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ABSTRACT
Most of massive stars form in binary or higher order systems in clumpy, substructured clusters. In the very first phases of their
life, these stars are expected to interact with the surrounding environment, before being released to the field when the cluster is
tidally disrupted by the host galaxy. We present a set of N-body simulations to describe the evolution of young stellar clusters
and their binary content in the first phases of their life. To do this, we have developed a method that generates realistic initial
conditions for binary stars in star clusters from hydrodynamical simulations. We considered different evolutionary cases to
quantify the impact of binary and stellar evolution. Also, we compared their evolution to that of King and fractal models with
different length-scales. Our results indicate that the global expansion of the cluster from hydrodynamical simulations is initially
balanced by the subclump motion and accelerates when a monolithic shape is reached, as in a post-core collapse evolution.
Compared to the spherical initial conditions, the ratio of the 50 per cent to 10 per cent Lagrangian radius shows a very distinctive
trend, explained by the formation of a hot core of massive stars triggered by the high initial degree of mass segregation. As for
its binary population, each cluster shows a self-regulating behaviour by creating interacting binaries with binding energies of the
order of its energy scales. Also, in the absence of original binaries, the dynamically formed binaries display a mass-dependent
binary fraction, spontaneously reproducing the trend of the observed binary fraction.

Key words: methods: numerical – binaries: general – stars: kinematics and dynamics – open clusters and associations: general –
galaxies: star clusters: general.

1 IN T RO D U C T I O N

Most stars form as members of clusters or associations that show
a clumpy spatial distribution and may also contain substructures
(Larson 1995). Understanding the early evolution of these star-
forming complexes is of fundamental importance for the compre-
hension of the properties of young (<100 Myr) and open clusters
(Portegies Zwart, McMillan & Gieles 2010), where the presence of
substructures and fractality is observed (e.g. Cartwright & Whitworth
2004; Sánchez & Alfaro 2009; Parker & Meyer 2012; Kuhn et al.
2019). Also, these systems are characterized by complex internal
kinematics, such as subclump relative motions and mergers, cluster
expansion, gas dispersal (Cantat-Gaudin et al. 2019; Kuhn et al.
2019), and rotation (Hénault-Brunet et al. 2012). In particular,
gas dispersal due to stellar winds and supernova explosions drives
the cluster out of dynamical equilibrium, leading to an expansion

� E-mail: stefano.torniamenti@studenti.unipd.it (ST);
michela.mapelli@unipd.it (MM)

phase, where most stars become unbound and disperse into the field
(Hills 1980; Goodwin & Bastian 2006; Baumgardt & Kroupa 2007;
Pfalzner 2009). Some of these natal properties might even survive
the successive evolution of the stellar system and leave an imprint
on the observed properties of older, relaxed stellar clusters (e.g. they
may contribute to the signatures of rotation visible in some globular
clusters; van Leeuwen et al. 2000; Pancino et al. 2007; Bianchini
et al. 2013; Bianchini et al. 2018; Kamann et al. 2018).

In the first phases of their life, the dynamical evolution of young
stellar clusters is deeply influenced by their stellar and binary content,
and vice versa. In particular, a large fraction of the most massive stars
is part of binary and higher order systems (Moe & Di Stefano 2017)
that can actively exchange energy and angular momentum with the
host environment, thanks to the very high density (ρ ∼ 104 M� pc−3)
of the cluster core. On the one hand, original binary stars (i.e. stars
that form as members of a binary system)1 contain a large reservoir

1Although the binaries present in the initial conditions of a star cluster
simulation are often referred to as primordial, here we use the term original
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of internal energy, that can be transferred to other stars in the host star
cluster, through three- and multibody encounters (e.g. Heggie 1975;
Hut 1983), preventing or reversing the gravothermal collapse of the
core of the cluster (Tanikawa & Fukushige 2009; Chatterjee et al.
2013; Fujii & Portegies Zwart 2014). On the other hand, the global
evolution of the cluster affects the properties of the binary population:
for example, core collapse leads to the formation of new binary
systems and to their dynamical hardening (Spitzer & Hart 1971). On
top of this, binary stars are also affected by mass transfer, common
envelope, supernova kicks, tides, and other evolutionary processes
(e.g. Hut 1981; Webbink 1984; Portegies Zwart & Verbunt 1996;
Hurley, Tout & Pols 2002). All these processes are crucial for the
ejection of stars from their host star cluster (e.g. runaway stars; Fujii
& Portegies Zwart 2011, Oh, Kroupa & Pflamm-Altenburg 2015; Oh
& Kroupa 2016), and for the formation of intermediate-mass black
holes (e.g. Ebisuzaki et al. 2001; Portegies Zwart et al. 2004; Giersz
et al. 2015; Mapelli 2016). Finally, the interplay between dynamical
interactions and binary evolution (Banerjee, Baumgardt & Kroupa
2010; Ziosi et al. 2014; Banerjee 2017; Fujii, Tanikawa & Makino
2017; Kumamoto, Fujii & Tanikawa 2019; Antonini & Gieles 2020;
Di Carlo et al. 2020b; Trani et al. 2021) can explain the properties
of the binary compact objects observed through gravitational wave
detection by LIGO and Virgo (Abbott et al. 2021a, b).

Direct N-body simulations are usually adopted to integrate the
collisional dynamics of gas-free star clusters, where length-scales
of different orders of magnitude, from binary separations of some
solar radii to several parsecs, need to be included. However, studies
of this type often lack realistic initial conditions. For example, state-
of-the-art direct N-body simulations of star clusters include realistic
stellar mass functions and stellar evolution, but most of them start
from spherical idealized models, such as Plummer (1911) or King
(1966) models. In some recent work, fractal initial conditions were
adopted to mimic the initial clumpiness of star clusters (e.g. Goodwin
& Whitworth 2004; Schmeja & Klessen 2006; Allison et al. 2010;
Küpper et al. 2011; Parker et al. 2014; Di Carlo et al. 2019; Daffern-
Powell & Parker 2020). Few studies tried to resimulate with a direct
N-body code the initial conditions obtained from hydrodynamical
simulations of star cluster formation (Moeckel & Bate 2010; Moeckel
et al. 2012; Parker & Dale 2013; Fujii & Portegies Zwart 2015), but
most of them do not include stellar evolution or realistic stellar mass
functions or original binary populations. A recent attempt to couple
magnetohydrodynamics and direct N-body star cluster formation
simulations, also considering the presence of original binaries, was
proposed by Cournoyer-Cloutier et al. (2021), who developed a
binary generation algorithm consistent with observations of mass-
dependent binary fraction and distributions of orbital periods, mass
ratios, and eccentricities. They found that binary systems formed
dynamically do not have the same properties as the original ones,
and that the presence of an initial population of binaries affects the
properties of dynamically formed binaries. An adequate modelling
of the original binary population is thus necessary for a realistic
description of dynamical interactions in the early stages of star
clusters’ evolution.

Recently, Ballone et al. (2020, 2021) proposed a new approach to
connect hydrodynamics and stellar dynamics that can be used to pro-
vide more realistic initial conditions for direct N-body simulations.
This approach includes a number of the ingredients necessary to self-
consistently study this problem: realistic phase-space distributions of

to avoid any confusion with primordial stars or black holes formed in the
early Universe.

stars, drawn from sink particle distributions of collapsing molecular
clouds, and a realistic stellar mass function, which is fundamental to
assess the impact of stellar evolution. This method is based on the
assumption that the gas, in which the newly formed star cluster is
embedded, is almost instantaneously expelled by feedback (radiation,
winds, and, most of all, supernova explosions) from the young most
massive stars (e.g. Vázquez-Semadeni et al. 2010; Dale et al. 2014;
Pfalzner et al. 2014; Gavagnin et al. 2017; Chevance et al. 2020a, b;
Pang et al. 2020). From that moment on, the evolution of the newly
born stellar system is mainly driven by gravitational dynamics. A
necessary step towards a more realistic description is the insertion of
binary stars in the original stellar population.

The aim of this paper is to offer a realistic, self-consistent descrip-
tion of the complex interplay between binaries and their host cluster
in the first phases of a cluster’s life after gas expulsion, by considering
the effects of dynamics, stellar, and binary evolution simultaneously.
To do this, we insert original binaries in the joining/splitting method
introduced in Ballone et al. (2021) to generate realistic initial
conditions for N-body simulations starting from hydrodynamical
simulations. Also, we study the evolution of the phase-space dis-
tribution of star clusters generated by hydrodynamical simulations
and we compare it to other, more idealized, initial configurations.

This paper is organized as follows. In Section 2, we introduce our
binary generation algorithm. Section 3 describes the initial conditions
of the N-body simulations. In Section 4, we report the results of the
simulation of a stellar cluster under different evolutionary conditions
and compare it to other initial phase-space distributions. In Section 5,
we discuss the peculiar aspects of the evolution of the stellar clusters
from hydrodynamical simulations. Finally, in Section 6 we report
our conclusions.

2 ME T H O D S

2.1 Binary generation algorithm

We developed a new algorithm to generate a realistic initial mass
function (IMF) and a realistic population of original binaries, based
on observations (Sana et al. 2012; Moe & Di Stefano 2017). This
algorithm can be easily coupled to different phase-space generation
codes to obtain a variety of initial conditions for N-body simulations.
The method consists of the following steps.

(i) First, the algorithm randomly draws a population of stars from
a Kroupa (2001) IMF between 0.1 and 150 M�, for an assigned value
of the total mass of the population.

(ii) The stars are paired up to each other in order to obtain a
distribution of mass ratios q = m2/m1 following Sana et al. (2012):

F (q) ∝ q−0.1, with q ∈ [0.1, 1]. (1)

The coupling is set to generate a binary fraction fbin = Nbin/(Nsing +
Nbin), where Nbin is the number of binary systems and Nsing is the
number of single stars, which depends on the mass of the primary
star, following the observational results of Moe & Di Stefano (2017).
For simplicity’s sake, we do not include triple systems, but we take
into account their presence when evaluating the binary fraction by
labelling a certain number of single stars as third components of the
existing binary systems (following Moe & Di Stefano 2017). This
results in a fraction of binaries counted as triples (ftrip), and prevents
from having an excessive number of binary systems among the most
massive stars. By this procedure, we obtain a distribution of single
stars and of binary particles. For this work, we assume the binary
fraction goes to zero in the mass range 0.1–0.8 M�: the observations
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Binaries in young stellar clusters 2255

indicate that the percentage of binary stars in this mass range is low
anyway (Moe & Di Stefano 2017), and including these low-mass
binary stars would have dramatically increased the computational
cost of the simulations.
The resulting binary fraction for stars with mass m > 0.8 M� is 0.4.

(iii) The single and binary particles are assigned a phase-space dis-
tribution by coupling the aforementioned algorithm to a phase-space
distribution generator. For this work, we considered two choices of
the phase-space distribution generator. In the first case, we coupled
our algorithm with the joining/splitting procedure summarized in the
next sections and described in detail in Ballone et al. (2021).
In the second case, the phase-space distribution is created with the
code MCLUSTER (Küpper et al. 2011).

(iv) Finally, the binary particles are split into separate stars and
their orbital period (P) and eccentricity (e) distributions are generated
following Sana et al. (2012):

F (P) ∝ P−0.55, with P = log10(P/d) ∈ [0.15, 5.5], (2)

and

F (e) ∝ e−0.45, with e ∈ [10−5, emax(P )], (3)

where, for a given orbital period, we set the upper limit of the
eccentricity distribution emax(P) according to equation (3) of Moe
& Di Stefano (2017):

emax(P ) = 1 −
(

P

2 d

)−2/3

. (4)

The orbital properties of the binaries are then converted into positions
and velocities by considering an isotropic distribution for the orbital
planes.

Fig. 1 shows an example of the binary populations generated by
means of this algorithm. These initial conditions can be used to study
the evolution of binary stars at the early and later stages of their host
stellar cluster’s life with a great variety of initial configurations. In
addition, the generation of initial conditions through this algorithm
has negligible computational cost. Finally, the described procedure
is also suited to generate initial conditions for population synthesis
studies.

2.2 Hydrodynamical simulations

The star clusters studied in this work are obtained by applying
our algorithm to the output of the hydrodynamical simulations
of turbulent molecular clouds presented in Ballone et al. (2020,
2021). These hydrodynamical simulations are performed with the
smoothed-particle hydrodynamics code GASOLINE2 (Wadsley, Stadel
& Quinn 2004; Wadsley, Keller & Quinn 2017). For this work, we
consider the hydrodynamical simulation initialized with a total mass
of 2 × 104 M�. The cloud has an initial uniform density of 250 cm−3,
an initial temperature of 10 K, and it is in an initial marginally bound
state, with a virial ratio αvir ≡ 2 T /|V | = 2, where T and V are the
kinetic and potential energy, respectively. The turbulence consists
of a divergence-free Gaussian random velocity field, following
a Burgers (1948) power spectrum. The gas thermodynamics has
been treated by adopting an adiabatic equation of state with the
addition of radiative cooling (Boley 2009). Stellar feedback was
not included. Star formation is implemented through a sink particle
algorithm adopting the same criteria as in Bate, Bonnell & Price
(1995).

At 3 Myr (for a discussion of this choice, see Ballone et al.
2021), we instantaneously remove all the gas from the simulations,

mimicking the impact of a supernova explosion. We apply the
joining/splitting algorithm to the properties of the sink particles at
3 Myr, as detailed in the next subsection. We refer to Ballone et al.
(2020, 2021) for more details on the hydrodynamical simulations.

2.3 The joining/splitting algorithm

Ballone et al. (2021) introduced a new algorithm to generate stellar
populations from sink particles obtained through hydrodynamical
simulations. This algorithm consists in either joining or splitting the
sink particle masses, which are affected by non-physical effects (such
as the simulation resolution and the adopted sink particle algorithm),
so to obtain a new, more realistic mass function of ‘children’ stars. In
this way the obtained stellar population inherits the turbulent phase-
space distribution generated from hydrodynamical simulations but
features a realistic mass function. Here, we summarize the main
steps of the joining/splitting process.

First, a population of stars with a chosen IMF is created, for an
assigned value of their total mass. The joining algorithm is used
when a star is more massive than the most massive sink particle.
According to the joining algorithm, we select the densest region
of the sink particle distribution and merge the neighbour sinks
until we obtain the mass of the star. The position and the velocity
of the star are assigned as the position and the velocity of the
centre of mass of the joined sinks. The joining algorithm tends to
enforce mass segregation in the central regions of the simulated star
clusters.

The splitting branch of the algorithm, instead, is applied if a
massive sink is more massive than any left star. In this case, we
subtract the mass of individual stars from the massive sink particle,
until a mass smaller than 0.1 M� is left. The leftover mass is
reassigned to the closest sink, so to enforce local and total mass
conservation. The children stars of each sink particle are then
distributed around the position and velocity of their parent sink
according to a virialized Plummer distribution (for this step we make
use of the NEW PLUMMER MODEL module in AMUSE, Pelupessy et al.
2013). In Ballone et al. (2021), we considered a Plummer half-
mass radius of 10−3 pc that allowed a good energy and virial ratio
conservation for all the hydrodynamical simulations of the sample.
For this work, we prefer a Plummer half-mass radius of 10−2 pc
because, for this specific star cluster, this choice allows a better
conservation of the total energy and a smaller variation of the virial
ratio. The process of joining/splitting is cycled until either all the
sink particles or the stars are consumed.

2.4 Direct N-body simulations

For our direct N-body simulations, we made use of the direct
summation N-body code NBODY6++GPU (Wang et al. 2015) coupled
with the population synthesis code MOBSE (Mapelli 2017; Giacobbo
& Mapelli 2018, 2019; Giacobbo, Mapelli & Spera 2018; Mapelli &
Giacobbo 2018), an upgraded version of BSE (Hurley, Pols & Tout
2000; Hurley et al. 2002). NBODY6++GPU implements a fourth-
order Hermite integrator, individual block time-steps (Makino &
Aarseth 1992), and a Kustaanheimo–Stiefel regularization of close
encounters and few-body subsystems (Stiefel et al. 1965; Mikkola
& Aarseth 1993). A neighbour scheme (Nitadori & Aarseth 2012)
is used to compute the force contributions at short time intervals
(irregular force/time-steps), while at longer time intervals (regular
force/time-steps) all the members in the system contribute to the
force evaluation. The irregular forces are evaluated using CPUs,
while the regular forces are computed on GPUs using the CUDA
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2256 S. Torniamenti et al.

Figure 1. Properties of binary stars generated with the algorithm described in Section 2.1. Upper panel: Kroupa (2001) IMF (left), mass ratio (centre), and
eccentricity (right) distributions, following Sana et al. (2012). Central panel: Period distribution (left) from Sana et al. (2012), the resulting semimajor axis
distribution (centre), and the eccentricity–period relation (right) from Moe & Di Stefano (2017). Lower panel: Fraction of binaries not counted as triples (fbin,
left), fraction of binary stars counted as triples (ftrip, centre), and the resulting binary fraction (fbin + ftrip, right). Red data points labelled as M&DS: observations
from Moe & Di Stefano (2017). Blue data points: simulated binaries and triples from this work.

architecture. The force integration includes a solar neighbourhood-
like static external tidal field (Wang et al. 2016). In all our cases, we
consider a star as an escaper if it reaches a distance from the centre
of density greater than four times the tidal radius of the cluster. The
value chosen for the removal distance avoids the presence of potential
escapers in the calculation (Takahashi & Baumgardt 2012; Moyano
Loyola & Hurley 2013). MOBSE includes up-to-date prescriptions
for massive star winds (Giacobbo et al. 2018), for core-collapse
supernova explosions (Fryer et al. 2012; Giacobbo & Mapelli 2020),
and for pair instability (Mapelli et al. 2020). NBODY6++GPU and
MOBSE are integrated as described by Di Carlo et al. (2019, 2020a).

3 IN I T I A L C O N D I T I O N S F O R N- B O DY
SI MULATI ONS

The initial conditions for the N-body simulations from hydrody-
namical simulations (hereafter labelled as Hydro) are obtained by
combining the binary generation algorithm described in Section 2.1
and the joining/splitting procedure (Section 2.3). The main properties
of the initial conditions for the star cluster are reported in Table 1.
The system has a total mass of Mtot = 6687 M�, a half-mass radius
(defined as the 50 per cent Lagrangian radius centred in the centre of
density) r50 = 1.70 pc, and a core radius (defined as the 10 per cent
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Binaries in young stellar clusters 2257

Table 1. Initial conditions of the N-body simulations.

Name Mtot r50 r10 αvir fbin

(M�) (pc) (pc)

Hydro 6.69 × 103 1.70 0.06 1.53 0.06
King 6.69 × 103 0.42 0.06 1.53 0.06
Loose Fract 6.69 × 103 1.70 0.30 1.53 0.06
Dense Fract 6.69 × 103 0.32 0.07 1.53 0.06

Notes. First column: name of the simulation set; second column: total mass
Mtot; third column: half-mass radius r50; fourth column: core radius r10; fifth
column: virial ratio αvir; sixth column: binary fraction fbin (if original binaries
are present).

Lagrangian radius centred in the centre of density) r10 = 0.06 pc.
After the instantaneous removal of the gas, the system is left in a
supervirial state, with αvir ≡ 2 T /|V | = 1.53.

In order to quantify the impact of different physical ingredients
on the dynamical evolution of a stellar cluster, we take into account
four different evolutionary cases:

(i) Bin: evolution with original binary stars and without stellar
evolution.

(ii) Bin + SE: evolution with original binary stars and with
stellar evolution. We assumed solar metallicity (Z = 0.02; Anders &
Grevesse 1989), in order to match the young star clusters of the Milky
Way (Portegies Zwart et al. 2010) and to maximize the difference
with respect to the case without stellar evolution, because mass-loss
by stellar winds is extremely high at solar metallicity (e.g. Vink, de
Koter & Lamers 2001; Kudritzki 2002).

(iii) NoBin: case with no original binary stars and no stellar
evolution.

(iv) NoBin + SE: case without original binary stars but with stellar
evolution.

The comparison between the aforementioned four different cases
allows us to have a complete view of the impact of binaries and
of stellar evolution on the dynamical evolution of a cluster with a
realistic phase-space distribution of stars.

For each case, we ran 10 simulations of different joining/splitting
realizations in order to filter out stochastic fluctuations.

3.1 Comparison with other initial conditions

We compared the evolution of the Hydro initial conditions to that of
other initial phase-space distributions, which are commonly used in
studies of star cluster dynamics. In order to have a fair comparison,
we set initial conditions that match the mass scale and either the
central length-scale (r10) or the global length-scale (r50) of our Hydro
clusters. All the initial conditions are generated by coupling our
binary generation code to MCLUSTER (Küpper et al. 2011) as descibed
in Section 2.1. We considered three cases:

(i) King: a King (1966) model matching the core radius of the
hydrodynamical initial conditions. To match the core radii of the two
cases, we generated a King model with a reduced half-mass radius,
r50 = 0.25 pc, and a high value for the central concentration, W0 = 9.
The chosen value for the central concentration is typical of clusters
that are believed to have undergone core collapse. For this reason a
post-core collapse evolution may be expected for both this case and
for the central regions of the hydrodynamical case.

(ii) Loose Fract: a fractal sphere, with the same total mass and
half-mass radius as the Hydro case. For this case, we selected a
fractal dimension D = 1.6, which gives a good description of the sink

particle distribution from which the Hydro clusters are generated, as
shown in Ballone et al. (2020).

(iii) Dense Fract: a fractal sphere with the same mass and fractal
dimension as the previous case, but with a half-mass radius set
according to the Marks & Kroupa (2012) relation:

r50 = 0.10+0.07
−0.04 pc

(
Mtot

M�

)0.13±0.04

. (5)

In this case, we have r50 ≈ 0.3 pc and r10 ≈ 0.07 pc. Interestingly, the
core radius results very similar to that of the Hydro initial conditions.

For all these initial conditions we set the same virial ratio as the
Hydro case. The physical properties for all the initial conditions are
summarized in Table 1.

4 R ESULTS

4.1 Initial clumpiness of the stellar cluster

The initial space distribution of the Hydro simulation is clumpy
and substructured as can be seen in Fig. 2. The stellar cluster
mainly consists of two very dense main subclumps and some minor
and irregular clusters and filaments. We first defined the two main
subclumps by using the DBSCAN (Density-Based Spatial Clustering
of Applications with Noise) algorithm (Ester et al. 1996).2 This
algorithm allows to group together points in high-density regions:
these are labelled as core points and are distinguished from points
in low-density areas that are labelled as noise. The result of the
clustering procedure is shown in the top panel of Fig. 2: the algorithm
manages to identify the two main subclusters.

The main subclump has a mass of Msc ≈ 2304 M� (35 per cent
of the total mass) and a half-mass radius of rSC = 0.15 pc, while the
second subclump has a mass of Msc ≈ 1132 M� (17 per cent of the
total mass) and a half-mass radius of rSC = 0.16 pc. We checked if the
subclump masses and half-mass radii are consistent with equation (5),
that is the relation between total mass and half-mass radius found
in star-forming cloud cores by Marks & Kroupa (2012). Recently,
Fujii et al. (2021) found that this relation holds in N-body/SPH
simulations for embedded clusters with mass up to about 103 M�
and it is preserved after gas expulsion. In the lower panel of Fig. 2,
we show the two subclumps together with the other stellar clusters
simulated by Ballone et al. (2021), that extend to higher masses
(between 103 and 104 M�). As Fig. 2 shows, this sample is well
consistent with equation (5).

4.2 Global evolution

4.2.1 Early evolution (t < 1 Myr)

Fig. 3 shows the very first phase (t ≤ 1 Myr) of the evolution for one
representative cluster. At t = 0 Myr, the centre of density is located
well within the main clump, while the second main subclump is
out of the sphere defined by the half-mass radius. At t = 0.5 Myr,
the cluster structure has significantly evolved. On the one hand,

2The implementation we referred to is that of the PYTHON library SCIKIT-
LEARN (sklearn.cluster.DBSCAN, Pedregosa et al. 2011). DBSCAN requires
to define two parameters, ε and minPts. The parameter minPts is the number
of points within the reference distance ε needed for a point to be considered
as a core point. Otherwise, it is labelled as noise. For our case, we set these
parameters based on the half-mass radius of the cluster and on the total
number of stars: minPts = Ntot/10 and ε = r50/5.

MNRAS 507, 2253–2266 (2021)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/507/2/2253/6346558 by Juridische Bibliotheek D
er U

U
/U

niversity Library U
trecht user on 15 O

ctober 2021



2258 S. Torniamenti et al.

Figure 2. Upper panel: Initial spatial distribution of a realization of the
Hydro stellar cluster after the joining/splitting procedure. The coloured points
are the stars that belong to the main (orange) and secondary subclump (green).
The grey points are the stars that are catalogued as noise points by the
DBSCAN algorithm. Lower panel: Relation between the mass (MSC) and half-
mass radius (rSC) of all the subclumps of the stellar clusters presented in
Ballone et al. (2021). The two subclumps of the Hydro stellar cluster, which
corresponds to SC2 in Ballone et al. (2021), are marked as blue stars. The
grey region is the interval defined by the Marks & Kroupa (2012) relation
(grey solid line).

at small scales, each subclump rapidly expands, as a consequence
of the instantaneous gas removal, thus lowering its local density.
On the other hand, the two main subclumps get closer to each
other, thus balancing the small-scale expansion on a larger scale.
These competing mechanisms characterize the first ≈1 Myr of the
simulation.

At t = 1 Myr the cluster has nearly a monolithic shape. The half-
mass radius is slightly larger (r50 ≈ 2 pc) than at the beginning of
the simulation (when r50 ≈ 1.7 pc), while the core radius has grown
much faster, as can be easily seen from Fig. 3. Typically, a realization
reaches a monolithic shape after 1–1.5 Myr (only in a limited number
of cases, this condition is fulfilled at about 2–2.5 Myr), after a short
period in which the two subclumps tidally interact without merging.
The resultant cluster has an elongated shape, as a consequence of
the strong tidal interaction and the relative motion between the
subclumps.

The range of merger time-scales is in agreement with the results
by Fujii (2015), whose simulations can simultaneously reproduce
the properties of different types of young star clusters, from massive
and dense ones to open clusters and looser OB associations. In this
sense, when N-body simulations are exploited to study the early
evolution of stellar clusters, the time-scale of subclump mergers
is strongly dependent on the initial energetic state of the molecular
cloud, as can be inferred by comparing the results in Fujii & Portegies
Zwart (2015) and Ballone et al. (2021), who initialized their clouds
in a marginally bound state. On the observational side, this kind
of mergers between subclumps seems to be disfavoured to explain
the formation of young star clusters like NGC 3603 (Banerjee &
Kroupa 2013, 2015), whose observational properties require either
a monolithic formation channel or a prompt assembly in t < 1 Myr.
However, the results by Sabbi et al. (2012) hint that ongoing mergers
between very young clusters (such as R136 and the Northeast Clump
in NGC 2070) may also occur.

4.2.2 Cluster expansion

In order to consider both the initial clumpy evolution and the
successive monolithic expansion, we evolved the clusters for 10 Myr.
Fig. 4 shows the expansion of the cluster, described by r50 and r10, for
all the four evolutionary cases. As a consequence of the mechanism
described in Section 4.2.1, the half-mass radius initially grows,
reaches a peak at about 0.5 Myr, that is when the secondary subclump
enters the sphere of the half-mass radius of the main subclump, and
then decreases. At 1 Myr, r50 reaches a minimum and then grows
monotonically. The expansion of r50 is no longer influenced by the
relative subclump motion, which at this time have merged or are very
close to each other, but is due to the small-scale expansion that has
now reached larger scales. In contrast, the core radius grows rapidly
since the very beginning of the simulation because the subclump
motion has no effect at these small scales.

The impact of binary stars is evident in the second phase of
the evolution of the cluster, during the monolithic expansion. In
fact, clusters with original binaries expand faster after 1 Myr: at
this point the large-scale interaction of the subclumps is no longer
present, and the density in the central region is still high enough
(of the order of 103–104 M� pc−3) to allow efficient interactions
and energy exchange between the binary stars and their surrounding
environment. In the very first phases, instead, the faster expansion due
to binary stars is balanced by the global evolution of the subclumps.

As explained in Section 3.1, the central regions of the cluster are
matched by a King model with W0 = 9, that is typical of stellar
clusters that are thought to have undergone core collapse. We thus
compared the monolithic expansion of the cluster with that expected
based on a self-similar evolution, at constant mass (Spitzer 1987):

r50 = B t2/3, (6)

where B is a proportionality constant. If the evolution of the cluster
is a post-core collapse expansion, the time increase of r50 should
be roughly consistent with equation (6). We performed a fit to the
median values of r50 from 1 Myr curves by using equation (6). The
resulting best-fitting curves are the dashed lines in the left-hand panel
of Fig. 4. We show the curves for the cases Bin and NoBin, where
the lack of stellar evolution should avoid the presence of additional
effects (e.g. mass-loss) and make the dynamical effect by binaries
more evident. The curves of both cases seem to be consistent with a
post-core collapse phase until 10 Myr.
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Binaries in young stellar clusters 2259

Figure 3. Evolution of the cluster in the first Myr. The red solid line is the half-mass radius, and the red dashed line is the core radius. The left-hand panel shows
the initial configuration of the system. The central panel shows the system at 0.5 Myr, when the second subclump enters the sphere of the half-mass radius,
making it decrease. The right-hand panel shows the system at 1 Myr, when the two main subclumps are almost merged and start expanding as a monolithic
cluster. Every point is weighted with its local density, calculated as the density of the sphere that includes the 500 closest stars.

Figure 4. Early evolution of the 50 per cent Lagrangian radius (r50, left-hand panel) and 10 per cent Lagrangian radius (r10, right-hand panel) for our set of
N-body simulations. Different lines represent different evolutionary configurations: with original binary stars and without stellar evolution (Bin, black circles),
with original binary stars and with stellar evolution (Bin+SE, ochre triangles), without original binary stars and without stellar evolution (NoBin, pink squares),
without original binary stars but with stellar evolution (NoBin+SE, cyan diamonds). For each case, the shaded areas define the range of variation (over the 10
different realizations of each model) of r50 (left) and r10 (right), while solid lines and markers are the median values. The dashed black and pink lines are our
best fit according to equation (6).

4.2.3 Mass-loss

As the cluster expands, stars get further away from its centre,
until they are eventually removed from the cluster dynamics by
the tidal field of the host galaxy. This makes the total mass of
the stellar system decrease. The presence of binary stars enhances
the number of escaping stars, by powering a faster expansion.
Also, close interactions between binary stars and single (or other
binary) stars may lead to the ejection of stars, and possibly also
of binary systems. In addition, stellar evolutionary processes (e.g.

stellar winds, supernova explosions) make single stars, and thus the
cluster, lose mass.

Fig. 5 shows the variation of the total mass of the cluster (the details
about the removal of the escapers are given in Section 2.4). Stellar
evolution gives the main contribution to mass-loss in the early stages
of the simulation, resulting in a steeper slope of the mass evolution.
After 10 Myr, the mass-loss in the cases with stellar evolution is twice
as large as that in the cases without stellar evolution. The absence
of original binaries delays the mass-loss because the cluster needs to
form its binaries dynamically before they start ejecting other stars.
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2260 S. Torniamenti et al.

Figure 5. Mass variation in the four evolutionary cases we considered. Lines
and colours are the same as in Fig. 4.

4.2.4 Energy variation

Fig. 6 shows the evolution of the total kinetic energy (Ek), the total
potential energy (Eg) of the centres of mass, and the total binding
energy of binary systems (Eb). Binary stars produce an initial sharp
increase of the kinetic energy by yielding their internal energy to
the surrounding stars. This results in the fast cluster expansion seen
in Fig. 4. After this initial sharp increase, the kinetic energy of the
clusters with original binaries decreases at a fast rate as a consequence
of the ejection or evaporation of high-velocity stars. After the first
∼5 Myr, the kinetic energy of the star clusters with original binary
systems becomes similar to that of the other clusters, and they evolve
in the same way for the rest of the simulation.

The total binding energy of the initial binary population is much
higher than the typical gravitational energy of the centres of mass.
Our original binary stars are, in fact, mostly hard and a small fraction
of their total internal energy is sufficient to deeply affect the evolution
of the cluster. The decrease of the total binding energy springs from
two factors. First, some binary stars escape from the system. This
causes the slow decrease of the black line in Fig. 6. Secondly, stellar

and binary evolution tend to remove binary stars from the population,
via mergers, supernova explosions but also direct collisions between
stars. This process is important since the very first stages because the
binary fraction is very high for the most massive stars and because the
initial semimajor axes from Sana et al. (2012) are skewed to small
values. By comparing the Bin models and the Bin + SE models,
one can infer that this second factor is the main responsible for the
variation of the total binding energy.

If there are no original binary systems (NoBin and NoBin + SE
models), the cluster creates its own population, with binding energies
of the order of the gravitational energy scale. The case without stellar
evolution is characterized by a monotonic increase of the binding
energy, where binaries form and the hardest ones tend to harden. In
the end, the total binding energy is dominated by the binding energy
of a very few binaries. In presence of stellar and binary evolution,
after an initial increase, the total binding energy decreases when
stellar and binary evolution processes take over.

4.3 Binary populations

In order to understand how binary populations evolve and interact
with the host cluster, we must estimate how their binding energy
distribution is related to the mean energy of the cluster. Fig. 7 shows
the distribution of binding energies for one representative simulation
at four different snapshots, in presence of original binary systems
and stellar evolution.

At the beginning of the simulation, binding energies are very large
if compared to the mean kinetic energy. In particular, the hardest part
of the distribution is about five orders of magnitude higher than the
typical energy scale of the star cluster. This means that the other stars
in the cluster ‘see’ the hardest binary systems as if they were single
stars: the cross-section of the hardest binary systems is so small that
these can hardly interact with single stars.

In absence of original binary systems with a sufficiently large
cross-section, the star cluster creates new binary systems, with a
larger semimajor axis and, thus, a large cross-section for three-
body encounters. This is the reason behind the large number of
binary systems created at successive snapshots that are close to
the mean kinetic energy of the cluster. Finally, the loosely bound
tail of the binary distribution consists of soft binaries that are

Figure 6. Evolution of the total kinetic energy (Ek, left), of the total gravitational energy of the centres of mass (Eg, middle), and of the total binding energy of
the binary systems (Eb, right). Lines and colours are the same as in Fig. 4.
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Binaries in young stellar clusters 2261

Figure 7. Distribution of binding energies for a cluster, in presence of
original binaries and stellar evolution. Four different snapshots are shown:
t = 0 Myr (yellow solid line, hatched area), t = 1 Myr (green dot–dashed
line), t = 5 Myr (blue dashed line), and t = 10 Myr (purple dotted line). The
vertical lines represent the mean kinetic energy of the cluster, defined as the
mean kinetic energy of the centres of mass within two half-mass radii (where
binaries are more likely to interact).

continuously created and destroyed by dynamical interactions with
their neighbours.

4.3.1 Orbital parameters and multiplicity fraction

Fig. 8 shows the evolution of the probability density function
(PDF) of the binary semimajor axes and of the mass ratios and the
multiplicity fraction, defined as the sum of the fraction of binaries and
the fraction of bound triple systems. We consider two representative
populations, one for simulations with original binaries (the same as in
Fig. 7) and one for simulations without original binaries, in presence
of stellar evolution.

In presence of original binaries, the PDFs significantly change
with time because of the creation of a large number of dynamical
binaries. In particular, the distribution of semimajor axes extends to
higher values, and shows a secondary peak at 103 au, the typical
value at which dynamical binaries form. This value corresponds to
≈5 × 10−3 pc, that is the lowest distance scale (it is the typical
distance of stars split into Plummer spheres). As explained above,
the cluster responds to the absence of interacting binaries by creating
its own. This also explains why the distributions of the dynamically
formed semimajor axes and mass ratios are very similar to those that
form in absence of original binaries (as shown in the lower left panel
of Fig. 8).

As for the mass ratios’ (q) distribution, dynamical interactions
produce a steep increase of the PDF at high values because the new
binaries are typically formed by the low-mass stars in the Plummer
spheres. Also, the distribution of mass ratios extends towards lower
values than the initial lower limit (q = 0.1). Most of the variations in
the PDFs take place in the first 1 Myr, that is when the environment
is dynamically active. Since then, the binary distributions remain
almost unchanged. Also, the large number of dynamically created
small-mass binaries increases the total multiplicity fraction from
≈ 6 per cent to ≈ 26 per cent. In particular, these systems populate
the lowest mass bin of Fig. 1, by increasing the binary fraction from
0 to 20 per cent.

In the absence of original binaries (NoBin + SE case), dynamical
interactions produce a distribution of semimajor axes that is similar
to the distribution of dynamically formed binary systems in the
Bin + SE case but cannot reproduce the hardest part of the Sana
et al. (2012) binary distribution. Also, dynamical mechanisms tend
to create equal-mass binaries. Remarkably, the binary fraction of
dynamically formed binaries in the NoBin + SE case is mass-
dependent: it grows with the mass of the primary star and mimics the
trend of the observed distribution (Moe & Di Stefano 2017).

Hence, in the absence of original binary stars, the cluster is able
to produce a mass-dependent binary fraction. However, there is not
sufficient energy at small scales to reproduce the hardest part of the
initial distribution of Sana et al. (2012).

4.3.2 Exchanges

The degree of interactions between the binary systems and their host
cluster can be quantified by evaluating the number of exchanges that
take place. Fig. 9 shows the variation of the incremental number of
exchanges. The original binaries take part in a limited number of
exchanges, most of which are in the first 2 Myr of the cluster’s life,
when densities allow an efficient interaction with the other stars. In
the following evolution, the original binaries interact much less as
indicated by the flatness of the curve. None the less, because the
original binaries are very hard, the few interactions they undergo
exchange a sufficient amount of energy to affect the global evolution
of the cluster as shown by the evolution of r50 (Fig. 4).

Interestingly, the total number of exchanges is about two orders
of magnitude higher than that of original binaries and does not
depend on the presence of an initial population of binary stars.
This aspect indicates that the cluster under consideration is a very
active environment for binary interactions and confirms that the most
interacting binaries are dynamically created by the cluster itself.
However, most of these exchanges involve binaries that are loosely
bound (see also Fig. 7) and thus their energy exchange is quite low
with respect to that of the original binaries.

4.4 Comparison with other initial conditions

The novelty of the Hydro initial conditions can be better understood
if we compare their evolution to that of other, more idealized initial
conditions. To this purpose, we ran simulations with the initial
conditions presented in Section 3.1. Since we want to focus on the
dynamical evolution with different initial phase-space distributions,
we decided to run these simulations without stellar evolution.

4.4.1 Cluster expansion

Fig. 10 shows the evolution of the medians of the distributions of
r50, of r10, and of the ratio r50/r10 that measures the concentration
of the system. In the initial conditions, the Hydro clusters have a
much larger ratio r50/r10 than the other models. Hence, they have
very dense cores and rather extended haloes because of the scale of
the substructures. For these intrinsic differences, the evolution of the
characteristic radii of the Hydro simulations is considerably different
from that of the other distributions.

In the first Myr, the Hydro case is the only one that does not show a
monotonic increase of r50 because of the initial subcluster motion (as
discussed in Section 4.2.1). All of the other initial conditions develop
a monotonic increase of r50 and r10 but with different slopes. The
Loose Fract case, that is initialized with the same half-mass radius
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2262 S. Torniamenti et al.

Figure 8. Distribution of semimajor axes (left), mass ratios (centre), and multiplicity fractions (right) for a cluster with (upper panels) and without (lower
panels) original binaries. Four different snapshots are shown: t = 0 Myr (yellow solid line, hatched area, circles), t = 1 Myr (green dot–dashed line, squares), t
= 5 Myr (blue dashed line, triangles), and t = 10 Myr (purple dotted line, diamonds). The lower right panel shows that, in the absence of original binary stars,
the cluster is able to dynamically produce a mass-dependent binary fraction, reminiscent of the observed one.

Figure 9. Number of exchanges Nexch as a function of time for the entire
population of binaries (solid lines, filled markers) and for the subpopulation
of original binaries (dashed lines, empty markers). Nexch is calculated at steps
of 0.25 Myr. Lines and colours are the same as in Fig. 4.

as the Hydro case, shows a mild expansion on both scales, due to its
supervirial state. The low density of the central regions (the initial
value of r10 is larger than in the Hydro case by a factor of 5, see
Table 1) does not allow efficient star–star interactions, that would

power a faster expansion. The King and Dense Fract models, that are
set to match the core radius of the initial Hydro simulations, undergo a
stronger expansion from the very beginning of their evolution. These
two different initial conditions display a very similar behaviour.

The peculiarity in the evolution of the Hydro case is evident when
the evolution of the ratio r50/r10 is taken into account. All the cases
except the Hydro show a monotonic slow decrease for the r50/r10 ratio
that indicates that the systems expand at a similar rate at both scales.
The Hydro initial conditions, instead, show an initial steep decrease of
r50/r10 because the growth of r50 is balanced by the subclump motion
(see Fig. 4), while at smaller scales the cluster expands rapidly. Even
when the cluster has reached a nearly monolithic shape, the evolution
of its r50/r10 ratio is very different from the other initial conditions:
this ratio rapidly increases until it reaches a maximum at about 5 Myr.
Such a difference may be explained in terms of the stronger mass
segregation that features the Hydro simulation (we will discuss this
point in Section 5).

4.4.2 Binding energies

Fig. 11 shows the evolution of the total binding energy for different
initial conditions. In absence of original binaries, every initial
configuration creates its own population and the resulting total
binding energy is strictly connected to the initial energy scale of
the system. In particular, the Hydro, King, and Dense Fract final
binding energies are similar to each other as they are initialized
with similar core radii, whereas the total binding energy of the Loose
Fract systems is about one order of magnitude lower. Most of the total
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Binaries in young stellar clusters 2263

Figure 10. Early evolution of the 50 per cent Lagrangian radius (left-hand panel), the 10 per cent Lagrangian radius (central panel), and the concentration of the
cluster, quantified by r50/r10 (right-hand panel). Different lines represent the medians of different initial phase-space distributions: Hydro (yellow circles), King
(pink squares), Loose Fract (purple triangles), and Dense Fract (blue diamonds). The solid lines and filled markers represent clusters with original binaries,
while the dashed lines and empty markers correspond to clusters without original binaries.

Figure 11. Evolution of the total binding energy of the binary systems. Lines
and colours are the same as in Fig. 10.

binding energy is contained in a limited number of binaries (from 2
to 5) that go on hardening as the simulation proceeds. This relation
between the total binding energy and the global scales of the clusters
confirms that star clusters are self-regulating systems with respect to
their binary populations (Goodman & Hut 1989, 1993): in absence
of binaries, each system creates its own population of binaries, with
binding energies of the order of its global energy scales.

5 D ISCUSSION

The Hydro star clusters show a very distinctive evolution of the r50/r10

ratio. We studied what factor determines the growth of this ratio
during the monolithic phase. In particular, we focus on the impact
of the initial degree of mass segregation. In fact, a high degree of
mass segregation would allow the most massive stars to rapidly form
a centrally concentrated core that is dynamically separated from
the rest of the cluster, the scenario usually referred to as Spitzer
instability (Spitzer 1969). If this happens, the distribution of massive

stars is hotter than the rest of the cluster, because they remain more
concentrated and the local value of the velocity dispersion decreases
with the distance from the centre.

Previous N-body simulations have found evidence that, for a wide
range of initial conditions, the most massive stars in a system do
not move slower than the low-mass stars (Parker & Wright 2016;
Spera, Mapelli & Jeffries 2016; Webb & Vesperini 2017), as one
would expect based on the tendency of stellar systems towards
energy equipartition (Trenti & van der Marel 2013; Bianchini et al.
2016). A confirmation that the most massive stars can have higher
velocities has also been found in proper motion observations of
the open cluster NGC 6530 (Wright et al. 2019). Wright & Parker
(2019) showed that this aspect can be explained by the combination
of Spitzer instability and a cool collapse. If the most massive stars
remain more concentrated than the rest of cluster, then the core, that
is mostly populated by these massive stars, is expected to expand
slower than the rest of the cluster.

To quantify the impact of mass segregation on the evolution
of the cluster, we selected the 30 most massive stellar particles3

and evaluated the ratio between their velocity dispersion σ mass and
the velocity dispersion of all the stellar particles σ all. For these
calculation, only stars inside two half-mass radii are considered,
as done in Wright & Parker (2019). The evolution of the ratio
between these two velocity dispersions is shown in the upper panel
of Fig. 12. In all the phase-space configurations except the Hydro,
the velocity dispersion ratio is about one and does not change very
much with time. In the Hydro case, instead, the high initial value
of the velocity dispersion ratio suggests that the stellar cluster has a
strong initial mass segregation. Also, during the monolithic phase, the
velocity dispersion ratio grows because, after the merger of the two
main subclumps, their most massive stars rapidly segregate towards
the centre, while the system globally expands. The segregation of
the massive stars towards the centre of the potential well may be
enhanced by the fact that, in each subclump, the stars have already
formed a massive core that segregates as one single, very massive
particle (see also Fujii, Saitoh & Portegies Zwart 2012). In the case

3In the case of a binary, we consider the particle with a mass equal to the total
mass of the binary and place in the centre of mass of the binary.
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2264 S. Torniamenti et al.

Figure 12. Upper panel: Evolution of the ratio between the velocity
dispersion of the 30 most massive star particles σmass and the velocity
dispersion of all the stars inside inside 2 r50, σ all. The grey data point with
error bar is the observed value for NGC 6530 (Wright et al. 2019). Lower
panel: Evolution of the ratio between the half-mass radius of the 30 most
massive star particles (rmass) and the overall half-mass radius, r50. Lines and
colours are the same as in Fig. 10.

with original binaries, the velocity dispersion value grows enough to
match the observed value for NGC 6530.

The connection between the growth of the velocity dispersion ratio
and the degree of mass segregation is confirmed by the trend shown by
the ratio of the half-mass radii of the 30 most massive stellar particles
rmass and the overall half-mass radius r50, shown in the bottom panel
of Fig. 12. The Hydro simulations show an initial strong degree of
mass segregation. The initial small-scale expansion makes this ratio
instantly grow; but, then, it rapidly decreases because of the strong
segregation at the centre of the cluster. The initial degree of mass
segregation seems to be the most important factor in the growth of the
velocity dispersion ratio in the Hydro case: a stronger initial degree
of mass segregation triggers the rapid formation of a dense core
that expands more slowly than the rest of the cluster. Also, the rapid
formation of a dense core could influence the interaction rate between
binaries and the host cluster. If the primordial hard binaries live in
a denser environment, they are more likely to interact: this explains
why the Hydro initial conditions present different expansions for the
cases with and without binaries (Fig. 10).

6 SU M M A RY A N D C O N C L U S I O N S

We studied the early dynamical evolution (t < 10 Myr) of young
stellar clusters with realistic populations of binaries and different
initial phase-space distributions. The initial conditions for our N-
body simulations are obtained by combining a new algorithm
to generate realistic stellar and binary distributions (Sana et al.
2012; Moe & Di Stefano 2017) with the joining/splitting algorithm
defined in Ballone et al. (2021), to derive initial conditions from
hydrodynamical simulations.

For the hydrodynamical initial conditions (Hydro cluster), we con-
sidered different evolutionary cases by switching on and off the pres-
ence of original binary stars and stellar evolution in order to weight
their contribution to the dynamical evolution. Our results show that
the evolution of the cluster is characterized by two distinct evolu-
tionary phases: first, the global expansion of the cluster is balanced
by the approaching of its main subclumps, while at small scales the
cluster expands instantaneously. After 1 Myr, the cluster has reached
a nearly monolithic shape and expands as a whole, following a post-
core collapse expansion. Binaries tend to speed up the expansion of
the cluster in this phase, making the half-mass radius expand faster,
while stellar evolution has a minor impact on the early dynamical
evolution of the cluster but has a major impact on mass-loss.

We compared the evolution of the Hydro star cluster to that of
star clusters with spherical distributions of stars (King, Loose Fract,
Dense Fract). The main difference between the Hydro cluster and
the others relies in the evolution of the r50/r10 ratio that measures
the concentration of the system. The Hydro cluster, in fact, shows
a distinctive trend of r50/r10. At the beginning of the simulations,
r50/r10 is much larger in the Hydro cluster than in the other models
because the Hydro cluster is an aggregate of several subclumps,
resulting in a large total half-mass radius, but its core radius is very
small, since it basically coincides with the core radius of the densest
subclump. The r50/r10 ratio decreases very fast (<1 Myr) in the
Hydro cluster, reaching values similar to the other clusters because
of the hierarchical merger of the subclumps, which reduces the total
half-mass radius. However, at t > 1 Myr the value of r50/r10 keeps
decreasing in the spherical models, while it grows again in the Hydro
case. The late growth of r50/r10 in the Hydro cluster is due to its initial
high degree of mass segregation, which allows it to form a centrally
concentrated core of massive stars. As this core expands more slowly
than the rest of the cluster, the ratio between the velocity dispersion
of the most massive stars and that of all the stars increases. In the
case with binaries, it grows enough to match the observed value for
NGC 6530 (Wright et al. 2019).

The initial binary stars we set based on observational constraints
(Sana et al. 2012; Moe & Di Stefano 2017) are generally too hard
to interact in an efficient way with the host environment. The stellar
systems recover from the lack of interacting binaries by dynamically
creating additional binaries with binding energy of the order of
their kinetic energy. The dynamically formed binaries are not hard
enough to reproduce the hardest part of the initial distribution of
Sana et al. (2012). Also, in the absence of original binaries, the
dynamically formed binaries show a binary fraction that increases
with the mass of the primary star. This behaviour spontaneously
reproduces the relation between binary fraction and stellar mass
found in observations (Moe & Di Stefano 2017).
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