initiation.  
 
High PGS, low parental involvement, high parental substance use, and low parent-child 
relationship quality predicted smoking. There was GxE such that a high PGS amplified the 
effect of parental substance on smoking. There was positive rGE between all parent 
factors and the PGS. Alcohol use was not significantly predicted by genetic or parent 
factors, nor by interplay between those. Cannabis initiation was predicted by the PGS and 
by high parental substance use, but there was no evidence for GxE or rGE. 
 
We found evidence for the contribution of genetic risk and parent factors to smoking and 
cannabis initiation, and GxE and rGE for smoking. These findings can act as a starting 
point for identifying people at risk and formulating targets for prevention and 
intervention. 
 
Keywords: gene-environment interaction; parenting; substance use; genetic nurturing 

  

Gene-environment interplay and parenting 
 
Introduction 

Adolescence and young adulthood are periods marked by significant changes in youths’ 
lives, and many youth start to experiment with substances (Arnett, 2000). Despite some 
decreases in recent years, many adolescents experiments with tobacco, alcohol, or 
cannabis, with substantial percentages progressing into regular use. Worldwide, about 
15% of individuals below age 18 smoke (WHO, 2017). Over a quarter of adolescents aged 
15-19 drink alcohol, and almost half of those engage in heavy episodic drinking (WHO, 
2018). The annual prevalence of cannabis use among youths aged 15-16 is 14% in Europe 
and 12% in the Americas (UNODC, 2018). To some degree, these increases in substance 
use during adolescence and young adulthood can be understood as part of normal 
development, in which young people want to obtain a wide range of experiences before 
acquiring adult norms and behaviours (Arnett, 2000). However, among users of tobacco, 
alcohol, and cannabis, the chances of developing dependence may be as high as 67%, 
23%, and 9%, respectively (Lopez-Quintero et al., 2011). Serious (mental) health risks 
have been associated with long-term use of these substances (Hall et al., 2016) and the 
associated disease burden is substantial (Degenhardt et al., 2013; Ezzati et al., 2002).  
 
When trying to understand the emergence of substance use behaviour among young 
adults, research has proposed a dynamic cascade developmental model (Dodge et al., 
2009). This model proposes that adolescent substance use develops through a complex 
of child and environmental factors that influence each other over the course of 
development. Important environmental risk factors that play a role during adolescence 
concern parental factors. Parents are significant role-models for their children, and 
indeed parental modelling of substance use predicts adolescent substance involvement 
(Li et al., 2002). Adolescence is a period marked by increased need for individuation and 
independence, which is associated with decreases in parental monitoring (Lionetti et al., 
2019) as well as with temporary perturbations in parent-child relationships (De Goede et 
al., 2009). Both parental monitoring and the parent-child relationship may predict higher 
adolescent substance use. For example, having parents that are less inquisitive about the 
whereabouts of their child (i.e., low parental monitoring) predicts affiliation with deviant 
peers (Dodge et al., 2009) which in turn predicts substance use (Rai et al., 2003). Likewise, 
having parents that know less about the child’s activities is associated with adolescent 
risk behavior, including alcohol use (Waizenhofer et al., 2004) and smoking (Harakeh et 
al., 2004). The parent-child relationship might directly and indirectly influence 
adolescents’ substance use. One study reported that high parental support was related 
to lower adolescent substance use, and that this relationship was mediated by cognitive 
self-control (Wills et al., 2004). Also, a low quality parent-child relationship has been 
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associated with cannabis use (Creemers et al., 2011), smoking, and alcohol use (Simons-
Morton et al., 2001; Visser et al., 2012).  
 
There is evidence that if such parental risk factors are operating during adolescence, their 
effects on substance use can last well into young adulthood (for reviews, see Ryan et al., 
2010; Stone et al., 2012). As an example, one study found that low parental monitoring, 
warmth, and high parental alcohol use in adolescence predicted binge drinking in early 
adulthood, seven years later (Donaldson et al., 2016). Many mechanisms seem to underlie 
such longitudinal associations. Parental warmth and monitoring have been found to 
prospectively influence substance use norms and beliefs, as well as increase self-
regulation skills and decrease of susceptibility to peer influence (Baker & Hoerger, 2012; 
Lac et al., 2009; Ryan et al., 2010; Van Ryzin et al., 2012; Yang et al., 2013). As another 
example, exposure to parental alcohol use prospectively predicted more positive 
expectancies and attitudes toward alcohol (Smit et al., 2020), and being exposed to 
smoking in the household predicted lower perceived harm of tobacco a year later, which 
in turn predicted future smoking initiation (Rodriguez et al., 2007). 
 
Genetic vulnerability also plays a role in the aetiology of substance use. Heritability 
estimates from family studies are moderate to high, with the exact estimate depending 
on developmental period (with lower estimates for youngsters) and whether the 
behaviour constitutes normative use or abuse/dependence (with higher estimates for the 
latter; Ducci & Goldman, 2012; Hopfer et al., 2003; Mbarek et al., 2015; Verweij et al., 2010; 
Vink et al., 2005). Molecular genetic studies have sought to trace these estimates back to 
specific genetic variants. Genome-wide association studies (GWAS) have identified many 
variants of small effect. The variance in a trait explained by all measured genetic variants 
together (SNP-based heritability) are not as high as heritability estimates based on twin 
research, with the most recent GWAS, for instance, showing a SNP-based heritability of 
4% for alcohol use per week, 8% for cigarettes per day (Liu et al., 2019), and 11% for 
cannabis initiation (Pasman et al., 2018). Based on GWAS findings, polygenic scores (PGS) 
can be created to predict genetic risk of substance use in an independent group of 
individuals. Such scores count and weigh the number of risk alleles from each individual 
(by their effect estimates from GWAS), creating a personal genetic risk score. 
Risk factors interact with each other on multiple levels (Dodge et al., 2009; Masten, 2006). 
In gene-environment interaction (GxE), genetic risk amplifies, diminishes, or even 
reverses the effect of environmental risk. Although there has been some research into GxE 
with parent factors in substance use, most have used the (single) candidate-gene method, 
which has been largely abandoned because most used underpowered designs and 
findings did not replicate in subsequent GWAS (Border et al., 2019; Duncan & Keller, 2011). 
Few PGS studies have been conducted to test GxE with parenting factors. One showed 
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that low parental knowledge was more likely to lead to alcohol problems when genetic 
risk was high (Salvatore, Aliev, Edwards, et al., 2014). Likewise, a PGS study testing 
externalizing behaviour (including substance use) showed that low parental monitoring 
predicted externalizing behaviour more strongly when genetic risk was high (Salvatore, 
Aliev, Bucholz, et al., 2014). Lastly, one study found that parental monitoring (in 
combination with low peer substance use) buffered for the effect of a smoking cessation 
PGS on smoking and cannabis use (Musci et al., 2015).  
 
One explanation for the mixed findings in GxE research is the neglect of gene-environment 
correlation (rGE) effects, where an individual’s genetic risk shows a relation to the level of 
exposure to environmental risk variables, thereby muddling GxE effects (Pasman et al., 
2019). Parenting characteristics are likely to be influenced by the parents’ genetic 
predisposition, and genetic factors important for parenting characteristics may to some 
extent overlap with genetic factors important for the trait under investigation in offspring 
(Kong et al., 2018). This is in line with older twin studies showing significant heritability 
for parenting and other family environment variables (Deater‐Deckard et al., 1999; Elkins 
et al., 1997; Jang et al., 2001; Pérusse et al., 1994; Plomin et al., 1994). Also, one study 
found a genetic factor for substance use to be related to ‘contextual risk’ (including family 
functioning and the parent-child relationship; Hicks et al., 2013). These relationships 
might make it difficult to detect and interpret the presence of GxE. It has been 
demonstrated mathematically that rGE can lead to spurious GxE findings (Dudbridge & 
Fletcher, 2014).  
 
The current study aims to expand knowledge of GxE and rGE mechanisms in the effects of 
genetic risk and parent environment on substance use, thereby using PGS as measures of 
genetic risk and incorporating GxE and rGE in a single model to assess their relative 
contribution. Investigating GxE and rGE is crucial, as these effects can confound the 
effects of both genetic and environmental factors. For example, if not explicitly modelled, 
GxE and rGE can present as main effects of G or E in twin research, leading to an 
overestimation of either effect (Purcell, 2002), and genetic association studies can pick up 
on environmental signal in the case of rGE (Selzam et al., 2019). Disentangling these 
mechanisms can provide directions for future intervention studies, for example showing 
the merits of intervening in parental behavior to prevent genetic vulnerability from 
coming to expression, or showing which genetic pathways are causally related to 
substance use independently from environmental confounders. Using prospective data 
from the TRacking Adolescents’ Individuals Lives Survey (TRAILS), we study the joint 
effects of genetic risk and different parent factors during adolescence (parental 
involvement, parental substance use, parent-child relationship quality) on substance use 
in young adulthood (alcohol use, smoking, cannabis use).  
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associated with cannabis use (Creemers et al., 2011), smoking, and alcohol use (Simons-
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can be created to predict genetic risk of substance use in an independent group of 
individuals. Such scores count and weigh the number of risk alleles from each individual 
(by their effect estimates from GWAS), creating a personal genetic risk score. 
Risk factors interact with each other on multiple levels (Dodge et al., 2009; Masten, 2006). 
In gene-environment interaction (GxE), genetic risk amplifies, diminishes, or even 
reverses the effect of environmental risk. Although there has been some research into GxE 
with parent factors in substance use, most have used the (single) candidate-gene method, 
which has been largely abandoned because most used underpowered designs and 
findings did not replicate in subsequent GWAS (Border et al., 2019; Duncan & Keller, 2011). 
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correlation (rGE) effects, where an individual’s genetic risk shows a relation to the level of 
exposure to environmental risk variables, thereby muddling GxE effects (Pasman et al., 
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found a genetic factor for substance use to be related to ‘contextual risk’ (including family 
functioning and the parent-child relationship; Hicks et al., 2013). These relationships 
might make it difficult to detect and interpret the presence of GxE. It has been 
demonstrated mathematically that rGE can lead to spurious GxE findings (Dudbridge & 
Fletcher, 2014).  
 
The current study aims to expand knowledge of GxE and rGE mechanisms in the effects of 
genetic risk and parent environment on substance use, thereby using PGS as measures of 
genetic risk and incorporating GxE and rGE in a single model to assess their relative 
contribution. Investigating GxE and rGE is crucial, as these effects can confound the 
effects of both genetic and environmental factors. For example, if not explicitly modelled, 
GxE and rGE can present as main effects of G or E in twin research, leading to an 
overestimation of either effect (Purcell, 2002), and genetic association studies can pick up 
on environmental signal in the case of rGE (Selzam et al., 2019). Disentangling these 
mechanisms can provide directions for future intervention studies, for example showing 
the merits of intervening in parental behavior to prevent genetic vulnerability from 
coming to expression, or showing which genetic pathways are causally related to 
substance use independently from environmental confounders. Using prospective data 
from the TRacking Adolescents’ Individuals Lives Survey (TRAILS), we study the joint 
effects of genetic risk and different parent factors during adolescence (parental 
involvement, parental substance use, parent-child relationship quality) on substance use 
in young adulthood (alcohol use, smoking, cannabis use).  
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Methods 
This study’s pre-registration can be found on Open Science Framework 
(https://osf.io/wv3kb). A description of the analyses scripts can be found in the 
Supplemental Note, and all scripts are published on GitHub 
(https://github.com/joellepasman/TRAILS_substanceuse/).  
 
Participants 
Data were derived from the ongoing TRacking Adolescents’ Individual Lives Survey 
(TRAILS), which has been described in detail elsewhere (Oldehinkel et al., 2014). We used 
data from the first five waves, collected every two years from 2000 to 2013. For N=1,842 
adolescents genetic were available. After genetic quality control and excluding individuals 
that had no data on parental characteristics, N=1,649 European-ancestry, unrelated 
individuals (47.1% female) remained. Average age at wave 1 was 11.1 years (SD=0.54, 
range 10.0-12.6) and at outcome 22.2 years (SD=0.66, range 20.7-24.1).  

Genotyping 
At wave 3, blood samples were collected in the adolescents. DNA was isolated and 
genotyped on a Golden Gate Illumina BeadStation 500 platform and using the 
HumanCytoSNP-12 BeadChip (Illumina Inc., San Diego, CA, USA). The genotype data (single-
nucleotide polymorphisms, SNPs) were merged, checked for concordance for overlapping 
SNPs, and imputed against the 1000 Genomes Project Phase 3 global reference panel. All 
quality control steps were performed with PLINK v1.07 and v1.9 (Chang et al., 2015; Purcell 
et al., 2007). SNPs with a call rate below 95%, a minor allele frequency (MAF) below .05, 
missingness rates above 5%, and a Hardy-Weinberg disequilibrium p-value below 1E-06 
were excluded. Individuals with more than 5% missingness on SNP data, individuals from 
non-European ancestry and family-related individuals (closer than 3rd degree) were 
removed. In order to control for population stratification effects, ten principal components 
for ancestry were created using multidimensional scaling. Alleles were aligned with 1000 
Genomes, excluding SNPs that had MAFs deviating more than 0.15 from the reference set. 
Following these cleaning, quality control and selection procedures N= 7,781,794 SNPs and 
N=1,649 individuals remained.  

Polygenic scores 
For the genetic predictor variables, polygenic scores (PGS) were created. As source GWAS 
we used the largest studies available to date: from the Liu et al. (2019) GWAS we used 
summary statistics on having smoked on a regular basis (N= 1,232,091), cigarettes per day 
(N= 337,334), and alcohol consumption in glasses per week (N= 941,280); for cannabis we 
used summary statistics on lifetime cannabis use from Pasman et al., 2018 (excluding the 
TRAILS sample, N= 183,539). In order to use information on both smoking initiation and 
cigarettes per day for the smoking PGS we used multi-trait analysis of GWAS (MTAG). MTAG 
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jointly analyzes two or more genetically correlated traits, aggregating their signal and 
boosting power to detect genetic associations (Turley et al., 2018).    

 PGS are created by summing an individual’s risk alleles per locus, weighted by the 
effect size as found in the source GWAS. However, these weights are not randomly 
distributed across the genome, due to interdependence between variants (linkage 
disequilibrium, LD). We used the GCTA-SBLUP tool (Robinson et al., 2017) to adjust the 
weights for the LD structure within the genome. As reference data for the LD structure we 
used a random sample of 10,000 European ancestry UK-Biobank participants, selecting a 
subset of high-quality HapMap 3 SNPs for computational efficiency. We used SNP-based 
heritability estimates retrieved from the original publications to estimate the model (4% for 
alcohol use and 11% for cannabis initiation; for the MTAG smoking phenotype we used 8%, 
which was the estimate for both smoking initiation and cigarettes per day). LD with SNPs 
more than 1Mb up- or downstream was ignored. In SBLUP it is not necessary to choose 
arbitrary p-value cut-offs or estimate what proportion of the genome should be considered 
in the PGS (as is necessary using in other methods); rather the whole genome is integrated 
in the score. In the final step the SBLUP-corrected variant weights were used to create 
individual-level PGS with the software tool PLINK (Chang et al., 2015). 

Measures 
Survey items used to measure all non-genetic variables are summarized in Table 1. The 
earliest measurement point of each variable was included as predictor variable. The 
parent predictors included measures of parental involvement, consisting of parental 
monitoring (control, solicitation, and child disclosure) and parental knowledge (Stattin & 
Kerr, 2000). Parental involvement variables were measured at wave 3 (age 16) and were 
all based on child-report. Parental substance use was measured at wave 1 (age 11) using 
parent-report and included measures of smoking, alcohol use, lifetime cannabis use, and 
addiction to any substance other than nicotine. Measures of the parent-child relationship 
at wave 1 (age 11) included child-reported warmth and rejection (subscales from the 
EMBU-C, Markus, 2003). If answers from (or about) both parents were available, these 
were averaged. All was scored in a hypothetically substance use increasing direction (see 
Table 1). 
 The child’s substance use outcomes were measured in young adulthood at wave 
5 (age 22). For smoking, we focused on daily smoking (yes/no), cigarettes per day, and 
nicotine dependence; for alcohol use we used glasses per week (in drinkers); for cannabis, 
we used cannabis initiation (yes/no). These outcomes were the most similar to the traits 
measured in the discovery GWAS that were used to create the PGS. 
 
  

https://osf.io/wv3kb
https://github.com/joellepasman/TRAILS_substanceuse/
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Genomes, excluding SNPs that had MAFs deviating more than 0.15 from the reference set. 
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jointly analyzes two or more genetically correlated traits, aggregating their signal and 
boosting power to detect genetic associations (Turley et al., 2018).    

 PGS are created by summing an individual’s risk alleles per locus, weighted by the 
effect size as found in the source GWAS. However, these weights are not randomly 
distributed across the genome, due to interdependence between variants (linkage 
disequilibrium, LD). We used the GCTA-SBLUP tool (Robinson et al., 2017) to adjust the 
weights for the LD structure within the genome. As reference data for the LD structure we 
used a random sample of 10,000 European ancestry UK-Biobank participants, selecting a 
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arbitrary p-value cut-offs or estimate what proportion of the genome should be considered 
in the PGS (as is necessary using in other methods); rather the whole genome is integrated 
in the score. In the final step the SBLUP-corrected variant weights were used to create 
individual-level PGS with the software tool PLINK (Chang et al., 2015). 
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Survey items used to measure all non-genetic variables are summarized in Table 1. The 
earliest measurement point of each variable was included as predictor variable. The 
parent predictors included measures of parental involvement, consisting of parental 
monitoring (control, solicitation, and child disclosure) and parental knowledge (Stattin & 
Kerr, 2000). Parental involvement variables were measured at wave 3 (age 16) and were 
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at wave 1 (age 11) included child-reported warmth and rejection (subscales from the 
EMBU-C, Markus, 2003). If answers from (or about) both parents were available, these 
were averaged. All was scored in a hypothetically substance use increasing direction (see 
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 The child’s substance use outcomes were measured in young adulthood at wave 
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Analyses 
We sought to summarize the parent variables within underlying constructs. Using 
exploratory factor analyses (EFA) in Mplus 8.3 (Muthén & Muthén, 1998-2017), it was tested 
whether the parental variables clustered in the hypothesized latent constructs (parental 
involvement, parent-child relationship quality, and parental substance use). For the 
smoking outcomes, we tested whether the three variables clustered in a single smoking 
factor. With the results from the EFAs, a measurement model was defined, which was used 
in the structural model.  
  Using Mplus, we created three separate structural equation models (SEMs) for 
the three substance use outcomes. We used Full Information Maximum Likelihood (FIML) 
using the Maximum Likelihood Estimator with robust standard errors (MLR) to control for 
missing data and non-normality. First, the direct effects of the parental factors and PGS 
on young-adult substance use were assessed (model 1, purple arrow in Figure 1). Second, 
the moderating effects of the PGS (GxE) were added (model 2, blue arrow). The latent 
variable interactions between the parent factors and the PGS were computed using the 
XWITH statement. Significant interactions were followed up with simple slope analysis 
(Stride, 2015). Third, the gene-environment correlation pathways were added (rGE), while 
the moderating effects of the genetic factors were deleted (model 3, yellow arrow). Note 
that although these paths are called ‘correlations,’ we modelled them as a directional 
pathway (one-headed arrow), to investigate the effect of the PGS on parenting and not 
vice versa. Fourth, the GxE and rGE pathways were included in the same model, to assess 
their net effects (model 4). Control variables included age, sex, and ten genetic principal 
components (PCs) for ancestry. These latter variables measure population background, 
which was included to control for genetic similarities arisen because of subgroups of 
different ancestry within the Dutch population.  
 The fit of the four models was determined using commonly used model fit 
statistics, with acceptable fit defined as Root Mean Square Error of Approximation 
(RMSEA) <.08 (MacCallum et al., 1996), Comparative Fit Index (CFI) >.90, and Tucker Lewis 
Index (TLI) >.90 (Iacobucci, 2010). To compare the models, the Akaike Information 
Criterion (AIC) and Bayesian Information Criterion (BIC) were used, which are suitable for 
comparing non-nested models. AIC and BIC differences of >2 and >10, respectively, are 
thought to be a strong indication for model fit improvement (in case of a decrease) or 
deterioration (in case of an increase; Burnham & Anderson, 1998; Raftery, 1995). If AIC and 
BIC disagreed on what was the best fitting model, we prioritized BIC (Nylund et al., 2007). 
In the models including latent variable interactions, and models combining categorical 
indicators and categorical outcomes, only AIC and BIC, but not CFI, TLI, and RMSEA are 
computed. Moreover, in models combining categorical indicators with categorical 
outcomes, CFI, TLI, and RMSEA cannot computed in Mplus with the MLR estimator. In 
these models we used the WLSMV estimator to compute these fit indices. For individual 
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path parameters we adopted a conventional p-value threshold of p<.05. The separate 
tests for outcomes and parental predictors were not strictly independent and only models 
with adequate fit parameters were interpreted, foregoing the necessity of stringent 
correction for multiple testing.  
 
Divergence from preregistration 
There were several divergences from the plans as specified in the preregistration. Firstly, 
the plan was to use latent variables for all the substance use outcomes. Although model 
fit for the latent alcohol use factor was good, the use of dichotomous and continuous 
variables within the same model led to non-convergence in some of the models. For the 
cannabis outcome we wanted to use cannabis initiation as well as Cannabis Use Problems 
Identification Test (CUPIT) scores, but due to high missingness and floor effects we could 
not use the latter. As specified in the preregistration we resorted to using the outcomes 
that were most similar to those in the GWAS used for the computation of the PGS. 
Secondly, the preregistered power calculations were based on larger sample size 
(N=1,842) than we had available in the analyses, due to the exclusion of relatives, non-
European ancestry individuals, and individuals with high levels of phenotype missingness 
(final N=1,649). Thirdly, we could not estimate the SEMs including all latent variable 
interactions in the same model because the model did not converge. We had taken this 
possibility into account in the preregistration and followed the plan to present the models 
separately per parent factor.  
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Index (TLI) >.90 (Iacobucci, 2010). To compare the models, the Akaike Information 
Criterion (AIC) and Bayesian Information Criterion (BIC) were used, which are suitable for 
comparing non-nested models. AIC and BIC differences of >2 and >10, respectively, are 
thought to be a strong indication for model fit improvement (in case of a decrease) or 
deterioration (in case of an increase; Burnham & Anderson, 1998; Raftery, 1995). If AIC and 
BIC disagreed on what was the best fitting model, we prioritized BIC (Nylund et al., 2007). 
In the models including latent variable interactions, and models combining categorical 
indicators and categorical outcomes, only AIC and BIC, but not CFI, TLI, and RMSEA are 
computed. Moreover, in models combining categorical indicators with categorical 
outcomes, CFI, TLI, and RMSEA cannot computed in Mplus with the MLR estimator. In 
these models we used the WLSMV estimator to compute these fit indices. For individual 
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path parameters we adopted a conventional p-value threshold of p<.05. The separate 
tests for outcomes and parental predictors were not strictly independent and only models 
with adequate fit parameters were interpreted, foregoing the necessity of stringent 
correction for multiple testing.  
 
Divergence from preregistration 
There were several divergences from the plans as specified in the preregistration. Firstly, 
the plan was to use latent variables for all the substance use outcomes. Although model 
fit for the latent alcohol use factor was good, the use of dichotomous and continuous 
variables within the same model led to non-convergence in some of the models. For the 
cannabis outcome we wanted to use cannabis initiation as well as Cannabis Use Problems 
Identification Test (CUPIT) scores, but due to high missingness and floor effects we could 
not use the latter. As specified in the preregistration we resorted to using the outcomes 
that were most similar to those in the GWAS used for the computation of the PGS. 
Secondly, the preregistered power calculations were based on larger sample size 
(N=1,842) than we had available in the analyses, due to the exclusion of relatives, non-
European ancestry individuals, and individuals with high levels of phenotype missingness 
(final N=1,649). Thirdly, we could not estimate the SEMs including all latent variable 
interactions in the same model because the model did not converge. We had taken this 
possibility into account in the preregistration and followed the plan to present the models 
separately per parent factor.  
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Results 
 

Parent characteristics were reasonably normally distributed, although parental warmth 
was high on average, and only few parents reported recent cannabis use or lifetime 
substance addiction (Table 2). The quarter of the young adults that indicated to ever have 
smoked daily smoked 8 cigarettes per day on average in the past four weeks and had a 
low to moderate nicotine dependence score. Participants drank about 8 glasses of 
alcohol per week and almost 60% indicated to have used cannabis. There were high 
correlations between parent variables and substance use outcomes, and between the 
PGS and covariates and other traits (Supplementary Table S2). 
 
Measurement model 
The exploratory factor analysis of the parent variables showed that the best fitting 
solution included 3 factors (see Table 3). The 4-factor solution had better fit, but the 
parsimony and the interpretability of the structure decreased (i.e., there was a factor with 
only one indicator). Thus we selected the 3-factor solution which showed clustering in the 
hypothesized constructs of parental involvement (indicated by parental control, 
solicitation, and knowledge, and child disclosure), parental substance use (smoking 
initiation, cannabis initiation, and lifetime addiction), and the parent-child relationship 
(parental rejection and warmth). We constructed the latent parent-child relationship 
factor by constraining the two factor loadings to be equal to ensure model identification. 
Parental alcohol use had no loadings larger than 0.1 on any factor and was excluded from 
further analysis. Although parental cigarettes per day did load on the parental substance 
use factor, we excluded this variable because simultaneously using categorical and 
continuous indicators in one factor led to computational issues. Excluding these variables 
resulted in the solution presented in Table 4. This model showed good fit, RMSEA=0.05, 
CFI=0.97, TLI=0.91. Variance explained in the observed variables by the factors ranged 
from 21.4% (for parental knowledge) to 62.3% (for parental solicitation), with an average 
of 42.2%. All factor loadings were significant, although the loading of parental knowledge 
on the first factor was low and this variable also loaded on the second factor. Because of 
the theoretical similarity to the variables in the first factor we decided to keep this variable 
in the first factor in the subsequent analyses. One of the most frequently observed 
modification suggestions was to add the correlation between parental knowledge and 
child disclosure. Reasoning that these concepts should be related we added this 
correlation in all relevant models.  
 For the young adult latent smoking factor, there were three indicators. Thus, the 
only possible factor solution contained one factor. All indicators loaded significantly on 
the smoking factor in the EFA, with 0.97 for daily smoking, 0.70 for cigarettes per day, and 
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0.81 for nicotine dependence. Fit indices were not interpretable because the model was 
just identified. 
 
Structural equation models 
Smoking factor 
The fit statistics per model (main, GxE, rGE, and full) are presented in Table 5 (refer to 
Supplementary Table S1 for parameter estimates for paths in the best fitting model). 
Model fit only reached acceptable levels when the parental factors were regressed on the 
covariates sex and age. We added these paths in all subsequent models for all outcomes 
(as the same was observed for alcohol per week and cannabis initiation). The effect of sex 
on smoking was not significant; the effect of age showed higher smoking levels in older 
individuals. The smoking PGS significantly predicted young adult smoking.  

 With parental involvement as predictor, the model excluding GxE and including 
rGE showed the best fit (model 3). There was a main effect of parental involvement in mid-
adolescence (such that higher involvement led to lower smoking in young adulthood) and 
an rGE between the young adult’s smoking PGS and parental involvement (such that high 
genetic risk was associated with low parental involvement). Variance explained in the 
smoking factor by these paths was 13%.  

 With parental substance use, the full model (including GxE and rGE; model 4) 
showed the best fit. Simple slope analysis suggested that parental substance use in early 
adolescence significantly predicted young adulthood smoking when the PGS was low 
(1SD below the mean; b=.07, SE=.02, p=.002, β=.18), but that this effect became stronger 
when the PGS was high (1SD above the mean; b=.19, SE=.09, p=.036, β=.48). It needs to be 
noted that although significant in the standardized model results, the GxE effect 
exceeded the p=.05 threshold in the unstandardized model results (due to a different 
computation of SE), suggesting this effect should be interpreted with caution. There was 
significant rGE between parental substance use and the smoking PGS. Together, these 
effects explained 14% of the variance in smoking.  

 With the parent-child relationship, again the full model showed the best fit (model 
4). A worse parent-child relationship in early adolescence was associated with more 
smoking in young adulthood. The GxE suggested that this relationship might become 
stronger when the young adult had a high PGS, but this effect was not significant (β=.10, 
p=.057). There was significant rGE between the parent-child relationship and the young 
adult’s PGS. All paths together explained 10% of variance in the smoking factor.  

 The three best fitting smoking models are presented in Figure 2a. Note that the 
analyses were conducted separately per parent factor but are summarized in one figure. 
Summarizing, there were significant positive main effects of the PGS and all parent factors 
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Results 
 

Parent characteristics were reasonably normally distributed, although parental warmth 
was high on average, and only few parents reported recent cannabis use or lifetime 
substance addiction (Table 2). The quarter of the young adults that indicated to ever have 
smoked daily smoked 8 cigarettes per day on average in the past four weeks and had a 
low to moderate nicotine dependence score. Participants drank about 8 glasses of 
alcohol per week and almost 60% indicated to have used cannabis. There were high 
correlations between parent variables and substance use outcomes, and between the 
PGS and covariates and other traits (Supplementary Table S2). 
 
Measurement model 
The exploratory factor analysis of the parent variables showed that the best fitting 
solution included 3 factors (see Table 3). The 4-factor solution had better fit, but the 
parsimony and the interpretability of the structure decreased (i.e., there was a factor with 
only one indicator). Thus we selected the 3-factor solution which showed clustering in the 
hypothesized constructs of parental involvement (indicated by parental control, 
solicitation, and knowledge, and child disclosure), parental substance use (smoking 
initiation, cannabis initiation, and lifetime addiction), and the parent-child relationship 
(parental rejection and warmth). We constructed the latent parent-child relationship 
factor by constraining the two factor loadings to be equal to ensure model identification. 
Parental alcohol use had no loadings larger than 0.1 on any factor and was excluded from 
further analysis. Although parental cigarettes per day did load on the parental substance 
use factor, we excluded this variable because simultaneously using categorical and 
continuous indicators in one factor led to computational issues. Excluding these variables 
resulted in the solution presented in Table 4. This model showed good fit, RMSEA=0.05, 
CFI=0.97, TLI=0.91. Variance explained in the observed variables by the factors ranged 
from 21.4% (for parental knowledge) to 62.3% (for parental solicitation), with an average 
of 42.2%. All factor loadings were significant, although the loading of parental knowledge 
on the first factor was low and this variable also loaded on the second factor. Because of 
the theoretical similarity to the variables in the first factor we decided to keep this variable 
in the first factor in the subsequent analyses. One of the most frequently observed 
modification suggestions was to add the correlation between parental knowledge and 
child disclosure. Reasoning that these concepts should be related we added this 
correlation in all relevant models.  
 For the young adult latent smoking factor, there were three indicators. Thus, the 
only possible factor solution contained one factor. All indicators loaded significantly on 
the smoking factor in the EFA, with 0.97 for daily smoking, 0.70 for cigarettes per day, and 
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0.81 for nicotine dependence. Fit indices were not interpretable because the model was 
just identified. 
 
Structural equation models 
Smoking factor 
The fit statistics per model (main, GxE, rGE, and full) are presented in Table 5 (refer to 
Supplementary Table S1 for parameter estimates for paths in the best fitting model). 
Model fit only reached acceptable levels when the parental factors were regressed on the 
covariates sex and age. We added these paths in all subsequent models for all outcomes 
(as the same was observed for alcohol per week and cannabis initiation). The effect of sex 
on smoking was not significant; the effect of age showed higher smoking levels in older 
individuals. The smoking PGS significantly predicted young adult smoking.  

 With parental involvement as predictor, the model excluding GxE and including 
rGE showed the best fit (model 3). There was a main effect of parental involvement in mid-
adolescence (such that higher involvement led to lower smoking in young adulthood) and 
an rGE between the young adult’s smoking PGS and parental involvement (such that high 
genetic risk was associated with low parental involvement). Variance explained in the 
smoking factor by these paths was 13%.  

 With parental substance use, the full model (including GxE and rGE; model 4) 
showed the best fit. Simple slope analysis suggested that parental substance use in early 
adolescence significantly predicted young adulthood smoking when the PGS was low 
(1SD below the mean; b=.07, SE=.02, p=.002, β=.18), but that this effect became stronger 
when the PGS was high (1SD above the mean; b=.19, SE=.09, p=.036, β=.48). It needs to be 
noted that although significant in the standardized model results, the GxE effect 
exceeded the p=.05 threshold in the unstandardized model results (due to a different 
computation of SE), suggesting this effect should be interpreted with caution. There was 
significant rGE between parental substance use and the smoking PGS. Together, these 
effects explained 14% of the variance in smoking.  

 With the parent-child relationship, again the full model showed the best fit (model 
4). A worse parent-child relationship in early adolescence was associated with more 
smoking in young adulthood. The GxE suggested that this relationship might become 
stronger when the young adult had a high PGS, but this effect was not significant (β=.10, 
p=.057). There was significant rGE between the parent-child relationship and the young 
adult’s PGS. All paths together explained 10% of variance in the smoking factor.  

 The three best fitting smoking models are presented in Figure 2a. Note that the 
analyses were conducted separately per parent factor but are summarized in one figure. 
Summarizing, there were significant positive main effects of the PGS and all parent factors 
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on smoking, there was significant positive rGE between the PGS and all parent factors, 
and GxE with parental substance use. GxE with the parent-child relationship did not reach 
significance.  
 
Alcohol per week 
With parental involvement and the parent-child relationship as predictors the main models 
showed the best fit (model 1). Although with parental substance use the full model 
including rGE and GxE showed superior fit (model 4), these paths were not significant. The 
alcohol PGS did not significantly predict young adult alcohol per week (p=.069-.108 in the 
main effect models; model 1). Also, none of the early or mid-adolescence parenting 
factors predicted young adult alcohol per week (p=.460-.850). The best fitting models for 
alcohol per week are summarized in Figure 2b. The variance explained in alcohol per week 
by all paths was 12% for all three models. Sex effects (β=.32-.34) might have contributed 
strongly to the explained variance, showing that males used significantly more alcohol 
than females. Age had no significant effect on alcohol per week. 
 
Cannabis initiation 
Cannabis initiation was significantly predicted by the cannabis PGS, see Figure 2c. For all 
parent factors, the main model excluding rGE and GxE were the best fitting models (model 
1). Low parental involvement in mid-adolescence did not significantly increase chances 
for cannabis initiation in young adulthood (β=.08, OR=1.70. p=.064). Parental substance 
use in young adolescence did have a significant effect, such that it was associated with a 
higher chance of cannabis initiation. There was no effect of the parent-child relationship 
in young adolescence. No evidence for rGE or GxE was found. In the models with parental 
substance use and parent-child relationship there was a significant effect of sex, such that 
males had a higher chance of having used cannabis. In all models there was a positive 
effect of age. 
 

  

Gene-environment interplay and parenting 
 
Discussion 
 

This 11-year longitudinal study investigated the effect of and interplay between genetic 
risk and parental factors during adolescence in predicting substance use in young 
adulthood. Results indicated that young adult substance use is driven by a complex 
interplay between genetic and parental factors during early and middle adolescence, 
especially for smoking. Smoking was predicted by genetic risk (PGS), parental 
involvement, parental substance use, and the parent-child relationship. The effect of 
parental substance use was further augmented by the PGS (GxE). Additionally, there was 
evidence of gene-environment correlation between the parent factors and the smoking 
PGS (rGE). Alcohol use per week was not predicted by genetic risk, parent factors, or their 
interplay. Cannabis initiation was predicted by genetic risk and parental substance use 
separately, but not by any interplay between those.  
 
Main effects of genetic and parent factors 
Polygenic scores 
The PGS for smoking behavior based on smoking initiation and cigarettes per day was a 
significant predictor of a latent factor for smoking behavior in young adults. Likewise, the 
cannabis PGS significantly predicted its own phenotype. However, the alcohol PGS did 
not predict alcohol use. This might be due to the fact that the PGS was based on GWAS in 
older adults, whose data were collected some time ago (Liu et al., 2019). Alcohol 
consumption rates have been declining in Europe (World Health Organization, 2018) and 
attitudes toward alcohol seem to become slowly more negative in the Western world 
(Keyes et al., 2012; Livingston & Callinan, 2017; Looze et al., 2015). Alcohol consumption 
in current youth has become less normative than in youth two decades ago (van Laar, 
2020), which would have resulted in changes in the genetic risk profile. Also, there are 
indications that the genetic contribution to alcohol use increases with age, and that 
environmental factors are more important for this behavior in adolescents and young 
adults (Hopfer et al., 2003; van Beek et al., 2012). Finally, the alcohol use GWAS found low 
SNP-based heritability (4% of the variance in alcohol use was explained by all GWAS 
SNPs). In general, PGS already tend to explain small proportions of variance; the low SNP-
heritability could have further decreased the power to detect an effect. 
 
Parental involvement and the parent-child relationship 
Lower parental involvement (comprised by knowledge, control, solicitation, and child 
disclosure) in middle adolescence significantly predicted smoking behavior (comprised 
by daily smoking, cigarettes per day, and nicotine dependence) in young adulthood. This 
is in line with previous literature showing cross-sectional effects of low parental 
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on smoking, there was significant positive rGE between the PGS and all parent factors, 
and GxE with parental substance use. GxE with the parent-child relationship did not reach 
significance.  
 
Alcohol per week 
With parental involvement and the parent-child relationship as predictors the main models 
showed the best fit (model 1). Although with parental substance use the full model 
including rGE and GxE showed superior fit (model 4), these paths were not significant. The 
alcohol PGS did not significantly predict young adult alcohol per week (p=.069-.108 in the 
main effect models; model 1). Also, none of the early or mid-adolescence parenting 
factors predicted young adult alcohol per week (p=.460-.850). The best fitting models for 
alcohol per week are summarized in Figure 2b. The variance explained in alcohol per week 
by all paths was 12% for all three models. Sex effects (β=.32-.34) might have contributed 
strongly to the explained variance, showing that males used significantly more alcohol 
than females. Age had no significant effect on alcohol per week. 
 
Cannabis initiation 
Cannabis initiation was significantly predicted by the cannabis PGS, see Figure 2c. For all 
parent factors, the main model excluding rGE and GxE were the best fitting models (model 
1). Low parental involvement in mid-adolescence did not significantly increase chances 
for cannabis initiation in young adulthood (β=.08, OR=1.70. p=.064). Parental substance 
use in young adolescence did have a significant effect, such that it was associated with a 
higher chance of cannabis initiation. There was no effect of the parent-child relationship 
in young adolescence. No evidence for rGE or GxE was found. In the models with parental 
substance use and parent-child relationship there was a significant effect of sex, such that 
males had a higher chance of having used cannabis. In all models there was a positive 
effect of age. 
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Discussion 
 

This 11-year longitudinal study investigated the effect of and interplay between genetic 
risk and parental factors during adolescence in predicting substance use in young 
adulthood. Results indicated that young adult substance use is driven by a complex 
interplay between genetic and parental factors during early and middle adolescence, 
especially for smoking. Smoking was predicted by genetic risk (PGS), parental 
involvement, parental substance use, and the parent-child relationship. The effect of 
parental substance use was further augmented by the PGS (GxE). Additionally, there was 
evidence of gene-environment correlation between the parent factors and the smoking 
PGS (rGE). Alcohol use per week was not predicted by genetic risk, parent factors, or their 
interplay. Cannabis initiation was predicted by genetic risk and parental substance use 
separately, but not by any interplay between those.  
 
Main effects of genetic and parent factors 
Polygenic scores 
The PGS for smoking behavior based on smoking initiation and cigarettes per day was a 
significant predictor of a latent factor for smoking behavior in young adults. Likewise, the 
cannabis PGS significantly predicted its own phenotype. However, the alcohol PGS did 
not predict alcohol use. This might be due to the fact that the PGS was based on GWAS in 
older adults, whose data were collected some time ago (Liu et al., 2019). Alcohol 
consumption rates have been declining in Europe (World Health Organization, 2018) and 
attitudes toward alcohol seem to become slowly more negative in the Western world 
(Keyes et al., 2012; Livingston & Callinan, 2017; Looze et al., 2015). Alcohol consumption 
in current youth has become less normative than in youth two decades ago (van Laar, 
2020), which would have resulted in changes in the genetic risk profile. Also, there are 
indications that the genetic contribution to alcohol use increases with age, and that 
environmental factors are more important for this behavior in adolescents and young 
adults (Hopfer et al., 2003; van Beek et al., 2012). Finally, the alcohol use GWAS found low 
SNP-based heritability (4% of the variance in alcohol use was explained by all GWAS 
SNPs). In general, PGS already tend to explain small proportions of variance; the low SNP-
heritability could have further decreased the power to detect an effect. 
 
Parental involvement and the parent-child relationship 
Lower parental involvement (comprised by knowledge, control, solicitation, and child 
disclosure) in middle adolescence significantly predicted smoking behavior (comprised 
by daily smoking, cigarettes per day, and nicotine dependence) in young adulthood. This 
is in line with previous literature showing cross-sectional effects of low parental 
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monitoring (Rai et al., 2003) and low parental knowledge on the children’s whereabouts 
(Harakeh et al., 2004). Likewise, a lower quality parent-child relationship (comprised by 
higher rejection and lower warmth) in young adolescence significantly predicted higher 
young adult smoking levels, while controlling for the effects of parental substance use. 
This is in line with some previous literature (Harakeh et al., 2004; Piko & Balázs, 2012). 
There are several possible explanations for these effects. Harakeh and colleagues (2004) 
reported that a good parent-child relationship led to negative smoking attitudes and high 
refraining self-efficacy regardless of parenting smoking status, and this in turn led to 
lower current and future smoking. A good parent-child relationship has been associated 
with better mental health and self-control (Ackard et al., 2006; Phythian et al., 2008). Also, 
adolescents with a good relationship with their parents might be more inclined to follow 
smoking rules set by their parents.  
  In contrast to some previous studies (Burdzovic Andreas et al., 2016; Ryan et al., 
2010; Visser et al., 2012), we found no effect of parental involvement and the parent-child 
relationship on alcohol consumption and cannabis initiation. Possibly, parent behaviors 
during middle adolescence are less likely to exert effects across longer time-frames (i.e., 
in young adulthood) for these substances. Alcohol use might also be something that is 
less likely to be under strict parental control, as this represents more normative, socially 
acceptable behavior (Maciejewski et al., 2019). Furthermore, specific parenting practices, 
such as alcohol and cannabis rule setting, could be more important predictors for alcohol 
and cannabis use (Engels & Bot, 2006; Vermeulen-Smit et al., 2015). 
 
Parental substance use 
Higher levels of parental substance use in early adolescence (comprised by binary 
measures of current smoking, recent cannabis use, and lifetime addiction) significantly 
predicted higher levels of smoking and higher chances of cannabis initiation in young 
adulthood. These effects might be direct modelling effects, such that offspring imitate 
observed parental substance use, or indirect modelling effects, for example through 
attitude formation and rule setting (Engels & Bot, 2006). We did not find an effect of the 
parental substance use factor on alcohol use, presumably because this factor did not 
include parental alcohol use. Also, modeling effects might be less strong for alcohol which 
is predominantly used in the peer context, especially by older adolescents (Goncy & Mrug, 
2013). 
 
Age and sex 
Considering covariates, it is interesting to see that age had a significant positive effect on 
cannabis initiation and smoking behavior, even though the age variability in the sample 
was low. This suggests that these years in young adulthood comprise a sensitive period 
in the development of substance use where much change is occurring. This is in line with 
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previous literature showing different trajectories of change and development in this 
period (Bachman et al., 2013). We observed that males consumed more alcohol and had 
higher chances of cannabis initiation, consistent with estimates in the general population 
(Centraal Bureau voor de Statistiek, 2020). We observed no sex differences in smoking 
after controlling for the other factors in the model, even though population statistics 
suggest such a difference exists (Leefstijlmonitor, 2020). This might suggest that eventual 
sex differences might be mediated by differences in parent factors. Interestingly, there 
were significant associations between parent factors and sex, such that males 
experienced lower parental involvement and a lower parent-child relationship quality, 
and higher levels of parental substance use in the cannabis initiation model (see 
Supplementary Table S3). This is in line with previous reports of small differences in 
parenting behavior towards sons versus daughters, that could be due to gender roles in 
society and gender stereotypes (Endendijk et al., 2016). Though outside of the scope of 
this study, future research could further explore these effects. 
 
Gene-environment interaction (GxE) 
One of nine tested GxE paths reached significance at a conventional p<.05 threshold. 
There was positive GxE between parental substance use and the PGS on smoking. 
Although the models containing GxE showed the best fit for the parent-child relationship 
on smoking and for parental substance use on alcohol per week, these GxE paths did not 
reach significance and the effects were small. Also, the negative direction of the GxE in the 
alcohol model is not in line with what has been reported previously (Pasman et al., 2019).  
 The effect of parental substance use on smoking was enlarged when genetic risk 
for smoking was high. This direction is in line with differential susceptibility frameworks, 
which state that the effect of an environmental factor can be amplified when genetic 
vulnerability is high (Belsky & Pluess, 2009). Such an effect would contribute to the 
likelihood that smoking becomes widespread in families and would suggest that 
especially individuals that are at risk genetically would benefit from prevention targeted 
at parental substance use. An alternative explanation might be that this effect is driven by 
the overlap in genetic risk for smoking between parents and offspring. However, we 
tested this by bringing the gene-environment correlation (rGE) between parental 
substance use and the offspring’s smoking PGS into the model, and this did not change 
the GxE effect. Thus, parental substance use affected smoking and magnified the effect of 
genetic risk on smoking independently of genetic overlap with the young adult. Still, 
because the effect was small and was the only one to reach significance in the tested 
models caution must be taken in the interpretation.  
 Although it is possible that GxE effects are specific to smoking and parental 
substance use only, there are alternative explanations for the fact that only this GxE path 
was significant. The smoking analyses are likely to be the most powerful. We used a 
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monitoring (Rai et al., 2003) and low parental knowledge on the children’s whereabouts 
(Harakeh et al., 2004). Likewise, a lower quality parent-child relationship (comprised by 
higher rejection and lower warmth) in young adolescence significantly predicted higher 
young adult smoking levels, while controlling for the effects of parental substance use. 
This is in line with some previous literature (Harakeh et al., 2004; Piko & Balázs, 2012). 
There are several possible explanations for these effects. Harakeh and colleagues (2004) 
reported that a good parent-child relationship led to negative smoking attitudes and high 
refraining self-efficacy regardless of parenting smoking status, and this in turn led to 
lower current and future smoking. A good parent-child relationship has been associated 
with better mental health and self-control (Ackard et al., 2006; Phythian et al., 2008). Also, 
adolescents with a good relationship with their parents might be more inclined to follow 
smoking rules set by their parents.  
  In contrast to some previous studies (Burdzovic Andreas et al., 2016; Ryan et al., 
2010; Visser et al., 2012), we found no effect of parental involvement and the parent-child 
relationship on alcohol consumption and cannabis initiation. Possibly, parent behaviors 
during middle adolescence are less likely to exert effects across longer time-frames (i.e., 
in young adulthood) for these substances. Alcohol use might also be something that is 
less likely to be under strict parental control, as this represents more normative, socially 
acceptable behavior (Maciejewski et al., 2019). Furthermore, specific parenting practices, 
such as alcohol and cannabis rule setting, could be more important predictors for alcohol 
and cannabis use (Engels & Bot, 2006; Vermeulen-Smit et al., 2015). 
 
Parental substance use 
Higher levels of parental substance use in early adolescence (comprised by binary 
measures of current smoking, recent cannabis use, and lifetime addiction) significantly 
predicted higher levels of smoking and higher chances of cannabis initiation in young 
adulthood. These effects might be direct modelling effects, such that offspring imitate 
observed parental substance use, or indirect modelling effects, for example through 
attitude formation and rule setting (Engels & Bot, 2006). We did not find an effect of the 
parental substance use factor on alcohol use, presumably because this factor did not 
include parental alcohol use. Also, modeling effects might be less strong for alcohol which 
is predominantly used in the peer context, especially by older adolescents (Goncy & Mrug, 
2013). 
 
Age and sex 
Considering covariates, it is interesting to see that age had a significant positive effect on 
cannabis initiation and smoking behavior, even though the age variability in the sample 
was low. This suggests that these years in young adulthood comprise a sensitive period 
in the development of substance use where much change is occurring. This is in line with 
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previous literature showing different trajectories of change and development in this 
period (Bachman et al., 2013). We observed that males consumed more alcohol and had 
higher chances of cannabis initiation, consistent with estimates in the general population 
(Centraal Bureau voor de Statistiek, 2020). We observed no sex differences in smoking 
after controlling for the other factors in the model, even though population statistics 
suggest such a difference exists (Leefstijlmonitor, 2020). This might suggest that eventual 
sex differences might be mediated by differences in parent factors. Interestingly, there 
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parenting behavior towards sons versus daughters, that could be due to gender roles in 
society and gender stereotypes (Endendijk et al., 2016). Though outside of the scope of 
this study, future research could further explore these effects. 
 
Gene-environment interaction (GxE) 
One of nine tested GxE paths reached significance at a conventional p<.05 threshold. 
There was positive GxE between parental substance use and the PGS on smoking. 
Although the models containing GxE showed the best fit for the parent-child relationship 
on smoking and for parental substance use on alcohol per week, these GxE paths did not 
reach significance and the effects were small. Also, the negative direction of the GxE in the 
alcohol model is not in line with what has been reported previously (Pasman et al., 2019).  
 The effect of parental substance use on smoking was enlarged when genetic risk 
for smoking was high. This direction is in line with differential susceptibility frameworks, 
which state that the effect of an environmental factor can be amplified when genetic 
vulnerability is high (Belsky & Pluess, 2009). Such an effect would contribute to the 
likelihood that smoking becomes widespread in families and would suggest that 
especially individuals that are at risk genetically would benefit from prevention targeted 
at parental substance use. An alternative explanation might be that this effect is driven by 
the overlap in genetic risk for smoking between parents and offspring. However, we 
tested this by bringing the gene-environment correlation (rGE) between parental 
substance use and the offspring’s smoking PGS into the model, and this did not change 
the GxE effect. Thus, parental substance use affected smoking and magnified the effect of 
genetic risk on smoking independently of genetic overlap with the young adult. Still, 
because the effect was small and was the only one to reach significance in the tested 
models caution must be taken in the interpretation.  
 Although it is possible that GxE effects are specific to smoking and parental 
substance use only, there are alternative explanations for the fact that only this GxE path 
was significant. The smoking analyses are likely to be the most powerful. We used a 
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multivariate, more informative approach to compute the smoking PGS. The smoking 
outcome likewise used information from multiple traits. Also, the parental substance use 
factor had the largest main effect (which is relevant in this case as the PGS augmented 
this main effect). If the parental substance use factor would have included a measure of 
alcohol use it might have been more likely to have an effect in the alcohol models. 
Although we conducted power analyses (see preregistration) and power was deemed 
sufficient to detect GxE also in the other models, it is possible that we were overly 
optimistic in choosing parameters for this analysis. This certainly seems likely for the 
alcohol analyses, where the PGS did not predict its own phenotype. Another explanation 
as to why GxE effects tested with PGS are generally difficult to detect is that GWAS only 
test direct associations between variants and outcomes, and would not detect variants 
that increase vulnerability to environmental circumstances per se (Fox & Beevers, 2016). 
Also, there is a possibility that individual variants included in the PGS interact or correlate 
with environmental exposures in different directions, cancelling out an overall interaction 
effect. 
 
Gene-environment correlation (rGE) 
For the smoking models, there was significant rGE between the PGS and all parent factors. 
rGE between the smoking PGS and parental substance use likely stems from genetic 
overlap between parent and offspring ('passive' rGE, Knafo & Jaffee, 2013; Plomin et al., 
1977). Beside passive rGE driven by transmitted parental alleles, there can be evocative 
or reactive rGE, that could also arise from non-transmitted alleles ('genetic nurturing,' 
Kong et al., 2018). Possibly, the association between the smoking PGS and parental 
involvement and the parent-child relationship arises through such processes. For 
instance, certain SNPs are associated to smoking, which in turn leads to parental 
disapproval, lower parental involvement and lower relationship quality, giving rise to a 
correlation between the smoking SNPs and a negative parent environment. However, our 
longitudinal design can in part rule out this explanation, as we looked at young adult 
smoking, and if adolescents did not smoke (yet) at the time of measurement of the parent 
variables, such a process cannot explain the link. Alternatively, there may be pleiotropic 
smoking SNPs that influence some other behavior which in turn elicits a response in the 
parents. For instance, SNPs important for smoking have also been associated with 
attention deficit hyperactivity disorder (ADHD; Liu et al., 2019), and ADHD can elicit 
negative parenting behaviors, including lower parental warmth and less solicitation 
(Glatz et al., 2011). Indeed, pleiotropy is the rule rather than the exception for SNPs 
associated with complex behavior (Cross-Disorder Group of the Psychiatric Genomics 
Consortium et al., 2019). A combination of passive and evocative processes might also 
exist, for instance such that transmitted smoking SNPs give rise to ADHD-like behavior in 
the parent, resulting in ineffective parenting behaviors (Mokrova et al., 2010). Still, all of 
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these explanations are speculative; there might also be genetic overlap with some 
phenotype that would elicit an opposite response. Future genetic nurturing (Kong et al., 
2018) or Mendelian randomization studies could further disentangle underlying causal 
mechanisms.  
  It needs to be noted that GxE and rGE effects hardly shared variance and adding 
them in one model did not change either effect. It is interesting to see that these effects 
operate independently, as previous research has cautioned for bias introduced by rGE 
when testing GxE (e.g., Pasman et al., 2019). By testing both effects simultaneously, it 
became clear that rGE is independent from and at least as prominent as GxE, and is as 
such deserving more research attention.  
Strengths and limitations 
This is the first PGS study to our knowledge to investigate the main effects and complex 
interplay between genetic and parental factors during adolescence to understand 
substance use in young adults. The advantage of our use of SEM was that we could model 
directional paths (which makes sense in the case of genetic predictors that cannot be 
influenced by other parameters in the model) and test the relative contributions of main, 
rGE, and GxE effects. Also, the use of latent factors enabled us to leverage the wealth of 
information that was present in the TRAILS dataset. Effects were compared across 
different parenting characteristics and different substance use outcomes. We employed 
powerful and up-to-date PGS methods and summary statistics from the largest GWAS 
available to date.  
 Limitations of this study include the computational constraints of SEM which 
made it impossible to include all parent factors in a single model, or similarly, to look at 
all substance use outcomes simultaneously. Thus, unique contributions to substance use 
and interdependency between parent factors and substance use outcomes could not be 
modeled. Also, due to model non-convergence, some variables (including parental 
alcohol use) could not be considered in the models. Further, although we conducted 
power analyses, effect sizes might have been smaller than anticipated. We only found GxE 
and rGE effects for smoking, which had the most powerful PGS (based on MTAG) and 
strongest outcome measure (latent factor with multiple smoking behavior indicators), 
suggesting that power might have been an issue in the other models. Indeed, the low SNP-
based heritability in some of the source GWAS suggest that the power of the PGS may have 
been limited. Also, power might have been limited by selective attrition between baseline 
and wave 5 of participants of lower socioeconomic status and lower IQ (Ormel et al., 
2012), factors that have previously been associated with substance use (Johnson et al., 
2009; Patrick et al., 2012). As a more general limitation, it needs to be noted that we only 
included individuals of European ancestry in our genetic analyses; as discovery GWAS are 
still largely unavailable for other ethnic groups, currently PGS research can only reliably 
be conducted in European samples.   



562882-L-bw-Pasman562882-L-bw-Pasman562882-L-bw-Pasman562882-L-bw-Pasman
Processed on: 4-8-2021Processed on: 4-8-2021Processed on: 4-8-2021Processed on: 4-8-2021 PDF page: 367PDF page: 367PDF page: 367PDF page: 367

367Part 3 – Chapter 11 

multivariate, more informative approach to compute the smoking PGS. The smoking 
outcome likewise used information from multiple traits. Also, the parental substance use 
factor had the largest main effect (which is relevant in this case as the PGS augmented 
this main effect). If the parental substance use factor would have included a measure of 
alcohol use it might have been more likely to have an effect in the alcohol models. 
Although we conducted power analyses (see preregistration) and power was deemed 
sufficient to detect GxE also in the other models, it is possible that we were overly 
optimistic in choosing parameters for this analysis. This certainly seems likely for the 
alcohol analyses, where the PGS did not predict its own phenotype. Another explanation 
as to why GxE effects tested with PGS are generally difficult to detect is that GWAS only 
test direct associations between variants and outcomes, and would not detect variants 
that increase vulnerability to environmental circumstances per se (Fox & Beevers, 2016). 
Also, there is a possibility that individual variants included in the PGS interact or correlate 
with environmental exposures in different directions, cancelling out an overall interaction 
effect. 
 
Gene-environment correlation (rGE) 
For the smoking models, there was significant rGE between the PGS and all parent factors. 
rGE between the smoking PGS and parental substance use likely stems from genetic 
overlap between parent and offspring ('passive' rGE, Knafo & Jaffee, 2013; Plomin et al., 
1977). Beside passive rGE driven by transmitted parental alleles, there can be evocative 
or reactive rGE, that could also arise from non-transmitted alleles ('genetic nurturing,' 
Kong et al., 2018). Possibly, the association between the smoking PGS and parental 
involvement and the parent-child relationship arises through such processes. For 
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correlation between the smoking SNPs and a negative parent environment. However, our 
longitudinal design can in part rule out this explanation, as we looked at young adult 
smoking, and if adolescents did not smoke (yet) at the time of measurement of the parent 
variables, such a process cannot explain the link. Alternatively, there may be pleiotropic 
smoking SNPs that influence some other behavior which in turn elicits a response in the 
parents. For instance, SNPs important for smoking have also been associated with 
attention deficit hyperactivity disorder (ADHD; Liu et al., 2019), and ADHD can elicit 
negative parenting behaviors, including lower parental warmth and less solicitation 
(Glatz et al., 2011). Indeed, pleiotropy is the rule rather than the exception for SNPs 
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them in one model did not change either effect. It is interesting to see that these effects 
operate independently, as previous research has cautioned for bias introduced by rGE 
when testing GxE (e.g., Pasman et al., 2019). By testing both effects simultaneously, it 
became clear that rGE is independent from and at least as prominent as GxE, and is as 
such deserving more research attention.  
Strengths and limitations 
This is the first PGS study to our knowledge to investigate the main effects and complex 
interplay between genetic and parental factors during adolescence to understand 
substance use in young adults. The advantage of our use of SEM was that we could model 
directional paths (which makes sense in the case of genetic predictors that cannot be 
influenced by other parameters in the model) and test the relative contributions of main, 
rGE, and GxE effects. Also, the use of latent factors enabled us to leverage the wealth of 
information that was present in the TRAILS dataset. Effects were compared across 
different parenting characteristics and different substance use outcomes. We employed 
powerful and up-to-date PGS methods and summary statistics from the largest GWAS 
available to date.  
 Limitations of this study include the computational constraints of SEM which 
made it impossible to include all parent factors in a single model, or similarly, to look at 
all substance use outcomes simultaneously. Thus, unique contributions to substance use 
and interdependency between parent factors and substance use outcomes could not be 
modeled. Also, due to model non-convergence, some variables (including parental 
alcohol use) could not be considered in the models. Further, although we conducted 
power analyses, effect sizes might have been smaller than anticipated. We only found GxE 
and rGE effects for smoking, which had the most powerful PGS (based on MTAG) and 
strongest outcome measure (latent factor with multiple smoking behavior indicators), 
suggesting that power might have been an issue in the other models. Indeed, the low SNP-
based heritability in some of the source GWAS suggest that the power of the PGS may have 
been limited. Also, power might have been limited by selective attrition between baseline 
and wave 5 of participants of lower socioeconomic status and lower IQ (Ormel et al., 
2012), factors that have previously been associated with substance use (Johnson et al., 
2009; Patrick et al., 2012). As a more general limitation, it needs to be noted that we only 
included individuals of European ancestry in our genetic analyses; as discovery GWAS are 
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Conclusions and future directions 
Summarizing, we found that high genetic risk, low parental involvement, high parental 
substance use, and a low-quality parent-child relationship predicted smoking and 
cannabis initiation, but not alcohol use. 
 For smoking, the effect of genetic risk was enlarged by parental substance use. 
Also, genetic risk for smoking was associated with lower parental involvement, higher 
parental substance use, and a lower quality parent-child relationship. In addition, we 
showed that rGE and GxE operated relatively independently from each other and are 
unlikely to be captured when not modeled explicitly. Our findings that parent behavior 
influences substance use both directly and through indirect genetic pathways suggest 
that parents are an important target point for intervention, especially for smoking 
behaviors. Future studies should aim to identify causal genetic pathways that operate 
independently from environmental circumstances, to provide clues for underlying 
biological mechanisms and potentially provide targets for pharmacogenetic 
interventions. Further elucidating pathways of genetic risk will provide more clues as to 
where prevention and intervention can be aimed to break the causal chain. 
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There is a large number of supplementary materials associated with this paper. The full 
materials can be viewed online at: 
Chapter 11 – Gene-environment interaction with parenting 
 
or copy this link into the browser: 
https://drive.google.com/drive/folders/1ZuhxaGELOHquT3WhFp-t1LNvoqC2T8_9 
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Table 1. Measures of phenotypical predictors and outcomes (included in the models as observed variables or as indicators 
of latent variables). 

 
latent 
construct 

observed 
construct 

level informa
nt 

measure wave 
(age) 

direc
t 

definition 

parental 
involveme
nt 

parental 
control 

continuo
us 

child Stattin & 
Kerr 2000 

3 (16) r sum score of 5 items 
about parents’ rule 
setting 

parental 
sollicitation 

continuo
us 

child Stattin & 
Kerr 2000 

3 (16) r sum score of 5 items 
about parents’ asking 
about the child’s 
behavior 

parental 
knowledge 

continuo
us 

child Stattin & 
Kerr 2000 

3 (16) r sum score of 5 items 
about parents’ knowing 
of the child’s behavior 

child 
disclosure 

continuo
us 

child Stattin & 
Kerr 2000 

3 (16) r sum score of 5 items 
about the child’s telling 
the parent about his/ her 
behavior 

parent-
child 
relationsh
ip  

rejection continuo
us 

child EMBU-C 1 (11) u sum score of 17 items on 
perceived parental 
negative regard 

warmth continuo
us 

child EMBU-C 1 (11) r sum score of 18 items on 
perceived parental 
positive regard 

parental 
substance 
use 

smoking categoric
al 

parent TRAILS 1 (11) u at least one smoking 
parent 

cannabis categoric
al 

parent TRAILS 1 (11) u at least one parent 
indicated past year use 
on at least one measure 

addiction categoric
al 

parent TRAILS 1 (11) u at least one parent 
indicated to have been 
addicted to a substance 

smoking daily 
smoking 

categoric
al 

child TRAILS 5 (22) u single item about ever 
having smoked on a 
daily basis 

 cigarettes 
per day 

continuo
us 

child TRAILS 5 (22) u single item average 
amount of cigarettes 
smoked per day in the 
past month 

 nicotine 
dependence 

continuo
us 

child FTND  u sum score of 5 items on 
nicotine dependence 

Gene-environment interplay and parenting 
 

Note. NA=not applicable because the model included the observed (rather than a latent) variable. 
Continuous=Likert response scale analyzed on a continuous scale (i.e. all questions had answering categories).  
Direct= direction; all predictors were coded such that it was hypothetically positively related to substance use; 

‘u’ (unchanged) indicates the raw scores were used; ‘r’ (reversed) indicates where the scale was reversed 
  

NA alcohol per 
week 

continuo
us 

child TRAILS 5 (22) u sum score for week- and 
weekend days or based 
on weekend days only (if 
weekdays is missing) 

NA cannabis 
initiation 

categoric
al 

child TRAILS 5 (22) u indicated to have used 
cannabis at least once 
on at least one measure 
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Note. NA=not applicable because the model included the observed (rather than a latent) variable. 
Continuous=Likert response scale analyzed on a continuous scale (i.e. all questions had answering categories).  
Direct= direction; all predictors were coded such that it was hypothetically positively related to substance use; 

‘u’ (unchanged) indicates the raw scores were used; ‘r’ (reversed) indicates where the scale was reversed 
  

NA alcohol per 
week 

continuo
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child TRAILS 5 (22) u sum score for week- and 
weekend days or based 
on weekend days only (if 
weekdays is missing) 

NA cannabis 
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Table 2. Descriptive statistics for observed variables (before standardization and imputation). For the 
continuous variables minimum, maximum, M, and SD are given. For categorical variables the ‘control’ 

(reference) group, the ‘case’ group, and the percentage individuals belonging to the ‘case’ group are given. 
 

 

Note. N=sample size before imputation, min= minimum value (for questionnaire scores, the minimum score 
that was possible to achieve), max=maximum value (for questionnaire scores, the maximum score that was 

possible to achieve), M=mean, %=percentage for cases, SD=standard deviation, NA=SD for dichotomous 
variable is not applicable.  

*Reported only for current smokers. Cigarettes per day was categorized from 0=less than 1 cigarettes, 1=1-5 
cigarettes,  2=6-10 cigarettes, 3=11-20 cigarettes, 4=21-30 cigarettes, and 5=more than 30 cigarettes.

observed 
construct 

N 
min/ 
controls  

max/ 
cases 

M/ % SD 

sex 1,649 female male 52.1% NA 

age 1,649 20 24 21.7 0.70 

parental control 1,568 0 4 2.2 0.95 

parental 
sollicitation 

1,568 0 4 1.2 0.70 

parental 
knowledge 

1,594 0 2 1.7 0.32 

child disclosure 1,568 0 4 2.5 0.74 

parental rejection 1,639 1 4 1.5 0.31 

parental warmth 1,640 1 4 3.2 0.49 

parental smoking 1,482 no yes 49.5% NA 

parental cannabis 1,351 no yes 4.4% NA 

parental addiction 1,576 no yes 7.0% NA 

daily smoking 1,315 no yes 24.2% NA 

cigarettes per day* 528 0 5 1.7 1.31 

nicotine 
dependence* 

539 0 10 1.8 2.18 

alcohol per week 1,122 0 10 7.5 5.68 

cannabis initiation 1,299 no yes 58.8% NA 

Gene-environment interplay and parenting 
 
 

Table 3. Results for the Exploratory Factor Analysis of the parenting variables. Fit indices per solution are 
provided. To the right side of the Table are the χ2 for the difference between the models, with p<.05 indicating 

significant improvement with respect to the previous model with one factor less. 

 
Note.* indicates poor fit according to CFI/TLI<.90, RMSEA≥.08 

 

 

  

 CFI TLI RMSEA χ2 (df) p-value 

1-factor solution .76* .68* .09* NA NA 

2-factor solution .86* .74* .08* 160.45 (8) <.001 

3-factor solution .97 .91 .05 150.01 (7) <.001 

4-factor solution 1.00 1.00 .00 54.62 (6) <.001 
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Table 2. Descriptive statistics for observed variables (before standardization and imputation). For the 
continuous variables minimum, maximum, M, and SD are given. For categorical variables the ‘control’ 

(reference) group, the ‘case’ group, and the percentage individuals belonging to the ‘case’ group are given. 
 

 

Note. N=sample size before imputation, min= minimum value (for questionnaire scores, the minimum score 
that was possible to achieve), max=maximum value (for questionnaire scores, the maximum score that was 

possible to achieve), M=mean, %=percentage for cases, SD=standard deviation, NA=SD for dichotomous 
variable is not applicable.  

*Reported only for current smokers. Cigarettes per day was categorized from 0=less than 1 cigarettes, 1=1-5 
cigarettes,  2=6-10 cigarettes, 3=11-20 cigarettes, 4=21-30 cigarettes, and 5=more than 30 cigarettes.

observed 
construct 

N 
min/ 
controls  

max/ 
cases 

M/ % SD 

sex 1,649 female male 52.1% NA 

age 1,649 20 24 21.7 0.70 

parental control 1,568 0 4 2.2 0.95 

parental 
sollicitation 

1,568 0 4 1.2 0.70 

parental 
knowledge 

1,594 0 2 1.7 0.32 

child disclosure 1,568 0 4 2.5 0.74 

parental rejection 1,639 1 4 1.5 0.31 

parental warmth 1,640 1 4 3.2 0.49 

parental smoking 1,482 no yes 49.5% NA 

parental cannabis 1,351 no yes 4.4% NA 

parental addiction 1,576 no yes 7.0% NA 

daily smoking 1,315 no yes 24.2% NA 

cigarettes per day* 528 0 5 1.7 1.31 

nicotine 
dependence* 

539 0 10 1.8 2.18 

alcohol per week 1,122 0 10 7.5 5.68 

cannabis initiation 1,299 no yes 58.8% NA 

Gene-environment interplay and parenting 
 
 

Table 3. Results for the Exploratory Factor Analysis of the parenting variables. Fit indices per solution are 
provided. To the right side of the Table are the χ2 for the difference between the models, with p<.05 indicating 

significant improvement with respect to the previous model with one factor less. 

 
Note.* indicates poor fit according to CFI/TLI<.90, RMSEA≥.08 

 

 

  

 CFI TLI RMSEA χ2 (df) p-value 

1-factor solution .76* .68* .09* NA NA 

2-factor solution .86* .74* .08* 160.45 (8) <.001 

3-factor solution .97 .91 .05 150.01 (7) <.001 

4-factor solution 1.00 1.00 .00 54.62 (6) <.001 
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Table 4. Factor loadings (standard errors) for the best factor solution for the parenting variables (3 factors) 
from the EFA.  

Parental variables F1 involvement F2 substance use F3 relationship 

Knowledge .24 (.05) .24 (.04) *  

Disclosure .51 (.04)   

Control .67 (.04)   

Solicitation .82 (.04)   

Smoking  .68 (.09)  

Addiction  .65 (.07)  

Cannabis  .78 (.11)  

Rejection   .52 (.05) 

Warmth   .58 (.07) 

Note. *This cross loading was removed in subsequent models; knowledge was forced to load on F1. 
The EFA indicated fit would improve further if the correlation between parental disclosure and knowledge in 

the first factor was allowed; this path was added in the subsequent SEM analyses. Presented here are 
significant loadings (p<.05) with a value >.20.  
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Table 4. Factor loadings (standard errors) for the best factor solution for the parenting variables (3 factors) 
from the EFA.  

Parental variables F1 involvement F2 substance use F3 relationship 

Knowledge .24 (.05) .24 (.04) *  

Disclosure .51 (.04)   

Control .67 (.04)   

Solicitation .82 (.04)   

Smoking  .68 (.09)  

Addiction  .65 (.07)  

Cannabis  .78 (.11)  

Rejection   .52 (.05) 

Warmth   .58 (.07) 

Note. *This cross loading was removed in subsequent models; knowledge was forced to load on F1. 
The EFA indicated fit would improve further if the correlation between parental disclosure and knowledge in 

the first factor was allowed; this path was added in the subsequent SEM analyses. Presented here are 
significant loadings (p<.05) with a value >.20.  
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Figure 1. The conceptual model of the interplay between genetic and parent factors in the development of 
substance use, with the blue arrow indicating the gene-environment interaction path and the yellow 

indicating the gene-environment correlation path.  
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Figure 1. The conceptual model of the interplay between genetic and parent factors in the development of 
substance use, with the blue arrow indicating the gene-environment interaction path and the yellow 

indicating the gene-environment correlation path.  
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Figure 2. Standardized estimates β (with standard errors) from the best fitting Structural Equation Models of 

parent factors and PGS predicting (A) smoking; (B) alcohol per week; and (C) cannabis initiation. Note that the 
models presented in one figure were tested separately per parent factor; these figures are summaries of the 

separate analyses. 
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Figure 2. Standardized estimates β (with standard errors) from the best fitting Structural Equation Models of 

parent factors and PGS predicting (A) smoking; (B) alcohol per week; and (C) cannabis initiation. Note that the 
models presented in one figure were tested separately per parent factor; these figures are summaries of the 

separate analyses. 
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Abstract 
 
Background This study aims to disentangle the contribution of genetic liability, 
educational attainment (EA), and their overlap and interplay in lifetime smoking. 
Methods We conducted genome-wide association studies (GWASs) in UK Biobank 
(N=394,718) to capture i) variants for lifetime smoking, ii) variants for EA, and iii) variants 
that contribute to lifetime smoking independently from EA (‘smoking-without-EA’). Based 
on the GWAS results, three polygenic scores (PGSs) were created for individuals from the 
Netherlands Twin Register (NTR, N=17,805) and the Netherlands Mental Health Survey 
and Incidence Study-2 (NEMESIS-2, N=3,090). We tested the gene-environment (GxE) 
interactions between each PGS, neighborhood socioeconomic status (SES) and EA on 
lifetime smoking. To assess if the PGS effects were specific to smoking or had broader 
implications, we repeated the analyses with measures of well-being.  
Results After subtracting EA effects from the smoking GWAS, the SNP-based heritability 
decreased from 9.2% to 7.2%. The genetic correlation between smoking and SES 
characteristics was reduced, whereas overlap with smoking traits was less affected by 
subtracting EA. The PGSs for smoking, EA, and smoking-without-EA all predicted smoking. 
For well-being, only the PGS for EA was a reliable predictor. There were suggestions for 
GxE for some relationships, but there were no clear patterns per PGS type. 
Conclusion This study showed that the genetic architecture of smoking has an EA 
component in addition to other, possibly more direct components. PGSs based on EA and 
smoking-without-EA had distinct predictive profiles. This study shows how disentangling 
different models of genetic liability and interplay can contribute to our understanding of 
the etiology of smoking.   

The role of socioeconomic status in smoking genetics 

Introduction 
Despite well-known health risks and a worldwide increase of discouragement policies, 
large proportions of the world’s population continue to smoke (World Health 
Organization 2019). In the Netherlands, the promising decline in smoking seen in the past 
decades now seems to level off, especially among young adults (Bommelé and Willemsen 
2020). Research into the etiology of smoking could shed new light on possible avenues for 
prevention and intervention. Both environmental and genetic factors play a role in 
smoking behavior (Sullivan and Kendler 1999).  
 
Characteristics related to socioeconomic status (SES), with educational attainment (EA) 
as its core component, are important predictors for smoking (Hiscock et al. 2012). 
Individuals with lower SES (income and EA) are more likely to get exposed to tobacco 
smoke, start smoking in adolescence, smoke more heavily, and continue smoking. Such 
effects can be observed at the level of neighborhoods, with people living in more 
disadvantaged areas being more likely to smoke (Karriker-Jaffe 2013;  Cambron et al. 
2018). Reported effects are quite large for specific groups. For example, men have been 
reported to be two times more likely to smoke in a neighborhood marked by visible signs 
of disorder (e.g., vandalism and litter) than in a neighborhood low on these signs (Miles 
2006). White residents of poor neighborhoods are 72% more likely to initiate smoking 
before age 25 than white residents in an affluent neighborhood (even after controlling for 
income and parental education; Kravitz-Wirtz 2016). However, estimated effect sizes vary 
widely and seem to be moderated by many individual-level SES and group attributes 
(Miles 2006;  Kravitz-Wirtz 2016;  Mathur et al. 2013;  Cohen et al. 2011;  Karriker-Jaffe et 
al. 2016). 
 
Twin studies estimated that almost half of the individual differences in the population in 
smoking initiation can be attributed to genetic factors. The heritability estimate is even 
higher (around 75%) for nicotine dependence (Vink et al. 2005). Even though the 
prevalence of smoking seems to be declining, heritability estimates have remained stable 
(Vink and Boomsma 2011). Genome-wide association studies (GWASs) have identified 
specific genetic variants underlying smoking behavior (The Tobacco and Genetics 
Consortium 2010). The most recent smoking GWAS included more than a million 
participants, and all measured genetic variants could explain 8% of the variation in 
smoking initiation and 8% in the number of cigarettes smoked per day (Liu et al. 2019). 
Thus, part of the heritability as estimated by twin studies could not be traced back to 
common variation tested in this GWAS. There are several possible reasons for this 
commonly observed ‘missing heritability’, one of which might be interplay with 
environmental circumstances (Eichler et al. 2010).   



562882-L-bw-Pasman562882-L-bw-Pasman562882-L-bw-Pasman562882-L-bw-Pasman
Processed on: 4-8-2021Processed on: 4-8-2021Processed on: 4-8-2021Processed on: 4-8-2021 PDF page: 389PDF page: 389PDF page: 389PDF page: 389

389Part 3 – Chapter 12 

 

Abstract 
 
Background This study aims to disentangle the contribution of genetic liability, 
educational attainment (EA), and their overlap and interplay in lifetime smoking. 
Methods We conducted genome-wide association studies (GWASs) in UK Biobank 
(N=394,718) to capture i) variants for lifetime smoking, ii) variants for EA, and iii) variants 
that contribute to lifetime smoking independently from EA (‘smoking-without-EA’). Based 
on the GWAS results, three polygenic scores (PGSs) were created for individuals from the 
Netherlands Twin Register (NTR, N=17,805) and the Netherlands Mental Health Survey 
and Incidence Study-2 (NEMESIS-2, N=3,090). We tested the gene-environment (GxE) 
interactions between each PGS, neighborhood socioeconomic status (SES) and EA on 
lifetime smoking. To assess if the PGS effects were specific to smoking or had broader 
implications, we repeated the analyses with measures of well-being.  
Results After subtracting EA effects from the smoking GWAS, the SNP-based heritability 
decreased from 9.2% to 7.2%. The genetic correlation between smoking and SES 
characteristics was reduced, whereas overlap with smoking traits was less affected by 
subtracting EA. The PGSs for smoking, EA, and smoking-without-EA all predicted smoking. 
For well-being, only the PGS for EA was a reliable predictor. There were suggestions for 
GxE for some relationships, but there were no clear patterns per PGS type. 
Conclusion This study showed that the genetic architecture of smoking has an EA 
component in addition to other, possibly more direct components. PGSs based on EA and 
smoking-without-EA had distinct predictive profiles. This study shows how disentangling 
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effects can be observed at the level of neighborhoods, with people living in more 
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2018). Reported effects are quite large for specific groups. For example, men have been 
reported to be two times more likely to smoke in a neighborhood marked by visible signs 
of disorder (e.g., vandalism and litter) than in a neighborhood low on these signs (Miles 
2006). White residents of poor neighborhoods are 72% more likely to initiate smoking 
before age 25 than white residents in an affluent neighborhood (even after controlling for 
income and parental education; Kravitz-Wirtz 2016). However, estimated effect sizes vary 
widely and seem to be moderated by many individual-level SES and group attributes 
(Miles 2006;  Kravitz-Wirtz 2016;  Mathur et al. 2013;  Cohen et al. 2011;  Karriker-Jaffe et 
al. 2016). 
 
Twin studies estimated that almost half of the individual differences in the population in 
smoking initiation can be attributed to genetic factors. The heritability estimate is even 
higher (around 75%) for nicotine dependence (Vink et al. 2005). Even though the 
prevalence of smoking seems to be declining, heritability estimates have remained stable 
(Vink and Boomsma 2011). Genome-wide association studies (GWASs) have identified 
specific genetic variants underlying smoking behavior (The Tobacco and Genetics 
Consortium 2010). The most recent smoking GWAS included more than a million 
participants, and all measured genetic variants could explain 8% of the variation in 
smoking initiation and 8% in the number of cigarettes smoked per day (Liu et al. 2019). 
Thus, part of the heritability as estimated by twin studies could not be traced back to 
common variation tested in this GWAS. There are several possible reasons for this 
commonly observed ‘missing heritability’, one of which might be interplay with 
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It seems likely that socioeconomic and genetic factors do not operate in isolation in 
increasing risk for smoking. In the case of gene-environment interaction (GxE), the 
likelihood that a genetic risk (G) for smoking leads to smoking depends on environmental 
circumstances (E). Such GxE effects could contribute to the missing heritability 
phenomenon (Manolio et al. 2009). On the one hand, rGE and GxE effects (with shared 
environment) could inflate heritability estimates in twin research when not explicitly 
modeled (Verhulst and Hatemi 2013), and on the other hand they could deflate 
associations if the total effect of a SNP is canceled out due to different effects in different 
sub groups.  
 
Twin studies have suggested that GxE effects exist for smoking (e.g., Timberlake et al. 
2006;  Boardman et al. 2011;  Boardman et al. 2008;  Dick et al. 2007). For example, 
educational attainment was found to moderate the heritability of smoking initiation 
(although the exact direction was difficult to establish due to strong gene-environment 
correlation effects; McCaffery et al. 2008). However, such studies do not provide any 
insight as to what genetic variants drive these GxE effects. More recently, studies have 
used smoking GWASs to create polygenic scores (PGSs) as a measure of genetic risk, and 
tested interaction between PGSs and environmental factors on smoking. For example, it 
was shown that a PGS for smoking initiation was associated with smoking heaviness only 
in individuals who had been exposed to tobacco smoke in childhood (Treur et al. 2018). 
Another study showed that a smoking PGS was more likely to contribute to smoking risk 
in individuals that had experienced trauma than in individuals who had not (Meyers et al. 
2013). Similarly, it was found that a PGS for smoking predicted smoking more strongly in 
sample of war veterans than in non-veterans (Schmitz and Conley 2016). On the other 
hand, living in a neighborhood with high social cohesion buffered for genetic risk, such 
that the effect of the PGS on smoking was less strong for individuals living in such 
neighborhoods (Meyers et al. 2013). However, a recent study did not detect GxE with 
neighborhood-level SES and metropolitanism on smoking (Pasman et al. 2020). Overall, 
the evidence for GxE in PGS studies is somewhat mixed and still limited for smoking 
(Pasman et al. 2019). Also, given the small effect sizes of PGSs in general and the even 
smaller GxE effects, these studies have done little to solve the missing heritability.  
 
GxE research has often been framed in terms of environmental exposures that moderate 
genetic risk factors. However, the distinction between ‘environmental’ exposures and 
other characteristics is often quite difficult to make. For instance, an interaction with sex 
could indicate biological differences in the chance that some genetic factor will come to 
expression, or could indicate an environmental effect of gender roles. Moreover, many 
environmental factors (e.g., the parenting and social environment, Vinkhuyzen et al. 

The role of socioeconomic status in smoking genetics 

2010) are actually heritable themselves, so that the environment and the genetic make-
up become associated. This phenomenon is often referred to as gene-environment 
correlation (rGE). There are various mechanisms by which associations between an 
environmental exposure and genetic predisposition can arise. For example, given that 
parents and offspring share part of their genetic make-up, a correlation could arise 
between parenting behavior and offspring genes (passive rGE, Pasman under review;  
Kong et al. 2018;  Plomin et al. 1977). Alternatively, a correlation between an individual’s 
risk for smoking and the environment could arise because smoking elicits some response 
in other people (reactive rGE) or because smokers select different environments for 
themselves (active rGE; Plomin et al. 1977). Such rGE effects also exist for EA, which has a 
substantial genetic component. Both cognitive abilities (at the core of EA) as well as non-
cognitive EA-traits and socioeconomic characteristics have been shown to be heritable 
traits (Marioni et al. 2014;  Demange et al. 2020). Given the strong association between EA 
and smoking, this can give rise to rGE associations between genetic risk for smoking and 
EA. 
 
Such rGE effects influence the interpretation of other genetic findings. First, they can lead 
to the detection of environmental signal in GWASs (Manolio et al. 2009;  Shen and Feldman 
2020). For example, GWAS will probably pick up on different variants for smoking in an 
environment that highly sanctions smoking (e.g., variants associated with risk taking and 
addiction-proneness) than in an environment where smoking is the norm (e.g., variants 
associated with social behavior), giving rise to rGE between smoking variants and social 
norms. Second, if there are rGE effects, this can change the interpretation of GxE effects, 
lower the chance that GxE will be detected, or lead to spurious GxE findings (Rathouz et 
al. 2008;  Dudbridge and Fletcher 2014). There are indications for rGE effects in the 
smoking literature. Some twin studies have shown that peer behavior is associated with 
genetic risk for smoking in adolescents (Cleveland et al. 2005;  Harden et al. 2008;  Wills 
and Carey 2013). This has commonly been interpreted as showing that genetic risk for 
smoking somehow influences which friends adolescents select for themselves. One study 
using PGS to test rGE showed overlap between the parenting environment and a smoking 
PGS (Pasman under review). Another study showed rGE between a smoking PGS and 
neighborhood ‘physical disorder’ (i.e., disrepair and vacancy; Meyers et al. 2013). The 
plausibility that rGE exists in substance use has been widely acknowledged (Kong et al. 
2018;  Gage et al. 2016). Such effects imply that genetic associations from smoking GWAS 
have to be interpreted within the environmental context of the samples. Still, studies 
reporting rGE, especially those using PGS, are scarce.  
 
The first aim of this study is to disentangle direct genetic effects on smoking from genetic 
effects that influence smoking through rGE with EA. That is to say, we model the genetic 
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2010) are actually heritable themselves, so that the environment and the genetic make-
up become associated. This phenomenon is often referred to as gene-environment 
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to the detection of environmental signal in GWASs (Manolio et al. 2009;  Shen and Feldman 
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plausibility that rGE exists in substance use has been widely acknowledged (Kong et al. 
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have to be interpreted within the environmental context of the samples. Still, studies 
reporting rGE, especially those using PGS, are scarce.  
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effects that influence smoking through rGE with EA. That is to say, we model the genetic 



562882-L-bw-Pasman562882-L-bw-Pasman562882-L-bw-Pasman562882-L-bw-Pasman
Processed on: 4-8-2021Processed on: 4-8-2021Processed on: 4-8-2021Processed on: 4-8-2021 PDF page: 392PDF page: 392PDF page: 392PDF page: 392

392 Part 3 – Chapter 12 

predisposition for EA and subtract it from the total genetic liability for smoking. This way, 
we can assess the contribution of rGE with EA in the etiology of smoking, and compare it 
to a ‘cleaner’ genetic component of smoking effects that are independent from EA. 
Second, we aim to test if the PGS based on either these direct smoking variants (PGSsmok-

noEA) or the EA variants (PGSEA) pick up better on GxE effects, as compared to a general PGS 
based on all smoking variants taken together (PGSallsmok). We test interactions with 
neighborhood quality and affluence. The GxE effects per PGS could go in different 
directions. On the one hand, if it is true that rGE effects dilute GxE effects, the PGS 
assessing direct smoking effects could be more sensitive for picking up GxE. In this case, 
individuals with a high PGSsmok-noEA may react more strongly to an unfavorable 
neighborhood environment and have a higher chance to start smoking. On the other 
hand, it is also possible that individuals who are genetically liable for a high-risk 
environment react differently to that environment than people who are not. That is to say, 
individuals with a high PGSEA may be vulnerable to the environment, whereas people with 
a high genetic risk for smoking (high PGSsmok-noEA) have a higher chance to start smoking 
regardless of the environment. Comparing GxE effects between PGSs for all-smoking, 
smoking-without-EA, and EA could contribute to formulating such competing hypotheses 
and shed more light on interplay between genetic and environmental vulnerability for 
smoking.   

The role of socioeconomic status in smoking genetics 

Methods 
A number of different analysis steps were taken. First, using GWA analyses, we identified 
the genetic liability for smoking and EA. Second, using the results from these GWASs, EA 
effects were subtracted from smoking (using genetic structural equation modeling) to 
capture smoking-without-EA. Third, polygenic scores were created to conduct follow-up 
tests of GxE effects with measures of EA and neighborhood SES. The first two steps were 
conducted using data from the UK Biobank, the third step was conducted in two 
independent samples from the Netherlands Mental Health Survey and Incidence Study-2 
(NEMESIS-2) and the Netherlands Twin Register (NTR). 
 
Samples and measures: UK Biobank  
The GWA analyses on smoking, EA, and smoking-without-EA were conducted in a sample 
from the UK Biobank. The UK Biobank contains phenotypic and genetic information from 
up to 500,000 inhabitants of the United Kingdom. It has received ethical approval from 
the National Health Service North West Center for Research Ethics Committee (reference: 
11/NW/0382). Researchers can apply for access to this rich data set to conduct health-
related studies. This study was conducted under project number 40310. For our analyses 
we selected N=394,718 individuals from European-ancestry for whom there was complete 
phenotypic and genotypic information. Mean age was M=56.8 (range 39-73, SD=8.0) and 
54.2% of the sample was female. 
 
To measure lifetime smoking in the UK Biobank we extracted information from all 
measurement instances of data fields 2867 and 2897 (age at smoking initiation), 2887 and 
3456 (cigarettes per day), and 20116 (smoking initiation yes/no). People indicating on 
field 2887 or 3456 to (have) smoke(d) one or more cigarettes per day were classified as 
smokers. People indicating on field 20116 to never have been a smoker were classified as 
non-smokers. If field 2887 and 3456 were unavailable, but people indicated on field 20116, 
2867, or 2897 to be an (ex-) smoker, they were classified as smokers. There were data for 
272,943 (54.60%) never smokers and 226,795 lifetime smokers. To capture EA, we used 
the ISCED classification to transform reported educational levels from field 6138 to a 
standardized number of educational years (UNESCO Institute for Statistics 2011). We 
selected the highest reported completed educational level and classified ‘none of the 
above’ (N=90,360) as primary school only. Average years of education was M=14.93, 
SD=5.12, range=7-20, N= 451,800. 
 
Samples and measures: NTR 
In the second part of the study, we use data from two independent samples from the 
Netherlands. The Netherlands Twin Register (NTR) is an ongoing longitudinal study of 
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the genetic liability for smoking and EA. Second, using the results from these GWASs, EA 
effects were subtracted from smoking (using genetic structural equation modeling) to 
capture smoking-without-EA. Third, polygenic scores were created to conduct follow-up 
tests of GxE effects with measures of EA and neighborhood SES. The first two steps were 
conducted using data from the UK Biobank, the third step was conducted in two 
independent samples from the Netherlands Mental Health Survey and Incidence Study-2 
(NEMESIS-2) and the Netherlands Twin Register (NTR). 
 
Samples and measures: UK Biobank  
The GWA analyses on smoking, EA, and smoking-without-EA were conducted in a sample 
from the UK Biobank. The UK Biobank contains phenotypic and genetic information from 
up to 500,000 inhabitants of the United Kingdom. It has received ethical approval from 
the National Health Service North West Center for Research Ethics Committee (reference: 
11/NW/0382). Researchers can apply for access to this rich data set to conduct health-
related studies. This study was conducted under project number 40310. For our analyses 
we selected N=394,718 individuals from European-ancestry for whom there was complete 
phenotypic and genotypic information. Mean age was M=56.8 (range 39-73, SD=8.0) and 
54.2% of the sample was female. 
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field 2887 or 3456 to (have) smoke(d) one or more cigarettes per day were classified as 
smokers. People indicating on field 20116 to never have been a smoker were classified as 
non-smokers. If field 2887 and 3456 were unavailable, but people indicated on field 20116, 
2867, or 2897 to be an (ex-) smoker, they were classified as smokers. There were data for 
272,943 (54.60%) never smokers and 226,795 lifetime smokers. To capture EA, we used 
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In the second part of the study, we use data from two independent samples from the 
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twins and their families which has been described in detail elsewhere (refer to Ligthart et 
al. 2019, also for a description of the genetic data). We included all available measures of 
smoking initiation that were collected between 1991 and 2019 (from 15 different surveys, 
see Supplementary Table S1). Part of the sample is followed longitudinally, and new 
participants have been recruited continuously. In order to maximize sample size, we 
selected the most recent available measurement of smoking status for all participants. 
For N=14,618 European ancestry adult individuals, there were genome-wide SNP and 
complete phenotypic data. For most participants, smoking data were collected between 
2013-2016 (N=9,426) or in 2009 (N=1,361; see Table S1). At the time of phenotype 
measurement, mean age was M=43.31 (SD=17.12, range=18-94).  Lifetime smoking was 
defined similarly as in the UK Biobank. Current and ex-smokers that (previously) smoked 
more than occasionally (1 cigarette per day or 7 per week) were classified as smokers. 
Occasional and never smokers were classified as non-smokers. The sample consisted of 
63.1% females and 43.1% lifetime smokers.  
 
To measure neighborhood SES (E in the GxE analysis) we focused on the average 
household income in the neighborhood of residence. We identified the first four digits of 
the postal code of the participant at the time of measurement of the smoking phenotype, 
corresponding to the residential area at the level of neighborhoods. These digits were 
coupled to governmental registration data on neighborhood-level income (Centraal 
Bureau voor de Statistiek (CBS) 2012). The CBS determined average monthly income per 
household before tax (rounded at hundreds) in 2004 and 2010. We used the neighborhood 
data that were closest in time to survey used to assess lifetime smoking. Data were 
available for N=12,584 participants, who on average lived in neighborhoods with a per-
household monthly income of M=2678.64 (SD=934.40, winsorized at min=500 and 
max=10,000).  
 
In the follow-up analyses we focused on satisfaction with life, which was available in 4 
different surveys. It was measured using the translated Satisfaction With Life Scale 
(Arrindell et al. 1999), a survey  with five 7-point Likert items on how happy people are 
with their life. The sum score on this scale was coupled to contemporaneous 
neighborhood income using similar procedures as before, prioritizing the measurements 
closest in time to the measure of neighborhood income. Average satisfaction with life was 
M=26.97 (SD=5.23, range=5-35, N=9,257). 
 
Samples and measures: NEMESIS-2  
The Netherlands Mental Health Survey and Incidence (NEMESIS-2) is a population sample 
of more than 6,500 individuals that were followed in four measurement waves spaced out 
between 2007 and 2018. The aim was to monitor the occurrence and course of common 
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mental disorders in the general population (De Graaf et al. 2010). For this study, we used 
data from the second wave (conducted in 2010-2012), where a measure of neighborhood 
quality was available. For a sub sample of N=3,090 European-ancestry individuals genetic 
and phenotypic data were available. About half of the sample was female (56.1%), and 
mean age at wave 2 was 47.2 (SD=12.5, range=21-71).  
 
To assess smoking we used questionnaire items on smoking status. People were 
classified as smokers if they self-identified as current or ex-smokers; (former) occasional 
smokers were classified as never-smokers. A third of the sample classified as lifetime 
smokers (30.2%). To measure neighborhood quality, we used a sum score of 5 
standardized Likert scale survey items, including appreciation of the neighborhood, 
frequency of noise from neighbors, traffic, or other sources in the neighborhood, 
frequency of feeling unsafe if walking alone in the neighborhood during the day, 
frequency of feeling unsafe if walking alone in the neighborhood during the night, and 
frequency of observing vandalism. Items were re-coded in the positive direction, such 
that a higher score means a higher neighborhood quality.  
 
Since neighborhood quality was not measured at baseline, we used wave 2 data. There 
was some attrition from baseline (N=319), which incited us to employ the automatic 
multiple imputation procedure from SPSS to supplement wave 2 neighborhood quality. 
We used 32 unique sociodemographic measures as predictors (see Supplementary Table 
S2). Because each imputed value is subject to some random variation, we imputed 25 
datasets and interpret the pooled results. In total, 10.3% of the neighborhood quality data 
were imputed using this procedure. Across analyses, we compared the pooled results 
with the results using the original data, and saw that differences were negligible. For the 
smoking outcome, we carried forward baseline data in case they were missing at wave 2. 
In follow-up analysis we looked at mental health as outcome. To measure this, we used a 
clinical rating if someone had met criteria for any DSM-IV axis-I disorder since the baseline 
measurement. If wave 2 data were unavailable while someone had met criteria for a 
disorder at baseline, we carried forward the baseline data (N=92 individuals). Remaining 
missingness (N=227) was imputed using the same baseline predictors as before. DSM-IV 
contains 18 disorder categories (including for example mood and psychotic disorders) 
with in total almost 300 different diagnoses. Diagnoses were made based on the 
Composite International Diagnostic Interview (CIDI) 3.0 by a trained professional (De 
Graaf et al. 2010). In total, 541 of the participants (17.5%) had recently met criteria for any 
disorder at wave 2 (since the last interview or in the past year for individuals who only had 
wave 1 data). 
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neighborhood income using similar procedures as before, prioritizing the measurements 
closest in time to the measure of neighborhood income. Average satisfaction with life was 
M=26.97 (SD=5.23, range=5-35, N=9,257). 
 
Samples and measures: NEMESIS-2  
The Netherlands Mental Health Survey and Incidence (NEMESIS-2) is a population sample 
of more than 6,500 individuals that were followed in four measurement waves spaced out 
between 2007 and 2018. The aim was to monitor the occurrence and course of common 

The role of socioeconomic status in smoking genetics 

mental disorders in the general population (De Graaf et al. 2010). For this study, we used 
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quality was available. For a sub sample of N=3,090 European-ancestry individuals genetic 
and phenotypic data were available. About half of the sample was female (56.1%), and 
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was some attrition from baseline (N=319), which incited us to employ the automatic 
multiple imputation procedure from SPSS to supplement wave 2 neighborhood quality. 
We used 32 unique sociodemographic measures as predictors (see Supplementary Table 
S2). Because each imputed value is subject to some random variation, we imputed 25 
datasets and interpret the pooled results. In total, 10.3% of the neighborhood quality data 
were imputed using this procedure. Across analyses, we compared the pooled results 
with the results using the original data, and saw that differences were negligible. For the 
smoking outcome, we carried forward baseline data in case they were missing at wave 2. 
In follow-up analysis we looked at mental health as outcome. To measure this, we used a 
clinical rating if someone had met criteria for any DSM-IV axis-I disorder since the baseline 
measurement. If wave 2 data were unavailable while someone had met criteria for a 
disorder at baseline, we carried forward the baseline data (N=92 individuals). Remaining 
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contains 18 disorder categories (including for example mood and psychotic disorders) 
with in total almost 300 different diagnoses. Diagnoses were made based on the 
Composite International Diagnostic Interview (CIDI) 3.0 by a trained professional (De 
Graaf et al. 2010). In total, 541 of the participants (17.5%) had recently met criteria for any 
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Smoking and EA GWAS in UK Biobank to model direct and rGE effects  
In the first step, we ran GWASs to capture genetic associations for lifetime smoking and 
EA (yellow panel in Figure 1). We used the fast-GWA package from GCTA (Yang et al. 2011). 
GCTA makes use of a genetic relatedness matrix to account for relatedness in the sample. 
To reduce computational demand for subsequent analyses we limited the GWASs to 1.3 
million HapMap3 SNPs (International HapMap 3 Consortium 2010). We filtered out SNPs 
with minor allele frequency below 1%, divergence from Hardy-Weinberg disequilibrium 
with pHWE<10-10, and call rate below 95%. We included genetic sex, standardized age, 
standardized year of birth, and 25 principal components (PCs) for genetic ancestry as 
covariates. These PCs were determined using PCA, as described in more detail in 
Abdellaoui et al. (2019).  
 
In the next step, we used the summary statistics to fit a mediation model capturing 
genetic effects on smoking, EA, and smoking-without-EA in Genomic Structural Equation 
Modeling (Genomic SEM, Grotzinger et al. 2018). To obtain a smoking-without-EA GWAS, 
we regressed smoking on all genetic variants as well as on EA (blue panel, Figure 1). The 
model yielded two sets of GWAS results, one for SNP effects on smoking independent 
from EA (‘smoking-without-EA’, grey path) and one for SNP effects on EA (red path from 
SNP to EA). We inspected the GWAS results and performed post-processing analyses using 
FUMA on default settings to inspect the genetic architecture of the different traits (version 
v1.3.6a, Watanabe et al. 2017).  We used LDscore regression (Bulik-Sullivan et al. 2015) to 
assess SNP-based heritability (the variance explained in the traits by all SNPs 
concurrently) and genetic correlations with other traits. SNPs and genes that were 
genome-wide significantly associated with one of our traits were looked up in the GWAS 
catalog from EMB-EBI (Buniello et al. 2019) to examine whether they were previously 
associated with other phenotypes.  
 
Polygenic score analysis to test genetic and SES influences on smoking 
PGS were created in NTR and NEMESIS-2 based on the total smoking GWAS, EA, and 
smoking-without-EA summary statistics from the Genomic SEM model. A PGS can be 
created in a new sample by weighting variants by their GWAS effect size and aggregating 
them in a single score per individual. We used GCTA-SBLUP to take into account the 
linkage disequilibrium (LD) structure in the European population before creating the PGS, 
as this improves prediction accuracy (Yang et al. 2011;  Robinson et al. 2017). An additional 
advantage of SBLUP is that no p-value threshold needs to be established for including 
SNPs in the PGS (as is the case for some other PGS computation methods); rather, the 
whole genome is weighted and integrated in the score. Using the SBLUP weighting 
scheme, the actual individual-level scores were computed with PLINK (Purcell et al. 2007) 
and merged to the phenotypical data in SPSS.   

The role of socioeconomic status in smoking genetics 

 
We tested the associations between these PGSs and lifetime smoking in NTR and 
NEMESIS-2. In order to compare the different PGS components, we first regressed the 
smoking outcome on the ‘all smoking’ PGS (PGSallsmok; model 1a), and then on the PGS for 
EA (PGSEA) and the PGS for smoking-without-EA (PGSsmok-noEA) together to assess their 
relative contribution (model 1b). All continuous variables were standardized. Covariates 
included in the model were age, sex, and the first ten principal components for genetic 
ancestry (PCs). In addition, in NTR we controlled for the genotyping batch, as several 
different SNP arrays have been used over the course of data collection. Also, because of 
the family structure in NTR, we used generalized estimating equations (GEE) to correct for 
clustering in this sample, whereas standard logistic regression could be employed in 
NEMESIS-2. Secondly, we included a measure of neighborhood quality to test its effect on 
smoking in the two different PGS models (model 2a and 2b). Third, we added 
neighborhood quality x PGS terms, comparing a model with the PGSallsmok (model 3a) with 
a model with the PGSSES and the PGSsmok-noSES (model 3b). Finally, we repeated these 
analyses with a measure of satisfaction with life (in NTR) and mental health (in NEMESIS-
2) to see if the effects of PGSEA and PGSsmok-noEA are specific to smoking, or have a wider 
impact. If the PGSsmok-noEA shows no relationship to mental health, this would be in support 
of our effort to ‘regress out’ EA effects, indicating that it captures genetic effects specific 
to smoking. To correct for multiple testing, we divided a conventional .05 p-value 
threshold by 8 independent tests (2 samples, 2 outcomes, 1 group of interdependent 
genetic predictors, and 2 neighborhood predictors) resulting in a threshold of p<.006. To 
compute R2 of the individual PGSs, we regressed the outcomes on the PGS and the genetic 
covariates (genotyping batch and PCs; excluding the genetic covariates hardly added any 
explained variance, data not shown). As R2 is not provided in GEE analyses, we were 
unable to control for family structure here. 
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Figure 1. Flow-chart of the different analysis phases 

  

The role of socioeconomic status in smoking genetics 

Results 

The results of the GWASs for smoking and educational attainment in UK Biobank can be 
found in the supplement. Supplementary Tables S3-4 show the independent risk loci for 
the traits (at R2<0.1 and distance >250kb). In Supplementary Figures S1-2 Manhattan plots 
are presented. There were 112 independent variants identified for lifetime smoking, with 
the strongest association with a SNP in NCAM1 on chromosome 11. SNP-based heritability 
(h2) was 9.2% (SE=0.29). For EA the GWAS identified 276 independent significant loci 
(h2=14.2%, SE=0.42), with the strongest SNP rs9372625 in AL589740.1 on chromosome 6. 
The SNP h2 for EA was 14.2%. 
 
Modeling direct genetic effects and EA effects on smoking 
Using Genomic SEM, we tested the model from Figure 1 based on the genetic correlation 
matrix between the summary statistics from the conducted GWASs. We tested a 
mediation model with the SNPs as the predictors, smoking as the outcome, and EA as the 
mediator. We were interested in path c’, representing the genetic effects on smoking that 
remained after taking into account the effects that were mediated by EA. The summary 
statistics for c’ thus constitute smoking-without-EA. 

 
The GWAS for smoking-without-EA identified 47 genetic loci (Table S5 and Figure 2) and 
yielded a SNP-based heritability of 7.2% (SE=0.28). The top SNP was rs10891487, an intron 
variant in the NCAM1 gene. This SNP and its LD partners have been associated with traits 
related to risk taking, substance use, cognitive ability, and socioeconomic status (Table 
S6). The strongest associations on the gene-level were found for NCAM1 on chromosome 
11 and CADM2 on chromosome 3 (Table S7; Figure S3). NCAM1 was already a top-gene for 
smoking before controlling for shared effects on EA (Figure S1), whereas the effect of 
CADM2 was boosted after controlling for EA. Both genes have been implicated in 
numerous risk and substance use behaviors (Table S6), are highly brain expressed, and 
play a role in neuronal cell adhesion.  
 
We performed sensitivity analyses to check if the Genomic SEM model succeeded in 
capturing smoking-without-EA by computing genetic correlations between smoking-
without-EA and other traits (Table S8). Results are summarized in Figure 4. The genetic 
correlation between smoking-without-EA and the original smoking trait was rg=.97, 
suggesting that the genetic architecture of smoking was only mildly affected by 
subtracting EA effects. The correlations with EA (UK Biobank summary statistics as well as 
GWAS summary statistics from an external, independent sample) were greatly reduced as 
compared to the original association (original: rg=-.35; after subtraction: rg=-.09), 
suggesting that we largely succeeded at subtracting EA effects. Genetic correlations 
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between smoking-without-EA with other SES-indicators (neighborhood deprivation and 
income) were similarly attenuated. The correlations with smoking-related traits (age at 
initiation, cigarettes per day, nicotine dependence, cessation, cannabis initiation, and 
risk-taking behavior) were also attenuated, but less so; this attenuation likely represents 
some power loss resulting from the subtraction. 
 
 

Figure 3. Manhattan plot for the GWAS on smoking-without-EA, where EA effects were subtracted from the 
smoking GWAS in Genomic SEM. The red line denotes the genome-wide significance threshold of p=5E-08.  

 
 
Polygenic scores 
Table 1 presents the results of the PGS analyses in NTR and NEMESIS-2, showing the 
association of the PGSs based on the EA and smoking-without-EA GWAS with lifetime 
smoking (parameter estimates for the full results including genetic covariates can be 
found in Table S9a and S10a). In all models, all PGSs significantly predicted lifetime 
smoking. Individually, the PGSallsmok, PGSEA, and PGSsmok-noEA explained respectively 3.1%, 
2.2%, and 0.5% of the variance in smoking in NTR, and 4.4%, 2.3%, and 0.8% in NEMESIS-
2. Combined into the same model, the PGSs explained at total of 6.3% of the variance in 
smoking in NTR and 4.5% in NEMESIS-2. The effect of PGSEA on smoking was negative, such 
that having a genetic predisposition for a higher EA was associated with lower chances of 
being a smoker.  
 

The role of socioeconomic status in smoking genetics 

In NTR, higher neighborhood income was associated with lower chances of smoking 
(R2=1.9% for neighborhood only). There were no significant GxE interactions after 
correction for multiple testing, although the interactions with the PGSallsmok and PGSEA 

added a minute amount of explained variance (about 0.1%; neighborhood-by- PGSallsmok 

p=.033, neighborhood-by-PGSEA p=.026). In both cases the directions were such that the 
effect of the PGS was stronger for people living in a lower income neighborhood. The 
model with all effects combined (main, interactions and covariates) explained 18.5% of 
the variance in lifetime smoking. In NEMESIS-2, neighborhood quality was not a significant 
predictor of smoking. There were no interactions between neighborhood quality and any 
PGS. All effects combined explained 5.9% of the variance in lifetime smoking. 

 
Figure 4. Heat map of genetic correlations between the smoking-without-EA GWAS and SES- and smoking 

related traits. Below the diagonal are the correlation estimates, with colors indicating the direction 
(red=negative; blue=positive) and strength (dark=strong; light=weak) of the association. Above the diagonal 
corresponding p-values are reported, with in grey those that were not significant after correcting for 13 traits 

(p=.05/13=.004). Trait description and sources can be found in Supplementary Table S6.  
(EA=educational attainment; extern= same trait but from independent GWAS source)  
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One of the aims of the PGSsmok-noEA was to capture genetic variation that was less diluted 
by rGE. As a sensitivity analysis to test if this goal was achieved, we regressed EA and 
neighborhood-SES on the different PGSs (controlling for genetic covariates and sex and 
age; see Table 2). The PGSallsmok and PGSEA significantly predicted educational attainment 
in both NTR and NEMESIS-2. In NTR, PGSallsmok and PGSEA also showed rGE with 
neighborhood income. Crucially, the relationship between PGSsmok-noEA and educational 
attainment was greatly reduced in both samples, and there was no rGE between the 
PGSsmok-noEA and neighborhood-SES. Thus, it seems that we largely succeeded in excluding 
rGE effects by subtracting EA effects from the smoking PGS. 
 
Because in NEMESIS-2 there was no main effect of neighborhood quality, chances were 
low that a GxE effect would be detected. As a second sensitivity analysis, we repeated the 
PGS tests with baseline educational attainment (low, medium, high) as an alternative 
measure of SES (replacing neighborhood quality). We found a significant, negative 
association between educational attainment and lifetime smoking, but there were no 
significant GxE effects (p=.045-.164). The interactions did explain some variance in 
smoking (0.1-0.3%; Supplemental Table S11a), and followed a pattern such that PRSEA 

only had effects on low to medium levels of education, whereas the effect of PRSsmok-noEA 

and PRSallsmok were stronger at higher levels of education. 
 
As a final sensitivity analysis, we repeated the analyses for measures of well-being (see 
Supplementary Table S9b, S10b and S11b). In NTR, higher PGSEA and higher neighborhood 
income significantly predicted more satisfaction with life (R2=1.0% and 2.0%, 
respectively); the effects of PGSallsmok and PGSsmok-noEA were not significant (R2=0.4% and 
0.1%). There were patterns for GxE between neighborhood income and PGSallsmok and 
PGSsmok-noEA (the latter surviving correction for multiple testing), such that the smoking 
PGSs had a negative effect on satisfaction with life only at high neighborhood income 
(both R2<0.1%, p=.017 and p=.008, respectively). In NEMESIS-2, PGSEA was significantly 
negatively related to the risk of having a recent diagnosis of a psychiatric disorder 
(R2=1.2%), as was neighborhood quality (1.1%). The PGSallsmok predicted mental health less 
strongly than the PGSEA (only reaching significance in the models including neighborhood 
quality, R2=0.6%), and the effect of the PGSsmok-noEA on mental health did not reach 
significance (R2=0.4%). There were no GxE patterns for mental health in NEMESIS-2. 
  

The role of socioeconomic status in smoking genetics 

Table 1. Results of the polygenic score (PGS) analyses in the NTR and NEMESIS-2 sample with lifetime smoking 
as outcome. Models include the effects of the PGS based on EA and the PGS based on smoking-without-EA, 
main effects of neighborhood environment (income in NTR; quality in NEMESIS-2), and interaction between 

PGSs and neighborhood. Covariates in all models 0-3b included age, sex, and the first 10 principal components 
for genetic ancestry (parameters estimates for the latter can be found in Supplementary Table S9a and S10a). 
Effects with p<.006 (corrected for 8 independent tests) are bold-faced. Explained variance of the total model is 

given, with the difference to the null model (Δ). 
  Lifetime Smoking NTR (N= 12,584-14,618)1 Lifetime Smoking NEMESIS-2 (N=3,090) 

  b  SE OR p b  SE OR p 

0 Age .706 .021 2.03 1.46E-252 -.125 .083 .883 .133 

 Sex2 -.291 .036 .748 9.46E-16 -.158 .042 .854 2.07E-4 

  R2=11.7% R2=1.9% 

1a  PGSallsmok 0.389 0.019 1.476 <1E-320 0.354 0.042 1.424 <1E-320 

 Age 0.652 0.022 1.919 <1E-320 -0.165 0.043 0.848 1.38E-04 

 Sex -0.273 0.037 1.314 1.41E-13 -0.141 0.084 0.869 0.095 

  R2=16.3% (Δ=4.6%) R2=5.4% (Δ=3.5%) 

1b  PGSEA -0.223 0.020 0.800 <1E-320 -0.462 0.059 0.630 5.33E-15 

 PGSsmok-noEA 0.347 0.019 1.415 <1E-320 0.335 0.058 1.398 8.36E-09 

 Age 0.663 0.022 1.941 <1E-320 -0.169 0.043 0.845 9.49E-05 

 Sex -0.272 0.037 1.313 1.84E-13 -0.138 0.084 0.871 0.100 

  R2=16.8% (Δ=5.1%) R2=4.9%(Δ=3.0%) 

2a  PGSallsmok 0.396 0.022 1.486 <1E-320 0.354 0.042 1.425 <1E-320 

 Neighborhood  -0.158 0.023 0.854 1.77E-11 0.071 0.042 1.073 0.091 

 Age 0.798 0.028 2.222 <1E-320 -0.167 0.043 0.846 1.19E-04 

 Sex -0.273 0.043 1.314 1.89E-10 -0.148 0.084 0.863 0.080 

  R2=18.2% (Δ=6.5%) R2=5.6% (Δ=3.7%) 

2b  PGSEA -0.196 0.022 0.822 <1E-320 -0.461 0.059 0.631 6.44E-15 

 PGSsmok-noEA 0.359 0.022 1.432 <1E-320 0.336 0.058 1.399 7.91E-9 

 Neighborhood -0.145 0.023 0.865 5.32E-10 0.064 0.042 1.067 0.123 

 Age 0.804 0.028 2.235 <1E-320 -0.171 0.043 0.843 8.40E-05 

 Sex -0.272 0.043 1.312 2.56E-10 -0.145 0.084 0.865 0.086 

  R2=18.4% (Δ=6.7%) R2=5.2% (Δ=3.3%) 

3a PGSallsmok 0.396 0.022 1.485 <1E-320 0.354 0.042 1.425 <1E-320 

 Neighborhood -0.157 0.023 0.855 1.39E-11 0.070 0.041 1.073 0.091 

 PGSallsmok * neigh -0.044 0.021 0.956 0.033 -0.025 0.048 0.975 0.594 
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One of the aims of the PGSsmok-noEA was to capture genetic variation that was less diluted 
by rGE. As a sensitivity analysis to test if this goal was achieved, we regressed EA and 
neighborhood-SES on the different PGSs (controlling for genetic covariates and sex and 
age; see Table 2). The PGSallsmok and PGSEA significantly predicted educational attainment 
in both NTR and NEMESIS-2. In NTR, PGSallsmok and PGSEA also showed rGE with 
neighborhood income. Crucially, the relationship between PGSsmok-noEA and educational 
attainment was greatly reduced in both samples, and there was no rGE between the 
PGSsmok-noEA and neighborhood-SES. Thus, it seems that we largely succeeded in excluding 
rGE effects by subtracting EA effects from the smoking PGS. 
 
Because in NEMESIS-2 there was no main effect of neighborhood quality, chances were 
low that a GxE effect would be detected. As a second sensitivity analysis, we repeated the 
PGS tests with baseline educational attainment (low, medium, high) as an alternative 
measure of SES (replacing neighborhood quality). We found a significant, negative 
association between educational attainment and lifetime smoking, but there were no 
significant GxE effects (p=.045-.164). The interactions did explain some variance in 
smoking (0.1-0.3%; Supplemental Table S11a), and followed a pattern such that PRSEA 

only had effects on low to medium levels of education, whereas the effect of PRSsmok-noEA 

and PRSallsmok were stronger at higher levels of education. 
 
As a final sensitivity analysis, we repeated the analyses for measures of well-being (see 
Supplementary Table S9b, S10b and S11b). In NTR, higher PGSEA and higher neighborhood 
income significantly predicted more satisfaction with life (R2=1.0% and 2.0%, 
respectively); the effects of PGSallsmok and PGSsmok-noEA were not significant (R2=0.4% and 
0.1%). There were patterns for GxE between neighborhood income and PGSallsmok and 
PGSsmok-noEA (the latter surviving correction for multiple testing), such that the smoking 
PGSs had a negative effect on satisfaction with life only at high neighborhood income 
(both R2<0.1%, p=.017 and p=.008, respectively). In NEMESIS-2, PGSEA was significantly 
negatively related to the risk of having a recent diagnosis of a psychiatric disorder 
(R2=1.2%), as was neighborhood quality (1.1%). The PGSallsmok predicted mental health less 
strongly than the PGSEA (only reaching significance in the models including neighborhood 
quality, R2=0.6%), and the effect of the PGSsmok-noEA on mental health did not reach 
significance (R2=0.4%). There were no GxE patterns for mental health in NEMESIS-2. 
  

The role of socioeconomic status in smoking genetics 

Table 1. Results of the polygenic score (PGS) analyses in the NTR and NEMESIS-2 sample with lifetime smoking 
as outcome. Models include the effects of the PGS based on EA and the PGS based on smoking-without-EA, 
main effects of neighborhood environment (income in NTR; quality in NEMESIS-2), and interaction between 

PGSs and neighborhood. Covariates in all models 0-3b included age, sex, and the first 10 principal components 
for genetic ancestry (parameters estimates for the latter can be found in Supplementary Table S9a and S10a). 
Effects with p<.006 (corrected for 8 independent tests) are bold-faced. Explained variance of the total model is 

given, with the difference to the null model (Δ). 
  Lifetime Smoking NTR (N= 12,584-14,618)1 Lifetime Smoking NEMESIS-2 (N=3,090) 

  b  SE OR p b  SE OR p 

0 Age .706 .021 2.03 1.46E-252 -.125 .083 .883 .133 

 Sex2 -.291 .036 .748 9.46E-16 -.158 .042 .854 2.07E-4 

  R2=11.7% R2=1.9% 

1a  PGSallsmok 0.389 0.019 1.476 <1E-320 0.354 0.042 1.424 <1E-320 

 Age 0.652 0.022 1.919 <1E-320 -0.165 0.043 0.848 1.38E-04 

 Sex -0.273 0.037 1.314 1.41E-13 -0.141 0.084 0.869 0.095 

  R2=16.3% (Δ=4.6%) R2=5.4% (Δ=3.5%) 

1b  PGSEA -0.223 0.020 0.800 <1E-320 -0.462 0.059 0.630 5.33E-15 

 PGSsmok-noEA 0.347 0.019 1.415 <1E-320 0.335 0.058 1.398 8.36E-09 

 Age 0.663 0.022 1.941 <1E-320 -0.169 0.043 0.845 9.49E-05 

 Sex -0.272 0.037 1.313 1.84E-13 -0.138 0.084 0.871 0.100 

  R2=16.8% (Δ=5.1%) R2=4.9%(Δ=3.0%) 

2a  PGSallsmok 0.396 0.022 1.486 <1E-320 0.354 0.042 1.425 <1E-320 

 Neighborhood  -0.158 0.023 0.854 1.77E-11 0.071 0.042 1.073 0.091 

 Age 0.798 0.028 2.222 <1E-320 -0.167 0.043 0.846 1.19E-04 

 Sex -0.273 0.043 1.314 1.89E-10 -0.148 0.084 0.863 0.080 

  R2=18.2% (Δ=6.5%) R2=5.6% (Δ=3.7%) 

2b  PGSEA -0.196 0.022 0.822 <1E-320 -0.461 0.059 0.631 6.44E-15 

 PGSsmok-noEA 0.359 0.022 1.432 <1E-320 0.336 0.058 1.399 7.91E-9 

 Neighborhood -0.145 0.023 0.865 5.32E-10 0.064 0.042 1.067 0.123 

 Age 0.804 0.028 2.235 <1E-320 -0.171 0.043 0.843 8.40E-05 

 Sex -0.272 0.043 1.312 2.56E-10 -0.145 0.084 0.865 0.086 

  R2=18.4% (Δ=6.7%) R2=5.2% (Δ=3.3%) 

3a PGSallsmok 0.396 0.022 1.485 <1E-320 0.354 0.042 1.425 <1E-320 

 Neighborhood -0.157 0.023 0.855 1.39E-11 0.070 0.041 1.073 0.091 

 PGSallsmok * neigh -0.044 0.021 0.956 0.033 -0.025 0.048 0.975 0.594 
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 Age  0.799 0.028 2.223 <1E-320 -0.167 0.043 0.846 1.20E-04 

 Sex -0.275 0.043 1.316 1.52E-10 -0.147 0.084 0.863 0.081 

  R2=18.2% (Δ=6.5%) R2=5.6% (Δ=3.7%) 

3b  PGSEA -0.195 0.022 0.823 <1E-320 -0.461 0.059 0.631 7.99E-15 

 PGSsmok-noEA 0.358 0.022 1.430 <1E-320 0.336 0.058 1.399 9.07E-09 

 Neighborhood -0.152 0.023 0.859 8.39E-11 0.083 0.045 1.086 0.064 

 PGSEA * neigh 0.047 0.021 1.048 0.026 0.102 0.062 1.107 0.100 

 PGSsmok-noEA * neigh -0.033 0.021 0.967 0.108 -0.038 0.057 0.963 0.505 

 Age  0.805 0.028 2.236 <1E-320 -0.172 0.043 0.842 7.51E-05 

 Sex -0.272 0.043 1.313 2.44E-10 -0.141 0.084 0.868 0.093 

  R2=18.5% (Δ=6.8%) R2=5.5% (Δ=3.6%) 

1 Due to missingness in the neighborhood measure, model 2 and 3 had a sample size of N= 12,584 
2 Sex was coded 1=male, 2=female 

PGS=polygenic score; allsmok=all smoking; EA=educational attainment; smok-noEA=effects on smoking 
independent from EA; Neighborhood (neigh) = neighborhood characteristics, in NTR neighborhood-level 

income, in NEMESIS-2 neighborhood quality 
 

 
 

Table 2. Relationships between the PGSs and measures of educational attainment and neighborhood-SES, 
controlled for genetic covariates (10 PCs in both samples as well as genotyping batch in NTR) and sex and age. 
The relationships were tested in separate models, so that these models do not control for overlap between the 

PGSs. 

1 Educational attainment. In NTR, 4-level variable with 1=primary school, 2=lower vocational/ lower secondary 
school, 3=intermediate vocational/ intermediate and high secondary school, and 4=higher vocational/ 

university; in NEMESIS-2, 3-level variable with 1=primary/ lower secondary, 2=higher secondary, 3=higher 
professional education. 

2In NTR, a measure of neighborhood-level income; in NEMESIS-2, a survey-based measure of neighborhood 
quality 

* R22 is given for the model excluding age and sex 

  
NTR (N=8,989 for EA and 

N=12,584 for neighborhood) 
NEMESIS-2 (N=3,090) 

  PGSallsmok PGSEA PGSsmok-noEA PGSallsmok PGSEA PGSsmok-noEA 

EA1 b -0.059 0.221 -0.016 -0.08 0.228 -0.031 

 SE 0.009 0.008 0.009 0.015 0.014 0.014 

 p 6.24E-12 2.12E-144 0.070 4.80E-08 2.28E-59 0.030 

 R2* 2.3% 7.7% 1.8% 1.0% 8.1% 0.2% 

Neighborhood2 b -0.039 0.126 -0.011 0.027 0.001 0.025 

 SE 0.010 0.0116 0.0104 0.08 0.019 0.018 

 p 1.63E-04 <5E-300 .281 .147 .950 .177 

 R2 0.6% 2.0% 0.5% 0.3% 0.2% 0.3% 

The role of socioeconomic status in smoking genetics 

Discussion 
This study showed that the genetic signatures for educational attainment (EA) and 
smoking overlap substantially, but EA effects can be disentangled to some extent from 
smoking. After ‘subtracting’ EA effects from the genetic architecture of smoking, still 7.2% 
of the variance in smoking could be explained by SNP effects (as compared to 9.2% before 
subtracting). This suggests that the more ‘direct’ component of the genetic variance is 
important, and not all variance in smoking can be explained through gene-environment 
correlation (rGE) with EA. We showed that the genetic correlations of smoking with EA and 
SES-related traits were reduced after subtracting EA, whereas the correlations with 
smoking traits were less affected. Thus, our approach to subtracting the EA component 
from the genetic architecture of smoking was successful.  
 
Polygenic scores (PGS) based on the regular smoking GWAS (‘all-smoking’), the EA GWAS, 
and the GWAS for smoking independent from overlap with EA (‘smoking-without-EA’) all 
significantly predicted smoking in two independent samples. The PGS for all-smoking 
explained the largest amount of variance in smoking, followed by the PGS for EA. Thus, 
the ‘smoking-without-EA’ effects had lower predictive power, in spite of its substantial 
SNP-heritability and cleaner signal. This lower predictive ability could be simply due to 
loss of statistical power, or might indicate that genetic predisposition for EA actually 
contributes more strongly to smoking than direct genetic smoking effects. This 
suggestion aligns with research showing that genetic risk factors for smoking initiation 
are often of a more general behavioral nature, including for example genes associated 
with risk taking proneness, as compared to risk factors for smoking quantity and nicotine 
dependence, that are more related to the biological effects of smoking (Liu et al. 2019;  
Wang and Li 2010;  Karlsson Linnér et al. 2019). However, it should be noted that it is likely 
that we also subtracted some ‘real’ smoking effects in our smoking-without-EA factor. For 
example, if a variant causes lifetime smoking, and smoking in turn causes lower EA (or 
vice versa; Gage et al. 2018;  Gage et al. 2020), subtracting EA would eliminate the effect 
of that smoking variant. Such mechanisms may have contributed to the lower genetic 
signal in the smoking-without-EA GWAS, and the lower predictive power of its PGS. 
 
For mental health we observed a contribution of genetic effects for EA, but no effects of 
the direct-smoking PGS, suggesting that these PGSs indeed captured what was 
purported. The variance explained by the EA PGS was higher than the variance explained 
by the all-smoking PGS, which captured both EA and smoking effects, which shows that 
taking into account genetic smoking effects diluted rather than strengthened the 
predictive power. This could indicate that previously observed (genetic) associations 
between smoking and mental health outcomes (Jang et al. 2020) could be explained in 
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Table 2. Relationships between the PGSs and measures of educational attainment and neighborhood-SES, 
controlled for genetic covariates (10 PCs in both samples as well as genotyping batch in NTR) and sex and age. 
The relationships were tested in separate models, so that these models do not control for overlap between the 

PGSs. 

1 Educational attainment. In NTR, 4-level variable with 1=primary school, 2=lower vocational/ lower secondary 
school, 3=intermediate vocational/ intermediate and high secondary school, and 4=higher vocational/ 

university; in NEMESIS-2, 3-level variable with 1=primary/ lower secondary, 2=higher secondary, 3=higher 
professional education. 

2In NTR, a measure of neighborhood-level income; in NEMESIS-2, a survey-based measure of neighborhood 
quality 

* R22 is given for the model excluding age and sex 

  
NTR (N=8,989 for EA and 

N=12,584 for neighborhood) 
NEMESIS-2 (N=3,090) 

  PGSallsmok PGSEA PGSsmok-noEA PGSallsmok PGSEA PGSsmok-noEA 

EA1 b -0.059 0.221 -0.016 -0.08 0.228 -0.031 

 SE 0.009 0.008 0.009 0.015 0.014 0.014 

 p 6.24E-12 2.12E-144 0.070 4.80E-08 2.28E-59 0.030 

 R2* 2.3% 7.7% 1.8% 1.0% 8.1% 0.2% 

Neighborhood2 b -0.039 0.126 -0.011 0.027 0.001 0.025 

 SE 0.010 0.0116 0.0104 0.08 0.019 0.018 

 p 1.63E-04 <5E-300 .281 .147 .950 .177 

 R2 0.6% 2.0% 0.5% 0.3% 0.2% 0.3% 

The role of socioeconomic status in smoking genetics 

Discussion 
This study showed that the genetic signatures for educational attainment (EA) and 
smoking overlap substantially, but EA effects can be disentangled to some extent from 
smoking. After ‘subtracting’ EA effects from the genetic architecture of smoking, still 7.2% 
of the variance in smoking could be explained by SNP effects (as compared to 9.2% before 
subtracting). This suggests that the more ‘direct’ component of the genetic variance is 
important, and not all variance in smoking can be explained through gene-environment 
correlation (rGE) with EA. We showed that the genetic correlations of smoking with EA and 
SES-related traits were reduced after subtracting EA, whereas the correlations with 
smoking traits were less affected. Thus, our approach to subtracting the EA component 
from the genetic architecture of smoking was successful.  
 
Polygenic scores (PGS) based on the regular smoking GWAS (‘all-smoking’), the EA GWAS, 
and the GWAS for smoking independent from overlap with EA (‘smoking-without-EA’) all 
significantly predicted smoking in two independent samples. The PGS for all-smoking 
explained the largest amount of variance in smoking, followed by the PGS for EA. Thus, 
the ‘smoking-without-EA’ effects had lower predictive power, in spite of its substantial 
SNP-heritability and cleaner signal. This lower predictive ability could be simply due to 
loss of statistical power, or might indicate that genetic predisposition for EA actually 
contributes more strongly to smoking than direct genetic smoking effects. This 
suggestion aligns with research showing that genetic risk factors for smoking initiation 
are often of a more general behavioral nature, including for example genes associated 
with risk taking proneness, as compared to risk factors for smoking quantity and nicotine 
dependence, that are more related to the biological effects of smoking (Liu et al. 2019;  
Wang and Li 2010;  Karlsson Linnér et al. 2019). However, it should be noted that it is likely 
that we also subtracted some ‘real’ smoking effects in our smoking-without-EA factor. For 
example, if a variant causes lifetime smoking, and smoking in turn causes lower EA (or 
vice versa; Gage et al. 2018;  Gage et al. 2020), subtracting EA would eliminate the effect 
of that smoking variant. Such mechanisms may have contributed to the lower genetic 
signal in the smoking-without-EA GWAS, and the lower predictive power of its PGS. 
 
For mental health we observed a contribution of genetic effects for EA, but no effects of 
the direct-smoking PGS, suggesting that these PGSs indeed captured what was 
purported. The variance explained by the EA PGS was higher than the variance explained 
by the all-smoking PGS, which captured both EA and smoking effects, which shows that 
taking into account genetic smoking effects diluted rather than strengthened the 
predictive power. This could indicate that previously observed (genetic) associations 
between smoking and mental health outcomes (Jang et al. 2020) could be explained in 
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part through genetic overlap between smoking and EA on the one hand and mental health 
and EA on the other. Overall, it seems that pleiotropy of genetic variants associated with 
EA play an important role in both smoking and mental health (Marees et al. 2020). 
 
We further investigated the possibility that the different PGSs would show different 
profiles of GxE with environmental risk for smoking. If rGE between genetic effects on 
smoking and EA decreases the chance for detecting GxE, the PGS for smoking-without-EA 
(PGSsmok-noEA) should be more sensitive to detect GxE. Alternatively, there was a possibility 
that people with a genetic susceptibility for a lower EA (PGSEA) would be more susceptible 
to environmental risk for smoking. Thus, we tested GxE of the PGSsmok-noEA and PGSEA with 
neighborhood quality. None of the interactions survived correction for multiple testing, 
but there were suggestive effects that contributed some explained variance. Specifically, 
in NTR, a high PGSallsmok was more likely to lead to smoking in lower-income 
neighborhoods, and a high PGSEA was more likely to buffer against smoking in such 
neighborhoods. In NEMESIS-2, neighborhood quality had no main or interaction effects, 
so we used educational attainment as a proxy for SES. Here, a high PGSsmok-noEA was more 
likely to result in smoking for people with a higher educational attainment, whereas there 
were no differences between smokers and non-smokers in PGSsmok-noEA at low educational 
attainment. If neighborhood income and EA are regarded as aspects of the same 
underlying construct of SES, the GxE patterns in NTR and NEMESIS-2 are incongruent (low 
SES amplified the PGS effects in NTR whereas high SES amplified PGS effects in NEMESIS-
2). Furthermore, in NTR both smoking PGSs only had an effect on satisfaction with life at 
high neighborhood income, whereas no such GxE effects on mental health were observed 
in NEMESIS-2. These inconsistencies could suggest that GxE effects are specific to different 
aspects of the same environmental exposure (although alternative explanations, such as 
sample differences, are also possible). There were no clear patterns that could be 
discerned across samples and outcomes; the results did not clearly align with general 
models of differential susceptibility (Belsky and Pluess 2009) and did not show consistent 
differences between the type of PGS. 
 
Important limitations of this study include the focus on smoking status rather than 
smoking quantity or nicotine dependence, which are more in-depth measures of smoking 
behavior and have been shown to be more heritable (Vink et al. 2005). However, given the 
need for statistical power we chose not to limit our analyses to sub samples of smokers, 
but rather used a general phenotype that was available for larger groups. Our use of the 
maximum sample size from the discovery sample (UK Biobank) and two independent 
target samples (NTR and NEMESIS-2) resulted in high power levels. Although the NEMESIS-
2 sample size was limited, it included high-quality measures (especially of mental health), 
making it a valuable addition. The self-reported neighborhood quality measure did not 
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predict smoking, which is not in line with previous literature. This could suggest that this 
measure does not reliably capture the neighborhood quality construct. Potentially, 
feelings toward the neighborhood constitute something inherently different than actual 
affluence (Wen et al. 2006;  de Vries et al. 2020). Our use of different measures across the 
samples for SES (neighborhood-level income, self-reported neighborhood quality, and 
individual-level EA) and well-being (satisfaction with life and mental health) could be 
viewed as a limitation. It has certainly complicated the interpretation of the diverse GxE 
patterns that were observed. On the other hand, the use of different measures gives a 
more complete picture of the different aspects of the constructs of interest. It has alerted 
us to the presence of potential differences for specific (GxE) relationships tested. Another 
limitation includes the small effect sizes of the PGSs, which is a common limitation of the 
PGS method resulting from GWAS-identified genetic effects explaining only part of the 
trait. As a final limitation, our Genomic SEM model could not separate genetic effects on 
smoking that went via EA (i.e., were mediated by EA) from the total genetic effects for EA. 
Such ‘mediation’ variants might constitute a measure of vulnerability to EA 
circumstances, capturing the risk that a low EA would result in smoking behavior. A PGS 
based on such variants might be more likely to show interaction with environmental 
circumstances. Future research could aim to capture variants that increase vulnerability 
to an environmental exposure, rather than variants that simply increase the chance of 
being in such an environment.  
 
The findings from this study have some important implications. We showed that, to some 
extent, genetic effects on EA could be subtracted from genetic effects on smoking, 
implying that besides overlap, there is also specificity in the genetic risk for EA and 
smoking. Focusing on specific genetic risk for smoking could improve precision of genetic 
prediction models and provide information on EA-independent etiological processes. 
This study has shown the feasibility and potential usefulness of dividing genetic 
predisposition in sub components, given that the components showed diverging patterns 
of overlap and their PGSs showed different main and interaction effects. This approach 
may be useful in other frameworks where it is important to tease apart pleiotropic and 
rGE effects, such as in Mendelian Randomization. The inconclusive GxE findings add to 
the mixed body of literature on GxE effects in substance use (Pasman et al. 2019). The fact 
that GxE effects did not reach significance and followed no clear pattern across different 
PGSs could be taken to suggest that GxE effects are small and specific to the individual 
relationships tested. The possibility that GxE effects are specific to the exact components 
that are in the PGS and in the environmental exposure opens up new lines for future 
research. Instead of reasoning from an overarching theoretical model (such as diathesis-
stress or differential susceptibility) research could return to the drawing table and focus 
on testing interaction between specific genetic factors (e.g., ‘clean’ genetic risk factors, 
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part through genetic overlap between smoking and EA on the one hand and mental health 
and EA on the other. Overall, it seems that pleiotropy of genetic variants associated with 
EA play an important role in both smoking and mental health (Marees et al. 2020). 
 
We further investigated the possibility that the different PGSs would show different 
profiles of GxE with environmental risk for smoking. If rGE between genetic effects on 
smoking and EA decreases the chance for detecting GxE, the PGS for smoking-without-EA 
(PGSsmok-noEA) should be more sensitive to detect GxE. Alternatively, there was a possibility 
that people with a genetic susceptibility for a lower EA (PGSEA) would be more susceptible 
to environmental risk for smoking. Thus, we tested GxE of the PGSsmok-noEA and PGSEA with 
neighborhood quality. None of the interactions survived correction for multiple testing, 
but there were suggestive effects that contributed some explained variance. Specifically, 
in NTR, a high PGSallsmok was more likely to lead to smoking in lower-income 
neighborhoods, and a high PGSEA was more likely to buffer against smoking in such 
neighborhoods. In NEMESIS-2, neighborhood quality had no main or interaction effects, 
so we used educational attainment as a proxy for SES. Here, a high PGSsmok-noEA was more 
likely to result in smoking for people with a higher educational attainment, whereas there 
were no differences between smokers and non-smokers in PGSsmok-noEA at low educational 
attainment. If neighborhood income and EA are regarded as aspects of the same 
underlying construct of SES, the GxE patterns in NTR and NEMESIS-2 are incongruent (low 
SES amplified the PGS effects in NTR whereas high SES amplified PGS effects in NEMESIS-
2). Furthermore, in NTR both smoking PGSs only had an effect on satisfaction with life at 
high neighborhood income, whereas no such GxE effects on mental health were observed 
in NEMESIS-2. These inconsistencies could suggest that GxE effects are specific to different 
aspects of the same environmental exposure (although alternative explanations, such as 
sample differences, are also possible). There were no clear patterns that could be 
discerned across samples and outcomes; the results did not clearly align with general 
models of differential susceptibility (Belsky and Pluess 2009) and did not show consistent 
differences between the type of PGS. 
 
Important limitations of this study include the focus on smoking status rather than 
smoking quantity or nicotine dependence, which are more in-depth measures of smoking 
behavior and have been shown to be more heritable (Vink et al. 2005). However, given the 
need for statistical power we chose not to limit our analyses to sub samples of smokers, 
but rather used a general phenotype that was available for larger groups. Our use of the 
maximum sample size from the discovery sample (UK Biobank) and two independent 
target samples (NTR and NEMESIS-2) resulted in high power levels. Although the NEMESIS-
2 sample size was limited, it included high-quality measures (especially of mental health), 
making it a valuable addition. The self-reported neighborhood quality measure did not 
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predict smoking, which is not in line with previous literature. This could suggest that this 
measure does not reliably capture the neighborhood quality construct. Potentially, 
feelings toward the neighborhood constitute something inherently different than actual 
affluence (Wen et al. 2006;  de Vries et al. 2020). Our use of different measures across the 
samples for SES (neighborhood-level income, self-reported neighborhood quality, and 
individual-level EA) and well-being (satisfaction with life and mental health) could be 
viewed as a limitation. It has certainly complicated the interpretation of the diverse GxE 
patterns that were observed. On the other hand, the use of different measures gives a 
more complete picture of the different aspects of the constructs of interest. It has alerted 
us to the presence of potential differences for specific (GxE) relationships tested. Another 
limitation includes the small effect sizes of the PGSs, which is a common limitation of the 
PGS method resulting from GWAS-identified genetic effects explaining only part of the 
trait. As a final limitation, our Genomic SEM model could not separate genetic effects on 
smoking that went via EA (i.e., were mediated by EA) from the total genetic effects for EA. 
Such ‘mediation’ variants might constitute a measure of vulnerability to EA 
circumstances, capturing the risk that a low EA would result in smoking behavior. A PGS 
based on such variants might be more likely to show interaction with environmental 
circumstances. Future research could aim to capture variants that increase vulnerability 
to an environmental exposure, rather than variants that simply increase the chance of 
being in such an environment.  
 
The findings from this study have some important implications. We showed that, to some 
extent, genetic effects on EA could be subtracted from genetic effects on smoking, 
implying that besides overlap, there is also specificity in the genetic risk for EA and 
smoking. Focusing on specific genetic risk for smoking could improve precision of genetic 
prediction models and provide information on EA-independent etiological processes. 
This study has shown the feasibility and potential usefulness of dividing genetic 
predisposition in sub components, given that the components showed diverging patterns 
of overlap and their PGSs showed different main and interaction effects. This approach 
may be useful in other frameworks where it is important to tease apart pleiotropic and 
rGE effects, such as in Mendelian Randomization. The inconclusive GxE findings add to 
the mixed body of literature on GxE effects in substance use (Pasman et al. 2019). The fact 
that GxE effects did not reach significance and followed no clear pattern across different 
PGSs could be taken to suggest that GxE effects are small and specific to the individual 
relationships tested. The possibility that GxE effects are specific to the exact components 
that are in the PGS and in the environmental exposure opens up new lines for future 
research. Instead of reasoning from an overarching theoretical model (such as diathesis-
stress or differential susceptibility) research could return to the drawing table and focus 
on testing interaction between specific genetic factors (e.g., ‘clean’ genetic risk factors, 



562882-L-bw-Pasman562882-L-bw-Pasman562882-L-bw-Pasman562882-L-bw-Pasman
Processed on: 4-8-2021Processed on: 4-8-2021Processed on: 4-8-2021Processed on: 4-8-2021 PDF page: 408PDF page: 408PDF page: 408PDF page: 408

408 Part 3 – Chapter 12 

controlled for environmental covariates) and specific environmental factors (e.g., 
housing value). Furthermore, given the evidence for rGE, it seems hardly accurate to 
continue speaking of interaction with the environment, since environmental 
circumstances are not actually something separate from the individual and their genetic 
make-up. Future research should be increasingly conscious about the meaning of 
statistical choices to model components as G, E, rGE, or GxE, and, preferably, test them 
concurrently. 
 
Concluding, we show overlap and specificity in the genetic etiology of educational 
attainment and smoking. Gene-environment correlation plays an important role in the 
etiology of smoking. Evidence for gene-environment interaction was limited, but we 
showed the feasibility of the approach of modeling GxE using ‘partitioned’ genetic risk 
factors as a tool to investigate questions of overlap and interplay. Approaches such as 
those could contribute to further disentangling the knot of genetic and environmental 
factors in the etiology of smoking and other complex traits, while providing further insight 
into where they overlap and interact. 
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Summary 
In this thesis, I presented studies aimed at discovering genes for substance use and 
leveraging gene findings to answer new research questions on causal relationships and 
gene-environment interplay. The gene discovery studies took place in a context of rapidly 
developing technological and methodological advances in combination with expanding 
sample sizes of accessible data sets, that enabled the adoption of increasingly 
sophisticated methods. I started out with an adaptation of the traditional candidate-gene 
design, strengthening it by using larger samples, a within-study replication, an instrument 
that combined several variants in multiple genes, and a phenotype that summarized 
multiple substance use traits (chapter 2). Despite these efforts to increase power, no 
associations were detected between the candidate-gene instrument and substance use 
in my main analyses, nor in any of the sensitivity tests. These null findings, however, do 
not imply that genetic variants are irrelevant to substance use. Rather, the null results are 
likely due to the fact that this study did not tackle two crucial limitations of the candidate-
gene design. First, candidate-genes are selected based on a body of literature that is full 
of false positives and has largely overlooked variants that we now know are important 
contributors. Second, candidate-gene studies have typically only looked at a few genetic 
variants, whereas their effects are likely so small that they cannot be detected with the 
employed sample sizes (Border et al., 2019; Duncan & Keller, 2011; Duncan, Ostacher, & 
Ballon, 2019; Johnson et al., 2017).  
 
For my next study we therefore adopted a hypothesis-free design (genome-wide 
association study [GWAS], chapter 3), scanning the whole genome for associations 
between genetic variants and lifetime cannabis use. The sample size of this study was 
substantially larger than the one for my first study, with N=184,765. Indeed, this GWAS 
identified a number of variants and genes that were associated with the chance that 
someone had used cannabis. The top-gene was CADM2, a gene important for neural 
connectivity. In a next study we combined the results from this GWAS with those from 
other substance use GWASs to identify latent genetic factors underlying common 
substance use vulnerability (chapter 4), thereby increasing the power for discovery even 
further. We replicated and extended on gene findings for substance use traits from 
previous studies, and discovered new variants for more general substance use liability. 
 
Findings from gene discovery studies have been and are being leveraged in a number of 
ways. First, follow-up research on specific variants and genes can be conducted. For 
example, our cannabis GWAS identified the CADM2 gene as the main risk gene for cannabis 
use. This has led to numerous follow-up studies, including the ‘reversed-candidate-gene 
studies’ presented in chapter 5 and 6. In these studies we select the CADM2 gene as a 
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candidate based on the results of the hypothesis-free scans of the whole genome instead 
of selective theoretical literature, and tested the association between this gene and a 
plethora of (risky) behavioral outcomes. Given that we already have some knowledge 
about the function of this gene, findings provide us with clues on the underlying biology 
of these traits.  As an additional advantage, power levels are higher because we take the 
variants in one gene as our starting point rather than the whole genome, reducing the 
multiple testing burden. We showed the wide involvement of the CADM2 gene in risk 
behavior and other (health) behaviors.  
 
Second, GWAS results can be used to investigate the genetic overlap between traits. In 
chapter 3 we used this method to show that if someone is genetically vulnerable to start 
using cannabis, they are more likely to be genetically vulnerable to other kinds of 
substance use and mental health disorders. In chapter 4, we used these patterns of 
genetic overlap to identify latent genetic factors, including general vulnerability to 
substance dependence. Subsequently, we showed that the substance use dependence 
factor overlapped with genetic risk for a large number of unfavorable outcomes, including 
psychiatric disorders, physical health issues, and lower cognitive function. In chapter 7 
we show genetic overlap between insomnia and substance use, and in chapter 8 between 
subcortical brain region volumes and substance use.  
 
Third, variants identified in a GWAS can be used as instruments to test causal 
relationships. As genetic variants are randomly distributed across the population and 
they cannot be influenced by confounders, they are suitable instruments to test causality 
in a Mendelian Randomization design (MR). With MR studies we can use variants identified 
by GWASs as instrumental variables to test fundamental questions on what causes what, 
providing unique information on risk factors for and consequences of substance use. 
Using this design we showed a causal effect of schizophrenia liability on lifetime cannabis 
use (chapter 3), with only weak evidence for an effect of cannabis use risk on 
schizophrenia. In chapter 4 we found some support for causal effects of liability to 
substance dependence on ADHD and other psychiatric disorders. In the other direction, 
there was evidence that liability to ADHD and schizophrenia can cause substance 
dependence. For insomnia, I found that risk for insomnia causally affected smoking, 
alcohol dependence, and cannabis initiation, whereas in the other direction there was 
strong evidence only for a causal effect of smoking initiation risk on insomnia (chapter 7). 
In chapter 8 we found that genetic liability for alcohol dependence decreased amygdala 
and hippocampal volume, and that smoking liability decreased hippocampal volume. In 
the other direction, there was no strong evidence for causal effects of subcortical brain 
region volumes on substance use. 
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Summary 
In this thesis, I presented studies aimed at discovering genes for substance use and 
leveraging gene findings to answer new research questions on causal relationships and 
gene-environment interplay. The gene discovery studies took place in a context of rapidly 
developing technological and methodological advances in combination with expanding 
sample sizes of accessible data sets, that enabled the adoption of increasingly 
sophisticated methods. I started out with an adaptation of the traditional candidate-gene 
design, strengthening it by using larger samples, a within-study replication, an instrument 
that combined several variants in multiple genes, and a phenotype that summarized 
multiple substance use traits (chapter 2). Despite these efforts to increase power, no 
associations were detected between the candidate-gene instrument and substance use 
in my main analyses, nor in any of the sensitivity tests. These null findings, however, do 
not imply that genetic variants are irrelevant to substance use. Rather, the null results are 
likely due to the fact that this study did not tackle two crucial limitations of the candidate-
gene design. First, candidate-genes are selected based on a body of literature that is full 
of false positives and has largely overlooked variants that we now know are important 
contributors. Second, candidate-gene studies have typically only looked at a few genetic 
variants, whereas their effects are likely so small that they cannot be detected with the 
employed sample sizes (Border et al., 2019; Duncan & Keller, 2011; Duncan, Ostacher, & 
Ballon, 2019; Johnson et al., 2017).  
 
For my next study we therefore adopted a hypothesis-free design (genome-wide 
association study [GWAS], chapter 3), scanning the whole genome for associations 
between genetic variants and lifetime cannabis use. The sample size of this study was 
substantially larger than the one for my first study, with N=184,765. Indeed, this GWAS 
identified a number of variants and genes that were associated with the chance that 
someone had used cannabis. The top-gene was CADM2, a gene important for neural 
connectivity. In a next study we combined the results from this GWAS with those from 
other substance use GWASs to identify latent genetic factors underlying common 
substance use vulnerability (chapter 4), thereby increasing the power for discovery even 
further. We replicated and extended on gene findings for substance use traits from 
previous studies, and discovered new variants for more general substance use liability. 
 
Findings from gene discovery studies have been and are being leveraged in a number of 
ways. First, follow-up research on specific variants and genes can be conducted. For 
example, our cannabis GWAS identified the CADM2 gene as the main risk gene for cannabis 
use. This has led to numerous follow-up studies, including the ‘reversed-candidate-gene 
studies’ presented in chapter 5 and 6. In these studies we select the CADM2 gene as a 
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candidate based on the results of the hypothesis-free scans of the whole genome instead 
of selective theoretical literature, and tested the association between this gene and a 
plethora of (risky) behavioral outcomes. Given that we already have some knowledge 
about the function of this gene, findings provide us with clues on the underlying biology 
of these traits.  As an additional advantage, power levels are higher because we take the 
variants in one gene as our starting point rather than the whole genome, reducing the 
multiple testing burden. We showed the wide involvement of the CADM2 gene in risk 
behavior and other (health) behaviors.  
 
Second, GWAS results can be used to investigate the genetic overlap between traits. In 
chapter 3 we used this method to show that if someone is genetically vulnerable to start 
using cannabis, they are more likely to be genetically vulnerable to other kinds of 
substance use and mental health disorders. In chapter 4, we used these patterns of 
genetic overlap to identify latent genetic factors, including general vulnerability to 
substance dependence. Subsequently, we showed that the substance use dependence 
factor overlapped with genetic risk for a large number of unfavorable outcomes, including 
psychiatric disorders, physical health issues, and lower cognitive function. In chapter 7 
we show genetic overlap between insomnia and substance use, and in chapter 8 between 
subcortical brain region volumes and substance use.  
 
Third, variants identified in a GWAS can be used as instruments to test causal 
relationships. As genetic variants are randomly distributed across the population and 
they cannot be influenced by confounders, they are suitable instruments to test causality 
in a Mendelian Randomization design (MR). With MR studies we can use variants identified 
by GWASs as instrumental variables to test fundamental questions on what causes what, 
providing unique information on risk factors for and consequences of substance use. 
Using this design we showed a causal effect of schizophrenia liability on lifetime cannabis 
use (chapter 3), with only weak evidence for an effect of cannabis use risk on 
schizophrenia. In chapter 4 we found some support for causal effects of liability to 
substance dependence on ADHD and other psychiatric disorders. In the other direction, 
there was evidence that liability to ADHD and schizophrenia can cause substance 
dependence. For insomnia, I found that risk for insomnia causally affected smoking, 
alcohol dependence, and cannabis initiation, whereas in the other direction there was 
strong evidence only for a causal effect of smoking initiation risk on insomnia (chapter 7). 
In chapter 8 we found that genetic liability for alcohol dependence decreased amygdala 
and hippocampal volume, and that smoking liability decreased hippocampal volume. In 
the other direction, there was no strong evidence for causal effects of subcortical brain 
region volumes on substance use. 
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Finally, variants discovered in a GWAS can be taken together in a polygenic (risk) score. A 
polygenic score (PGS) counts and weights risk variants in an independent sample, 
resulting in an individual-level genetic risk profile. This approach can be used to 
investigate a myriad of interesting research questions. In chapter 9 I reviewed studies that 
have used polygenic scores to test gene-environment interplay. In gene-environment 
interaction (GxE), environmental circumstances moderate the effect of genetic 
predisposition, such that genetic predisposition comes to expression more strongly in 
certain circumstances. My review shows that a) modern PGS methods outperform 
traditional candidate-gene GxE methods, b) the quality of GxE studies can still be much 
improved, c) the evidence of GxE in substance use is still limited, and d) the possibility of 
gene-environment correlation (rGE) is insufficiently accounted for in these studies.  
 
It is interesting to view the results from chapter 9 against the background of changing 
perspectives in the field of behavior genetics. When I started my PhD, much was expected 
from GxE research: it was viewed as one of the possible solutions to the missing 
heritability problem (Manolio et al., 2009) and was thought to play a key role in virtually 
all behavioral traits (Manuck & Mccaffery, 2014). However, in more recent years it has 
become clear that the power levels that we currently reach in our GWAS and PGS studies 
are often hardly sufficient to detect statistical interactions, which is apparent from the 
results from chapter 9. It seems that GxE effects are minuscule or even absent in many 
cases where they had been predicted to be widespread. Consequently, it seems that 
research attention for GxE has become more subdued. On the other hand, there has been 
a shift toward more attention for rGE. In 2018 a paper called ‘The nature of nurture’ 
sparked great research interest into what was called ‘genetic nurturing,’ or rGE with the 
parenting environment (Kong et al., 2018). A method was presented to distinguish 
between direct genetic and rGE effects from a PGS. The authors showed that parental 
genetic make-up for educational attainment influences offspring educational attainment 
not only through overlap with offspring genetic make-up, but also through shaping the 
(socioeconomic) environment of their offspring. These genetic nurturing effects were 
quite substantial and also contributed to smoking behavior in this study. Although an 
innovative and promising method, this modeling of parental genotypes does not (yet) 
integrate possible GxE effects.  
 
Following these developments, in my next studies I aimed to simultaneously investigate 
the effects of rGE and GxE on substance use. In chapter 10 I investigated the interaction 
as well as the correlation between PGSs for substance use and the neighborhood 
environment. Results were somewhat mixed, showing little evidence for GxE and 
unexpected suggestions for correlations between the PGS and covariates such as age and 
the time period that someone grew up in. Though not providing conclusive evidence for 
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the occurrence of GxE, these findings prompted me to investigate rGE more, as it seemed 
to play some role. In chapter 11 I went a step further and tested rGE and GxE in the same 
model, to assess their relative contribution. I focused on the parent environment this 
time. In this context, rGE effects are likely to occur, for example through the overlap 
between parents’ and offspring’s genetic risk for substance use. In this study I showed 
that parenting behaviors influenced smoking directly, but were also correlated with the 
offspring’s PGS for smoking. Moreover, parenting behaviors interacted with the smoking 
PGS such that they increased the chance that genetic risk led to smoking. For alcohol 
consumption and cannabis initiation there was little evidence for such direct, GxE, or rGE 
effects. An important conclusion from chapters 9 to 11 is that rGE effects are important in 
the etiology of substance use, and are deserving of more research attention. Also, rGE 
effects can impact both the chance of detecting GxE and the interpretation of GxE findings 
(Rathouz, Van Hulle, Rodgers, Waldman, & Lahey, 2008). I did not find evidence that 
controlling for rGE greatly increased the chance of detecting GxE, but rather that GxE and 
rGE can occur simultaneously for the same G and E factors. New insight is to be gained 
from these findings. Environmental influences do not operate independently from 
genetic factors, and show complex interplay in the etiology of substance use.  
 
In my final chapter 12 I aimed to further disentangle this complex interplay between 
genetic and environmental factors. In all studies that I reviewed in chapter 9, the G factors 
used to test GxE effects were based on ‘main effects’ findings. In other words, the genetic 
variants used to measure G had all shown to have a direct relationship with substance 
use, either in a candidate-gene study or a GWAS. However, gene finding studies cannot 
discriminate in pathways through which a variant has an effect. GWAS results are diluted 
by signal for related traits (e.g., a GWAS on lung cancer will pick up variants associated 
with smoking) and signal for environmental circumstances (e.g., a smoking GWAS will pick 
up variants associated with the socioeconomic environment and level of education). 
Aiming to disentangle some of these effects for smoking, in chapter 12 I performed GWASs 
capturing genetic effects on smoking, on educational attainment, and on smoking 
independently from overlap with genetic effects on educational attainment. I showed that 
PGSs based on educational attainment and on smoking-without-education predicted 
smoking independently. To assess the possibility that either of those PGS effects were 
more likely to be augmented by environmental risk factors, I tested GxE with indicators of 
neighborhood socioeconomic status. I detected some hints for GxE effects, but these did 
not follow a distinct pattern per PGS type, nor were they consistent across different 
samples and measures. This paper showed the feasibility of partitioning the PGS for 
smoking into different components with distinct predictive profiles, although it remained 
unclear if this approach can help us to uncover reliable GxE mechanisms. 
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Finally, variants discovered in a GWAS can be taken together in a polygenic (risk) score. A 
polygenic score (PGS) counts and weights risk variants in an independent sample, 
resulting in an individual-level genetic risk profile. This approach can be used to 
investigate a myriad of interesting research questions. In chapter 9 I reviewed studies that 
have used polygenic scores to test gene-environment interplay. In gene-environment 
interaction (GxE), environmental circumstances moderate the effect of genetic 
predisposition, such that genetic predisposition comes to expression more strongly in 
certain circumstances. My review shows that a) modern PGS methods outperform 
traditional candidate-gene GxE methods, b) the quality of GxE studies can still be much 
improved, c) the evidence of GxE in substance use is still limited, and d) the possibility of 
gene-environment correlation (rGE) is insufficiently accounted for in these studies.  
 
It is interesting to view the results from chapter 9 against the background of changing 
perspectives in the field of behavior genetics. When I started my PhD, much was expected 
from GxE research: it was viewed as one of the possible solutions to the missing 
heritability problem (Manolio et al., 2009) and was thought to play a key role in virtually 
all behavioral traits (Manuck & Mccaffery, 2014). However, in more recent years it has 
become clear that the power levels that we currently reach in our GWAS and PGS studies 
are often hardly sufficient to detect statistical interactions, which is apparent from the 
results from chapter 9. It seems that GxE effects are minuscule or even absent in many 
cases where they had been predicted to be widespread. Consequently, it seems that 
research attention for GxE has become more subdued. On the other hand, there has been 
a shift toward more attention for rGE. In 2018 a paper called ‘The nature of nurture’ 
sparked great research interest into what was called ‘genetic nurturing,’ or rGE with the 
parenting environment (Kong et al., 2018). A method was presented to distinguish 
between direct genetic and rGE effects from a PGS. The authors showed that parental 
genetic make-up for educational attainment influences offspring educational attainment 
not only through overlap with offspring genetic make-up, but also through shaping the 
(socioeconomic) environment of their offspring. These genetic nurturing effects were 
quite substantial and also contributed to smoking behavior in this study. Although an 
innovative and promising method, this modeling of parental genotypes does not (yet) 
integrate possible GxE effects.  
 
Following these developments, in my next studies I aimed to simultaneously investigate 
the effects of rGE and GxE on substance use. In chapter 10 I investigated the interaction 
as well as the correlation between PGSs for substance use and the neighborhood 
environment. Results were somewhat mixed, showing little evidence for GxE and 
unexpected suggestions for correlations between the PGS and covariates such as age and 
the time period that someone grew up in. Though not providing conclusive evidence for 
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the occurrence of GxE, these findings prompted me to investigate rGE more, as it seemed 
to play some role. In chapter 11 I went a step further and tested rGE and GxE in the same 
model, to assess their relative contribution. I focused on the parent environment this 
time. In this context, rGE effects are likely to occur, for example through the overlap 
between parents’ and offspring’s genetic risk for substance use. In this study I showed 
that parenting behaviors influenced smoking directly, but were also correlated with the 
offspring’s PGS for smoking. Moreover, parenting behaviors interacted with the smoking 
PGS such that they increased the chance that genetic risk led to smoking. For alcohol 
consumption and cannabis initiation there was little evidence for such direct, GxE, or rGE 
effects. An important conclusion from chapters 9 to 11 is that rGE effects are important in 
the etiology of substance use, and are deserving of more research attention. Also, rGE 
effects can impact both the chance of detecting GxE and the interpretation of GxE findings 
(Rathouz, Van Hulle, Rodgers, Waldman, & Lahey, 2008). I did not find evidence that 
controlling for rGE greatly increased the chance of detecting GxE, but rather that GxE and 
rGE can occur simultaneously for the same G and E factors. New insight is to be gained 
from these findings. Environmental influences do not operate independently from 
genetic factors, and show complex interplay in the etiology of substance use.  
 
In my final chapter 12 I aimed to further disentangle this complex interplay between 
genetic and environmental factors. In all studies that I reviewed in chapter 9, the G factors 
used to test GxE effects were based on ‘main effects’ findings. In other words, the genetic 
variants used to measure G had all shown to have a direct relationship with substance 
use, either in a candidate-gene study or a GWAS. However, gene finding studies cannot 
discriminate in pathways through which a variant has an effect. GWAS results are diluted 
by signal for related traits (e.g., a GWAS on lung cancer will pick up variants associated 
with smoking) and signal for environmental circumstances (e.g., a smoking GWAS will pick 
up variants associated with the socioeconomic environment and level of education). 
Aiming to disentangle some of these effects for smoking, in chapter 12 I performed GWASs 
capturing genetic effects on smoking, on educational attainment, and on smoking 
independently from overlap with genetic effects on educational attainment. I showed that 
PGSs based on educational attainment and on smoking-without-education predicted 
smoking independently. To assess the possibility that either of those PGS effects were 
more likely to be augmented by environmental risk factors, I tested GxE with indicators of 
neighborhood socioeconomic status. I detected some hints for GxE effects, but these did 
not follow a distinct pattern per PGS type, nor were they consistent across different 
samples and measures. This paper showed the feasibility of partitioning the PGS for 
smoking into different components with distinct predictive profiles, although it remained 
unclear if this approach can help us to uncover reliable GxE mechanisms. 
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Strengths and limitations 
The main strength of this dissertation lies in the flexibility and adaptability of my research 
questions and methods. In several ways I have reacted to shifts in the field of behavior 
genetics. I started out with a candidate-gene study when many drawbacks of the design 
were already known, but there was still hope that it could be redeemed by strengthening 
the design (using larger samples, combining variants, in-study replication). However, 
even with these improvements no associations were found in my first study. Originally, I 
had planned to follow-up on my first study by testing the same candidate-gene score on 
different phenotypes and in GxE designs. However, in the meantime new studies came 
out pointing out the problems associated with the very foundation of the candidate-gene 
method (Border et al., 2019; Duncan et al., 2019; Johnson et al., 2017), and I decided to 
abandon this approach.  
 
I stepped into the field of the GWAS by joining the International Cannabis Consortium. 
GWASs were popping up for every thinkable phenotype with a speed uncommon to the 
field of the social sciences, where I was rooted. Our cannabis GWAS resulted in interesting 
gene discoveries and has become widely cited in the field. However, GWASs come with 
their own limitations, including the large multiple testing burden, dilution by 
environmental signal, and shallow phenotyping. An important strength of my thesis is 
that I circumvented or even exploited these limitations, while taking advantage of the 
invaluable information that GWASs provide. For example, based on the GWAS literature I 
could conduct empirical, ‘reversed’ candidate-gene studies. Given the fact that I 
conducted the trait-association tests gene-wide instead of genome-wide the multiple 
testing burden was greatly reduced, so that I could also include more in-depth 
phenotypes from smaller samples. Furthermore, I capitalized on multivariate GWAS 
methods to increase power for discovery. By combining different GWASs, signal strength 
could be increased while at the same time transcending the limitations from any specific 
source GWAS. Finally, I investigated dilution by environmental signal (rGE) and used it to 
answer research questions on gene-environment interplay, rather than simply viewing it 
as a limitation to the GWAS method. 
 
All these studies rely heavily on another development that forms the backbone and major 
strength of the field: the increasing preparedness of governments, institutions, and 
scientists to share both their research findings and their data. The chief example is the 
publication of the UK-Biobank dataset, that I have used for 9 of the chapters in this thesis. 
The UK-Biobank is a governmentally funded dataset including ~500,000 individuals from 
the UK, providing a tremendous amount of biological and phenotypic data (Bycroft et al., 
2018). It can be accessed by the international scientific community to investigate public 
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health questions, and has caused a true revolution in the field of behavior genetics. This 
increased availability of datasets suited for GWAS has led to a shift in the field. Instead of 
elementary GWAS analyses, that everyone in principle could now conduct, the focus is 
now more on in-depth research into a wide range of topics, of which my thesis chapters 
form only one example. Another dataset that I have gratefully mined is that from the 
Netherlands Twin Register (Ligthart et al., 2019; Willemsen et al., 2013), that includes 
genetic and longitudinal in-depth measures on a wealth of (mental) health and behavioral 
traits for over 20,000 twins and their family members. Given the small effect sizes that are 
the topic of our research, large samples are the prerequisite for conducting genetic 
studies. Without this preparedness to share in the mammoth efforts of collecting all these 
data and making it accessible, the majority of behavior genetics studies that have been 
published in the last decade could not have been conducted. We are all standing on the 
shoulders of giant(dataset)s. 
 
Still, some limitations of the GWAS method are not easily evaded. For example, the GWASs 
that I used have only focused on common genetic variants while excluding rare and non-
SNP variants. It has been suggested that including more participants and more genetic 
variants could solve the problem of missing heritability (Manolio et al., 2009). Indeed, an 
exciting paper has recently come out that demonstrates this for height and BMI, where 
virtually all the genetic contribution estimated by twin studies could be explained by 
sequencing the whole genome (about 47 million variants instead of a subset of ~10 million 
common SNPs as is usually done) in a sample of almost 22,000 people (Wainschtein et al., 
2019). Thus, the exclusion of rare variants in the GWAS that I used indeed form an 
important limitation. Likewise, in none of my studies I have taken into account the 
possibility of interaction between genetic variants or pathways, which could be 
widespread across the genome (Mackay & Moore, 2014). However, such effects are likely 
to be minute and will probably not explain much of the differences in substance use 
behavior between individuals (Hivert et al., 2020). 
 
Also, some of my studies focused on shallow phenotypes (e.g., chapters 3, 7), although in 
others I was able to include more in-depth traits (e.g., chapters 5, 6, 11). This limitation is 
common to many GWASs. In order to achieve samples as large as possible to maximize 
statistical power, GWAS often use measures from large population databases. The 
strength of such databases is that they include a plethora of measures that are potentially 
interesting for scientists from all thinkable fields, but to limit the burden for both 
researchers and participants the surveys cannot go into great depth for each single 
measure. Furthermore, many GWASs meta-analyze slightly different measures from 
several (smaller) samples, which can result in imprecise phenotypes. These issues have 
often been acknowledged, but so far increasing sample size is prioritized over deep 
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Strengths and limitations 
The main strength of this dissertation lies in the flexibility and adaptability of my research 
questions and methods. In several ways I have reacted to shifts in the field of behavior 
genetics. I started out with a candidate-gene study when many drawbacks of the design 
were already known, but there was still hope that it could be redeemed by strengthening 
the design (using larger samples, combining variants, in-study replication). However, 
even with these improvements no associations were found in my first study. Originally, I 
had planned to follow-up on my first study by testing the same candidate-gene score on 
different phenotypes and in GxE designs. However, in the meantime new studies came 
out pointing out the problems associated with the very foundation of the candidate-gene 
method (Border et al., 2019; Duncan et al., 2019; Johnson et al., 2017), and I decided to 
abandon this approach.  
 
I stepped into the field of the GWAS by joining the International Cannabis Consortium. 
GWASs were popping up for every thinkable phenotype with a speed uncommon to the 
field of the social sciences, where I was rooted. Our cannabis GWAS resulted in interesting 
gene discoveries and has become widely cited in the field. However, GWASs come with 
their own limitations, including the large multiple testing burden, dilution by 
environmental signal, and shallow phenotyping. An important strength of my thesis is 
that I circumvented or even exploited these limitations, while taking advantage of the 
invaluable information that GWASs provide. For example, based on the GWAS literature I 
could conduct empirical, ‘reversed’ candidate-gene studies. Given the fact that I 
conducted the trait-association tests gene-wide instead of genome-wide the multiple 
testing burden was greatly reduced, so that I could also include more in-depth 
phenotypes from smaller samples. Furthermore, I capitalized on multivariate GWAS 
methods to increase power for discovery. By combining different GWASs, signal strength 
could be increased while at the same time transcending the limitations from any specific 
source GWAS. Finally, I investigated dilution by environmental signal (rGE) and used it to 
answer research questions on gene-environment interplay, rather than simply viewing it 
as a limitation to the GWAS method. 
 
All these studies rely heavily on another development that forms the backbone and major 
strength of the field: the increasing preparedness of governments, institutions, and 
scientists to share both their research findings and their data. The chief example is the 
publication of the UK-Biobank dataset, that I have used for 9 of the chapters in this thesis. 
The UK-Biobank is a governmentally funded dataset including ~500,000 individuals from 
the UK, providing a tremendous amount of biological and phenotypic data (Bycroft et al., 
2018). It can be accessed by the international scientific community to investigate public 
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health questions, and has caused a true revolution in the field of behavior genetics. This 
increased availability of datasets suited for GWAS has led to a shift in the field. Instead of 
elementary GWAS analyses, that everyone in principle could now conduct, the focus is 
now more on in-depth research into a wide range of topics, of which my thesis chapters 
form only one example. Another dataset that I have gratefully mined is that from the 
Netherlands Twin Register (Ligthart et al., 2019; Willemsen et al., 2013), that includes 
genetic and longitudinal in-depth measures on a wealth of (mental) health and behavioral 
traits for over 20,000 twins and their family members. Given the small effect sizes that are 
the topic of our research, large samples are the prerequisite for conducting genetic 
studies. Without this preparedness to share in the mammoth efforts of collecting all these 
data and making it accessible, the majority of behavior genetics studies that have been 
published in the last decade could not have been conducted. We are all standing on the 
shoulders of giant(dataset)s. 
 
Still, some limitations of the GWAS method are not easily evaded. For example, the GWASs 
that I used have only focused on common genetic variants while excluding rare and non-
SNP variants. It has been suggested that including more participants and more genetic 
variants could solve the problem of missing heritability (Manolio et al., 2009). Indeed, an 
exciting paper has recently come out that demonstrates this for height and BMI, where 
virtually all the genetic contribution estimated by twin studies could be explained by 
sequencing the whole genome (about 47 million variants instead of a subset of ~10 million 
common SNPs as is usually done) in a sample of almost 22,000 people (Wainschtein et al., 
2019). Thus, the exclusion of rare variants in the GWAS that I used indeed form an 
important limitation. Likewise, in none of my studies I have taken into account the 
possibility of interaction between genetic variants or pathways, which could be 
widespread across the genome (Mackay & Moore, 2014). However, such effects are likely 
to be minute and will probably not explain much of the differences in substance use 
behavior between individuals (Hivert et al., 2020). 
 
Also, some of my studies focused on shallow phenotypes (e.g., chapters 3, 7), although in 
others I was able to include more in-depth traits (e.g., chapters 5, 6, 11). This limitation is 
common to many GWASs. In order to achieve samples as large as possible to maximize 
statistical power, GWAS often use measures from large population databases. The 
strength of such databases is that they include a plethora of measures that are potentially 
interesting for scientists from all thinkable fields, but to limit the burden for both 
researchers and participants the surveys cannot go into great depth for each single 
measure. Furthermore, many GWASs meta-analyze slightly different measures from 
several (smaller) samples, which can result in imprecise phenotypes. These issues have 
often been acknowledged, but so far increasing sample size is prioritized over deep 
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phenotyping (e.g., Howard et al., 2019; Liu et al., 2019). Although it seems that increasing 
sample size does help to reduce noise from imprecise phenotypes (Oexle, 2018), there is 
likely to be some trade-off between power and precision. Well-defined, deep phenotypes 
will result in smaller sample size and hence less statistical power to detect genetic 
associations in a GWAS, although they could still have a higher GWAS-based heritability 
than shallow phenotypes (e.g., Cabana-Domínguez, Shivalikanjli, Fernàndez-Castillo, & 
Cormand, 2019). Interestingly, my phenome-wide studies showed quite diverging 
patterns of associations of closely related phenotypes (e.g., different alcohol traits in 
chapter 6), suggesting that the merging of traits that is common in the field of behavior 
genetics can indeed introduce noise and lead to oversight of important differences in the 
etiology of seemingly similar traits. 
 
Another crucial limitation that is common to the vast majority of studies in behavior 
genetics is the focus on European ancestry individuals. Findings from European GWASs 
cannot be generalized to other ethnic groups, due to systematic differences in the genetic 
make-up of individuals of different ancestry backgrounds. Say that a variant is more 
common in a certain ethnic group, and there is a certain phenotype that is also more 
common in that group, a GWAS would detect an association between that variant and 
that phenotype (population stratification). As an example, the association between a 
variant in the DRD2 gene and alcoholism (that has often been reported in the candidate-
gene literature) is likely largely due to differences in allele frequencies in different 
populations (Gelernter, Goldman, & Risch, 1993). Therefore, GWASs need to be conducted 
separately for different ethnic groups. However, there is a lack of genotyped and 
phenotyped individuals of a non-European background. This results in a shortage of 
GWASs in these groups, and down the line in the absence of PGS or MR studies. Although 
recent efforts to conduct multi-ethnic GWASs have been adorned, there is still a lot of 
room for improvement with regards to including specific ethnic groups and attaining 
larger sample sizes (Popejoy & Fullerton, 2016). My thesis results should be interpreted 
with these limitations in mind; they cannot be generalized directly to different ancestry 
populations. 
 
It needs to be noted that although rGE effects were a focus of my research, I did not 
control for rGE effects in all of my studies, since they could not be modelled in a 
straightforward manner in most of them. For example, there was no control for 
environmental covariates in the cannabis GWAS. Any proportion of the effects that we 
detected could have been mediated by environmental circumstances, such as 
socioeconomic circumstances. This could be viewed as a limitation depending on the 
question one wants to answer using genetic studies. It would be a problem if the aim is to 
identify variants that have direct biological meaning for the trait (such as nicotine 
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receptor genes for smoking quantity). In my last chapter, I wanted to disentangle those 
environmentally mediated effects from those more ‘direct’ genetic effects. Still, I only 
separated the signal that went via socioeconomic variables. The remaining genetic 
variance could be diluted by other exposures, such as parenting characteristics, or 
genetic overlap with other traits. In chapter 11 I explicitly modeled rGE within the same 
model as main and GxE effects using structural equation modeling. In this study I can be 
reasonably sure that I actually grasped rGE and GxE in the parenting context. However, 
because I used PGS the results could not provide information on the specific genetic 
variants that drove direct, rGE, or GxE effects.  
 
Summarizing, this thesis has adopted a versatile and flexible approach, capitalizing on 
the ever-increasing sample sizes of publicly available datasets and new methodological 
advances in the field. It has to be interpreted in the light of some important limitations, 
including those of the GWAS method itself. Still, these limitations must be placed into the 
perspective of the tremendous advances in the field. The GWAS method is only 15 years 
old, and although there is room for many improvements, it has taken the field 
unbelievable far in such a short time span. If the speed of the past developments is any 
indication, we can be optimistic that many of the limitations will be tackled soon. We can 
gratefully exploit the potential of the method as it is now (while being mindful of its 
limitations), and look forward to the unquestionably exciting new possibilities that lie 
ahead. 
 

Behavior, genetics, and behavior genetics 
 
The replication crisis 
My work moves at the interface between the social sciences and molecular genetics. This 
has a number of advantages, including the possibility to employ a rich variation of 
research tools and methods within an interdisciplinary perspective. There are also 
disadvantages, however. For instance, both the replication crisis in psychology (Maxwell, 
Lau, & Howard, 2015) as well as the one in the field of candidate-gene studies (Border et 
al., 2019; Duncan & Keller, 2011; Johnson et al., 2017) are relevant to the field of behavior 
genetics. As described before, the replication crisis in genetics has fueled a rapid 
transformation of methodology, from hypothesis-driven to hypothesis-free, genome-
wide research. The field of behavior genetics has been extremely quick and versatile in 
accepting the self-critique and embracing new techniques. The scientific movement 
towards more openness and transparency has also been taken up rather more quickly 
than in other fields, so that there is a high level of control of datasets, results, and methods 
by colleague scientists. In my PhD project I have followed these developments and taken 
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phenotyping (e.g., Howard et al., 2019; Liu et al., 2019). Although it seems that increasing 
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Cormand, 2019). Interestingly, my phenome-wide studies showed quite diverging 
patterns of associations of closely related phenotypes (e.g., different alcohol traits in 
chapter 6), suggesting that the merging of traits that is common in the field of behavior 
genetics can indeed introduce noise and lead to oversight of important differences in the 
etiology of seemingly similar traits. 
 
Another crucial limitation that is common to the vast majority of studies in behavior 
genetics is the focus on European ancestry individuals. Findings from European GWASs 
cannot be generalized to other ethnic groups, due to systematic differences in the genetic 
make-up of individuals of different ancestry backgrounds. Say that a variant is more 
common in a certain ethnic group, and there is a certain phenotype that is also more 
common in that group, a GWAS would detect an association between that variant and 
that phenotype (population stratification). As an example, the association between a 
variant in the DRD2 gene and alcoholism (that has often been reported in the candidate-
gene literature) is likely largely due to differences in allele frequencies in different 
populations (Gelernter, Goldman, & Risch, 1993). Therefore, GWASs need to be conducted 
separately for different ethnic groups. However, there is a lack of genotyped and 
phenotyped individuals of a non-European background. This results in a shortage of 
GWASs in these groups, and down the line in the absence of PGS or MR studies. Although 
recent efforts to conduct multi-ethnic GWASs have been adorned, there is still a lot of 
room for improvement with regards to including specific ethnic groups and attaining 
larger sample sizes (Popejoy & Fullerton, 2016). My thesis results should be interpreted 
with these limitations in mind; they cannot be generalized directly to different ancestry 
populations. 
 
It needs to be noted that although rGE effects were a focus of my research, I did not 
control for rGE effects in all of my studies, since they could not be modelled in a 
straightforward manner in most of them. For example, there was no control for 
environmental covariates in the cannabis GWAS. Any proportion of the effects that we 
detected could have been mediated by environmental circumstances, such as 
socioeconomic circumstances. This could be viewed as a limitation depending on the 
question one wants to answer using genetic studies. It would be a problem if the aim is to 
identify variants that have direct biological meaning for the trait (such as nicotine 
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receptor genes for smoking quantity). In my last chapter, I wanted to disentangle those 
environmentally mediated effects from those more ‘direct’ genetic effects. Still, I only 
separated the signal that went via socioeconomic variables. The remaining genetic 
variance could be diluted by other exposures, such as parenting characteristics, or 
genetic overlap with other traits. In chapter 11 I explicitly modeled rGE within the same 
model as main and GxE effects using structural equation modeling. In this study I can be 
reasonably sure that I actually grasped rGE and GxE in the parenting context. However, 
because I used PGS the results could not provide information on the specific genetic 
variants that drove direct, rGE, or GxE effects.  
 
Summarizing, this thesis has adopted a versatile and flexible approach, capitalizing on 
the ever-increasing sample sizes of publicly available datasets and new methodological 
advances in the field. It has to be interpreted in the light of some important limitations, 
including those of the GWAS method itself. Still, these limitations must be placed into the 
perspective of the tremendous advances in the field. The GWAS method is only 15 years 
old, and although there is room for many improvements, it has taken the field 
unbelievable far in such a short time span. If the speed of the past developments is any 
indication, we can be optimistic that many of the limitations will be tackled soon. We can 
gratefully exploit the potential of the method as it is now (while being mindful of its 
limitations), and look forward to the unquestionably exciting new possibilities that lie 
ahead. 
 

Behavior, genetics, and behavior genetics 
 
The replication crisis 
My work moves at the interface between the social sciences and molecular genetics. This 
has a number of advantages, including the possibility to employ a rich variation of 
research tools and methods within an interdisciplinary perspective. There are also 
disadvantages, however. For instance, both the replication crisis in psychology (Maxwell, 
Lau, & Howard, 2015) as well as the one in the field of candidate-gene studies (Border et 
al., 2019; Duncan & Keller, 2011; Johnson et al., 2017) are relevant to the field of behavior 
genetics. As described before, the replication crisis in genetics has fueled a rapid 
transformation of methodology, from hypothesis-driven to hypothesis-free, genome-
wide research. The field of behavior genetics has been extremely quick and versatile in 
accepting the self-critique and embracing new techniques. The scientific movement 
towards more openness and transparency has also been taken up rather more quickly 
than in other fields, so that there is a high level of control of datasets, results, and methods 
by colleague scientists. In my PhD project I have followed these developments and taken 
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advantage of the new techniques. Although my studies have not been replicated directly, 
the use of GWAS results to test associations in new samples (e.g., with PGS) can be viewed 
as an external validation of the results. Results from large GWASs in general seem to 
replicate reasonably well across different sites and samples (Buniello et al., 2019). It 
seems that the replication crisis in behavior genetics has been largely averted. 
 
In spite of important improvements, the replication crisis in psychology has not yet fully 
abated. A few years ago, it became apparent that many key findings from psychology 
failed to replicate (Ioannidis, 2005; Pashler & Wagenmakers, 2012). In my ‘phenotypic’ 
work I have observed this phenomenon, as well. For example, in chapter 10 and 12 I did 
not find strong support for a widely reported association between the socioeconomic 
characteristics of the neighborhood and different types of substance use. Different factors 
have been proposed to contribute to this replication crisis. For example, the incentive 
system in science in general seems to reward novel, positive findings more highly than 
null findings or replication efforts, which could lead to publication bias. Recently, there 
have been important improvements. Although the publication system is still largely in 
place, new protocols are developed to prevent publication bias. During my PhD project I 
have observed how pre-registration has been embraced by behavioral scientists, and has 
become ingrained in the new generation of researchers. An ever-increasing number of 
scientists publish hypotheses, methods, and analytic strategies online before viewing 
their data (Nosek, Ebersole, Dehaven, & Mellor, 2018). Pre-registration has gained status 
among scientists, creating a kind of alternative incentive system where good scientific 
conduct is rewarded regardless of the findings. I have pre-registered several studies, 
making use of public platforms, or simply by sharing a detailed analysis proposal among 
collaborators.  
 
A second important cause of the replication crisis in psychology seems to lie in the 
abundance of different research methods and operationalizations used to study 
psychological phenomena and the lack of direct replication efforts. I observed this 
phenomenon in chapter 9, where I reviewed GxE studies with heterogeneous variables 
and measurements. The fact that my entire PhD project relied on existing datasets has 
two important implications in this context. For one thing, I have been able to make use of 
extremely large sample sizes, that could never have been attained if I had collected my 
own data. The advantage is that, mostly, there has been no need to aggregate multiple 
smaller samples (which would have introduced measurement heterogeneity). On the 
other hand, this implies that I have not been able to use my own operationalizations and 
had to rely on the measures that were collected. Sometimes, I have had to resort to 
shallow phenotypes for this reason. I have been conscious about measurement in my 
work and have taken effort to combine multiple sources of information (e.g., by extracting 
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information from multiple survey items or using multiple informants). Although my work 
contains no direct replication studies, part of it replicates previous studies with some 
adaptation or extension (conceptual replication), providing indirect corroboration of 
previous findings. For example, chapters 5 and 6 both investigated the relationship 
between CADM2 and behavior, which had been implicated in several previous studies. 
Also, every study that uses a PGS could be viewed as an external validation test of the 
source GWAS: do these variants also predict the trait outside of the original study? 
Summarizing, using pre-registration, robust operationalization, and (partial) replication I 
have aimed to meet the challenges of the replication crisis in behavioral science.  
 
Theoretical challenges for behavior genetics 
Other issues common to both psychology and genetics as well as issues specific to 
behavior genetics remain that are more fundamental. For one thing, human behavior is 
notoriously difficult to study, given that theories about behavior are ‘underdetermined’. 
This is to say, the possible causal chains that could have resulted in a particular behavior 
are so numerous as to be infinite, if it is even true that behavior can be exhaustively 
explained by such a causal chain of identifiable variables (Glymour & Sanchez-Romero, 
2018). In a similar vein, a fundamental limitation lies in the difficulty of defining and 
quantifying something as complex and multifaceted as human behavior. The aim of 
psychological science and behavior genetics alike is to understand human behavior. 
Although all humans would agree that behavior is not something static or homogeneous 
(either within or between individuals) behavioral science does tend to focus on single 
time-point, unidimensional measures. This issue impacts both the field of psychology and 
behavior genetics. Given the need for large sample sizes, the opportunities for 
longitudinal, in-depth research are limited in behavior genetics. However, other 
possibilities that do more justice to the complexity of human behavior without requiring 
mammoth sample sizes have become available in psychology and could be employed in 
behavior genetics, as well. For example, dense-time measurement could provide insight 
into development and complex dynamic processes on the individual level (Van Geert, 
2011). Also, results from large-scale, static-measure GWASs can be applied in smaller 
samples with longitudinal data. In chapter 11 I used GWAS-based PGSs to study substance 
use development, making use of in-depth, multi-rater, longitudinal assessments. 
 
Another issue that is specific to the field of behavior genetics lies precisely in this bringing 
together of behavior and genetics, that operate on two fundamentally different levels of 
explanation. Something as physically real as a single-nucleotide change in the DNA is 
linked to a behavioral construct, that is difficult to define and demarcate. A behavioral 
trait is not something real in nature. Rather, it is ‘emergent’ on its natural properties, of 
which genetics form only one small aspect. That is to say, behavior is something more 



562882-L-bw-Pasman562882-L-bw-Pasman562882-L-bw-Pasman562882-L-bw-Pasman
Processed on: 4-8-2021Processed on: 4-8-2021Processed on: 4-8-2021Processed on: 4-8-2021 PDF page: 427PDF page: 427PDF page: 427PDF page: 427

427Part 4 – Chapter 13 

advantage of the new techniques. Although my studies have not been replicated directly, 
the use of GWAS results to test associations in new samples (e.g., with PGS) can be viewed 
as an external validation of the results. Results from large GWASs in general seem to 
replicate reasonably well across different sites and samples (Buniello et al., 2019). It 
seems that the replication crisis in behavior genetics has been largely averted. 
 
In spite of important improvements, the replication crisis in psychology has not yet fully 
abated. A few years ago, it became apparent that many key findings from psychology 
failed to replicate (Ioannidis, 2005; Pashler & Wagenmakers, 2012). In my ‘phenotypic’ 
work I have observed this phenomenon, as well. For example, in chapter 10 and 12 I did 
not find strong support for a widely reported association between the socioeconomic 
characteristics of the neighborhood and different types of substance use. Different factors 
have been proposed to contribute to this replication crisis. For example, the incentive 
system in science in general seems to reward novel, positive findings more highly than 
null findings or replication efforts, which could lead to publication bias. Recently, there 
have been important improvements. Although the publication system is still largely in 
place, new protocols are developed to prevent publication bias. During my PhD project I 
have observed how pre-registration has been embraced by behavioral scientists, and has 
become ingrained in the new generation of researchers. An ever-increasing number of 
scientists publish hypotheses, methods, and analytic strategies online before viewing 
their data (Nosek, Ebersole, Dehaven, & Mellor, 2018). Pre-registration has gained status 
among scientists, creating a kind of alternative incentive system where good scientific 
conduct is rewarded regardless of the findings. I have pre-registered several studies, 
making use of public platforms, or simply by sharing a detailed analysis proposal among 
collaborators.  
 
A second important cause of the replication crisis in psychology seems to lie in the 
abundance of different research methods and operationalizations used to study 
psychological phenomena and the lack of direct replication efforts. I observed this 
phenomenon in chapter 9, where I reviewed GxE studies with heterogeneous variables 
and measurements. The fact that my entire PhD project relied on existing datasets has 
two important implications in this context. For one thing, I have been able to make use of 
extremely large sample sizes, that could never have been attained if I had collected my 
own data. The advantage is that, mostly, there has been no need to aggregate multiple 
smaller samples (which would have introduced measurement heterogeneity). On the 
other hand, this implies that I have not been able to use my own operationalizations and 
had to rely on the measures that were collected. Sometimes, I have had to resort to 
shallow phenotypes for this reason. I have been conscious about measurement in my 
work and have taken effort to combine multiple sources of information (e.g., by extracting 
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information from multiple survey items or using multiple informants). Although my work 
contains no direct replication studies, part of it replicates previous studies with some 
adaptation or extension (conceptual replication), providing indirect corroboration of 
previous findings. For example, chapters 5 and 6 both investigated the relationship 
between CADM2 and behavior, which had been implicated in several previous studies. 
Also, every study that uses a PGS could be viewed as an external validation test of the 
source GWAS: do these variants also predict the trait outside of the original study? 
Summarizing, using pre-registration, robust operationalization, and (partial) replication I 
have aimed to meet the challenges of the replication crisis in behavioral science.  
 
Theoretical challenges for behavior genetics 
Other issues common to both psychology and genetics as well as issues specific to 
behavior genetics remain that are more fundamental. For one thing, human behavior is 
notoriously difficult to study, given that theories about behavior are ‘underdetermined’. 
This is to say, the possible causal chains that could have resulted in a particular behavior 
are so numerous as to be infinite, if it is even true that behavior can be exhaustively 
explained by such a causal chain of identifiable variables (Glymour & Sanchez-Romero, 
2018). In a similar vein, a fundamental limitation lies in the difficulty of defining and 
quantifying something as complex and multifaceted as human behavior. The aim of 
psychological science and behavior genetics alike is to understand human behavior. 
Although all humans would agree that behavior is not something static or homogeneous 
(either within or between individuals) behavioral science does tend to focus on single 
time-point, unidimensional measures. This issue impacts both the field of psychology and 
behavior genetics. Given the need for large sample sizes, the opportunities for 
longitudinal, in-depth research are limited in behavior genetics. However, other 
possibilities that do more justice to the complexity of human behavior without requiring 
mammoth sample sizes have become available in psychology and could be employed in 
behavior genetics, as well. For example, dense-time measurement could provide insight 
into development and complex dynamic processes on the individual level (Van Geert, 
2011). Also, results from large-scale, static-measure GWASs can be applied in smaller 
samples with longitudinal data. In chapter 11 I used GWAS-based PGSs to study substance 
use development, making use of in-depth, multi-rater, longitudinal assessments. 
 
Another issue that is specific to the field of behavior genetics lies precisely in this bringing 
together of behavior and genetics, that operate on two fundamentally different levels of 
explanation. Something as physically real as a single-nucleotide change in the DNA is 
linked to a behavioral construct, that is difficult to define and demarcate. A behavioral 
trait is not something real in nature. Rather, it is ‘emergent’ on its natural properties, of 
which genetics form only one small aspect. That is to say, behavior is something more 
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than the sum of its parts, like a tornado is more than the sum of dust, wind, and debris 
(O’Connor, 2020). What happens in the causal chain between the genetic variant and the 
behavioral outcome is still largely unknown. A relatively straightforward pathway would 
be that a genetic variant changes the level of expression of a protein coding gene, and the 
changed protein levels impact the functioning of a certain brain region, which in turn 
influences behavior. To my knowledge, for no variant-outcome relationship such a causal 
chain has been fully mapped (although analogous efforts in medicine show that it can be 
done at least to some extent, e.g., Peltonen, Perola, Naukkarinen, and Palotie, 2006). For 
complex traits, efforts are made to investigate parts of the chain (e.g., with gene 
expression studies, chapter 3, or imaging genetics, chapter 8). Even if the full path can be 
mapped from genetic variant to gene expression, to brain functioning, to behavior, there 
is a plethora of biological and environmental factors that can correlate with, moderate or 
otherwise impact each link in the causal chain. Moreover, as large amounts of SNPs 
impact any given complex trait, not one such path, but hundreds of them need to be 
delineated. In even more complex scenarios, a variant identified in a GWAS has no known 
function (e.g., is in a non-coding region), impacts a gene of unknown function, or impacts 
an entirely different trait that has an unknown relationship to the behavioral outcome of 
interest. Unfortunately, it seems that these latter scenarios are currently more common 
than the more straightforward scenarios. Thus, there is a host of missing links between 
genes and behavior. This eventually amounts to a language problem: we have no means 
of translation between the genetic and the phenotypic level. No single component of the 
behavior that we study has a direct genetic substrate; the words we use to describe 
behavior have no translation in the language of genetics. The fields may be said to be 
incommensurable (Kuhn, 2012). Still, if behavior genetics and the related (molecular) 
biology fields continue the rapid rate of development they have in the past decades, we 
can expect to see this change. Future studies will each form a piece of the puzzle that will 
form a translation between genes and behavior.  
 
These theoretical issues of underdetermination, static/ shallow phenotyping and 
incommensurability are important when thinking about behavior genetics. They have led 
me to believe that a paradigm shift will at some point become necessary in the field. Not 
only are the phenotypes we study inherently complex, it seems that at all levels of the 
causal chain there is overlap and interaction. An intricate network of genetic and 
environmental factors that show interplay on all levels lies at the heart of substance use. 
To put it in the winged words from the Netflix series Dark: “Alles ist miteinander 
verbunden”. When the focus is to increase our understanding of human behavior, science 
needs to move away from simple x-y (genes-behavior) associations and start to theorize 
about these networks. My thesis can be viewed as a small step in the endeavor to 
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understanding how all the components cohere in the complex causal network underlying 
substance use.  
 

Future perspectives  
A future direction that immediately follows from these theoretical issues would be to start 
mapping causal chains between genes and behavior. With the level of knowledge which 
has now been achieved in behavior genetics, a sensible first step would be to zoom in on 
the gene findings and start exploring biological pathways. For example, the CADM2 gene 
emerged for a wide range of substance use and risk behaviors. An interesting possibility 
would be to investigate the exact function of this gene in animal models. Such research 
can provide insight into how enhanced or reduced expression of this gene impacts 
physiological processes and, down the line, behavior. Similarly, imaging genetics studies 
could shed more light on how differential CADM2 expression influences neurological 
processes, such as reactivity or connectivity in reward circuitry. Mapping (parts of) the 
biological causal pathway from CADM2 to behavior would be a vital starting point for 
informing our thinking about how genes relate to behavior.  
 
At the other end of the causal chain, future research can also start tapping into this 
perspective of complex interrelatedness. For example, an interesting idea would be to 
investigate transgenerational transmission of substance use through environmental 
effects, genetic effects, rGE, and GxE effects. By investigating parent-child triads, 
transmitted genetic variant alleles can be distinguished from non-transmitted alleles in 
an elegant design to disentangle such effects (Kong et al., 2018). This could be taken a 
step further by incorporating indirect genetic effects on the level of the neighborhood, 
focusing on the average level of genetic risk for substance use among neighborhood 
residents. In that way I could disentangle rGE from environmental effects at the 
neighborhood level. It has been found that socioeconomic characteristics cluster both on 
an observable as well as on a genetic level (Abdellaoui et al., 2019). This means that 
people living in the same area are more genetically similar than people from different 
areas, which could result in a similar kind of G, E, rGE, and GxE effects as those that occur 
in the parenting environment. The results of my thesis have prompted me to this widening 
view, to do more justice to the complex system of interrelated factors at different levels 
of explanation.  
 
Beside this comprehensive indirect genetics approach, many other lines of inquiry could 
be explored based on the findings of this thesis. My studies have shown that with current 
methods it is hard to detect GxE effects, suggesting that they may be less prominent than 
has been predicted. My suggestion following this observation would be to focus more on 
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than the sum of its parts, like a tornado is more than the sum of dust, wind, and debris 
(O’Connor, 2020). What happens in the causal chain between the genetic variant and the 
behavioral outcome is still largely unknown. A relatively straightforward pathway would 
be that a genetic variant changes the level of expression of a protein coding gene, and the 
changed protein levels impact the functioning of a certain brain region, which in turn 
influences behavior. To my knowledge, for no variant-outcome relationship such a causal 
chain has been fully mapped (although analogous efforts in medicine show that it can be 
done at least to some extent, e.g., Peltonen, Perola, Naukkarinen, and Palotie, 2006). For 
complex traits, efforts are made to investigate parts of the chain (e.g., with gene 
expression studies, chapter 3, or imaging genetics, chapter 8). Even if the full path can be 
mapped from genetic variant to gene expression, to brain functioning, to behavior, there 
is a plethora of biological and environmental factors that can correlate with, moderate or 
otherwise impact each link in the causal chain. Moreover, as large amounts of SNPs 
impact any given complex trait, not one such path, but hundreds of them need to be 
delineated. In even more complex scenarios, a variant identified in a GWAS has no known 
function (e.g., is in a non-coding region), impacts a gene of unknown function, or impacts 
an entirely different trait that has an unknown relationship to the behavioral outcome of 
interest. Unfortunately, it seems that these latter scenarios are currently more common 
than the more straightforward scenarios. Thus, there is a host of missing links between 
genes and behavior. This eventually amounts to a language problem: we have no means 
of translation between the genetic and the phenotypic level. No single component of the 
behavior that we study has a direct genetic substrate; the words we use to describe 
behavior have no translation in the language of genetics. The fields may be said to be 
incommensurable (Kuhn, 2012). Still, if behavior genetics and the related (molecular) 
biology fields continue the rapid rate of development they have in the past decades, we 
can expect to see this change. Future studies will each form a piece of the puzzle that will 
form a translation between genes and behavior.  
 
These theoretical issues of underdetermination, static/ shallow phenotyping and 
incommensurability are important when thinking about behavior genetics. They have led 
me to believe that a paradigm shift will at some point become necessary in the field. Not 
only are the phenotypes we study inherently complex, it seems that at all levels of the 
causal chain there is overlap and interaction. An intricate network of genetic and 
environmental factors that show interplay on all levels lies at the heart of substance use. 
To put it in the winged words from the Netflix series Dark: “Alles ist miteinander 
verbunden”. When the focus is to increase our understanding of human behavior, science 
needs to move away from simple x-y (genes-behavior) associations and start to theorize 
about these networks. My thesis can be viewed as a small step in the endeavor to 
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understanding how all the components cohere in the complex causal network underlying 
substance use.  
 

Future perspectives  
A future direction that immediately follows from these theoretical issues would be to start 
mapping causal chains between genes and behavior. With the level of knowledge which 
has now been achieved in behavior genetics, a sensible first step would be to zoom in on 
the gene findings and start exploring biological pathways. For example, the CADM2 gene 
emerged for a wide range of substance use and risk behaviors. An interesting possibility 
would be to investigate the exact function of this gene in animal models. Such research 
can provide insight into how enhanced or reduced expression of this gene impacts 
physiological processes and, down the line, behavior. Similarly, imaging genetics studies 
could shed more light on how differential CADM2 expression influences neurological 
processes, such as reactivity or connectivity in reward circuitry. Mapping (parts of) the 
biological causal pathway from CADM2 to behavior would be a vital starting point for 
informing our thinking about how genes relate to behavior.  
 
At the other end of the causal chain, future research can also start tapping into this 
perspective of complex interrelatedness. For example, an interesting idea would be to 
investigate transgenerational transmission of substance use through environmental 
effects, genetic effects, rGE, and GxE effects. By investigating parent-child triads, 
transmitted genetic variant alleles can be distinguished from non-transmitted alleles in 
an elegant design to disentangle such effects (Kong et al., 2018). This could be taken a 
step further by incorporating indirect genetic effects on the level of the neighborhood, 
focusing on the average level of genetic risk for substance use among neighborhood 
residents. In that way I could disentangle rGE from environmental effects at the 
neighborhood level. It has been found that socioeconomic characteristics cluster both on 
an observable as well as on a genetic level (Abdellaoui et al., 2019). This means that 
people living in the same area are more genetically similar than people from different 
areas, which could result in a similar kind of G, E, rGE, and GxE effects as those that occur 
in the parenting environment. The results of my thesis have prompted me to this widening 
view, to do more justice to the complex system of interrelated factors at different levels 
of explanation.  
 
Beside this comprehensive indirect genetics approach, many other lines of inquiry could 
be explored based on the findings of this thesis. My studies have shown that with current 
methods it is hard to detect GxE effects, suggesting that they may be less prominent than 
has been predicted. My suggestion following this observation would be to focus more on 
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other types of interplay (i.e., rGE, that has received far less research attention) and to 
develop new methods to investigate GxE. Given the intrinsic links between G and E it 
seems a promising option to focus on both types of interplay in a single endeavor. An 
interesting opportunity might be to test GxE with variants that enhance vulnerability to 
environmental circumstances, instead of variants that are associated with substance use 
directly. Such environmental susceptibility variants could for example be identified by 
conducting a GWAS on resilience. Say that a group of people is exposed to the same 
environmental risk factors, but some develop substance use and others do not, this would 
constitute a measure of vulnerability to environmental risk. One could conduct a GWAS 
on this vulnerability trait and use the results to create a PGS, which in turn could be used 
to test GxE with environmental risk factors. Of course, recommendations for future 
research also include addressing the limitations outlined above, including making use of 
larger samples (also in non-Europeans), deep phenotyping, and including rare variants.  
 
These venues for future research are exciting and could further our understanding of 
human behavior, but may still seem fundamental or abstract to many. The question that 
I was asked most often during my PhD project was: why is genetic research important, 
and does this information impact human well-being or society in any way? I would like to 
finish my thesis by describing the applications of current genetic research, and sketch 
potential lines for future research that hold promise for a substantial and wide-ranging 
impact. 
 
Knowledge and impact: directions for disseminating results 
The most concrete possibility for applying findings from genetic research that is available 
to us now is educating scientists, clinicians, policy makers, and the general public on the 
contribution of genetic factors to substance use behavior. Especially in the context of 
addiction, this kind of information can help reducing stigma. Social stigma may 
contribute to poorer outcomes for individuals suffering from addiction (Luoma, Kulesza, 
Hayes, Kohlenberg, & Larimer, 2014; Matthews, Dwyer, & Snoek, 2017). Viewing addiction 
as a neurobiological disease with a genetic basis can help to reduce stigma (Volkow & 
Koob, 2015), which could enhance societal support for governmental investments in 
access to extended treatment (Dackis & O'brien, 2005).  
 
There is still much to gain in educating the public on the genetic contribution to substance 
use and other behavioral disease traits. Even among my fellow social scientists genetics 
knowledge is limited. During my PhD project, I observed that substance use genetics (and 
genetics in general) receives little attention in the social sciences. When asked, students 
at Radboud University students (mainly from social sciences) somewhat underestimate 
the heritability of addiction (N=83, estimated heritability=47%, own data collected within 
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student wellbeing project, PI Vink, unpublished result). It appears that individuals who 
have family members that are nicotine dependent, abuse alcohol (>15 glasses a week), or 
regularly use cannabis or other drugs estimate heritability to be somewhat higher (51%) 
than individuals who do not see substance abuse in their family (43%). Likewise, 
individuals with substance using family members estimate their own addiction proneness 
to be higher (34% versus 20%). Apparently, seeing genetics ‘at work’ in the own 
environment serves as an important information source. This insight could be leveraged 
in developing educational materials for the social sciences. Possibly a more relatable 
approach will help genetics dispense with the image of being notoriously complex and 
abstract.  
 
Better science communication is also crucial for dissemination of substance use genetics 
studies for a wider public. When our cannabis GWAS was published, we wrote a press 
release with a full summary of our findings. However, one particular finding from the 
study received disproportional amounts of media attention. In our follow-up Mendelian 
Randomization analysis, we found evidence that liability to schizophrenia causes 
cannabis use initiation, whereas the evidence for a causal effect in the other direction was 
weaker. Media showed a tendency to present these results as if we falsified the claim that 
cannabis use could cause psychosis, or even that cannabis would help alleviate 
schizophrenia symptoms. This is just one example of how scientific findings can be 
magnified or taken out of context, a phenomenon society is becoming increasingly aware 
of with the spreading of sensational and fake news during the covid-19 pandemic and the 
election periods. Scientists need to be careful and conscious about their communication 
and work with communication professionals before releasing potentially controversial 
findings to the public. For example, a recent GWAS on same-sex sexual behavior (Ganna 
et al., 2019) has taken substantial effort to educate the public about the nuances and the 
implications of their findings by collaborating with advocacy groups and stakeholders. 
They released an impressive body of infographics, a short movie clip, a website, and 
interviews. Their research has been well received and has led to remarkably little 
controversy in the media worldwide. In my PhD I have mainly used a more small-scale 
channel for disseminating results: the RAD-blog, a weblog from our ‘Substance use, 
addiction, and food lab’ group that presents research findings in layman terms (in Dutch). 
It is read by clinicians, researchers, and the wider public and is an ideal tool to 
communicate the importance of genetic research in an accessible manner. Besides this 
blog, I use twitter to gain attention for my research findings. 
 
Future clinical applications 
Beside this first purpose of educating the public, genetic research has many more 
possible applications. For one thing, knowledge on the genetic basis of substance use 
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other types of interplay (i.e., rGE, that has received far less research attention) and to 
develop new methods to investigate GxE. Given the intrinsic links between G and E it 
seems a promising option to focus on both types of interplay in a single endeavor. An 
interesting opportunity might be to test GxE with variants that enhance vulnerability to 
environmental circumstances, instead of variants that are associated with substance use 
directly. Such environmental susceptibility variants could for example be identified by 
conducting a GWAS on resilience. Say that a group of people is exposed to the same 
environmental risk factors, but some develop substance use and others do not, this would 
constitute a measure of vulnerability to environmental risk. One could conduct a GWAS 
on this vulnerability trait and use the results to create a PGS, which in turn could be used 
to test GxE with environmental risk factors. Of course, recommendations for future 
research also include addressing the limitations outlined above, including making use of 
larger samples (also in non-Europeans), deep phenotyping, and including rare variants.  
 
These venues for future research are exciting and could further our understanding of 
human behavior, but may still seem fundamental or abstract to many. The question that 
I was asked most often during my PhD project was: why is genetic research important, 
and does this information impact human well-being or society in any way? I would like to 
finish my thesis by describing the applications of current genetic research, and sketch 
potential lines for future research that hold promise for a substantial and wide-ranging 
impact. 
 
Knowledge and impact: directions for disseminating results 
The most concrete possibility for applying findings from genetic research that is available 
to us now is educating scientists, clinicians, policy makers, and the general public on the 
contribution of genetic factors to substance use behavior. Especially in the context of 
addiction, this kind of information can help reducing stigma. Social stigma may 
contribute to poorer outcomes for individuals suffering from addiction (Luoma, Kulesza, 
Hayes, Kohlenberg, & Larimer, 2014; Matthews, Dwyer, & Snoek, 2017). Viewing addiction 
as a neurobiological disease with a genetic basis can help to reduce stigma (Volkow & 
Koob, 2015), which could enhance societal support for governmental investments in 
access to extended treatment (Dackis & O'brien, 2005).  
 
There is still much to gain in educating the public on the genetic contribution to substance 
use and other behavioral disease traits. Even among my fellow social scientists genetics 
knowledge is limited. During my PhD project, I observed that substance use genetics (and 
genetics in general) receives little attention in the social sciences. When asked, students 
at Radboud University students (mainly from social sciences) somewhat underestimate 
the heritability of addiction (N=83, estimated heritability=47%, own data collected within 
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student wellbeing project, PI Vink, unpublished result). It appears that individuals who 
have family members that are nicotine dependent, abuse alcohol (>15 glasses a week), or 
regularly use cannabis or other drugs estimate heritability to be somewhat higher (51%) 
than individuals who do not see substance abuse in their family (43%). Likewise, 
individuals with substance using family members estimate their own addiction proneness 
to be higher (34% versus 20%). Apparently, seeing genetics ‘at work’ in the own 
environment serves as an important information source. This insight could be leveraged 
in developing educational materials for the social sciences. Possibly a more relatable 
approach will help genetics dispense with the image of being notoriously complex and 
abstract.  
 
Better science communication is also crucial for dissemination of substance use genetics 
studies for a wider public. When our cannabis GWAS was published, we wrote a press 
release with a full summary of our findings. However, one particular finding from the 
study received disproportional amounts of media attention. In our follow-up Mendelian 
Randomization analysis, we found evidence that liability to schizophrenia causes 
cannabis use initiation, whereas the evidence for a causal effect in the other direction was 
weaker. Media showed a tendency to present these results as if we falsified the claim that 
cannabis use could cause psychosis, or even that cannabis would help alleviate 
schizophrenia symptoms. This is just one example of how scientific findings can be 
magnified or taken out of context, a phenomenon society is becoming increasingly aware 
of with the spreading of sensational and fake news during the covid-19 pandemic and the 
election periods. Scientists need to be careful and conscious about their communication 
and work with communication professionals before releasing potentially controversial 
findings to the public. For example, a recent GWAS on same-sex sexual behavior (Ganna 
et al., 2019) has taken substantial effort to educate the public about the nuances and the 
implications of their findings by collaborating with advocacy groups and stakeholders. 
They released an impressive body of infographics, a short movie clip, a website, and 
interviews. Their research has been well received and has led to remarkably little 
controversy in the media worldwide. In my PhD I have mainly used a more small-scale 
channel for disseminating results: the RAD-blog, a weblog from our ‘Substance use, 
addiction, and food lab’ group that presents research findings in layman terms (in Dutch). 
It is read by clinicians, researchers, and the wider public and is an ideal tool to 
communicate the importance of genetic research in an accessible manner. Besides this 
blog, I use twitter to gain attention for my research findings. 
 
Future clinical applications 
Beside this first purpose of educating the public, genetic research has many more 
possible applications. For one thing, knowledge on the genetic basis of substance use 
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disorders can inform clinicians and policy makers decide on their approach to 
intervention and prevention. For example, different interventions might be required for 
people with a family history of addiction (i.e., high genetic risk) than for people without. 
Indeed, one study showed that alcohol use disorder patients with a family history of 
alcohol dependence benefitted more from naltrexone treatment compared to placebo 
than patients without such a family history (Monterosso et al., 2001). Likewise, it would 
be effective and cost-efficient to target substance use prevention efforts to individuals 
whom you know are at risk; focusing on people with a family history of addiction seems a 
promising option (Valdez, Yoon, Qureshi, Green, & Khoury, 2010). 
 
Both for educating the public and making treatment choices as outlined above, it would 
suffice to know someone’s family history of substance use, rather than their complete 
genetic sequence. However, knowing someone’s actual rather than predicted genetic 
predisposition for substance use has several advantages. For one thing, in the future 
prediction will be more precise: having a family history of substance use does not 
automatically lead to a high own genetic risk (although there is of course a greater chance 
that this is so). There are already excellent examples where basing treatment choice on a 
single genotyped variant makes treatment more efficient. For example, a variant in the 
OPRM1 gene is such a good predictor of treatment response to naltrexone versus 
acamprosate for alcohol dependence, that it is likely to become cost-effective to 
genotype this variant (Sluiter et al., 2018). Likewise, for treating nicotine dependence, it 
was shown to be cheaper to genotype a variant in DRD2 and base the choice for bupropion 
versus nicotine patches on that, than to simply prescribe either (Welton, Johnstone, 
David, & Munafò, 2008).  
 
Unfortunately, there are few genetic variants with such strong and reliable effects. For 
future applications, we will have to rely on polygenic scores that summarize genetic risk 
from numerous variants across the genome. Right now, PGS are still imprecise and 
underpowered; they often explain only a few percent of the variance in the outcome trait. 
However, this is likely to change in the future. Deep phenotyping, whole genome 
sequencing, and increasing sample sizes are likely to contribute to the power of discovery 
in GWAS, resulting in more accurate SNP effects and better PGSs. When that has 
happened, we will be able to predict who is more likely to develop some form of 
substance use behavior (or disorder) or to benefit from a certain treatment, especially if 
we also take into account environmental risk factors that could overlap or interact with 
these PGSs (Murray et al., 2020). It needs to be noted that the applicability of PGS in 
clinical practice will always remain proportional to the level of heritability (PGS will have 
less precision for traits with a low heritability) and to the rareness of the investigated trait 
(precision will be lower for rare traits; Murray et al., 2020). Still, assuming that it will 
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become ever cheaper to sequence DNA and that an infinite number of PGSs can be 
computed for each sequence, it may become cost-effective to tailor prevention and 
intervention efforts to someone’s PGSs. Even if genetic contribution to a substance use 
trait is not extremely large, the societal and personal costs of substance use often are. 
Consequently, every piece of information that can contribute to a more effective strategy 
to reduce substance use can result in substantial gains for public health.  
 

Conclusions 
This thesis forms a valuable contribution to the substance use genetics literature. My 
studies have identified several novel genes that are associated with these behaviors and 
have provided more insight into common and unique genetic factors underlying 
substance use traits. Furthermore, I have shown how gene findings can be leveraged to 
test overlap and causal relationships between psychiatric traits and substance use, and 
to provide insight in interplay between genetic risk and environmental circumstances. 
The main conclusion from my studies is that there are complex interrelationships on all 
levels of the gene-behavior association, or stated more poetically: “Alles ist miteinander 
verbunden”. First, genetic vulnerability for any substance use trait overlaps with 
vulnerability for other substance use traits and other psycho-behavioral traits in general, 
although there are also variants with more unique effects for certain traits. This 
emphasizes the complexity of studying behavioral concepts, that are not clearly 
demarcated entities in nature. Second, genetic predisposition to substance use traits 
does not only overlap with, but is also causally predictive of other traits. Third, genetic 
vulnerability for substance use overlaps with genetic predisposition to certain 
environmental circumstances. Such effects seem to be widespread and were in my 
studies more pronounced than interaction effects, where the strength of a gene-behavior 
association depends on environmental exposures. 
 
Future studies should work towards mapping these complex interrelationships, both at 
the level of gene-environment interplay, as well as on the smallest level of biological 
pathways from gene expression to behavior. As our knowledge of the precise details of 
such associations grows, it becomes increasingly difficult to bring together all pieces of 
the puzzle. Scientists from numerous different disciplines will have to work together to 
develop models of explanation, rather than simply describing phenomena in their own 
niche. Ultimately, the goal of behavior genetics should be to understand the human 
condition, which is only achievable by bringing together different sources of information 
and levels of explanation.  
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disorders can inform clinicians and policy makers decide on their approach to 
intervention and prevention. For example, different interventions might be required for 
people with a family history of addiction (i.e., high genetic risk) than for people without. 
Indeed, one study showed that alcohol use disorder patients with a family history of 
alcohol dependence benefitted more from naltrexone treatment compared to placebo 
than patients without such a family history (Monterosso et al., 2001). Likewise, it would 
be effective and cost-efficient to target substance use prevention efforts to individuals 
whom you know are at risk; focusing on people with a family history of addiction seems a 
promising option (Valdez, Yoon, Qureshi, Green, & Khoury, 2010). 
 
Both for educating the public and making treatment choices as outlined above, it would 
suffice to know someone’s family history of substance use, rather than their complete 
genetic sequence. However, knowing someone’s actual rather than predicted genetic 
predisposition for substance use has several advantages. For one thing, in the future 
prediction will be more precise: having a family history of substance use does not 
automatically lead to a high own genetic risk (although there is of course a greater chance 
that this is so). There are already excellent examples where basing treatment choice on a 
single genotyped variant makes treatment more efficient. For example, a variant in the 
OPRM1 gene is such a good predictor of treatment response to naltrexone versus 
acamprosate for alcohol dependence, that it is likely to become cost-effective to 
genotype this variant (Sluiter et al., 2018). Likewise, for treating nicotine dependence, it 
was shown to be cheaper to genotype a variant in DRD2 and base the choice for bupropion 
versus nicotine patches on that, than to simply prescribe either (Welton, Johnstone, 
David, & Munafò, 2008).  
 
Unfortunately, there are few genetic variants with such strong and reliable effects. For 
future applications, we will have to rely on polygenic scores that summarize genetic risk 
from numerous variants across the genome. Right now, PGS are still imprecise and 
underpowered; they often explain only a few percent of the variance in the outcome trait. 
However, this is likely to change in the future. Deep phenotyping, whole genome 
sequencing, and increasing sample sizes are likely to contribute to the power of discovery 
in GWAS, resulting in more accurate SNP effects and better PGSs. When that has 
happened, we will be able to predict who is more likely to develop some form of 
substance use behavior (or disorder) or to benefit from a certain treatment, especially if 
we also take into account environmental risk factors that could overlap or interact with 
these PGSs (Murray et al., 2020). It needs to be noted that the applicability of PGS in 
clinical practice will always remain proportional to the level of heritability (PGS will have 
less precision for traits with a low heritability) and to the rareness of the investigated trait 
(precision will be lower for rare traits; Murray et al., 2020). Still, assuming that it will 
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become ever cheaper to sequence DNA and that an infinite number of PGSs can be 
computed for each sequence, it may become cost-effective to tailor prevention and 
intervention efforts to someone’s PGSs. Even if genetic contribution to a substance use 
trait is not extremely large, the societal and personal costs of substance use often are. 
Consequently, every piece of information that can contribute to a more effective strategy 
to reduce substance use can result in substantial gains for public health.  
 

Conclusions 
This thesis forms a valuable contribution to the substance use genetics literature. My 
studies have identified several novel genes that are associated with these behaviors and 
have provided more insight into common and unique genetic factors underlying 
substance use traits. Furthermore, I have shown how gene findings can be leveraged to 
test overlap and causal relationships between psychiatric traits and substance use, and 
to provide insight in interplay between genetic risk and environmental circumstances. 
The main conclusion from my studies is that there are complex interrelationships on all 
levels of the gene-behavior association, or stated more poetically: “Alles ist miteinander 
verbunden”. First, genetic vulnerability for any substance use trait overlaps with 
vulnerability for other substance use traits and other psycho-behavioral traits in general, 
although there are also variants with more unique effects for certain traits. This 
emphasizes the complexity of studying behavioral concepts, that are not clearly 
demarcated entities in nature. Second, genetic predisposition to substance use traits 
does not only overlap with, but is also causally predictive of other traits. Third, genetic 
vulnerability for substance use overlaps with genetic predisposition to certain 
environmental circumstances. Such effects seem to be widespread and were in my 
studies more pronounced than interaction effects, where the strength of a gene-behavior 
association depends on environmental exposures. 
 
Future studies should work towards mapping these complex interrelationships, both at 
the level of gene-environment interplay, as well as on the smallest level of biological 
pathways from gene expression to behavior. As our knowledge of the precise details of 
such associations grows, it becomes increasingly difficult to bring together all pieces of 
the puzzle. Scientists from numerous different disciplines will have to work together to 
develop models of explanation, rather than simply describing phenomena in their own 
niche. Ultimately, the goal of behavior genetics should be to understand the human 
condition, which is only achievable by bringing together different sources of information 
and levels of explanation.  
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My studies contribute to the extensive groundwork that is being laid out for future clinical 
applications of genetic knowledge. Already, genetic research has an impact by forming 
the public opinion on and policy for substance use and addiction. To a modest extent, 
genetic knowledge is already being applied to identify people at risk and to guide 
prevention and intervention choice. In the future, applications such as these will become 
increasingly feasible, and it is my belief that these will have a substantial impact on how 
we view, prevent, and treat substance use. I am confident that over the course of my 
future career I will see these possibilities unfold, and it is my ambition to keep 
contributing to the knowledge required to make this happen. 
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My studies contribute to the extensive groundwork that is being laid out for future clinical 
applications of genetic knowledge. Already, genetic research has an impact by forming 
the public opinion on and policy for substance use and addiction. To a modest extent, 
genetic knowledge is already being applied to identify people at risk and to guide 
prevention and intervention choice. In the future, applications such as these will become 
increasingly feasible, and it is my belief that these will have a substantial impact on how 
we view, prevent, and treat substance use. I am confident that over the course of my 
future career I will see these possibilities unfold, and it is my ambition to keep 
contributing to the knowledge required to make this happen. 
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Samenvatting  

Nederlandse samenvatting 
 
Het gebruik van alcohol, tabak, en cannabis kan schadelijke gevolgen hebben voor de 
fysieke en mentale gezondheid, en is ondanks recente afnames nog altijd wijdverspreid 
in de Westerse samenleving. Onderzoek naar de oorzaken van middelengebruik kan ons 
helpen om manieren te vinden om de persoonlijke en maatschappelijke kosten 
verbonden aan de gevolgen van middelgebruik te reduceren. Een scala aan risicofactoren 
voor middelengebruik is in de afgelopen decennia geïdentificeerd middels 
wetenschappelijk onderzoek. Zo is het duidelijk geworden dat genetische aanleg een 
belangrijke rol speelt, en is er een verscheidenheid aan omgevingsfactoren in kaart 
gebracht die een bijdrage leveren. In dit proefschrift beschrijf ik mijn zoektocht naar 
genetische risicofactoren en het samenspel tussen die factoren en omgevingsinvloeden 
in de etiologie van middelengebruik. 
 
Mijn proefschrift is ruwweg onder te verdelen in drie hoofdthema’s. In deel 1 beschrijf ik 
drie studies gericht op het ontdekken van genetische varianten die bijdragen aan 
middelengebruik (gene finding). Deel 2 omvat vier studies die laten zien hoe dergelijke 
gen-ontdekkingen kunnen worden toegepast om nieuwe vragen te beantwoorden 
(leveraging gene findings). In deel 3 van mijn proefschrift (gene-environment interplay) ga 
ik in vier verschillende studies in op het samenspel tussen genetische factoren en 
omgevingsinvloeden bij middelengebruik.  
 
Deel 1: genen voor middelengebruik 
De genetische aanleg voor een bepaald kenmerk kan onderzocht worden met behulp van 
tweelingdata. Als eeneiige tweelingparen (genetisch identiek) meer op elkaar lijken wat 
betreft een bepaald kenmerk dan twee-eiige tweelingparen, is dit een indicatie dat 
erfelijke aanleg een rol speelt bij het kenmerk. Vanuit dit soort onderzoek is gebleken dat 
middelengebruik deels erfelijk bepaald is. Gemiddeld verklaren genetische factoren zo’n 
50% van de verschillen tussen mensen met betrekking tot middelengebruik, al lopen de 
schattingen uiteen voor specifieke gedragingen en bepaalde sub groepen. De volgende 
stap is om te onderzoeken welke genetische varianten precies een bijdrage leveren aan 
welke gedraging. In kandidaat-gen onderzoek wordt een genetische variant geselecteerd 
waarvan op basis van eerder onderzoek voorspeld wordt dat die een rol speelt. Van zo’n 
variant is bijvoorbeeld gebleken dat deze effect heeft op een specifiek biologisch proces 
wat te maken heeft met middelengebruik, zoals het neurale beloningssysteem. 
Vervolgens wordt gekeken welke versie (allel) van zo’n variant samenhangt met 
middelengebruik. In de afgelopen twintig jaar is het steeds duidelijker geworden dat deze 
methode belangrijke tekortkomingen heeft. Omdat het effect van een enkele variant erg 



562882-L-bw-Pasman562882-L-bw-Pasman562882-L-bw-Pasman562882-L-bw-Pasman
Processed on: 4-8-2021Processed on: 4-8-2021Processed on: 4-8-2021Processed on: 4-8-2021 PDF page: 441PDF page: 441PDF page: 441PDF page: 441

441Samenvatting  

Nederlandse samenvatting 
 
Het gebruik van alcohol, tabak, en cannabis kan schadelijke gevolgen hebben voor de 
fysieke en mentale gezondheid, en is ondanks recente afnames nog altijd wijdverspreid 
in de Westerse samenleving. Onderzoek naar de oorzaken van middelengebruik kan ons 
helpen om manieren te vinden om de persoonlijke en maatschappelijke kosten 
verbonden aan de gevolgen van middelgebruik te reduceren. Een scala aan risicofactoren 
voor middelengebruik is in de afgelopen decennia geïdentificeerd middels 
wetenschappelijk onderzoek. Zo is het duidelijk geworden dat genetische aanleg een 
belangrijke rol speelt, en is er een verscheidenheid aan omgevingsfactoren in kaart 
gebracht die een bijdrage leveren. In dit proefschrift beschrijf ik mijn zoektocht naar 
genetische risicofactoren en het samenspel tussen die factoren en omgevingsinvloeden 
in de etiologie van middelengebruik. 
 
Mijn proefschrift is ruwweg onder te verdelen in drie hoofdthema’s. In deel 1 beschrijf ik 
drie studies gericht op het ontdekken van genetische varianten die bijdragen aan 
middelengebruik (gene finding). Deel 2 omvat vier studies die laten zien hoe dergelijke 
gen-ontdekkingen kunnen worden toegepast om nieuwe vragen te beantwoorden 
(leveraging gene findings). In deel 3 van mijn proefschrift (gene-environment interplay) ga 
ik in vier verschillende studies in op het samenspel tussen genetische factoren en 
omgevingsinvloeden bij middelengebruik.  
 
Deel 1: genen voor middelengebruik 
De genetische aanleg voor een bepaald kenmerk kan onderzocht worden met behulp van 
tweelingdata. Als eeneiige tweelingparen (genetisch identiek) meer op elkaar lijken wat 
betreft een bepaald kenmerk dan twee-eiige tweelingparen, is dit een indicatie dat 
erfelijke aanleg een rol speelt bij het kenmerk. Vanuit dit soort onderzoek is gebleken dat 
middelengebruik deels erfelijk bepaald is. Gemiddeld verklaren genetische factoren zo’n 
50% van de verschillen tussen mensen met betrekking tot middelengebruik, al lopen de 
schattingen uiteen voor specifieke gedragingen en bepaalde sub groepen. De volgende 
stap is om te onderzoeken welke genetische varianten precies een bijdrage leveren aan 
welke gedraging. In kandidaat-gen onderzoek wordt een genetische variant geselecteerd 
waarvan op basis van eerder onderzoek voorspeld wordt dat die een rol speelt. Van zo’n 
variant is bijvoorbeeld gebleken dat deze effect heeft op een specifiek biologisch proces 
wat te maken heeft met middelengebruik, zoals het neurale beloningssysteem. 
Vervolgens wordt gekeken welke versie (allel) van zo’n variant samenhangt met 
middelengebruik. In de afgelopen twintig jaar is het steeds duidelijker geworden dat deze 
methode belangrijke tekortkomingen heeft. Omdat het effect van een enkele variant erg 
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klein is, zijn de steekproeven van honderden tot enkele duizenden deelnemers die 
werden gebruik vaak ontoereikend om zo’n associatie op een betrouwbare manier te 
testen. In hoofdstuk 2 heb ik daarom naar meerdere varianten tegelijk gekeken, en heb 
ik mijn testen uitgevoerd in twee grote steekproeven. De geselecteerde kandidaat-genen 
bleken niet geassocieerd te zijn met middelengebruik. 
 
Dit vloeide mogelijk voort uit een andere, meer fundamentele tekortkoming van de 
kandidaat-gen methode: het selecteren van enkele kandidaten op basis van beperkte 
kennis. De literatuur over de functie van bepaalde gen-varianten en hun invloed op 
gedrag is nog verre van compleet, en vaak is de empirische basis voor bepaalde 
associaties nog wankel. In de afgelopen twintig jaar heeft zich een ware revolutie 
voltrokken in het veld van de gedragsgenetica. Het complete menselijke genoom werd in 
2003 voor het eerst in kaart gebracht. Samen met het inzicht dat de kandidaat-gen 
methode haar beperkingen had, leidde dit ertoe dat wetenschappers zich verenigden in 
enorme internationale consortia om iets nieuws te doen: een genoom-wijde associatie 
studie (GWAS). In plaats van naar de associatie met één of een paar kandidaten te kijken, 
scande men nu het complete genoom met miljoenen varianten om te kijken of er één 
tussen zat die een effect had. Omdat je daarvoor miljoenen tests moet uitvoeren met 
minuscule effecten heb je immense steekproeven nodig, die alleen te verwezenlijken zijn 
door internationale samenwerkingen en een verregaande bereidheid tot het delen van 
datasets. Het zijn deze ontwikkelingen, samen met de snelle opeenvolging van nieuwe, 
publiek toegankelijke methoden en technieken die een stortvloed aan nieuwe kennis 
hebben opgeleverd. In samenwerking met een groot internationaal team van 
wetenschappers en data-instanties heb ik voor hoofdstuk 3 een genoom-wijde associatie 
studie uitgevoerd voor cannabisgebruik. We vonden een aantal genetische varianten die 
de kans vergrootten dat iemand ooit in zijn leven cannabis had gebruikt. Weinig van de 
varianten die we ontdekten waren eerder beschreven in kandidaat-gen onderzoek. Dit 
laat zien wat de grote kracht is van de GWAS methode: het ontdekken van nieuwe 
varianten die leiden tot nieuwe voorspellingen over de biologische basis van gedrag.  
 
De ontwikkelingen zijn dermate snel gegaan dat het inmiddels niet meer volstaat om een 
enkelvoudige GWAS te publiceren (zonder follow-up analyses); met de publiek 
beschikbare data en analysetools kan ieder lab met de vereiste infrastructuur een 
dergelijke analyse uitvoeren. Er zijn talloze interessante verdiepende analysetechnieken 
ontwikkeld die wetenschappers in staat stellen om hun analyses uit te breiden en nieuwe 
vragen te beantwoorden. Zo kunnen de resultaten van GWASs gebruikt worden om de 
overlap in de genetische architectuur van verschillende kenmerken te onderzoeken 
(‘genetische correlatie). In hoofdstuk 3 ontdekten we bijvoorbeeld dat de genetische 
kwetsbaarheid voor cannabisgebruik overlapt met die voor roken, alcoholisme, en ADHD. 

Samenvatting  

Dat betekent dat als je genetische aanleg hebt voor cannabisgebruik, je een verhoogde 
kans hebt om ook aanleg te hebben voor die andere kenmerken. Een uitbreiding van het 
principe van genetische correlatie is Genomic Structural Equation Modeling, waarmee 
onderzocht kan worden of er latente, gemeenschappelijke genetische factoren zijn die 
zich in verschillende soorten middelengebruik kunnen uiten. In hoofdstuk 4 presenteren 
we een dergelijke overkoepelende analyse op de resultaten van 12 verschillende 
middelengebruik GWASs, met daarin bijvoorbeeld onze eigen resultaten uit hoofdstuk 3 
en verschillende rook- en alcohol-GWASs. We vinden bewijs voor vijf latente factoren, 
waaronder een factor voor verslaving. De genetische varianten die geassocieerd zijn met 
die factor dragen bij aan verschillende soorten verslaving, zoals alcohol- en 
cannabisverslaving.  
 
Deel 2: gebruiken en toepassen van gen-ontdekkingen 
Deel 2 en deel 3 van mijn proefschrift zijn in essentie verdere toepassingen en 
verdiepingen van GWAS resultaten. In hoofdstuk 3 (de cannabis GWAS uit deel 1( 
ontdekten we bijvoorbeeld een gen dat een belangrijke rol speelde in cannabisgebruik. 
Dit CADM2 gen was niet voorgesteld in vroegere kandidaat-gen studies. Omdat we nu een 
solide empirische basis hadden voor dit gen, besloten we om een ‘omgekeerde’ 
kandidaat-gen studie uit te voeren. In hoofdstuk 5 laten we zien dat dit gen niet alleen 
geassocieerd is met cannabisgebruik, maar met allerlei verschillende soorten 
middelengebruik, ander risicogedrag en impulsieve persoonlijkheidskenmerken. Voor 
deze studie konden we kleinere steekproeven gebruiken dan die nodig zijn voor een 
GWAS: omdat we maar enkele duizenden varianten testten (i.p.v. miljoenen) was de 
statistische power groter. Het spectrum van associaties was zo breed dat we besloten om 
verder te kijken. In hoofdstuk 6 testten we de associatie met 241 verschillende 
uitkomsten om te onderzoeken of de rol van CADM2 specifiek is voor risicogedrag, of dat 
het geassocieerd is met alle soorten gedrag. Het bleek dat CADM2 inderdaad met een wijd 
spectrum van gedragingen was geassocieerd, maar ook weer niet met alle aspecten van 
gedrag. We vonden bijvoorbeeld sterke associaties voor eetgedrag, fysieke activiteit, en 
cognitie, maar minder met psychische stoornissen en sociaal gedrag. Ook binnen de 
uitkomstcategorieën waren verschillen, zodat gerelateerde kenmerken soms wel en soms 
niet geassocieerd waren met het gen. Dit laat zien dat zowel algemene als meer specifieke 
genetische effecten van belang zijn, en dat het de moeite waard is om apart naar 
specifieke kenmerken te kijken en niet alles samen te nemen.  
 
De andere twee studies uit deel 2 laten een volgende interessante toepassing van GWAS 
resultaten zien. Genetische varianten waarvan is vastgesteld dat ze (robuust) 
samenhangen met een bepaalde gedraging kunnen worden gebruikt als ‘instrument’ om 
die gedraging te meten. Het voordeel daarvan is dat je causale verbanden kunt testen. In 
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klein is, zijn de steekproeven van honderden tot enkele duizenden deelnemers die 
werden gebruik vaak ontoereikend om zo’n associatie op een betrouwbare manier te 
testen. In hoofdstuk 2 heb ik daarom naar meerdere varianten tegelijk gekeken, en heb 
ik mijn testen uitgevoerd in twee grote steekproeven. De geselecteerde kandidaat-genen 
bleken niet geassocieerd te zijn met middelengebruik. 
 
Dit vloeide mogelijk voort uit een andere, meer fundamentele tekortkoming van de 
kandidaat-gen methode: het selecteren van enkele kandidaten op basis van beperkte 
kennis. De literatuur over de functie van bepaalde gen-varianten en hun invloed op 
gedrag is nog verre van compleet, en vaak is de empirische basis voor bepaalde 
associaties nog wankel. In de afgelopen twintig jaar heeft zich een ware revolutie 
voltrokken in het veld van de gedragsgenetica. Het complete menselijke genoom werd in 
2003 voor het eerst in kaart gebracht. Samen met het inzicht dat de kandidaat-gen 
methode haar beperkingen had, leidde dit ertoe dat wetenschappers zich verenigden in 
enorme internationale consortia om iets nieuws te doen: een genoom-wijde associatie 
studie (GWAS). In plaats van naar de associatie met één of een paar kandidaten te kijken, 
scande men nu het complete genoom met miljoenen varianten om te kijken of er één 
tussen zat die een effect had. Omdat je daarvoor miljoenen tests moet uitvoeren met 
minuscule effecten heb je immense steekproeven nodig, die alleen te verwezenlijken zijn 
door internationale samenwerkingen en een verregaande bereidheid tot het delen van 
datasets. Het zijn deze ontwikkelingen, samen met de snelle opeenvolging van nieuwe, 
publiek toegankelijke methoden en technieken die een stortvloed aan nieuwe kennis 
hebben opgeleverd. In samenwerking met een groot internationaal team van 
wetenschappers en data-instanties heb ik voor hoofdstuk 3 een genoom-wijde associatie 
studie uitgevoerd voor cannabisgebruik. We vonden een aantal genetische varianten die 
de kans vergrootten dat iemand ooit in zijn leven cannabis had gebruikt. Weinig van de 
varianten die we ontdekten waren eerder beschreven in kandidaat-gen onderzoek. Dit 
laat zien wat de grote kracht is van de GWAS methode: het ontdekken van nieuwe 
varianten die leiden tot nieuwe voorspellingen over de biologische basis van gedrag.  
 
De ontwikkelingen zijn dermate snel gegaan dat het inmiddels niet meer volstaat om een 
enkelvoudige GWAS te publiceren (zonder follow-up analyses); met de publiek 
beschikbare data en analysetools kan ieder lab met de vereiste infrastructuur een 
dergelijke analyse uitvoeren. Er zijn talloze interessante verdiepende analysetechnieken 
ontwikkeld die wetenschappers in staat stellen om hun analyses uit te breiden en nieuwe 
vragen te beantwoorden. Zo kunnen de resultaten van GWASs gebruikt worden om de 
overlap in de genetische architectuur van verschillende kenmerken te onderzoeken 
(‘genetische correlatie). In hoofdstuk 3 ontdekten we bijvoorbeeld dat de genetische 
kwetsbaarheid voor cannabisgebruik overlapt met die voor roken, alcoholisme, en ADHD. 

Samenvatting  

Dat betekent dat als je genetische aanleg hebt voor cannabisgebruik, je een verhoogde 
kans hebt om ook aanleg te hebben voor die andere kenmerken. Een uitbreiding van het 
principe van genetische correlatie is Genomic Structural Equation Modeling, waarmee 
onderzocht kan worden of er latente, gemeenschappelijke genetische factoren zijn die 
zich in verschillende soorten middelengebruik kunnen uiten. In hoofdstuk 4 presenteren 
we een dergelijke overkoepelende analyse op de resultaten van 12 verschillende 
middelengebruik GWASs, met daarin bijvoorbeeld onze eigen resultaten uit hoofdstuk 3 
en verschillende rook- en alcohol-GWASs. We vinden bewijs voor vijf latente factoren, 
waaronder een factor voor verslaving. De genetische varianten die geassocieerd zijn met 
die factor dragen bij aan verschillende soorten verslaving, zoals alcohol- en 
cannabisverslaving.  
 
Deel 2: gebruiken en toepassen van gen-ontdekkingen 
Deel 2 en deel 3 van mijn proefschrift zijn in essentie verdere toepassingen en 
verdiepingen van GWAS resultaten. In hoofdstuk 3 (de cannabis GWAS uit deel 1( 
ontdekten we bijvoorbeeld een gen dat een belangrijke rol speelde in cannabisgebruik. 
Dit CADM2 gen was niet voorgesteld in vroegere kandidaat-gen studies. Omdat we nu een 
solide empirische basis hadden voor dit gen, besloten we om een ‘omgekeerde’ 
kandidaat-gen studie uit te voeren. In hoofdstuk 5 laten we zien dat dit gen niet alleen 
geassocieerd is met cannabisgebruik, maar met allerlei verschillende soorten 
middelengebruik, ander risicogedrag en impulsieve persoonlijkheidskenmerken. Voor 
deze studie konden we kleinere steekproeven gebruiken dan die nodig zijn voor een 
GWAS: omdat we maar enkele duizenden varianten testten (i.p.v. miljoenen) was de 
statistische power groter. Het spectrum van associaties was zo breed dat we besloten om 
verder te kijken. In hoofdstuk 6 testten we de associatie met 241 verschillende 
uitkomsten om te onderzoeken of de rol van CADM2 specifiek is voor risicogedrag, of dat 
het geassocieerd is met alle soorten gedrag. Het bleek dat CADM2 inderdaad met een wijd 
spectrum van gedragingen was geassocieerd, maar ook weer niet met alle aspecten van 
gedrag. We vonden bijvoorbeeld sterke associaties voor eetgedrag, fysieke activiteit, en 
cognitie, maar minder met psychische stoornissen en sociaal gedrag. Ook binnen de 
uitkomstcategorieën waren verschillen, zodat gerelateerde kenmerken soms wel en soms 
niet geassocieerd waren met het gen. Dit laat zien dat zowel algemene als meer specifieke 
genetische effecten van belang zijn, en dat het de moeite waard is om apart naar 
specifieke kenmerken te kijken en niet alles samen te nemen.  
 
De andere twee studies uit deel 2 laten een volgende interessante toepassing van GWAS 
resultaten zien. Genetische varianten waarvan is vastgesteld dat ze (robuust) 
samenhangen met een bepaalde gedraging kunnen worden gebruikt als ‘instrument’ om 
die gedraging te meten. Het voordeel daarvan is dat je causale verbanden kunt testen. In 



562882-L-bw-Pasman562882-L-bw-Pasman562882-L-bw-Pasman562882-L-bw-Pasman
Processed on: 4-8-2021Processed on: 4-8-2021Processed on: 4-8-2021Processed on: 4-8-2021 PDF page: 444PDF page: 444PDF page: 444PDF page: 444

444 Part 4 

observationeel onderzoek kun je op basis van een gevonden associatie tussen twee 
kenmerken niet concluderen dat de één de ander veroorzaakt; het kan tenslotte ook 
andersom zijn, of er kunnen andere factoren zijn die de relatie beïnvloeden. Deze 
problemen spelen minder als je een genetische variant als instrument gebruikt. Een 
genetische variant kan namelijk niet beïnvloed worden door externe factoren, het DNA 
ligt vast vanaf de geboorte. Met behulp van sensitiviteitsanalyses kan worden vastgesteld 
of de variant inderdaad een goed instrument is voor het kenmerk en of er inderdaad geen 
sprake is van een omgekeerd causaal verband. Dit geheel van technieken en theorie 
wordt Mendeliaanse Randomisatie (MR) genoemd. MR werd toegepast in hoofdstuk 3 om 
het causale verband tussen schizofrenie en cannabisgebruik te testen. Die test leverde 
overtuigend bewijs op voor een causaal effect van cannabisgebruik op schizofrenie, maar 
zwak bewijs voor een effect in de omgekeerde richting. In hoofdstuk 7 vind ik sterk bewijs 
dat insomnia rookgedrag, alcoholisme, en cannabisgebruik kan veroorzaken. In de 
andere richting vond ik dat roken kan leiden tot insomnia. Dergelijke vondsten hebben 
duidelijke implicaties: in preventie en interventie moet bijvoorbeeld mogelijk meer 
aandacht komen voor cannabisgebruik als gevolg van schizofrenie (waar het zwaartepunt 
nu ligt op het omgekeerde). En aangezien roken en slapeloosheid in twee richtingen 
causaal gerelateerd zijn, zouden die mogelijk gezamenlijk aangepakt moeten worden in 
behandeling. Met MR kunnen ook diepere biologische mechanismes worden getest. Veel 
literatuur heeft gesuggereerd dat verschillen in de volumes van subcorticale 
hersenstructuren verband hebben met middelengebruik. Het zou kunnen dat dergelijke 
biologische verschillen leiden tot een grotere kwetsbaarheid voor middelengebruik, maar 
andersom is het ook mogelijk dat middelengebruik ervoor zorgt dat de volume van deze 
structuren afneemt. In hoofdstuk 8 vinden we vooral bewijs voor die laatste voorspelling. 
Alcoholisme verkleint het volume van de hippocampus en amygdala, en roken leidt tot 
een kleinere pallidum en hippocampus. Dergelijke vondsten voegen weer een stukje toe 
aan de puzzel; gegeven de rol van de hippocampus in geheugenprocessen zouden deze 
vondsten bijvoorbeeld kunnen verklaren waarom alcoholisme gepaard gaat met 
geheugenproblemen. 
 
Deel 3: gen-omgeving samenspel 
De meest toegepaste manier om de resultaten van GWASs te gebruiken in 
vervolgonderzoek is met behulp van polygenetische scores. Het idee is om in een 
onafhankelijke steekproef per persoon een score te berekenen die gebasseerd is op de 
effectgroottes uit de GWAS. Met deze polygenetische score (PGS) meet men zo het 
genetisch risicoprofiel gebaseerd op de GWAS in een nieuwe groep mensen. PGSs zijn 
flexibel en eenvoudig toe te passen en kunnen gebruikt worden om een scala aan nieuwe 
onderwerpen te onderzoeken. In deel 3 van mijn proefschrift gebruik ik ze om het 
samenspel tussen genetische factoren en omgevingsinvloeden te onderzoeken.  

Samenvatting  

 
In hoofdstuk 9 breng ik onderzoek in kaart dat gen-omgeving interactie heeft onderzocht 
met behulp van PGS (en zet het af tegen oudere vormen van PGS gebaseerd op kandidaat-
genen, zoals in mijn studie uit hoofdstuk 2). Bij gen-omgeving interactie hangt het effect 
van genetische kwetsbaarheid af van omgevingsomstandigheden. De gedachte is 
bijvoorbeeld dat mensen die al genetisch gevoelig zijn voor een bepaalde uitkomst een 
extra grote kans hebben op die uitkomst als er ook nog eens risicofactoren aanwezig zijn 
in de omgeving. Een voorbeeld zou zijn dat genetische kwetsbaarheid voor verslaving een 
extra groot effect heeft voor mensen die een traumatische gebeurtenis hebben 
meegemaakt. Mijn review toonde aan dat dergelijke interactie-effecten mogelijk een rol 
spelen in middelengebruik. Echter, de kwaliteit van de beschouwde studies was beperkt, 
de interactie-effecten waren klein, en de verschillen tussen studies waren groot. Naar 
aanleiding van deze bevindingen doe ik enkele aanbevelingen voor vervolgonderzoek 
naar GxE in middelengebruik. In mijn volgende studie volg ik deze aanbevelingen door 
gebruik te maken van de nieuwste PGS methoden, grote ‘discovery’ GWASs en ‘target’ 
steekproeven, en te controleren voor belangrijke (genetische) covariaten. In hoofdstuk 
10 beschrijf ik de resultaten. Net als in de review is het bewijs voor GxE niet 
overweldigend: één van de 14 geteste interacties is significant. Deze interactie laat zien 
dat een PGS voor alcoholgebruik een sterkere voorspeller is voor alcoholgebruik voor 
mensen die in een goede buurt wonen dan voor mensen die in een slechte buurt wonen. 
Mogelijk komt dat doordat mensen met een hogere sociaaleconomische status sowieso 
al meer alcohol drinken, en wordt dit effect verder versterkt door genetisch risico. Hierbij 
moet worden opgemerkt dat de effecten van de buurtvariabelen veel kleiner waren dan 
verwacht, en ook niet altijd in de voorspelde richting. De conclusie was opnieuw dat GxE 
mogelijk een rol speelt, maar dat het aandeel van dergelijke effecten in de etiologie van 
middelengebruik waarschijnlijk klein is.  
 
Een andere beperking die ik had opgemerkt in de review van hoofdstuk 9 was dat er in 
weinig studies rekening werd gehouden met een andere vorm van gen-omgeving 
samenspel, namelijk gen-omgeving correlatie (rGE). Hierbij bestaat er een associatie 
tussen genetische aanleg (bijv. gemeten met een PGS) en een omgevingskenmerk. Er zijn 
verschillende manieren waardoor zo’n associatie kan ontstaan. Door genetische overlap 
tussen ouders en kinderen kan er bijvoorbeeld een correlatie ontstaan tussen de 
ouderomgeving en de genetische opmaak van het kind (‘passieve’ rGE). Bij actieve of 
reactieve rGE ontstaat er een verband met de omgeving doordat de genetische opmaak 
leidt tot een bepaalde gedraging die de omgeving beïnvloedt en vormt. Als er bij het 
bestuderen van gen-omgeving interactie geen rekening wordt gehouden met mogelijke 
effecten van gen-omgeving correlatie kan het gebeuren dat de interpretatie van 
interactie-effecten niet klopt. Het optreden van gen-omgeving correlatie kan zelfs leiden 
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observationeel onderzoek kun je op basis van een gevonden associatie tussen twee 
kenmerken niet concluderen dat de één de ander veroorzaakt; het kan tenslotte ook 
andersom zijn, of er kunnen andere factoren zijn die de relatie beïnvloeden. Deze 
problemen spelen minder als je een genetische variant als instrument gebruikt. Een 
genetische variant kan namelijk niet beïnvloed worden door externe factoren, het DNA 
ligt vast vanaf de geboorte. Met behulp van sensitiviteitsanalyses kan worden vastgesteld 
of de variant inderdaad een goed instrument is voor het kenmerk en of er inderdaad geen 
sprake is van een omgekeerd causaal verband. Dit geheel van technieken en theorie 
wordt Mendeliaanse Randomisatie (MR) genoemd. MR werd toegepast in hoofdstuk 3 om 
het causale verband tussen schizofrenie en cannabisgebruik te testen. Die test leverde 
overtuigend bewijs op voor een causaal effect van cannabisgebruik op schizofrenie, maar 
zwak bewijs voor een effect in de omgekeerde richting. In hoofdstuk 7 vind ik sterk bewijs 
dat insomnia rookgedrag, alcoholisme, en cannabisgebruik kan veroorzaken. In de 
andere richting vond ik dat roken kan leiden tot insomnia. Dergelijke vondsten hebben 
duidelijke implicaties: in preventie en interventie moet bijvoorbeeld mogelijk meer 
aandacht komen voor cannabisgebruik als gevolg van schizofrenie (waar het zwaartepunt 
nu ligt op het omgekeerde). En aangezien roken en slapeloosheid in twee richtingen 
causaal gerelateerd zijn, zouden die mogelijk gezamenlijk aangepakt moeten worden in 
behandeling. Met MR kunnen ook diepere biologische mechanismes worden getest. Veel 
literatuur heeft gesuggereerd dat verschillen in de volumes van subcorticale 
hersenstructuren verband hebben met middelengebruik. Het zou kunnen dat dergelijke 
biologische verschillen leiden tot een grotere kwetsbaarheid voor middelengebruik, maar 
andersom is het ook mogelijk dat middelengebruik ervoor zorgt dat de volume van deze 
structuren afneemt. In hoofdstuk 8 vinden we vooral bewijs voor die laatste voorspelling. 
Alcoholisme verkleint het volume van de hippocampus en amygdala, en roken leidt tot 
een kleinere pallidum en hippocampus. Dergelijke vondsten voegen weer een stukje toe 
aan de puzzel; gegeven de rol van de hippocampus in geheugenprocessen zouden deze 
vondsten bijvoorbeeld kunnen verklaren waarom alcoholisme gepaard gaat met 
geheugenproblemen. 
 
Deel 3: gen-omgeving samenspel 
De meest toegepaste manier om de resultaten van GWASs te gebruiken in 
vervolgonderzoek is met behulp van polygenetische scores. Het idee is om in een 
onafhankelijke steekproef per persoon een score te berekenen die gebasseerd is op de 
effectgroottes uit de GWAS. Met deze polygenetische score (PGS) meet men zo het 
genetisch risicoprofiel gebaseerd op de GWAS in een nieuwe groep mensen. PGSs zijn 
flexibel en eenvoudig toe te passen en kunnen gebruikt worden om een scala aan nieuwe 
onderwerpen te onderzoeken. In deel 3 van mijn proefschrift gebruik ik ze om het 
samenspel tussen genetische factoren en omgevingsinvloeden te onderzoeken.  

Samenvatting  

 
In hoofdstuk 9 breng ik onderzoek in kaart dat gen-omgeving interactie heeft onderzocht 
met behulp van PGS (en zet het af tegen oudere vormen van PGS gebaseerd op kandidaat-
genen, zoals in mijn studie uit hoofdstuk 2). Bij gen-omgeving interactie hangt het effect 
van genetische kwetsbaarheid af van omgevingsomstandigheden. De gedachte is 
bijvoorbeeld dat mensen die al genetisch gevoelig zijn voor een bepaalde uitkomst een 
extra grote kans hebben op die uitkomst als er ook nog eens risicofactoren aanwezig zijn 
in de omgeving. Een voorbeeld zou zijn dat genetische kwetsbaarheid voor verslaving een 
extra groot effect heeft voor mensen die een traumatische gebeurtenis hebben 
meegemaakt. Mijn review toonde aan dat dergelijke interactie-effecten mogelijk een rol 
spelen in middelengebruik. Echter, de kwaliteit van de beschouwde studies was beperkt, 
de interactie-effecten waren klein, en de verschillen tussen studies waren groot. Naar 
aanleiding van deze bevindingen doe ik enkele aanbevelingen voor vervolgonderzoek 
naar GxE in middelengebruik. In mijn volgende studie volg ik deze aanbevelingen door 
gebruik te maken van de nieuwste PGS methoden, grote ‘discovery’ GWASs en ‘target’ 
steekproeven, en te controleren voor belangrijke (genetische) covariaten. In hoofdstuk 
10 beschrijf ik de resultaten. Net als in de review is het bewijs voor GxE niet 
overweldigend: één van de 14 geteste interacties is significant. Deze interactie laat zien 
dat een PGS voor alcoholgebruik een sterkere voorspeller is voor alcoholgebruik voor 
mensen die in een goede buurt wonen dan voor mensen die in een slechte buurt wonen. 
Mogelijk komt dat doordat mensen met een hogere sociaaleconomische status sowieso 
al meer alcohol drinken, en wordt dit effect verder versterkt door genetisch risico. Hierbij 
moet worden opgemerkt dat de effecten van de buurtvariabelen veel kleiner waren dan 
verwacht, en ook niet altijd in de voorspelde richting. De conclusie was opnieuw dat GxE 
mogelijk een rol speelt, maar dat het aandeel van dergelijke effecten in de etiologie van 
middelengebruik waarschijnlijk klein is.  
 
Een andere beperking die ik had opgemerkt in de review van hoofdstuk 9 was dat er in 
weinig studies rekening werd gehouden met een andere vorm van gen-omgeving 
samenspel, namelijk gen-omgeving correlatie (rGE). Hierbij bestaat er een associatie 
tussen genetische aanleg (bijv. gemeten met een PGS) en een omgevingskenmerk. Er zijn 
verschillende manieren waardoor zo’n associatie kan ontstaan. Door genetische overlap 
tussen ouders en kinderen kan er bijvoorbeeld een correlatie ontstaan tussen de 
ouderomgeving en de genetische opmaak van het kind (‘passieve’ rGE). Bij actieve of 
reactieve rGE ontstaat er een verband met de omgeving doordat de genetische opmaak 
leidt tot een bepaalde gedraging die de omgeving beïnvloedt en vormt. Als er bij het 
bestuderen van gen-omgeving interactie geen rekening wordt gehouden met mogelijke 
effecten van gen-omgeving correlatie kan het gebeuren dat de interpretatie van 
interactie-effecten niet klopt. Het optreden van gen-omgeving correlatie kan zelfs leiden 
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tot vals positieve resultaten van GxE. Daarom is het belangrijk dat er gecontroleerd of 
tenminste gecheckt wordt voor rGE bij het onderzoeken van GxE. In hoofdstuk 10 heb ik 
getest op rGE. Ik vond geen correlaties tussen de middelengebruik-PGSs en 
buurtfactoren, maar wel opmerkelijke samenhang met covariaten zoals de tijd waarin 
iemand was opgegroeid. In deze studie kon ik niet statistisch controleren voor deze 
onverwachte effecten. In hoofdstuk 11 heb ik een methode toegepast die dat wel 
mogelijk maakte, iets wat bij mijn weten nog niet eerder was uitgeprobeerd. In Structural 
Equation Modeling (SEM) kunnen hoofdeffecten, interacties, en correlaties tussen 
variabelen tegelijkertijd gemodelleerd worden. Zo kan ook getest worden in welke mate 
rGE effecten de resultaten van GxE tests vertroebelen, door modellen met en zonder rGE 
met elkaar te vergelijken. De resultaten laten bewijs zien voor rGE tussen oudervariabelen 
(middelengebruik van ouders, betrokkenheid, en de ouder-kindrelatie) en genetisch 
risico voor roken. Verschillende verklaringen zijn hiervoor mogelijk. Zo lijkt het 
aannemelijk dat de associatie tussen het middelengebruik van ouders en dat van 
kinderen te wijten is aan de genetische overlap tussen ouders en kinderen. De associaties 
tussen genetisch risico voor roken enerzijds en ouderbetrokkenheid en de ouder-
kindrelatie anderzijds zouden vormen kunnen zijn van reactieve rGE, waarbij het 
rookgedrag van het kind een negatieve reactie uitlokt bij ouders, die leiden tot lagere 
betrokkenheid en een negatievere relatie. Onafhankelijk van deze gen-omgeving 
correlaties trad er ook een interactie op tussen het middelengebruik van ouders en 
genetisch risico op roken. Het effect van genetische aanleg op roken werd extra versterkt 
door het middelengebruik van ouders. Dit complexe geheel van samenspel tussen 
genetische en omgevingsfactoren laat zien hoe verschillende componenten elkaar 
kunnen versterken, en hoe complex rookgedrag eigenlijk is. Voor alcohol- en 
cannabisgebruik werden dergelijke effecten niet geobserveerd, maar dit was mogelijk te 
wijten aan lagere statistische power voor deze uitkomsten. Ik heb met deze studie laten 
zien hoe GxE en rGE effecten tegelijkertijd getest kunnen worden. In dit geval bleek niet 
dat rGE de GxE effecten vertekenden. Wel toonden de resultaten dat rGE minstens even 
belangrijk is als GxE in middelengebruik, ook al heeft rGE voorheen veel minder aandacht 
gekregen in de onderzoeksliteratuur.  
 
In hoofdstuk 12 neem ik opnieuw een stap om GxE en rGE effecten in middelengebruik te 
ontwarren. Het nadeel van de PGS-methode in hoofdstuk 11 is dat ik weliswaar de 
relatieve bijdrage van GxE en rGE kon onderzoeken, maar geen mogelijkheid had om te 
achterhalen welke genetische varianten bijdroegen aan welk effect. Voor mijn volgende 
studie richtte ik mij op de bijdrage van rGE en GxE met opleidingsniveau op rookgedrag. 
Ik toon aan dat de genetische kwetsbaarheid voor roken voor een substantieel deel wordt 
gemedieerd door rGE met opleidingsniveau. Dat wil zeggen: veel van de varianten die 
geassocieerd zijn met roken zijn eigenlijk geassocieerd met opleidingsniveau, en door het 
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verband tussen opleidingsniveau en roken raken ze indirect geassocieerd met roken. De 
volgende stap was om te kijken of er GxE was tussen genetische aanleg voor een lage 
opleiding en omgevingsrisico (in dit geval de sociaaleconomische kenmerken van de 
buurt waarin iemand woont) op roken. Dit heb ik vergeleken met GxE met een PGS 
gebaseerd op de ‘directe’ genetische kwetsbaarheid voor roken, dus de varianten die niet 
gemedieerd werden door opleidingsniveau. Op die manier breng ik in kaart of er GxE 
optreedt met ‘directe’ versus ‘rGE met opleidingsniveau’ varianten in de voorspelling van 
roken. Ik vind aanwijzingen voor GxE, maar deze volgen geen duidelijk onderscheidbaar 
patroon voor de verschillende PGSs. Ook volgen de GxE effecten niet allemaal dezelfde 
richting bekeken over verschillende meetinstrumenten en steekproeven. Concluderend 
toont deze studie aan dat de genetische kwetsbaarheid voor roken kan worden 
opgedeeld in directe en indirecte componenten, en dat deze componenten op 
verschillende manieren samenhangen met andere variabelen. Vervolgonderzoek is nodig 
om vast te stellen in hoeverre de verschillende componenten zich gedragen in interactie 
met omgevingsrisico. 
 
Samenvattend toont mijn proefschrift de resultaten van studies die met steeds sterkere 
methoden genetische varianten identificeren die geassocieerd zijn met middelengebruik. 
In deel 2 en 3 laat ik zien hoe je de vondsten van dergelijke studies kunt gebruiken om 
nieuwe, belangwekkende onderzoeksvragen te beantwoorden. Mijn omgekeerde 
kandidaat-gen studies brengen de brede rol van CADM2 in (risico)gedrag in kaart, daarbij 
aanknopingspunten biedend voor vervolgonderzoek naar de biologische mechanismen 
van dat gedrag. Mijn MR studies laten zien hoe middelengebruik causaal samenhangt met 
psychiatrische stoornissen, en laten bovendien causale effecten zien van 
middelengebruik op hersenstructuren. Mijn onderzoek naar samenspel tussen 
genetische en omgevingsfactoren laat een belangrijke rol zien voor gen-omgeving 
correlatie (en, in minder mate, interactie) in middelengebruik. Genetische en 
omgevingsfactoren zijn intrinsiek verbonden en moeten gezamenlijk beschouwd worden.   
 
Sterke en zwakke punten 
Een sterk punt van dit proefschrift is hoe er flexibel gebruik is gemaakt van steeds nieuwe 
technieken en datasets. De drijvende kracht achter dit proefschrift, en in feite alle recente 
ontwikkelingen in gedragsgenetica, is de bereidheid tot grootschalige samenwerking in 
deze tak van wetenschap. Het delen van onderzoeksresultaten, analysetechnieken, web 
tools, en zelfs complete, originele datasets biedt ongekende kansen voor 
wetenschappers wereldwijd om hun onderzoeksvragen te beantwoorden. Ik heb 
dankbaar gebruik gemaakt van alle beschikbare materialen en technieken, en ingespeeld 
op de nieuwste ontwikkelingen. Dit proefschrift staat in de meest ware zin van het woord 
‘on the shoulders of giants’.  
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tot vals positieve resultaten van GxE. Daarom is het belangrijk dat er gecontroleerd of 
tenminste gecheckt wordt voor rGE bij het onderzoeken van GxE. In hoofdstuk 10 heb ik 
getest op rGE. Ik vond geen correlaties tussen de middelengebruik-PGSs en 
buurtfactoren, maar wel opmerkelijke samenhang met covariaten zoals de tijd waarin 
iemand was opgegroeid. In deze studie kon ik niet statistisch controleren voor deze 
onverwachte effecten. In hoofdstuk 11 heb ik een methode toegepast die dat wel 
mogelijk maakte, iets wat bij mijn weten nog niet eerder was uitgeprobeerd. In Structural 
Equation Modeling (SEM) kunnen hoofdeffecten, interacties, en correlaties tussen 
variabelen tegelijkertijd gemodelleerd worden. Zo kan ook getest worden in welke mate 
rGE effecten de resultaten van GxE tests vertroebelen, door modellen met en zonder rGE 
met elkaar te vergelijken. De resultaten laten bewijs zien voor rGE tussen oudervariabelen 
(middelengebruik van ouders, betrokkenheid, en de ouder-kindrelatie) en genetisch 
risico voor roken. Verschillende verklaringen zijn hiervoor mogelijk. Zo lijkt het 
aannemelijk dat de associatie tussen het middelengebruik van ouders en dat van 
kinderen te wijten is aan de genetische overlap tussen ouders en kinderen. De associaties 
tussen genetisch risico voor roken enerzijds en ouderbetrokkenheid en de ouder-
kindrelatie anderzijds zouden vormen kunnen zijn van reactieve rGE, waarbij het 
rookgedrag van het kind een negatieve reactie uitlokt bij ouders, die leiden tot lagere 
betrokkenheid en een negatievere relatie. Onafhankelijk van deze gen-omgeving 
correlaties trad er ook een interactie op tussen het middelengebruik van ouders en 
genetisch risico op roken. Het effect van genetische aanleg op roken werd extra versterkt 
door het middelengebruik van ouders. Dit complexe geheel van samenspel tussen 
genetische en omgevingsfactoren laat zien hoe verschillende componenten elkaar 
kunnen versterken, en hoe complex rookgedrag eigenlijk is. Voor alcohol- en 
cannabisgebruik werden dergelijke effecten niet geobserveerd, maar dit was mogelijk te 
wijten aan lagere statistische power voor deze uitkomsten. Ik heb met deze studie laten 
zien hoe GxE en rGE effecten tegelijkertijd getest kunnen worden. In dit geval bleek niet 
dat rGE de GxE effecten vertekenden. Wel toonden de resultaten dat rGE minstens even 
belangrijk is als GxE in middelengebruik, ook al heeft rGE voorheen veel minder aandacht 
gekregen in de onderzoeksliteratuur.  
 
In hoofdstuk 12 neem ik opnieuw een stap om GxE en rGE effecten in middelengebruik te 
ontwarren. Het nadeel van de PGS-methode in hoofdstuk 11 is dat ik weliswaar de 
relatieve bijdrage van GxE en rGE kon onderzoeken, maar geen mogelijkheid had om te 
achterhalen welke genetische varianten bijdroegen aan welk effect. Voor mijn volgende 
studie richtte ik mij op de bijdrage van rGE en GxE met opleidingsniveau op rookgedrag. 
Ik toon aan dat de genetische kwetsbaarheid voor roken voor een substantieel deel wordt 
gemedieerd door rGE met opleidingsniveau. Dat wil zeggen: veel van de varianten die 
geassocieerd zijn met roken zijn eigenlijk geassocieerd met opleidingsniveau, en door het 
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verband tussen opleidingsniveau en roken raken ze indirect geassocieerd met roken. De 
volgende stap was om te kijken of er GxE was tussen genetische aanleg voor een lage 
opleiding en omgevingsrisico (in dit geval de sociaaleconomische kenmerken van de 
buurt waarin iemand woont) op roken. Dit heb ik vergeleken met GxE met een PGS 
gebaseerd op de ‘directe’ genetische kwetsbaarheid voor roken, dus de varianten die niet 
gemedieerd werden door opleidingsniveau. Op die manier breng ik in kaart of er GxE 
optreedt met ‘directe’ versus ‘rGE met opleidingsniveau’ varianten in de voorspelling van 
roken. Ik vind aanwijzingen voor GxE, maar deze volgen geen duidelijk onderscheidbaar 
patroon voor de verschillende PGSs. Ook volgen de GxE effecten niet allemaal dezelfde 
richting bekeken over verschillende meetinstrumenten en steekproeven. Concluderend 
toont deze studie aan dat de genetische kwetsbaarheid voor roken kan worden 
opgedeeld in directe en indirecte componenten, en dat deze componenten op 
verschillende manieren samenhangen met andere variabelen. Vervolgonderzoek is nodig 
om vast te stellen in hoeverre de verschillende componenten zich gedragen in interactie 
met omgevingsrisico. 
 
Samenvattend toont mijn proefschrift de resultaten van studies die met steeds sterkere 
methoden genetische varianten identificeren die geassocieerd zijn met middelengebruik. 
In deel 2 en 3 laat ik zien hoe je de vondsten van dergelijke studies kunt gebruiken om 
nieuwe, belangwekkende onderzoeksvragen te beantwoorden. Mijn omgekeerde 
kandidaat-gen studies brengen de brede rol van CADM2 in (risico)gedrag in kaart, daarbij 
aanknopingspunten biedend voor vervolgonderzoek naar de biologische mechanismen 
van dat gedrag. Mijn MR studies laten zien hoe middelengebruik causaal samenhangt met 
psychiatrische stoornissen, en laten bovendien causale effecten zien van 
middelengebruik op hersenstructuren. Mijn onderzoek naar samenspel tussen 
genetische en omgevingsfactoren laat een belangrijke rol zien voor gen-omgeving 
correlatie (en, in minder mate, interactie) in middelengebruik. Genetische en 
omgevingsfactoren zijn intrinsiek verbonden en moeten gezamenlijk beschouwd worden.   
 
Sterke en zwakke punten 
Een sterk punt van dit proefschrift is hoe er flexibel gebruik is gemaakt van steeds nieuwe 
technieken en datasets. De drijvende kracht achter dit proefschrift, en in feite alle recente 
ontwikkelingen in gedragsgenetica, is de bereidheid tot grootschalige samenwerking in 
deze tak van wetenschap. Het delen van onderzoeksresultaten, analysetechnieken, web 
tools, en zelfs complete, originele datasets biedt ongekende kansen voor 
wetenschappers wereldwijd om hun onderzoeksvragen te beantwoorden. Ik heb 
dankbaar gebruik gemaakt van alle beschikbare materialen en technieken, en ingespeeld 
op de nieuwste ontwikkelingen. Dit proefschrift staat in de meest ware zin van het woord 
‘on the shoulders of giants’.  
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Een andere belangrijke ontwikkeling in de wetenschap in de afgelopen jaren is de 
verschuiving naar ‘open science’. Niet alleen resultaten en data worden gedeeld, 
daarnaast wordt steeds meer onderzoek gepre-registreerd en delen steeds meer 
onderzoekers analysescripts en complete resultatenbestanden. Dit laatste is vooral in het 
veld van de gedragsgenetica steeds gangbaarder. Pre-registratie houdt in dat 
wetenschappers van tevoren publiceren wat ze precies gaan onderzoeken en hoe ze dat 
gaan doen. Het idee is dat op die manier wordt voorkomen dat voorspellingen of 
methoden (veelal onbewust) worden aangepast als de resultaten op de één of andere 
manier afwijken. Ook wordt de onderzoeker gestimuleerd om van tevoren goed na te 
denken over methoden en analysetechnieken, en eventuele alternatieven te ontwikkelen 
voor het geval dat methoden niet blijken te werken. Met name in de 
gedragswetenschappen pre-registreren steeds meer wetenschappers hun onderzoek. 
Voor dit proefschrift heb ik eveneens mijn studieplannen gedeeld en gepubliceerd in het 
kader van transparantie. Op die manier heb ik bijgedragen aan deze beweging gericht op 
het terugdringen van publicatie-bias en non-replicatie van studieresultaten. 
 
Vanzelfsprekend zijn er daarnaast tekortkomingen waarmee rekening gehouden moet 
worden bij het interpreteren van dit proefschrift. Zo werden er geen zeldzame genetische 
varianten opgenomen in de GWAS die ik heb uitgevoerd of waarvan ik de resultaten heb 
gebruikt. Zeldzame varianten zijn moeilijker om te onderzoeken omdat er nog grotere 
steekproeven nodig zijn; niettemin zijn er veel aanwijzingen dat de bijdrage van deze 
varianten aan gedrag substantieel is. Daarnaast is er voor mijn proefschrift vrijwel 
uitsluitend gebruik gemaakt van steekproeven met een Europese genetische 
achtergrond, omdat data voor andere etniciteiten zeer beperkt beschikbaar zijn. Doordat 
er belangrijke verschillen zijn in de genetische opmaak van verschillende 
bevolkingsgroepen, kan dat betekenen dat de resultaten van veel GWASs slechts beperkt 
van toepassing zijn in die groepen. Ten slotte is een belangrijke beperking van veel GWASs 
dat er veelal gebruik gemaakt wordt van ‘oppervlakkige’ maten. Omdat GWASs gebruik 
maken van grote databases met honderden verschillende variabelen, is de ruimte om 
gedrag in detail te meten vaak beperkt. Onprecieze meetinstrumenten kunnen leiden tot 
ruis in de GWASs en verminderen de statistische power.  
 
Daarnaast zijn er meer fundamentele, theoretische overwegingen die in acht moeten 
worden genomen bij het interpreteren van gedragsgenetisch onderzoek. Gedrag is per 
definitie lastig te onderzoeken, omdat er zo veel factoren bijdragen aan iedere uitkomst, 
dat het aantal mogelijke oorzakelijke processen schier oneindig is. Daarnaast opereert de 
gedragsgenetica inherent op twee compleet verschillende niveaus, namelijk die van het 
biologische, van de direct observeerbare genetische variant, tegenover die van gedrag, 
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van complexe, abstracte constructen die niet direct aanwijsbaar zijn. De vertaalslag 
tussen deze niveaus is buitengewoon moeilijk te maken; er zijn legio nog onbekende 
processen die ervoor zorgen dat een variant uiteindelijk impact heeft op gedrag. 
Daarnaast zijn er op het niveau van gedrag nog talloze interacties en correlaties met 
andere factoren: gedrag komt tot stand in een eindeloos complex netwerk. Of om het met 
de woorden uit het motto van dit proefschrift te zeggen: ‘Alles ist miteinander verbunden,’ 
(Dark, Netflixserie).  
 
Het is goed om deze beperkingen in het kader te plaatsen van de enorme 
wetenschappelijke en technische vooruitgang die is geboekt. Het is moeilijk voor te 
stellen dat de GWAS-techniek pas 15 jaar oud is, gegeven de razendsnelle ontwikkelingen 
die het veld heeft doorgemaakt. Toch staat de techniek feitelijk nog in de kinderschoenen, 
en zijn er nog belangrijke tekortkomingen. Dat wil echter niet zeggen dat we er geen 
gebruik van moeten maken. Je zou de analogie kunnen maken naar de auto-industrie. In 
de loop der jaren zijn er steeds verdere verbeteringen doorgevoerd; we begonnen met 
veiligheidsgordels, voegden airbags toe, en hebben nu automatische remsystemen. Dat 
wil niet zeggen dat we pas hadden moeten beginnen met autorijden in de jaren ’60 na de 
introductie van de gordel, of zelfs pas halverwege de jaren ’70 na de introductie van de 
airbag, al waren dat nog zulke essentiële verbeteringen. De GWAS-methode is nog jong; 
ongeacht de huidige tekortkomingen is groot enthousiasme en optimisme op zijn plaats.  
 
Richtingen voor vervolgonderzoek en implicaties 
Uit de hierboven genoemde beperkingen vloeien vanzelfsprekende aanbevelingen voort, 
zoals het gebruiken van gedetailleerdere meetinstrumenten, het meenemen van 
zeldzame genetische varianten, en het betrekken van steekproeven met een niet-
Europese achtergrond. Meer inhoudelijk is een veelbelovende richting voor 
vervolgonderzoek om in kaart te brengen hoe genetische varianten uiteindelijk leiden tot 
middelengebruik. Een mooi beginpunt zou zijn om te kijken naar de biologische functie 
van het CADM2 gen en het effect van CADMs in het brein, bijvoorbeeld in dieronderzoek of 
met ‘imaging genetics’. Richtingen die direct voortvloeien uit huidig proefschrift richten 
zich meer op het complexe netwerk van factoren op het niveau van gedrag. Zo zou ik me 
graag verder willen verdiepen in ‘indirecte genetische effecten’, door bijvoorbeeld te 
kijken of iemands middelengebruik beïnvloed wordt door het gemiddelde genetisch 
risico op middelengebruik van buurtbewoners. Ook zou ik verder willen onderzoeken hoe 
gen-omgeving correlatie en gen-omgeving interactie van elkaar losgeweekt kunnen 
worden. Op die manier kan achterhaald worden of een genetische variant nu 
geassocieerd is met middelengebruik doordat deze samenhangt of interacteert met 
omgevingskenmerken, of vanwege een meer directe, biologische link. Dergelijke kennis 
kan helpen bij het verder uitdiepen van de (biologische) mechanismes die 



562882-L-bw-Pasman562882-L-bw-Pasman562882-L-bw-Pasman562882-L-bw-Pasman
Processed on: 4-8-2021Processed on: 4-8-2021Processed on: 4-8-2021Processed on: 4-8-2021 PDF page: 449PDF page: 449PDF page: 449PDF page: 449

449Part 4 

 
Een andere belangrijke ontwikkeling in de wetenschap in de afgelopen jaren is de 
verschuiving naar ‘open science’. Niet alleen resultaten en data worden gedeeld, 
daarnaast wordt steeds meer onderzoek gepre-registreerd en delen steeds meer 
onderzoekers analysescripts en complete resultatenbestanden. Dit laatste is vooral in het 
veld van de gedragsgenetica steeds gangbaarder. Pre-registratie houdt in dat 
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gaan doen. Het idee is dat op die manier wordt voorkomen dat voorspellingen of 
methoden (veelal onbewust) worden aangepast als de resultaten op de één of andere 
manier afwijken. Ook wordt de onderzoeker gestimuleerd om van tevoren goed na te 
denken over methoden en analysetechnieken, en eventuele alternatieven te ontwikkelen 
voor het geval dat methoden niet blijken te werken. Met name in de 
gedragswetenschappen pre-registreren steeds meer wetenschappers hun onderzoek. 
Voor dit proefschrift heb ik eveneens mijn studieplannen gedeeld en gepubliceerd in het 
kader van transparantie. Op die manier heb ik bijgedragen aan deze beweging gericht op 
het terugdringen van publicatie-bias en non-replicatie van studieresultaten. 
 
Vanzelfsprekend zijn er daarnaast tekortkomingen waarmee rekening gehouden moet 
worden bij het interpreteren van dit proefschrift. Zo werden er geen zeldzame genetische 
varianten opgenomen in de GWAS die ik heb uitgevoerd of waarvan ik de resultaten heb 
gebruikt. Zeldzame varianten zijn moeilijker om te onderzoeken omdat er nog grotere 
steekproeven nodig zijn; niettemin zijn er veel aanwijzingen dat de bijdrage van deze 
varianten aan gedrag substantieel is. Daarnaast is er voor mijn proefschrift vrijwel 
uitsluitend gebruik gemaakt van steekproeven met een Europese genetische 
achtergrond, omdat data voor andere etniciteiten zeer beperkt beschikbaar zijn. Doordat 
er belangrijke verschillen zijn in de genetische opmaak van verschillende 
bevolkingsgroepen, kan dat betekenen dat de resultaten van veel GWASs slechts beperkt 
van toepassing zijn in die groepen. Ten slotte is een belangrijke beperking van veel GWASs 
dat er veelal gebruik gemaakt wordt van ‘oppervlakkige’ maten. Omdat GWASs gebruik 
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ruis in de GWASs en verminderen de statistische power.  
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gedragsgenetica inherent op twee compleet verschillende niveaus, namelijk die van het 
biologische, van de direct observeerbare genetische variant, tegenover die van gedrag, 

Samenvatting  

van complexe, abstracte constructen die niet direct aanwijsbaar zijn. De vertaalslag 
tussen deze niveaus is buitengewoon moeilijk te maken; er zijn legio nog onbekende 
processen die ervoor zorgen dat een variant uiteindelijk impact heeft op gedrag. 
Daarnaast zijn er op het niveau van gedrag nog talloze interacties en correlaties met 
andere factoren: gedrag komt tot stand in een eindeloos complex netwerk. Of om het met 
de woorden uit het motto van dit proefschrift te zeggen: ‘Alles ist miteinander verbunden,’ 
(Dark, Netflixserie).  
 
Het is goed om deze beperkingen in het kader te plaatsen van de enorme 
wetenschappelijke en technische vooruitgang die is geboekt. Het is moeilijk voor te 
stellen dat de GWAS-techniek pas 15 jaar oud is, gegeven de razendsnelle ontwikkelingen 
die het veld heeft doorgemaakt. Toch staat de techniek feitelijk nog in de kinderschoenen, 
en zijn er nog belangrijke tekortkomingen. Dat wil echter niet zeggen dat we er geen 
gebruik van moeten maken. Je zou de analogie kunnen maken naar de auto-industrie. In 
de loop der jaren zijn er steeds verdere verbeteringen doorgevoerd; we begonnen met 
veiligheidsgordels, voegden airbags toe, en hebben nu automatische remsystemen. Dat 
wil niet zeggen dat we pas hadden moeten beginnen met autorijden in de jaren ’60 na de 
introductie van de gordel, of zelfs pas halverwege de jaren ’70 na de introductie van de 
airbag, al waren dat nog zulke essentiële verbeteringen. De GWAS-methode is nog jong; 
ongeacht de huidige tekortkomingen is groot enthousiasme en optimisme op zijn plaats.  
 
Richtingen voor vervolgonderzoek en implicaties 
Uit de hierboven genoemde beperkingen vloeien vanzelfsprekende aanbevelingen voort, 
zoals het gebruiken van gedetailleerdere meetinstrumenten, het meenemen van 
zeldzame genetische varianten, en het betrekken van steekproeven met een niet-
Europese achtergrond. Meer inhoudelijk is een veelbelovende richting voor 
vervolgonderzoek om in kaart te brengen hoe genetische varianten uiteindelijk leiden tot 
middelengebruik. Een mooi beginpunt zou zijn om te kijken naar de biologische functie 
van het CADM2 gen en het effect van CADMs in het brein, bijvoorbeeld in dieronderzoek of 
met ‘imaging genetics’. Richtingen die direct voortvloeien uit huidig proefschrift richten 
zich meer op het complexe netwerk van factoren op het niveau van gedrag. Zo zou ik me 
graag verder willen verdiepen in ‘indirecte genetische effecten’, door bijvoorbeeld te 
kijken of iemands middelengebruik beïnvloed wordt door het gemiddelde genetisch 
risico op middelengebruik van buurtbewoners. Ook zou ik verder willen onderzoeken hoe 
gen-omgeving correlatie en gen-omgeving interactie van elkaar losgeweekt kunnen 
worden. Op die manier kan achterhaald worden of een genetische variant nu 
geassocieerd is met middelengebruik doordat deze samenhangt of interacteert met 
omgevingskenmerken, of vanwege een meer directe, biologische link. Dergelijke kennis 
kan helpen bij het verder uitdiepen van de (biologische) mechanismes die 
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middelengebruik onderliggen, en kunnen ook aanknopingspunten bieden voor 
behandeling.  
 
Op dit moment zijn GWASs nog niet krachtig genoeg om polygenetische scores te 
genereren met klinische bruikbaarheid. Het is echter waarschijnlijk dat dit niveau in de 
nabije toekomst behaald zal worden. Als polygenetische scores sterker worden (door 
technische vooruitgang en doordat directe, GxE, en rGE effecten beter gemodelleerd zijn), 
zouden ze bijvoorbeeld gebruikt kunnen worden om risicopopulaties te identificeren. Het 
in kaart brengen van DNA wordt steeds goedkoper, en op basis van één DNA-profiel 
kunnen talloze PGSen berekend worden om te kijken op welke uitkomsten iemand een 
verhoogd risico heeft. Op basis van dergelijke informatie kan bijvoorbeeld gerichte 
preventie toegepast worden. Ook zouden PGSs kunnen voorspellen welke behandeling 
voor wie het beste zou werken. Op dit moment is het zelfs al zo dat er enkele varianten 
bekend zijn die kunnen voorspellen of iemand beter zal reageren op een farmacologische 
of psychologische behandeling voor alcohol- en nicotine-afhankelijkheid. De bekende 
effecten zijn op dit moment nog klein, waardoor het vaak niet rendabel is om dergelijke 
strategieën in de praktijk toe te passen. Maar als de snelheid van de ontwikkelingen in het 
genetisch onderzoek ook maar enigszins behouden blijft, kunnen we erop rekenen dat we 
binnen afzienbare tijd op dat niveau zijn. 
 
Conclusie 
Dit proefschrift is een waardevolle toevoeging aan de literatuur over de genetica van 
middelengebruik. Mijn studies hebben verschillende nieuwe varianten geïdentificeerd en 
hebben inzicht verschaft in de unieke en overlappende genetische factoren voor 
middelengebruik. Daarnaast heb ik laten zien hoe de vondsten van gen-identificatie 
onderzoek kunnen worden gebruikt om overlap en causale verbanden tussen 
middelengebruik en psychiatrische stoornissen te onderzoeken, en om inzicht te krijgen 
in het samenspel tussen genetisch risico en omgevingsfactoren. De hoofdconclusie van 
mijn studies is dat er complexe relaties zijn op alle niveaus van de associatie tussen genen 
en gedrag, of meer poëtisch gezegd: ‘Alles ist miteinander verbunden’. Ten eerste, 
genetische kwetsbaarheid voor elk soort middelengebruik overlapt met andere soorten 
middelengebruik en met andere gedragskenmerken, al zijn er ook varianten met meer 
unieke effecten op specifieke kenmerken. Ten tweede, genetische aanleg voor 
middelengebruik is ook causaal gerelateerd aan andere kenmerken. Ten derde, 
genetische kwetsbaarheid voor middelengebruik overlapt met genetische aanleg voor 
bepaalde omgevingsomstandigheden. Dergelijke overlapeffecten waren in mijn 
onderzoek meer uitgesproken aanwezig dan gen-omgeving interactie-effecten.  
 

Samenvatting  

Mijn proefschrift draagt bij aan het fundament dat wordt gelegd voor toekomstige 
toepassingen van genetische kennis. Op dit moment heeft genetisch onderzoek al een 
impact doordat het de publieke opinie beïnvloedt en daarmee het beleid voor 
middelengebruik en verslaving. Ook nu al wordt genetische kennis in beperkte mate 
toegepast om risicogroepen te identificeren en te ondersteunen bij behandelingskeuze. 
In de toekomst zullen dat soort toepassingen steeds haalbaarder worden, en ik verwacht 
dat deze een grote impact zullen hebben op hoe we naar middelengebruik kijken en hoe 
we het behandelen. Ik geloof dat ik deze verwachtingen nog tijdens mijn carrière zal zien 
uitkomen en het is mijn ambitie om bij te blijven dragen aan de kennis die dat mogelijk 
gaat maken.
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of this after my Swedish post doc adventure. 
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