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Highly efficient THz four-wave mixing in doped
silicon
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Sergey G. Pavlov3, Alexander F. G. van der Meer1, Konstantin L. Litvinenko 2, Ian Galbraith 4, Nikolay V. Abrosimov5,
Helge Riemann5, Carl R. Pidgeon4, Gabriel Aeppli6,7,8, Britta Redlich1 and Benedict N. Murdin 2

Abstract
Third-order non-linearities are important because they allow control over light pulses in ubiquitous high-quality
centro-symmetric materials like silicon and silica. Degenerate four-wave mixing provides a direct measure of the third-
order non-linear sheet susceptibility χ(3)L (where L represents the material thickness) as well as technological
possibilities such as optically gated detection and emission of photons. Using picosecond pulses from a free electron
laser, we show that silicon doped with P or Bi has a value of χ(3)L in the THz domain that is higher than that reported
for any other material in any wavelength band. The immediate implication of our results is the efficient generation of
intense coherent THz light via upconversion (also a χ(3) process), and they open the door to exploitation of non-
degenerate mixing and optical nonlinearities beyond the perturbative regime.

Introduction
The lowest-order non-linearity in centrosymmetric

materials is χ(3), which describes that part of the response
that is third order in the amplitude of the driving beams1.
It is responsible for effects like degenerate four-wave
mixing (DFWM), in which all four photons have the
same energy and two are excited and two are emitted,
Fig. 1. A substantial degenerate (or near-degenerate)
FWM response is a prerequisite for applications of media
in active optical systems ranging from modulators2,3 to
quantum repeaters4–6.
Although many non-linear effects have been demon-

strated in the THz domain7, there are no quantitative
measurements of susceptibilities for transparent bulk
materials—indeed there are very few values of χ(3) avail-
able for any material in this part of the spectrum8–11.

Doped silicon at low temperature has already been
shown to produce giant values for the imaginary part of
the non-linear refractive index (via multi-photon
absorption)12, and there have been theoretical predic-
tions that the real part of the non-linear refractive index
is also very large13 and of large experimental non-
linearities14 but there have been no experimental reports
of χ(3) till now, largely because of the challenge of quan-
titative non-linear THz metrology.

Results
Experiment
We performed non-collinear DFWM experiments as

illustrated in Fig. 1, using THz pulses from the free
electron laser FELIX, both on and off resonance with
the 1s→ 2p transitions in Si:P and Si:Bi at 10 K. We
chose this geometry because it enables the measure-
ment of dynamical relaxation and dephasing times
needed to make detailed theoretical comparisons,
under identical experimental conditions. It is very
difficult to obtain clean beam profiles with low dif-
fraction in the THz regime, and great care was taken in
avoiding apertures and optical imperfections in order
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to obtain them, as shown in Fig. 1. Care was also taken
to accurately calibrate absolute pulse energies. It may
be seen immediately from the relative strength of the
output beam (k3) in Fig. 1 that the DFWM process is
very efficient.
In the plane-wave limit (i.e., for infinitely long pulses

and infinitely broad beams), the complex polarisation
amplitude of the generated beam (P3) is related to the
complex field amplitudes of the input beams (F 1;2) inside
the material by

P3 ¼ ϵ0χ
ð3ÞF�

1F 2
2 ð1Þ

i.e. the intensity of the output is determined by χ(3). The
definition of χ(3) in Eq. (1) suggests that, for a pulsed
experiment, the internal pulse energies Ei of the three
beams ki (Fig. 1) are related by

E3 ¼ E1E
2
2=E

2
c ð2Þ

where Ec is a constant that is inversely proportional to
χ(3)L and L is the sample thickness. Ec defined by Eq. (2) is
a critical pulse energy at which the output would become
equal to the inputs, and we generally stay well below this
limit so as to avoid the need to consider higher-order
non-linear effects.

We varied E1 keeping the ratio E2/E1 fixed, as shown in
Fig. 2, and a clear cubic dependence is observed at low
pulse energy. The resulting values of Ec are shown on
Fig. 2 and given in Table 1. At high intensity, a saturation
occurs for resonant cases, due to an intensity-dependent
reduction in dephasing time15, which reduces χ(3).

Conversion of Ec to χ(3)

Away from resonance and in the limit of long pulses, the
relationship between Ec (given on Fig. 2) and χ(3) has a
straightforward dependence on the geometry and pulse
duration. For short pulses, the dynamics are important,
and on resonance there is loss that attenuates the pumps
and the output, which must also be taken into account.
We integrated the equations describing propagation of
light through a lossy non-linear medium for the case of
inhomogeneous broadening and finite pulse durations to
find χ(3) from Ec (see Supplementary Materials Section
IV). In this case, the conversion from the experimental Ec
of Fig. 2 to the value of χ(3) is, for a beam with a Gaussian
spatial profile,

Ec ¼ 33=4
ffiffiffiffiffiffi
2π

p
n2λ0r

2
0t0f =Z0χ

ð3ÞL ð3Þ

where n is the refractive index (which we took to be n=
3.4), λ0 is the free-space wavelength, Z0 is the
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Fig. 1 The degenerate four-wave mixing geometry. a The energy-
level scheme for DFWM with two excitation photons from beam 2, a
stimulated emission from beam 1 and an output photon in beam 3.
The left hand process involves two virtual excited states, and the right
hand permutation is the strongest near to a resonance with the
ground state gj i and excited state ej i. b A camera image of the beam
at the sample position is shown superimposed on the sample. Far-
field images were taken by scanning an iris after collimating, which
requires careful conversion from space to angle. Each image has been
normalised to the peak power density, and the scale factors for the
far-field images are indicated relative to beam 1. Note that the far-field
image of the beam 3 has only been scaled by a very small factor in
this example (×3), i.e. the DFWM efficiency is very high. The phase
matching condition is also shown
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Fig. 2 Internal DFWM conversion efficiency for different samples,
both on and off resonance. The different doping densities (nD) and
samples are given in the legend. Each curve is labelled by either the
laser photon energy (�hω in meV) or the resonant transition being
excited. The ratio between pump pulse energies x= E2/E1 was kept
constant in each case: values of x are given on each data set. The data
are very close to cubic (E3 ¼ x2E31=E

2
c as expected), and the solid lines

are fits to the low intensity portion. The fitted values of Ec are also
indicated. For the high density Si:P sample, only one intensity was
measured at each laser frequency and a cubic dependence (dashed
lines) is shown for comparison with the other measurements
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characteristic impedance of free space, and r0 and t0 are
the root mean square (r.m.s.) beam radius and pulse
duration, respectively (at which the intensity has fallen
by 1=

ffiffi
e

p
).

The dimensionless factor f appearing in Eq. (3) depends
on the loss and also the pulse shape and duration relative
to the dynamical timescales of the system. The equation
defines f in such a way that f= 1 when the loss is negli-
gible (which is our case when far from resonance) and in
the monochromatic limit of very long pulses with Gaus-
sian temporal profile (t0≫ T1,2, i.e. pulse duration much
larger than the population decay, T1, and dephasing time,
T2, of the system). For negligible loss but with pulses that
are very short compared with the inverse line-width, then
f becomes of order T1/t0, which can evidently be larger

than unity (effectively replacing t0 in Eq. (3) with T1

because now the atomic polarisation P3 lasts much longer
than the drive pulses). For significant loss, f becomes very
large and sample thickness dependent.
Using perturbation theory for temporally overlapping,

weak beams within the two-level approximation1, and
averaging over the distribution for a Gaussian (fully
inhomogeneously broadened) line, we calculated values of
f for our experimental circumstances. See Supplementary
Materials for more details. The results are shown in
Table 1. As expected, the off-resonant values of f in
Table 1 are of order unity and are not significantly
affected by the details of the model chosen. They are
slightly greater than unity primarily because of the short
pulses. The on-resonance values of f in Table 1 are large
primarily because of the loss. The two-level model is
expected to give a reasonably good estimate of f in reso-
nant cases because there is one dominant transition: the
one shown in Fig. 1a1.
The experimental values of Ec from Fig. 2 along with the

calculated f have been converted to values of χð3Þexpt in
Table 1.

Theory
We now obtain theoretical estimates for χ(3) to compare

with the experimental results. Silicon donors at low
temperature are hydrogen-like, with a series of levels and
orbitals closely resembling the Rydberg series 1s, 2p0,
etc.16. The energies are scaled down and the orbital sizes
scaled up, thanks to the small effective mass and large
dielectric constant. The large orbitals give a commensu-
rately large dipole moment, and this has a very large
influence on non-linear optical coefficients.
Using the same two-level model mentioned above, the

following limits may be found (see Supplementary
Materials) for the contribution per bound electron in the
vicinity of its resonance:

χð3Þ

nD
�

μ4eg
ϵ0�h

3 ´
T1T 2T�

2; if Δ ¼ 0

T1T�1
2 Δ�3; if jΔj � T��1

2

�
ð4Þ

where nD is the donor concentration, �hΔ is the detuning
from resonance in energy and μeg ¼ ejhψejrjψgi:ϵj is the
component of the dipole moment transition matrix
element between ground and excited states along the
polarisation direction, ϵ. The total dephasing time T�

2 is
defined by the total absorption line half-width in energy,
�h=T�

2, which was obtained from the small-signal absorp-
tion spectrum. The population relaxation time, T1, was
obtained by performing a pump–probe experiment17, and
the homogeneous dephasing time, T2, was obtained using
a photon echo experiment1,15. The results are shown in
Table 1. These time-resolved experiments were per-
formed with the same set-up that was used for the main

Table 1 Third-order susceptibility for Si:P and Si:Bi both
on and off-resonance

Si:P Si:Bi

�hω (meV) 32.5 34.0 36.7 39.2 42.5 64.5

– (2p0) – (2p±) (3p±) (2p±)

T R T T R R R

L (mm) 0.6 0.5 0.5 0.6 0.5 0.5 1

nD 10 1.0 1.0 10 1.0 1.0 3.4

x 1.6 4.7 5.6 2.3 4.6 3.9 4.9

r0 (mm) 0.53 0.6 0.6 0.53 0.6 0.6 0.64

Ec (μJ) 2.7 4.9 32.3 1.1 1.4 2.1 0.17

f 3.0 28 6.1 6.2 310 27 310

χð3Þexpt L 0.13 0.80 0.025 0.58 27 1.5 160

χð3Þexpt 0.22 1.6 0.050 0.96 54 2.9 160

χð3Þexpt =nD 0.022 1.6 0.050 0.096 54 2.9 46

μeg (e.nm) – 0.37 – – 0.71 0.32 0.34

�h/T1 (μeV) – 11 – – 5 3.9a 19

�h/T2 (μeV) – 26 – – 26 109 44

�h=T�
2 (μeV) – 115 – – 115b 194 165

χð3Þtheory =nD 0.0024 100 0.015 3100 23 18

�hω is the photon energy, and labels R and T refer to resonant and transparent
excitations. Values of μeg are all taken from ref. 29. All values for T1,2 were found
from photon echo and pump–probe performed under the DFWM conditions,
except: ataken from ref. 21. All values of the half-width, �h=T�

2 , were found from
the small-signal absorption spectrum, except: bassumed equal to the 2p0 half-
width. x is the ratio of the intensities of the pump pulses from Fig. 2. L is the
sample thickness and r0 is the spot size. The dimensionless factor f, which is
unity for zero loss and infinitely long pulses, appearing in Eq. (3) (and described
in detail in the text), was found from integrating the propagation equations. The
experimental values of Ec were extracted from Fig. 2. Values of nD are given in
units of 1015 cm−3; χ(3)L in units of 10−16 m3 V−2; χ(3) in units of 10−13 m2 V−2; and
χ(3)/nD in units of 10−34 m5 V−2. Theoretical predictions are from Eq. (4), and for
off-resonance excitation at 36.7 meV, the 2p± contribution was used (it has much
higher μ4eg) while at 32.5meV we used the 2p0 contribution (it has much smaller Δ)
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DFWM experiment, simply by varying the delay between
the beams and changing the position of an iris after the
sample. This ensures that times T1,2 were obtained under
the same experimental conditions as Fig. 2. The calculated
values of χ(3)/nD in the approximation of Eq. (4) are shown
in Table 1 as χð3Þtheory =nD. These predictions from the two-
level model may be expected to give reasonable order of
magnitude estimates, but it should be noted that the
intermediate states and permutations neglected in the
approximation of Eq. (4) can give both positive and
negative contributions. Earlier work on theoretical pre-
diction of χ(3) for silicon donors has included an infinite
number of all possible intermediate states but not the
dephasing and decay (T1, T2 and T�

2)
13.

Discussion
In the transparent regions, away from resonance

(labelled T in Table 1), we obtain very good agreement
between experiment and theory; there is also suitable
but not perfect scaling with impurity density, nD. The
approximate theory in Eq. (4) consistently underestimates
the experiment by about an order of magnitude, implying
that the neglected terms due to higher intermediate states
and other permutations are additive. On resonance (R),
the agreement is almost as good, with a similar magnitude
of discrepancy but this time in either direction (particu-
larly notable when we compare 2p± transitions for P and
Bi), presumably because of the strong sensitivity to the
effect of the loss. It is obvious that resonance significantly
reduces Ec in Fig. 2 and enhanced χ(3) relative to the non-
resonant cases.
Figure 3 shows a survey of coherent χ(3) measurements

in other materials, systems and frequency bands. The
figure shows χ(3)L since this is the quantity that has
actually been measured in each case, and it is the quantity
that is relevant for frequency mixing applications. In
Fig. 3, experiments in which the pump transition is virtual
have been labelled as transparent, and those where there
is a real absorption process at the pump frequency have
been labelled as resonantly enhanced. For example, free
carrier processes can produce not only a very large χ(3)L8,9

but also very significant absorption; Dirac materials
like graphene produce large χ(3)L11,18 but have resonant
interband or free-carrier processes depending on the
chemical potential; and resonant enhancements by
quantum well design19 or Landau levels10,20 also naturally
induce absorption pathways. In such cases (where
absorption loss is present), the volume susceptibility χ(3) is
not an especially useful figure of merit for the material,
because the output varies in a non-trivial way with sample
thickness thanks to the loss. We note that very large
apparent values of χ(3) have been reported in two-
dimensional and quantum well systems9,11,19. In all
these cases, the measured output is normalised by the

(very small) thickness, and the sheet susceptibility, χ(3)L, is
very small by comparison with the values reported here
and would remain so even for stacks of very many layers.
It is interesting to note the general trend in Fig. 3 to
increased susceptibility as the frequency is reduced. It can
be seen from Eq. (4) that there is no intrinsic frequency
dependence, so this increase is likely to be due to the
difficulty of observing all but the strongest effects at THz
frequency. It happens that the material used here has
particularly large dipole moments12, which enter Eq. (4)
with the fourth power, and an advantageous combination
of long dephasing and decay times15,21,17.
Our measured χ(3)L far from resonance is a record for

any transparent material, and the only such measurement
for THz pumping. The χ(3) values are all larger even than
low temperature bulk InSb close to its band edge fre-
quency22, meaning that here the contribution per elec-
tron (the hyperpolarisability) is far, far larger. This
material can easily be produced in macroscopic thick-
nesses relevant for devices. An obvious immediate
application is for metrology of a weak (k1) THz beam
with an arrival time clocked by a strong coupling pulse
(k2). Further prospects arise because compact and effi-
cient semiconductor sources23 now cover the entire
electromagnetic spectrum from radio waves to the
ultraviolet with just one gap between about 5–15 THz
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Dessmann et al. Light: Science & Applications           (2021) 10:71 Page 4 of 6



(thanks to phonons in common polar solids): doped
silicon could fill the gap by tripling the emission wave-
number for existing semiconductor THz lasers. For per-
spective, we point out that generation of THz light by
downconversion from near-infrared (near-IR)24–26 and
mid-IR27 sources is well established, but the efficiency is
rather low, typically parts per thousand24. Our experi-
ments were performed at cryogenic temperature, but
many THz sources and detectors already require cryo-
genic environments23, and the operating temperature
might be raised in future by exploiting deeper donors.

Materials and methods
Samples
Samples used were single-crystal silicon doped with

either bismuth or phosphorous and kept at a temperature
of 5–10 K during the experiment.
The donor densities were determined by four-point

resistivity measurements. In all cases, the surfaces were
chemically and mechanically polished with a wedge of
about 1°. The small-signal absorption was measured with
Fourier transform spectroscopy with the samples moun-
ted in liquid helium at 2.2 K (see Supplementary Materials
for absorption spectra), and the half-width of each inho-
mogeneously broadened transition, �h=T�

2, was obtained
from Gaussian fits. One transition, the 1s→ 2p± line in P-
doped samples, was saturated, and we took the line-width
to be the same as for the 1s→ 2p0 line in this case. The
concentrations, sample thicknesses and line-width values
are given in Table 1.

Dynamical measurements, beam imaging and overlap
The optical set-up was a standard, time-resolved, for-

wards DFWM arrangement10, Fig. 1. All beams were
focussed into a cryostat, recollimated and refocused using
off-axis parabolic mirrors onto a high sensitivity liquid
He-cooled Ge:Ga photo-conductive detector with a
response time of about 100 ns.
A mechanical moving stage controlled the delay, and for

the photon echo experiment (used to measure T2), we
measured the k3 beam pulse energy as a function of
the delay between k1 and k2 beams, while for the
pump–probe experiment we simply moved the iris to
detect the transmitted k1 beam, which then functions as a
weak probe. To ensure optimal overlap, we imaged the
beams at the sample position with a pyroelectric camera
with an effective pixel pitch of 80 μm (Spiricon Pyrocam
IV). To obtain beam selection and optimal discrimination
of the far-field beams after the sample, a motorised iris
with a controllable aperture was mounted on a x–y
scanning stage between the collimating mirror and the
detector. The dependence of the output DFWM pulse
energy shown on Fig. 2, E3, was measured with the iris
open wide enough to capture the whole beam (while still

excluding the pumps). The resulting T1 and T2 data are
given in Table 1.

Pulse energy calibration
For metrology of the pulses in each beam for the data

of Fig. 2, we calibrated the photon energy-dependent
responsivity of the detector before each measurement. As
a reference standard, we used a calibrated pyro sensor
(SLT PEM 34 IR) with an accuracy of 2%.
For each set of measurements, we determined the ratio

x= E2/E1 by simultaneously recording both beams with
the pyroelectric camera just before the sample, while
scanning the undulator of the FEL.
The cryostat window transmission was calibrated by

measuring the laser transmission through the empty
cryostat (i.e. without the sample), referenced to the sig-
nal with the cryostat removed. We assumed both win-
dows had the same transmission. The reflection loss at
the sample surface was estimated using the Fresnel
transmission coefficient T � 0:7 for the interface of the
sample, which approximately agrees with the laser
transmission signal when very far from resonance.
A polariser pair (Infraspecs P03) before the beam

splitter was used to adjust the total laser pulse energy in
fine steps for the intensity dependence of Fig. 2.
The values of r0 used are given in Table 1 and came from

the measurement with the Pyrocam mentioned above.

Pulse shape
In order to make the conversion from critical pulse

energy to χ(3) (see below), the pulse duration is required.
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Fig. 4 An example transient output pulse energy (E3) as a
function of delay between the input pulses (the k1 and k2 beams)
for one of the Si:P samples far from resonance. The signal is a
third-order autocorrelation of the pulse temporal profile. This
autocorrelation signal appears Gaussian to a good approximation (red
line) with r.m.s. width σt= 7.5 ps, so the inferred r.m.s. duration of the

pump beams is t0 ¼
ffiffiffiffiffiffiffi
2=3

p
σ t ¼ 6.1 ps
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The FELIX laser produces trains of intense, tuneable,
short pulses. The train is emitted at 10 Hz in so called
macropulse bunches, which contain approximately
200 micropulses each, at a repetition rate of 25MHz. The
pulse duration can be estimated from the spectrum since
the pulses are approximately bandwidth limited. For a
Gaussian pulse, its r.m.s. intensity duration t0= 1/4πσν
where the r.m.s. intensity bandwidth in frequency ν
averaged over the macropulse is typically about σν/ν ≈
0.3% corresponding to a pulse duration of a few picose-
conds, and there was little variation throughout the
experiments. For this work, we made use of the fact that,
when off-resonance, the measured E3 as a function of the
delay between the inputs k1,2 gives a third-order auto-
correlation (3AC), shown in (Fig. 4). For a Gaussian pulse,
the r.m.s. duration is t0 ¼ σ t

ffiffiffiffiffiffiffiffi
2=3

p
¼ 6.1 ps, where σt is

the r.m.s. duration of the 3AC given on the figure. For the
data in Table 1, we took the value of t0 from the 3AC
measurement of Fig. 4, and we assumed that it was con-
stant for all experiments.
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