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Introduction

This thesis deals with the question of how quantum theory can be recovered from first
principles and how we can study quantum computation using diagrammatic methods.
As these are quite disparate topics, this thesis is divided into two parts that can be
read separately.

Part A: quantum theory from principles

In the early 20th century a series of discoveries was made that showed there was
something wrong with the classical description of the universe. It took a number of
decades for physicists to develop consistent mathematical theories that could explain
these strange new phenomena. At first there were the theories of matriz mechanics of
Heisenberg and wave mechanics of Schrédinger. These were later unified by von Neu-
mann into the mathematical description of quantum theory as we know it today |169):
Hilbert spaces, unitary maps, complex numbers, tensor products, and so on.

This raises the question why these mathematical concepts should describe our reality
so well. Why do we need to describe a system by a Hilbert space? Why do we need to
use complex numbers instead of real numbers? Why are composite systems described
by a tensor product?

It is instructive to compare the situation of quantum theory to that of Einstein’s
relativity. Unlike quantum theory, relativity was originally not based on much physical
evidence. Instead, Einstein entertained a small number of physically compelling
principles: the constancy of the speed of light, the invariance of the laws of physics
on a chosen reference frame, and the equivalence of gravitational and inertial mass.
Using these physical principles he worked through several thought experiments and
managed to derive new mathematical laws of physics based on the mathematics of
Lorentz, Minkowski and Riemann. This provides an answer to the question of why we
would need to use, for instance, Lorentz transformations for the physical laws: “our
chosen physical principles demand it”.

The goal of this part of the thesis is to explore possible principles from which the
mathematics of quantum theory can be derived. As already mentioned, there is a
philosophical reason for doing so: if we can derive quantum theory from a small set
of physically compelling principles, then it shows our laws of nature could not have
been different without breaking one of these principles, hence providing a satisfying
answer to the question of why our universe ‘needs’ quantum mechanics. Another
related reason is that the search for principles allows us to see which parts of quantum
theory are specific to it, and which are ‘generic’ for a broad class of physical theor-
ies. For instance, the impossibility of cloning a quantum state has been shown to
hold in basically any non-classical alternative 23], while the Tsirelson bound on the
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strength of quantum correlations holds in any physical theory satisfying the principle
of information causality |[176]. Lastly, if quantum theory is derivable from some set of
principles, then we know that any alternative or generalisation must abandon at least
one of these principles, which simplifies the search for such alternatives.

Much work has been done this last century on deriving quantum theory from
physically motivated principles, from von Neumann’s seminal quantum logic approach,
to the more modern approach of using generalised probabilistic theories (a short historic
overview of which is given in Section . In Part A of this thesis we add to these
results two new approaches to deriving quantum theory from first principles.

The first approach defines principles for how the process of sequential measurement
should behave. A crucial difference between classical and quantum theory is that in
the latter case a measurement generally affects the state of the system. As a result,
when doing a sequence of measurements, the order in which the measurements are
performed is relevant. Chapter [2] considers general physical theories that allow se-
quential measurement and then restricts the possibilities by assuming this process
is well-behaved in certain ways; namely that “compatible measurements should act
classically”. We find that this is sufficient to recover standard quantum theory. So
even though quantum theory is more complicated than classical theory because meas-
urements don’t necessarily commute, it is special in that sequential measurements are
still ‘nice’ in certain ways.

The second approach takes an entirely different route. In quantum theory we can
distinguish between ‘pure’ processes that represent in a sense the true processes of
nature, and ‘mixed’ processes that arise from interactions with the classical world,
for instance via measurements or noise. In Chapter [3] we consider general physical
theories where the subset of pure processes has certain properties one would expect
to hold for the true processes of nature in a ‘nice’ physical theory. Again we find that
this forces such theories to be part of standard quantum theory. The crux here is
that we define ‘pure process’ in a different way than is usual, by using the abstract
language of category theory.

Let us now outline in more detail the results of each of the chapters in Part A.

Chapter [I] presents the necessary preliminaries for this part of the thesis. We
cover the basic mathematics of quantum theory, and recall the definitions and some
important results regarding C*-algebras, Euclidean Jordan algebras (EJAs), order
unit spaces and generalised probabilistic theories (GPTs). We end the chapter with a
brief history of results in the principled approach to quantum theory.

Then in Chapter 2] we present our first reconstruction of quantum theory. We
consider the operation of sequential measurement, where we first perform some meas-
urement ¢ and then a measurement b, resulting in their sequential product a & b.
We find that a variation on the axioms for the sequential product of Gudder and
Greechie [95] can be operationally motivated. Using these axioms on the sequential
product we show that the space of effects of a finite-dimensional single system must be
a Fuclidean Jordan algebra, a space generalising the space of observables of a quantum
system [124]. We furthermore show that the only EJAs that compose in a locally
tomographic manner are the C*-algebras, hence recovering the standard systems of
quantum theory. In addition to recovering the space of observables of a quantum
system, we also show how to recover the Born rule and the Schrédinger equation.
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Chapter [3] also presents a reconstruction of quantum theory, but based on wholly
different assumptions. We cover the basics of effectus theory, a new approach to
categorical logic developed by Jacobs in 2015 [118]. It generalises the convex structure
of state and effect spaces that are required in a generalised probabilistic theory to
allow arbitrary effect algebras [77]. Since an effectus has much less structure than a
GPT it naturally leads to a different viewpoint, and hence different ideas as to which
notions are important. In particular, from effectus theory we get a new notion of pure
transformation, which is based on maps satisfying some particular universal properties.
We succeed in reconstructing finite-dimensional quantum theory by postulating some
reasonable assumptions on the set of pure transformations (namely, that they must
form a dagger-category).

The previous chapters introduce a variety of new assumptions for which it might
not a priori be clear that they are actually true in quantum theory. In Chapter [4] we
study JBW-algebras. These are to Euclidean Jordan algebras as what von Neumann
algebras are to finite-dimensional C*-algebras, and can be seen as a generalisation of
infinite-dimensional quantum theory. We show that the assumptions regarding the
sequential product and pure maps hold in the category of JBW-algebras with positive
subunital maps. Along the way we find additional new structure in JBW-algebras:
the existence of a division operation on effects, a ‘polar-decomposition-like’ property,
and a useful characterisation of when elements operator commute.

Finally, in Chapter [§] we combine the results of the previous three chapters to present
a (partial) reconstruction of infinite-dimensional quantum theory using a combination
of assumptions from Chapters 2] and [3] Notably, we succeed in classifying the allowed
sets of scalars in a w-effectus, which allows us to make a reconstruction that a priori
does not refer to the structure of the real numbers.

Part B: quantum software from diagrams

The idea that computers based on quantum-mechanical systems might outperform
‘classical’ computers has been around for a number of decades now [74]. It however
took until very recently for technical advances to proceed to the point where quantum
computers are actually powerful enough to perform computations that would take
impractically long on a classical computer |12] (and even those computations are not
necessarily useful as of yet). Since quantum computers are still very limited in the
number of qubits they possess, and will remain so for the foreseeable future, it is
necessary for computations to be performed as efficiently as possible. In this part of
the thesis we find several ways to reduce the number of qubits and operations needed
to implement a given quantum computation.

We approach quantum computation through a slightly unusual lens: the ZX-calculus.
The ZX-calculus is a language for reasoning about a class of diagrams called ZX-
diagrams developed by Coecke and Duncan in 2008 [48, [49]. These diagrams can
represent any linear map between qubits, and in particular any computation done on
a quantum computer. Their usefulness comes from the ability to graphically rewrite
ZX-diagrams while preserving the linear map they represent. This allows us to reason
about quantum computation in an efficient manner.



xiv Introduction

In Chapter [f] we introduce the basics of quantum computation and we present the
ZX-calculus together with several useful rewrite rules. Then in the next two chapters
we study measurement-based quantum computation (MBQC). This is a model of
computation wherein some intricate resource state is prepared, and the computation
proceeds by measuring qubits in a specific pattern (unlike the circuit model of quantum
computation where the computation proceeds by applying unitary quantum gates to
a simple input state). Chapter |z| presents a new concrete model of MBQC that is
deterministic and approximately universal, while only requiring measurements in the
two Pauli bases X and Z. To our knowledge this was the first model to demonstrate
these properties. We verify the correctness of our model using the ZX-calculus. This
chapter doubles as a gentle introduction to the main concepts of MBQC.

In Chapter [§] we consider the most well-studied model of MBQC: the one-way
model |181]. In contrast to most work dealing with the one-way model, we do not
restrict our measurements to a single measurement-plane, but instead allow measure-
ments in all three principal planes of the Bloch sphere. This allows us to present a
general set of rewrite strategies that transform measurement patterns in several useful
ways, in particular reducing the number of qubits needed to implement a measurement
pattern. We show how these rewrites preserve the existence of gflow, a property that
ensures that the measurement pattern is deterministically implementable [35]. We
end this chapter with an efficient algorithm that allows any measurement pattern with
a gflow to be converted into a unitary quantum circuit.

In Chapter [9] we apply the results of Chapter [§] to the problem of quantum circuit
optimisation. We introduce a rewrite strategy based on the ZX-calculus that reduces
Clifford circuits to a new pseudo-normal form that has several desirable properties.
In addition, this rewrite strategy results in an ancilla-free T-count optimiser for
Clifford+T circuits that matches or outperforms every other existing method (at the
moment of writing) at this task. Finally, we discuss how this algorithm can be used
as a powerful circuit equality verifier.

The results in this part of the thesis show that the ZX-calculus can be used to
unify and improve several practical aspects of quantum computing: MBQC, circuit
optimisation and circuit equality verification. We expect the ZX-calculus to be useful
in a much wider array of problems than just the ones discussed in this thesis. In
Chapter[10| we present some preliminary results in the problems of CNOT optimisation,
circuit routing, Toffoli circuit optimisation, and quantum circuit simulation.

Writing style

Whenever a new term is defined, we print it in bold. Some Propositions, Lemmas,
and Theorems in this thesis are labelled with a specific reference, like for instance
Proposition This denotes that I was not involved with originally proving the
statement. For completeness sake, or when the proof was given for a different setting,
we will still sometimes include a proof for these labelled statements.

Except for in this introduction, I will use ‘we’ to denote myself, including possible
coauthors, and the reader.
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Attribution & main results

This thesis is based on the following publications and preprints, some of which were
joint work with other people: 15| 68| (131133} 209, [210} 216} 219-H222]. Besides the
results presented in this thesis, I also worked on a number of other preprints and
publications during my PhD that did not fit into this thesis |44} 139, [143] 211}, [217]
218, 223]. The list below states the main results of each chapter and which material
it was based on.

e Chapter [1} This is an introductory chapter to Part A of the thesis, and does
not contain new results.

e Chapter 2} We reconstruct quantum theory from assumptions on sequential
measurement. Mathematically, we show that a finite-dimensional order unit
space that is a sequential effect algebra |95] is a Euclidean Jordan algebra, and
that the only such spaces which have a tensor product are C*-algebras. This
chapter is based on the solo-author paper Ref. [221], but expanded to include
more details and background. In particular, Sections and [2.9] include
new material for the thesis.

e Chapter We reconstruct quantum theory from assumptions on pure maps.
Mathematically we show that a category of finite-dimensional order unit spaces
that has suitably interacting filters and compressions must embed into the
category of Euclidean Jordan algebras. This chapter is based on the solo-author
paper Ref. [220]. Section contains basic theory on effect algebras that can
be found in for instance Ref. [77]. The proofs of Section are adapted from
Bas Westerbaan’s PhD thesis [214].

e Chapter |4} We show that the category of JBW-algebras satisfies most of the
assumptions outlined in the previous chapters. New results include the existence
of filters and compressions in JBW-algebras, that the pure maps between JBW-
algebras form a dagger-category, and that the unit interval forms a normal
sequential effect algebra. These results generalise those for Euclidean Jordan
algebras originally presented in Ref. [209] — joint work with Bas and Bram
Westerbaan — and von Neumann algebras as presented in Bram Westerbaan’s
PhD thesis [212]. T am especially indebted to Bas and Bram Westerbaan for
Sections [4.5] and [£.0] as they helped prove most of the crucial results in these
sections. Finally, Sectionappeared as Ref. [222]. For known results regarding
JBW-algebras I cite Ref. [107] where possible, with a few remaining results
coming from Ref. [4].

e Chapter |5} The main result is a reconstruction of infinite-dimensional quantum
theory from a combination of assumptions found in the previous chapters. New
results include a characterisation of w-complete effect monoids, new sufficient
conditions for a convex sequential effect algebra to be isomorphic to a JB-algebra,
and a set of conditions for an w-effect-theory to embed into the category of JBW-
algebras. Section is based on Ref. [210], which is joint work with Bas and
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Bram Westerbaan. Section is based on parts of Refs. [219] and [221] while
Sections [5.3] and [5.4] contain new material for this thesis.

Chapter [6} This is mostly introductory material to the rest of the thesis, except
for a new diagrammatic proof of the Gottesman-Knill theorem that might be of
independent interest. Sections|6.1H6.4] are standard material on the ZX-calculus
and quantum computation. Wherever possible, the proofs and notation follow
Ref. [51]. The exposition on phase gadgets presented in Section is based on
Ref. [133], co-authored with Aleks Kissinger. Sections contain material
from Ref. [68] which is joint work with Ross Duncan, Aleks Kissinger and Simon
Perdrix. The diagrammatic proof of the Gottesman-Knill theorem in Section [6.8]
is new.

Chapter [7} We introduce a new model for measurement-based quantum com-
putation that was the first model to be deterministic, approximately universal,
and only require measurements in the Pauli X and Z bases. This chapter is
based on Ref. |[131] which is joint work with Aleks Kissinger.

Chapter [8 We find a set of rewrite rules for measurement patterns in the one-
way model that allow us to remove all non-input qubits measured in a Clifford
angle while preserving deterministic implementability. We find an efficient
algorithm for transforming any measurement pattern with gflow into an ancilla-
free quantum circuit. This chapter is based on Ref. [15] which is joint work with
Miriam Backens, Hector Miller-Bakewell, Giovanni de Felice and Leo Lobski.
That paper itself is a continuation of the results of Ref. [68], joint work with
Ross Duncan, Simon Perdrix and Aleks Kissinger, which included an earlier
version of the circuit extraction algorithm of Section I can claim no credit
for the crucial Lemma [8.4.2] which was proved by Miriam Backens, based on
work by Simon Perdrix.

Chapter [9} We find a simplification routine for ZX-diagrams that allows us
to reduce Clifford circuits to a new normal form with several desirable features,
while simultaneously acting as a state-of-the-art T-count optimisation algorithm
for ancilla-free circuits. Sections and are based on Ref. [133] while
Section |9.3]is based on Ref. [132] which both are joint work with Aleks Kissinger.
The new normal form for Clifford circuits in Section is from Ref. [68].

Chapter This chapter mostly contains preliminary results and speculation,
and hence is not based on any concrete publications. The conjecture regarding
hardness of general circuit extraction in Section [10.1] resulted from discussions
with Niel de Beaudrap. The ideas behind Section[I0.2come from Aleks Kissinger
and were further developed by Arianne Meijer-van de Griend in her Master’s
research [130]. The hyperpivoting rule in Section was jointly discovered
with Louis Lemonnier during his Masters’ research [143]. The results regarding
graphical proofs of certain Toffoli identities in Ref. [139] are joint work with
Aleks Kissinger and Stach Kuijpers.
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Chapter 1

Reconstructions of quantum theory

This chapter contains the necessary preliminaries for Chapters First, to remind
the reader what it is we wish to reconstruct from first principles, we will recall the basic
mathematical formulation of quantum theory in Section Then we introduce two
useful generalisations of quantum mechanical systems in Section C*-algebras and
Jordan algebras. We recall some fundamental results relating ordered vector spaces to
these algebras in Section A useful framework for dealing with abstract physical
systems is that of generalised probabilistic theories, which is given in Section
Finally, we end the chapter with a brief history of results regarding the derivation of
quantum theory from first principles in Section [1.5

The mathematics of this chapter can be found in basically any quantum mechanics
textbook that also deals with Jordan algebras, such as that of Alfsen and Shultz [4]
5] or Landsman [141].

1.1 The mathematics of quantum mechanics

In this section we will cover the basics of the mathematics of quantum theory: Hilbert
spaces, unitarity and self-adjoint operators as observables. We will assume the reader
is familiar with undergraduate linear algebra, analysis and point-set topology, in
particular being comfortable with complex numbers, the notion of (orthonormal) bases,
eigenvectors, diagonalisation, norms, completeness of metric spaces, convergence and
continuity.

1.1.1 Unitary quantum mechanics

The standard description of quantum theory is based on Hilbert spaces.

Definition 1.1.1. Let H be a vector space over F where F is either the complex
numbers C or the real numbers R. An inner product on Hisamap (-,-) : HxH — F
satisfying the following conditions for all a,b,c € H and z € F:

e Linearity: (a + 2b,¢) = (a,c) + z(b, ¢).

e Symmetry: (b,a) = (a,b), where Z denotes the complex conjugation of the
complex number z.

e Positivity: (a,a) > 0.



4 Chapter 1. Reconstructions of quantum theory

e Definiteness: (a,a) =0 iff a = 0.

Linearity and symmetry combine to make the inner product sesquilinear: (a, c+zb) =
(a,c) +Z(a,b). An inner product induces a norm on H given by ||a| := /{(a,a). We
call H a (real or complex) Hilbert space when it has an inner product and is complete
in the induced norm of this inner product.

Remark 1.1.2. In finite-dimensional vector spaces, any topology induced by a norm
is complete, and hence any inner product makes a finite-dimensional vector space a
Hilbert space. Any finite-dimensional complex Hilbert space is linearly isomorphic to
C" for some n € N with the inner product of v =3, z;¢; and w =3~ yje; (where e;
is the standard orthonormal basis) defined as (v, w) =), 2;7;. A similar statement
holds for finite-dimensional real Hilbert spaces.

In (pure) quantum theory, a physical system is identified with a complex Hilbert
space H. The states of this system correspond to unit vectors of the Hilbert space,
up to a complex phase. I.e. a state is a vector v € H satisfying (v,v) = 1, with two
normalised vectors v, w € H corresponding to the same physical state when v = e*®w
for some o € R. We will usually denote a state with Dirac notation: [¢). We then
denote the inner product of two quantum states |¢), |¢) by (¥|@).

Because states are unit vectors up to complex phase, it is often helpful to represent
states as 1-dimensional subspaces of a Hilbert space, or as the projectors corresponding
to these 1-dimensional subspaces, as those are in 1-to-1 correspondence with the
physical states of the system. For a state |1) we will denote by |¢)Xv| the projector
that projects onto the 1-dimensional space {z|¢) ; z € C}. Le. [¢X9]|d) = (P|¢) |1).
These projectors are examples of bounded operators.

Definition 1.1.3. Let (V,|-||,,) and (W, ||-||y;;) be normed vector spaces. Let A: V' —
W be a linear map. We say A is bounded when there is a A € R>( such that
| Av|ly, < M[vl]y, for all v € V. It is an isometry when ||Av||,, = ||v||;, for allv € V.
We denote the set of bounded linear maps between V and W by B(V,W), and we
define the shorthand B(V') := B(V, V).

For a finite-dimensional Hilbert space C™ all linear maps are bounded and hence
B(C™) counsists of all n x n complex matrices. We will therefore often write M,,(C) :=
B(C™) to denote this correspondence. Similarly, we will write M,,(R) := B(R").

We can associate an adjoint to every bounded operator on a Hilbert space. This
allows us to define a couple of useful classes of linear maps.

Definition 1.1.4. Let A : H — K be a bounded linear map between (complex
or real) Hilbert spaces. There is a unique linear map A* : K — H that satisfies
(Av,w) = (v, A*w) for all v,w € H. We call this map the adjoint of A. When
H = K and A* = A we say A is self-adjoint.

It is easy to see that a bounded linear map of Hilbert spaces A : H — K is an
isometry iff A*A = idy. We say A is a unitary when both A and A* are isometries,
and hence A*A = idy and AA* = idg.

As quantum states correspond to normalised vectors, unitary maps send quantum
states onto other quantum states. Unitary maps hence describe the possible dynamics
of a quantum systems: the way quantum states can change through time.
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For a given quantum system corresponding to a Hilbert space H we describe the
amount of energy of any given state by a self-adjoint map A € B(H) called the
Hamiltonian. The expectation value of the energy of a state |¢)) is given by (¢ A |¢)).
The Hamiltonian describes the evolution of a state through time by the Schrodinger
equation: [1;) := e~"4 [¢)). The linear map e~ is unitary for all values of t € R,
and hence |¢;) indeed remains a normalised vector, and hence a quantum state. Instead
of describing a state by a normalised vector |i)) we can describe it by a projector |1)(¢)]
in which case the unitary evolution is given by e~ ®H |))(1)] e®H

1.1.2 Mixed-state quantum mechanics

To complete the mathematical description of quantum mechanics, we need to include
a notion of measurement.

We will view a measurement as asking a question about a system: we interact with
the system in some manner to determine some property, and the outcome we get is the
answer to our question. The most basic type of question would be ‘Is the system in the
state |10)?” When our system is actually in the state |¢), the answer to this question
has a probability |(1|¢)|? of being ‘yes’ The formula giving this probability is known
as the Born rule, and the probability |(1)|¢)|? is sometimes called the transition
probability from ¢ to .

The Born rule might look a bit arbitrary — why is there an exponent of 2 there?

— but when we represent the states by their projectors, we can find a more elegant
formula. Write p = |¢)¢| and E = |¢)(1|. Then ()|¢)|?> = tr(Ep), where tr(-) denotes
the trace of the linear maps in the Hilbert space.

Definition 1.1.5. Let H be a (real or complex) Hilbert space, and fix an orthonormal
basis (e;) of H. Let A: H — H be a bounded linear map. Then we define trace of
A as the (potentially infinite) numbetﬂ tr(A) =", (Ae;, e;).

We used the change of notation to £ and p deliberately, as it turns out that the
most general type of measurement and state is not described by vectors on H.

Definition 1.1.6. Let A € B(H) be a bounded operator on a Hilbert space. We say
A is positive and write A > 0 when (Av,v) > 0 for all v € H. We extend this to
a partial order on B(H) by defining A < B iff B— A > 0. We write 1 € B(H) for
the identity: 1v = v for all v € H. We say A is an effect when 0 < A < 1. We write
Eff(H) :=[0,1] gy :={A€ B(H) ; 0 < A< 1},

Proposition 1.1.7 ([171]). Let H be a (real or complex) Hilbert space. Then the
following statements are true.

e A positive map is self-adjoint.

e If A € B(H) is positive, then we can find a unique positive map VA such that
VA" = A,

IThe trace is only well-defined for trace class operators. We do not make this distinction here as
we are primarily interested in the finite-dimensional case where this is not an issue.
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o If A € B(H) is positive, then tr(A) > 0.

o If A € B(H) is positive and B € B(H) is arbitrary, then BAB* is positive. In
particular, if B is positive, v BAVB will again be positive.

It turns out that the most general type of ‘questions’ we can ask about states
are given by effects. Any measurement with &£ outcomes can be represented by a
set of effects Ey, Es, ..., E} satisfying > . E; = 1. Such a set of effects is called a
POVM (positive operator-valued measure). The probability that we observe outcome
¢ when the system is in a state p is given by tr(E;p). We note that this is indeed a
probability: recall that the trace satisfies tr(ABC) = tr(BCA), and hence tr(E;p) =
tr(VE;vVEip) = tr(vEipVE;) > 0 as VE;py/E; is a positive map. Furthermore,
Yo tr(Eip) = tr(>, Eip) = tr(1p) = tr(p) = 1, and hence the probabilities of all the
outcomes sum up to 1.

The state p = |)(¢)| is what we call a pure state. It represents a state of maximal
information. We however could also be in a situation where we are unsure in which
state the system is. For instance, if we have a probability of p; to prepare the state
|t;) then our final prepared state is described by a probability distribution over the
states |1;), as p = >, p; [1i)(1;]. The resulting p is an example of a density operator.

Definition 1.1.8. Let p € B(H) be positive. We say p is a density operator when
tr(p) = 1.

The condition of having normalised trace replaces the condition of being a norm-
alised state. We see furthermore that for any POVM {E;} that tr(E;p) still forms a
probability distribution.

A measurement applied to a state will in general change the state. If the measured
effect corresponds to a pure state E = [)(¢)|, then the state p will be updated to
|1)w| itself. However, for more general measurement effects the update rule is more
complicated, and depends on how the measurement process is actually implemented.
The most general type of state update can be described as follows [36, Chapter II1.2]:
if the outcome corresponding to the effect F has been observed on a state p, then
there exist operators A; € B(H) satisfying ) . A7 A; = E such that the state p has

been updated to
AlpA*
L. 1.1
2 (5 (L)

K3
We divide here by tr(Ep), the probability of observing the outcome associated to E,
in order to preserve the normalisation of the state. Note that we can only observe E
when tr(Ep) # 0, so that this update rule is well-defined.

This update rule is so general that just knowing the effect E barely gives any
information on what the updated state p will be. Indeed, the application to p of any
completely-positive map (see next section) ® satisfying ®(1) = E can be described by
some set of A; in this way. We can however gain a bit more insight into this generic
update rule by viewing it as consisting of a 3-layered process: a coarse-graining, an
actual update, and a unitary evolution. Let us consider this in more detail.

Write ®;(p) := A;pAf. Then, ignoring the normalisation, the updated state is
> ®i(p). We can then consider this outermost layer of the update rule as stating
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that we actually measured a more fine-grained set of effects { A} Ay, A5 As, ...}, one of
which was actually observed resulting in the updated state ®;(p), but then we ‘forgot’
the outcome of this more fine-grained measurement resulting in the more mixed state
>; ®i(p). This process of ‘forgetting’ or ‘throwing on one heap’ all the outcomes is
called a coarse-graining. So let us now assume that no such coarse-graining happened
in order to find what lies at the core of the state update rule of quantum theory. Hence
assume that we have a single operator A satisfying A*A = E. Ignoring normalisation,
the updated state is then ApA*. We can take the polar decomposition of A in order
to write it as A = Uv/ A* A for some unitary U. Since A*A = E we can write this as
A = UVE. The updated state is hence UvEpyVEU*. We see then that the update
rule consists of an update p — VEpVE, followed by a unitary evolution p’ — Up/U*.
A unitary evolution is reversible, and hence the ‘core part’ of the update rule is the
conjugation with v/E. Stripping away the coarse-graining and the unitary update we
then arrive at what is known as the Liiders update rule:

VEpVE

() (1.2)

p

Assume now that we are doing measurements in such a way that the state update
is implemented by the Liiders rule. Suppose we have observed the effect E; on the
state p, resulting in the updated state v/E1pv/E1/tr(E1p). The probability that we
now observe the outcome associated to an effect Ey is given by:

tr(E \/ET,o\/ET) _ u(VEE:VErp)
> te(Erp) tr(E1p)

By using standard classical conditioning of probabilities we can then calculate the
combined probability of observing first the outcome associated to F; and then that
of EQZ

tr(vE1E2v/E1p) tr(Eip) = tr<\/E71E2\/E71p).
tr(E1p)

We remark that +/E; Fs+/FE] is again an effect, and that it produces precisely the same
statistics as first observing F; and then observing E5. We hence are motivated to
define the sequential product F; & Fs := /E; FE2y/E; |98]. This can be seen as an
update rule for effects. Given POVMs (E;);; and (F})}L,, the POVM corresponding
to the ‘sequential measurement’ where (E;) is applied first followed by (F}), is then
(VEiFjv/E;)i25_,. As compositions of linear maps are generally not commutative, so
that in general Fy & Fo # E5 & F4, this joint POVM might give different measurement
statistics than the joint measurement (\/I*T}EZ \/Z*T'])Z;T:l So, unlike in classical
mechanics, the order in which we do measurements is important.

1.1.3 Composite systems

Let p be a density operator representing a state. The unitary evolution of p under a
unitary U is given by UpU*. We see that UpU* > 0, and tr(UpU*) = tr(pU*U) =
tr(pl) = 1, so that this is again a density operator.
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Just as density operators are a generalisation of pure states to allow for a lack of
full information regarding the system, we can generalise unitary evolution to allow for
transformations that include uncertainty.

Definition 1.1.9. Let H and H' be (real or complex) Hilbert spaces. We say a linear
map ® : B(H) — B(H') is positive when for all A € B(H) with A > 0 we have
®(A) > 0in B(H'). A positive map is trace-preserving when furthermore for all
positive A we have tr(®(A)) = tr(4).

A positive trace-preserving map sends density operators to density operators and
hence seems like a good candidate for a more general type of transformation. This
however misses an important point that we have so far not discussed: composite
systems.

Definition 1.1.10. Let Hy and Hs be (complex or real) Hilbert spaces. Their vector
space tensor product has an inner product defined by setting (v ® vg, w1 ® way) :=
(v1,w1){va, wa) and extending by linearity. We define the tensor product of Hilbert
spaces H; ® Hs to be the completion in the norm given by this inner product. This
gives a bilinear map ® : B(H;)x B(Hz) — B(H1®H,) defined by (A1, A3)(v1®ua) =
(A1v1) ® (Agve). We will simply write A; @ Ay := ®(Aq, Ay) for the resulting linear
map on B(H; ® Hs).

Given two physical systems, described respectively by the Hilbert spaces H; and
H,, their composite system consisting of both systems at once is described by the
tensor product H; ® Hs. If the spaces H; are in the states p; (describing the state
by a density operator), then the state of the composite system is p; ® ps. These
states are called separable, as they describe non-interacting physical systems. We
however also have states that are entangled. These result from interactions between
the two separate systems, and hence those systems can no longer be seen as truly
separate. For instance, let |0),|1) be the standard orthonormal basis of C?. Then the
(unnormalised) state |¢) on C2 ® C2 = C* given by |¢)) := |00) + |11) is entangled.

The existence of entanglement explains why it is not sufficient for a map between
operators of Hilbert spaces to be positive and trace-preserving: given such a map
® : B(H) — B(H') it should also be valid to apply this map to a part of a larger system,
giving a map ® ®idx : B(H® K) — B(H' ® K). Let for instance H = H' = K = C?
and take ® to be the transpose map. Letting |¢)) be the entangled state above we
have [1)4] = 0)0] @ [0)X0] + 0)X1] @ [0)(1] + [1)(0] ® [1)(0] + [1)1] @ [1)1] and hence
p' = (@id)([¢)[) = [0X0[©]0)0]+[1)(0]@[0)1]+[0X1] @ [1)0]+ [1)(1] @ [1)(1]. If we
now let v := —|01) +|10) in C? ® C? then we can easily verify that (p'v,v) = —2 and
hence that p’ is not positive. Hence, just sending positive maps to positive maps on
your own system is not enough: the map must also preserve positivity when applied
to part of a larger system.

Definition 1.1.11. Let ® : B(H) — B(H’) be a positive map. It is completely
positive when the maps ®®id,, : B(H®C") — B(H'®C"™) are positive for all n € N.

The physically realisable processes in quantum theory (at least in finite dimension)
are precisely the completely positive trace-preserving maps.
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Let @ : M, (C) — M,,(C) be a completely positive map between finite-dimensional
Hilbert spaces. Then there exist linear maps V; : C™ — C" for i = 1,...,nm such that
P(A) =" V;AV for all A € M, (C). If @ is trace-preserving then we furthermore
have ), V;V;* = 1. This representation of ® is called a Kraus decomposition of ®,
and the maps V; are called Kraus operators. The minimal number of non-zero maps
V; that are needed to represent ® is called the Kraus-rank of ®. In particular, the
completely positive maps with Kraus-rank 1 are ®(A) = VAV* for some V : C™ — C".
If @ is furthermore trace-preserving then we must have VV* = 1, so that V* is an
isometry. Hence, when furthermore n = m, the only trace-preserving Kraus-rank 1
maps are given by a unitary V.

Another useful result concerning completely positive maps is Stinespring’s dila-
tion theorem [195]. In finite dimension, this states that for any trace-preserving
completely positive map ® : B(H) — B(H'’) we can find a Hilbert space K and an
isometry V : H — H' ® K such that ®(A) := (idg' @ trg)(VAV*). When considering
generalised probabilistic theories, or other abstracted versions of quantum theory, a
Stinespring dilation of a map (or analogous constructions in their respective settings)
is often called a purification, as it ‘purifies’ the mixed map ® to a ‘pure’ isometry

V.

1.2 Operator algebras

Our introduction to quantum theory in the previous section focused on the states of
a system. Instead, we can focus on the sort of properties that can be measured of a
system: the observableﬂ

We already saw an example of an observable, the Hamiltonian, which observes
the amount of energy in a system. Mathematically we identify observables with the
self-adjoint maps of the Hilbert space.

Early on in the development of the mathematics of quantum theory it was realised
that it would be useful to study spaces of observables abstractly as a particular type of
algebra. These algebras are now known as operator algebras. The most well-known
type of operator algebra is a C*-algebra.

Definition 1.2.1. Let (2, |||, -, *) be a complex normed vector space with a bilinear
associative operation - and a sesquilinear involution * (i.e. (a*)* = a, (a+b)* = a* +b*
and (za)* = Za* for all a,b € A and z € C). We say 2 is a C*-algebra when it
satisfies the following conditions.

e It is complete in the norm ||-||.

o (a-b)*=0b"-a" forallabefl

o [la”-a| = [lal/lla*]].

2For physicists this shift in focus can be framed as a change from the Schrédinger picture to the
Heisenberg picture, while a computer scientist might describe it as a change of description from
state-transformers to predicate-transformers.
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Example 1.2.2. Let H be a complex Hilbert space. For a bounded operator A € B(H)
define the operator norm as ||A|| := inf{\ € R>¢ ; [[Av| < A|jv| for all v € H}.
Then B(H) with the operator norm, composition of linear maps, and adjoint forms a
C*-algebra. Furthermore, let 20 C B(H) be any subspace of bounded linear maps that
is closed in the operator norm and under taking adjoints. Then 2 is a C*-algebra.

The converse of the above result is also true.

Theorem 1.2.3 (Gelfand-Naimark [82]). Let 2 be a C*-algebra. Then there exists
a complex Hilbert space H and an injective linear map ¢ : 2 — B(H) that is a *-
homomorphism, i.e. ¢(a-b) = ¢(a)@p(b) and ¢(a*) = ¢(a)*, and an isometry, ||¢p(a)| =
lall.

In finite dimension, C*-algebras are particularly simple.

Theorem 1.2.4 ([128]). Let A be a finite-dimensional C*-algebra. Then there exist
(unique) numbers nq,...nx € Nsg such that 2 is isomorphic as a C*-algebra to
M,,(C)®--- P M,, (C), where ‘@’ denotes the direct sum of algebras, consisting of
the Cartesian product of the spaces with pointwise operations.

Interpreting matrix algebras as quantum systems, we can view the direct sum in the
above theorem as a ‘classical mixture’ of quantum systems, where we are allowed to
prepare any of the quantum system M,,,(C). Hence, in finite-dimension, a C*-algebra
essentially describes a quantum system just like a Hilbert space would.

As remarked, observables correspond to self-adjoint operators. But a C*-algebra ne-
cessarily contains non-self-adjoint, and hence ‘non-physical’ elements. This is because
of two reasons. First, for any A € B(H) self-adjoint we have (iA)* = —iA (where §
is the imaginary unit), and hence iA is not self-adjoint when A # 0. In other words,
the space of self-adjoint maps does not form a complex vector space. Second, the
product AB of self-adjoint A, B € B(H) is self-adjoint if and only if AB = BA.

In order to get an algebra that consists solely of the ‘physical’ operators, i.e. self-
adjoint maps, we need to resolve these two problems. The first is easily solved by
working with real vector spaces instead of complex ones, but for the second problem
we will need a different algebra operation.

The crucial observation, made by Jordan and von Neumann, is that self-adjoint
maps stay self-adjoint when you square them. As self-adjoint maps also form a real
vector space, we can then define a binary operation

1 1
AxB:= 5((A + B)? - A? - B%) = 5(AB + BA).
This product has quite different properties than the usual composition of linear maps.
Like the usual composition, it is bilinear, but unlike composition, it is commutative

(which is easily seen) and not associative. Let us demonstrate this last point with an
example. Take

10 0 0 01
G me ) el

then (A x B)* C =0 while A (BxC) = 1C.
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The product * however does satisfy a weaker form of associativity. For any A, B €
B(H) we have A x (B * A?) = (A x B) * A? (note that A2 = A x A).

Definition 1.2.5. Let (E, ) be a vector space with a bilinear commutative product .
We say F is a Jordan algebra when x* satisfies the Jordan identity ax (b*(a*a)) =
(a*b)* (axa) for all a,b € E.

Example 1.2.6. Let (2, -) be an associative algebra (such as a C*-algebra). Then
the product

a*b::%(wb—i—bﬂ) (1.3)

makes (2, %) a Jordan algebra. We will refer to this product as the special Jordan
product.

Our goal was to make an algebra of self-adjoint elements, but the above example
shows that any C*-algebra is a Jordan algebra. We will hence require additional
restrictions.

Definition 1.2.7. Let (E, %) be a Jordan algebra over the real numbers. It is formally
real when for any finite set of elements aq,...,a, € F the sum Z:l a; x a; = 0 iff
a; = 0 for all ¢. It is Euclidean when it is a finite-dimensional real vector space that
has an inner product satisfying (a * b, c) = (b, a * ¢) for all a,b,c € E.

We will often abbreviate Euclidean Jordan algebra to EJA.
As it turns out, in finite dimension, being formally real and being Euclidean are
equivalent, although showing this is highly non-trivial |73 Proposition VIII.4.2].

Example 1.2.8. Let 2 be a C*-algebra, and denote by s, its set of self-adjoint
elements. Then 25, equipped with the special Jordan product of Eq. is a formally
real Jordan algebra. If 2 is finite-dimensional, so that we can view it as a subspace of
a B(H) with H finite-dimensional, then 2, is a Euclidean Jordan algebra with inner
product (a,b) := tr(ab).

C*-algebras are complex vector spaces, but we can also define a real analogue, which
we can see as closed subspaces of real Hilbert spaces. The space of self-adjoint elements
of real C*-algebras, in particular M, (R)s,, also forms a formally real Jordan algebra.

The quaternions H are a division algebra (i.e. a ‘non-commutative field”) which
can be seen as a 4-dimensional vector space over the real numbers with a basis 1,1, j, k
satisfying the identities i2 = j? = k? = ijk = —1. For a quaternion w = a+bi+cj+dk
we define its conjugate as w := a — bi — ¢j — dk. We can then define a quaternionic
Hilbert space similar to how we defined a complex Hilbert space. The set of bounded
maps on an n-dimensional quaternionic Hilbert space is then M,, (H), the set of n x n
quaternionic matrices. It turns out that the space of self-adjoint quaternionic matrices
M,,(H)s, is also a formally real (and Euclidean) Jordan algebra.

The octonions O form a division algebra, which has dimension 8 over the real
numbers. Unlike the real, complex and quaternionic number systems, the octonions
are not associative. We can also define an analogue to Hilbert spaces with octonions,
which allows us to define M,,(0Q)g,. It turns out that this is a Jordan algebra if and
only if n < 3.
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Jordan, von Neumann and Wigner introduced (formally real) Jordan algebras
(then called ‘r-number systems’), because they hoped it would lead to alternatives to
quantum theory. They were however disappointed to learn that the above examples al-
most exhaust the possibilities. In fact, there is only one other type of finite-dimensional
formally real Jordan algebra.

Definition 1.2.9. Let n > 1 and let H = R"™ be the real n-dimensional Hilbert space.
Set V,, = H®R. Equip this space with the product (v, r)*(w, ) := (sv+rw, (v, w)+rs),
so that for example the product of vectors v, w € H is the scalar (v, w). Then (V,,, %)
is a formally-real Jordan algebra that we call the n-dimensional spin factor.

We have already encountered a few examples of spin factors. For My(C)g, an
orthonormal basis is given by the three Pauli matrices 01,02 and o3 in combination
with the identity matrix I. Letting H be the restriction of M3(C)s, to the linear
span of the Pauli matrices and noting that o; x 0; = 0;;1 we see that as a Jordan
algebra we indeed have M5(C)s, = H @R = V3. Similarly we also have Ms(R)s, = Vs,
My(H)g, = Vs and My(0)% = V.

Theorem 1.2.10 (Jordan-von Neumann-Wigner [124]). Let A be a finite-dimensional
formally real (or equivantly, Euclidean) Jordan algebra. Then A = A; & - -- Aj, where
each A; is equal to one of the following non-isomorphic Jordan algebras.

e The set of real numbers R.

e The algebras M,,(F)s, where F =R, F=C or F = H for n > 3.
e The spin factors V,, for n > 2.

e The exceptional Jordan algebra M3(Q)g,.

We revisit Euclidean Jordan algebras and (their generalisation) JBW-algebras in
detail in Chapter [

1.3 Ordered vector spaces

In the previous section we considered abstractions of the algebraic structure of B(H).
Let us now abstract its order structure.

Definition 1.3.1. An ordered vector space (V, <) is a real vector space with a
partial order < such that for all a,b,c € V:

e Ifa <b, thenalsoa+c<b+c.
o If a <, then also Aa < b for A € R>o.

We call an element a € V positive when a > 0. A positive map f:V — W isa
linear map between ordered vector spaces such that if a >y 0, then f(a) >w 0.

Example 1.3.2. The set of self-adjoint maps on a Hilbert space B(H )s, is an ordered
vector space with the order as defined in Definition [1.1.6
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Example 1.3.3. Let E be a formally real Jordan algebra. We say a € E is positive
and write ¢ > 0 when 3b: a = b *b. We extend this to a partial order via a < b iff
b —a > 0. This makes F into an ordered vector space (although showing that this is
the case is actually quite non-trivial).

Remark 1.3.4. In an ordered vector space V, a < bif and only if b —a > 0. As a
result the set of positive elements of an ordered vector space completely determines the
partial order. Consequently, a positive map f : V — W is automatically monotone:
if a >y b then f(a) >w f(b).

Remark 1.3.5. The set of positive elements of an ordered vector space forms a cone:
a subset C C V that is closed under addition and positive scalar multiplication. This
cone is furthermore proper, meaning that C' N (—C) = {0}. Conversely, any proper
cone determines a partial order that makes V into an ordered vector space.

The Koecher—Vinberg theorem is an important result that links the theory of ordered
vector spaces to that of Jordan algebras. Before we state it we recall a few more
definitions.

Definition 1.3.6. Let V be an ordered vector space. An order isomorphism is
a linear map ® : V — V such that ®(a) > 0 <= a > 0 for all a € V (such a
map is necessarily bijective). Suppose V has a given topology (for instance, if V is
finite-dimensional, the unique topology compatible with the linear structure). We
say V is homogeneous when for every a,b > 0 in the interior of the positive cone
we can find an order isomorphism ® : V' — V such that ®(a) = b (i.e. when the
order-automorphism group acts transitively on the interior of the positive cone). We
say V is self-dual when it has an inner product (-, ) such that (a,b) > 0 for all b > 0
if and only if @ > 0 (i.e. when the inner product determines the order).

Theorem 1.3.7 (Koecher—Vinberg [136, 203]). Let V be a finite-dimensional ordered
vector space that is homogeneous and self-dual. Then V is order-isomorphic to a
formally real Jordan algebra. Conversely, any finite-dimensional formally real Jordan
algebra is homogeneous and self-dual.

It turns out that for spaces that have a particularly simple positive cone, the
requirement of self-duality is even superfluous.

Definition 1.3.8. Let C be a positive cone of an order unit space V. We call FF C C
a face of C if F is a convex set such that whenever Aa+ (1 —A\)b € F with 0 <A < 1
for some a,b € C, then a,b € F. The face {\p ; A € R>o} of C defined by an extreme
point p € C is called an extreme ray. A face of C is called proper when it is
non-empty and not equal to C. If the only proper faces of a cone are extreme rays
the cone is strictly convex.

Proposition 1.3.9 ([117]). Let V be a finite-dimensional ordered vector space with
a strictly convex homogeneous positive cone, then V is order-isomorphic to a spin
factor, i.e. V =2 H @& R where H is a real finite-dimensional Hilbert space with the
order on H @ R given by (v,t) > 0 <= t > \/{(v,v). Consequently, V is self—dua

3We attribute this result to Ref. [117], but it was probably already known by Vinberg in 1967 [203]:
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Most of the time, we will require a bit more structure than just an order on a vector
space.

Definition 1.3.10. Let V be an ordered vector space. For a positive u € V we write
[0,uly :={veV;0<wv<u}. Wecall an element u € V' an order unit when for
all @ € V we can find n € N such that —nu < a < nu, or equivalently, when the unit
interval [0,u]y spans V. We call an order unit u Archimedean when a < 1u for
all n € Nyg implies a < 0.

An ordered vector space V is an order unit space (OUS) when it has an Archimedean
order unit. We will write 1 € V for the designated order unit of the order unit space

V.

Remark 1.3.11. Some authors define an order unit space as any ordered vector space
with an order unit, and our definition is then referred to as an Archimedean order
unit space. Since we will usually have Archimedean order units we will refer to this
weaker type of space as a ‘vector space with an order unit’.

Definition 1.3.12. Let (V,u) be a vector space with order unit u. An element a € V
is an effect when 0 < a < w and hence a € [0,u]y. A state is a positive map
w:V — R satisfying w(u) = 1. We will denote the set of states of an order unit space
by St(V).

Example 1.3.13. The set of self-adjoint maps of a Hilbert space B(H)g, is an order
unit space. The identity 1 is an Archimedean order unit. If H is finite-dimensiona
all states w : B(H )sa — R are given by a density operator p via w(A) = tr(pA).

There are different equivalent ways to define an OUS.

Proposition 1.3.14 (|5, Chapter 1]). Let V be a vector space with order unit u. The
following are equivalent.

a) V is an order unit space (i.e. u is Archimedean).

b) The expression ||al| := inf{r € R>g ; —ru < a < ru} defines a norm, and the
set of positive elements is closed in this norm.

¢) The set of states order-separate the effects: for all a,b € [0, u]y, if w(a) < w(b)
for all states w then a <b.

Definition 1.3.15. Let (V,1) be an order unit space. The order-unit norm is
defined as ||a|| := inf{r € R>o ; —rl <a <rl}. We say V is complete when it is
complete in the topology induced by the order-unit norm.

Note that for B(H )s, the order-unit norm coincides with the operator norm.
An important result in the theory of order unit spaces is Kadison’s representation
theorem. Before we state it we will give one more important class of order unit spaces.

strictly convex homogeneous cones are precisely those cones that are of rank (in the sense of
Vinberg) at most 2, and Vinberg gives a complete classification of non-self-dual homogeneous
cones of rank 3, seemingly implying that he knows there are no non-self-dual homogeneous cones
of rank 2. Nevertheless, as far as the author is aware, Vinberg has never formally proved this
result.

4In infinite dimension we need the further assumption that the state is normal.
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Definition 1.3.16. Let X be a compact Hausdorff space. We denote by C'(X) the
space of continuous functions f : X — R. This space has a partial order given by
pointwise comparison. This partial order makes C'(X) into an OUS with the order
unit given by the constant function 1(z) = 1. Additionally, C'(X) is a commutative
associative algebra by pointwise multiplication: (f - g)(z) := f(x)g(z). Note that if
f,9 > 0 that then f-g > 0.

Theorem 1.3.17 (Kadison’s representation theorem [126]). Let V be a complete
order unit space with a bilinear operation - that preserves positivity: a -b > 0 when
a,b > 0. Then there exists a compact Hausdorff space X and a linear bijection
¢ : V = (C(X) that is both an order-isomorphism and an algebra-isomorphism.

Note that this theorem does not require the multiplication to be commutative nor
associative, and that hence these properties follow for free.

1.4 Generalised probabilistic theories

We will in this section present the basic concepts of generalised probabilistic theories
(GPTs). This name was coined by Barrett in 2007 [23], describing a framework based
on the work of Hardy [109] (although similar ideas had been considered earlier, see
for instance Refs. 71} |101} 145|)|ﬂ

Although there is no consensus on what exactly the mathematical description of
a GPT should be, the main idea that unifies all versions is that ultimately any
physical theory must describe what outcomes can be expected when an experiment is
performed. An ‘experiment’ in the GPT framework is divided into three parts. First,
a given system is prepared in some state. Then, some transformation is applied to the
system, potentially changing the state. And finally, the system is measured, giving a
classical outcome. Every possible outcome of the measurement has a probability of
occurring, and this gives a probability distribution of the measurement outcomes over
the transformed input state.

As an illustration, the system could be a molecule, with the preparation stage
preparing it in the ground state. The transformation could be the exposure of the
molecule to a laser, and the measurement outcome could be whether we detect a
photon emitted from the molecule.

Let us formalise these ideas a bit more. We will label the physical systems as
A,B,C,... and we associate to each system A a set of states St(A) that we can
prepare the system in. A transformation T': A — B from system A to B is then a
map T : St(A) — St(B) that transforms every given state into another one. Finally, we
represent measurements by a collection of outcomes a1, as,...,a, that we call effects,
collected in the set Eff(A). Given a state w € St(A) and a measurement consisting
of effects a; € Eff(A) we have probabilities w(a;) € [0,1] that tell us the likelihood of
observing the outcome associated to the effect a; when the system A is prepared in

5Some authors use the term ‘operational probabilistic theory’ [38,(39]. Although one could argue
that there are differences, with operational probabilistic theories relying more on a graphical
description and the existence of composite systems, we will here conflate operational probabilistic
theories with GPTs.
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the state w. So for ai, ..., a, to be a valid measurement, we should have } . w(a;) =1
for all states w € St(A).

Remark 1.4.1. Following the literature on operator algebras we write w(a) for the
probability of observing @ when the system is in the state w. Note that in the literature
on GPTs it is more common to write this the other way around: a(w). This notation
is useful in the Schrodinger picture where we view operations as modifying the state
of the system. We will however focus more on the observables of a system, and hence
it will be more convenient to adopt the Heisenberg picture wherein we view operations
as modifying the effects.

When we have a procedure to prepare one of wy,ws € St(A), we can also prepare a
mixture by flipping a biased coin and preparing either wy or ws. From the operational
perspective, this results in a mixture of the measurement outcomes we will observe. For
a given probability ¢ € [0, 1] we will call this mixed state twq +(1—#)ws. This structures
makes the state space St(A) a convex set. For any effect a € Eff(A) we should then
have (tw; + (1 — t)wsz)(a) = twi(a) + (1 — t)wa(a). Analogously, we allow mixtures of
effects ta; + (1 — t)aq, and we require that w(ta + (1 — t)as) = tw(a) + (1 — t)w(a).

When two states have exactly the same outcome probabilities for every possible
measurement, then there is no way to physically detect any difference between the
states. We say that these states are then operationally equivalent. Similarly, two
effects are operationally equivalent when they give the same outcome probabilities
on every possible state they can be tested against. A common assumption in the
GPT framework, that we will make here as well, is that two states or effects that are
operationally equivalent are in fact equal. So if wy,ws € St(A) satisfy w(a) = wa(a)
for all a € Eff(A) then w; = we. Mathematically, we say that the effects separate
the states. Similarly, the states separate the effects: if we have w(a;) = w(ag) for
some aq,as € Eff(A) for all w € St(A), then a1 = as. We can now introduce a useful
concept.

Definition 1.4.2. Let A be a system. It’s associated vector space V, is defined
to be the space of formal linear combinations ), Aja; where a; € Eff(A) and \; € R,
modulo equality among all states:

Z Aia; ~ Z,uja; — Z Niw(a;) = ZM;‘W(@;‘) for all w € St(A)
i j i j

Because the states separate the effects, the effects of A embed into its associated
vector space: Eff(A) C V4, and because the states act affinely on the effects, i.e. w(ta;+
tas) = tw(ay) + (1 — t)w(asg), this embedding preserves the convex structure of the
effects. We hence consider the effect space Eff(A) as simply a convex subset of
the vector space V4. This allows us to define expressions such as a + b for effects
a,b € Eff(A), where we take a + b to be an element of Vy.

We will posit the existence of two ‘trivial’ effects that we will call 0 and 1. The
first is the effect that is never successful and thus has w(0) = 0 for all states w. The
second is the opposite, always being successful: w(1) = 1. These effects always exist
for any system, because we can just decide to make a measurement device that doesn’t
interact with the state, and simply always outputs “success” or “fail”. Alternatively,
we can interpret the effect 1 as the effect that measures “Does the system exist?”.
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Remark 1.4.3. The existence of an effect like 1, a ‘deterministic effect’, in every
system is related to the theory obeying causality, or equivalently, not allowed signalling
from the future [38] |47]. In categorical quantum mechanics the effect 1 functions as a
‘discard’ map that is interpreted as throwing away a system [51].

The effect 0 is interesting because it allows us to scale down effects: pe := pe+(1—p)0.
This can be interpreted as doing the measurement e, but deciding with probability
1 — p to throw away the outcome and returning false. In the vector space Vj, the
effect 0 corresponds to the zero vector. As a result we can extend the function
w: Eff(A) — [0,1] for any w € St(A) to a linear map w : V4 — R. Consequently, V4
is in fact an ordered vector space: we set v > w when w(v) > w(w) for all w € St(A).
Furthermore, 1 is an order unit of V4. We remark then that the states w € St(A) are
also states of V4 in the sense of Definition [1.3.12}

Another assumption we will make in our version of the GPT framework is that
effects allow negation. Given an effect a we can consider its negation which returns
true if and only if A returns false. We will denote this effect as a, pronounced “a
perp”, and its probabilities are given by w(at) = 1 — w(a). We will sometimes also
refer to the negation as 1 — a.

Remark 1.4.4. The existence of negations of effects is closely related to the ability
to ‘coarse-grain’ measurements. Given a measurement of a state w with n outcomes
defined by the effects a1, ...a, we have a probability distribution with probabilities
{w(ax)}. A coarse-graining of this measurement is the same measurement where we
conflate some of the outcomes. E.g. we can define a measurement with n — 1 outcomes
by identifying the outcomes of a,_; and a, to get an outcome with probability
w(ap—1) + w(an). The resulting effect is then often denoted by a,—1 + a, so that
w(ap—1+ an) = w(an—1) +w(a,). When we identify all the outcomes, except for aq,
then that outcome has a probability of Y _, w(ax) = 1 — w(a1) and hence this ‘sum
of effects’ acts as the negation of a;.

Let us now summarise our version of the GPT framework.

Assumption 1.4.5 (GPT framework). For every system A we have an associated
ordered vector space V4 with order unit 1 such that Eff(A) C [0,1]y, is a convex
subset containing both 0 and 1 and a' := 1 — a when a € Eff(4). The states St(A)
are a convex subset of the states of V4 that contains enough states to separate the
elements of Vy, i.e. if w(v) = w(w) for all w € St(A) then v = w.

Almost all work that deals with GPTs furthermore assumes that the associated
vector spaces are finite-dimensional. An operational assumption that guarantees this
restriction (and in fact is equivalent to it) is the assumption of finite tomography:
that for every system A we can find a finite set of effects a, ... ay such that wi(a;) =
wy(a;) for all j = 1,...k if and only if w; = wy. If a system does not satisfy finite
tomography it is impossible to (approximately) characterise a state with a finite
number of experiments, and hence this assumption definitely makes sense from an
operational viewpoint.

Let us discuss one more topic in the framework of GPTs: composite systems and
local tomography. When given two independent systems A and B we can consider
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them as parts of a composite system that we will denote by A ® B. If A is in the
state wa € St(A) and B is in the state wp € St(B), then the system A ® B is in
the state wgq @ wp. But A ® B can also have states that do not arise in this manner
(as is the case with entangled states in quantum theory). We similarly can make
composites a ® b of effects in Eff(A) and Eff(B). These composites need to satisfy
(tar + (1 —t)az2) @b =1t(a1 ®b) + (1 — t)(az ® b) for operational reasons. This leads
to a bilinear map V4 x Vg — Vagp similar to the bilinear map for tensor products
of vector spaces. We say the composite A ® B is locally tomographic when every
state of A ® B is fully characterised by local measurements on the subsystems A and
B, i.e. when for wy,ws € St(A ® B) we have wy(a ® b) = wa(a ® b) for all a € Eff(A)
and b € Eff(B) if and only if wy = ws. If the systems satisfy finite tomography, so that
the associated vector spaces are finite-dimensional, local tomography is equivalent
to dim Vygp = dimVy dim Vg. Interestingly, regular quantum theory (described
by complex C*-algebras) satisfies local tomography, whereas ‘real’ quantum theory
(where systems are real C*-algebras) does not [22].

1.5 A history of first principles for quantum theory

In order to put the results of this thesis into context, we will give a brief overview
of previous work in the topic of first principles for quantum theory, highlighting the
most commonly used types of assumptions.

Foundational results — The starting point of the field of reconstructions of
quantum theory can be considered to be von Neumann’s seminal 1932 book Mathem-
atical Foundations of Quantum Mechanics |169], as from that point onwards it was
clear which mathematics actually needed to be explained from first principles. In
these early days, much work was done on axiomatic quantum theory in the hope that
this would lead to some natural generalisation. It turned out however that such gener-
alisations are elusive. For instance, Wigner’s theorem [224] showed that the standard
unitary maps naturally arise as symmetries of quantum states, while Stone’s theorem
on one-parameter unitary groups |196] showed that any unitary time-evolution must
be implemented by a Hamiltonian, reconstructing the basic form of the Schrodinger
equation. Jordan, von Neumann and Wigner studied what later became known as
Jordan algebras as a generalisation of the space of observables of a quantum system.
To their disappointment they discovered that Jordan algebras are in fact very close
to regular quantum theory indeed [124], with almost all formally real Jordan algebras
embedding into the set of bounded operators of a Hilbert space. Another later result
along this same line is Gleason’s theorem [87] which showed that measures on the
space of projections of a Hilbert space are necessarily characterised by a bounded
operator, just like in the Born rule of quantum mechanics.

Quantum logic — The need for a complete axiomatic reconstruction of quantum
theory was outlined by Mackey in 1957 [147]. He wished to do so using the quantum
logic approach of von Neumann and Birkhoff |25] that takes the orthomodular poset
P(H) of projections on a Hilbert space H as the central concept. This approach
was already used by von Neumann in a set of unpublished notes from 1937 [204] to
reconstruct quantum theory, albeit with a rather technical set of assumptions. Mackey
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motivates why a set of observables should be represented by an orthomodular poset,
but stops short of recovering P(H). Mackey’s work was continued by Piron who in
1972 showed that any irreducible complete atomistic orthomodular lattice satisfying
the covering property (cf. Section must be isomorphic to P(H) where H is a
generalised Hilbert space [180]. This programme was essentially completed decades
later by Soler when she showed that the only infinite-dimensional generalised Hilbert
spaces are the Hilbert spaces over the reals, complex numbers or quaternions [193].
Hence, this approach essentially recovered the same spaces as the characterisation of
Euclidean Jordan algebras (cf. Theorem , albeit in infinite-dimension instead.
For a more in-depth overview of the foundational work done in quantum logic we refer
to the survey Ref. [52].

Early reconstructions — Contrary to the quantum logic approach that only con-
siders ‘sharp’ observables, i.e. projections, there is the operational approach where
‘fuzzy’ observables (effects) are allowed, bringing us close to the GPT framework. Prob-
ably the first person to use a GPT-like framework for a reconstruction was Gunson in
1967 |101]. His twelve axioms show that the space of observables is isomorphic to a
B(H) where H is an infinite-dimensional real, complex or quaternionic Hilbert space.
Of these twelve axioms, the first 6 essentially recover the GPT framework, the next 3
are algebraic in nature and have no clear physical interpretation, while the last 3 are
related to the existence and properties of filters, specific state transformations that
project the state onto a certain ‘filtered’ subspace (cf. Section. The importance of
filters was further realised by Mielnik |159} [L60] that considered more general physical
systems based on properties of filters and transition probabilities: the probability that
a particle goes through a second filter if it successfully went through a first filter. He
furthermore introduced the axiom of symmetry of transition probabilities that says
the probability stays the same if the order of the filters is interchanged. Symmetry
of transition probabilities has been used as an assumption in many subsequent recon-
structions, such as in Refs. [4} |75] (142} |226] (and the derivation of this property will be
a cornerstone in the reconstructions of Chapters [2| and . The work of Gunson and
Mielnik was continued by Guz in 1981 [102] who was the first to realise the connection
between the covering property of the lattice of observables and the well-behavedness
of filters. He used the notion of pure states, states that are convex-extreme in the
state-space. To each pure state w he associates a unique sharp measurement p,, that
represents ‘testing’ for that pure state and this allowed him to define a ‘transition prob-
ability’ between states as (wy,ws) := wa(p,,). This approach has also been adopted by
many other authors.

Modern reconstructions — Most of the previously mentioned works have in
common that they focus on (countably) infinite-dimensional spaces and that they
only consider spaces in isolation, never dealing with composite systems and tensor
products. This stands in contrast to the modern approach, which could be said to have
been initiated with Hardy’s 2001 preprint Quantum Theory From Five Reasonable
Azioms [109]. Hardy’s main innovation was that he considered composite systems
and subsystems in finite dimension, which allowed him to introduce the axiom of local
tomography (cf. Section . It is this latter axiom that ‘selects’ complex Hilbert
spaces over real or quaternionic ones (which were still possibilities in most previous
approaches) [111]. He also used a pure transitivity axiom. Such axioms state that the
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set of reversible transformations act transitively on the set of pure states, i.e. that
for every pair of pure states w; and wy we can find a transformation ® that has an
inverse ® ! such that ®(w;) = wy. Versions of pure transitivity are assumed in most
subsequent reconstructions, such as in Refs. |21 [39} |40} 59, [110} {138}, 150} 185 [199],
while local tomography is still one of the only compelling ways to distinguish real from
complex quantum theory.

Since Hardy’s work, many reconstructions by various authors have appeared (besides
the ones mentioned above, also Refs. |46] |76, 115 (149} 172, [220] 221, [225]). We
will here only highlight what can be considered the most influential one: that of
Chiribella, D’Ariano and Perinotti [39] [63]. This reconstruction motivates its axioms
by considering them rules on information processing in physical systems. Besides
versions of local tomography, a pure transitivity axiom, and an axiom related to the
existence of filters, it introduces two new axioms. The first basically states that ‘purity
is closed under composition’. Specifically, that the state resulting from measuring a
pure effect on a part of a pure state on a composite system is still pure. The second
new axiom states the possibility of ‘purification’ of states, that any mixed state is
the result of throwing away part of a pure composite state [38] (in quantum theory
such purifications are given by Stinespring dilations; cf. Section [1.1.3). A version of
purification has since been used in other reconstructions |20} |185] [199].

The number of reconstructions that have appeared in the last 20 years show that
there is still little belief that the indisputable ‘right’ set of principles has been dis-
covered. However, the similarities in the assumptions and sometimes even the proofs
in many of the approaches highlight that there are a few key mathematical features
of (finite-dimensional) quantum theory. The properties of ‘pure’ states (where ‘purity’
can mean different things in different contexts; cf. Section , in particular that
every mixed state can be ‘diagonalised’ in terms of pure states, are a crucial part
of the proof in many reconstructions. Similarly, pure transitivity, which ensures the
existence of ‘enough’ reversible transformations to map the pure states between each
other, is often needed. Finally, the property of local tomography seems to be the only
assumption so far that can distinguish between real and complex quantum theoryﬁ
In fact, by combining these three properties, diagonalisability, pure transitivity, and
local tomography, quantum theory can essentially be derived [19].

6 Although it should be noted that Refs. |4, |21] postulate an, arguably somewhat arbitrary, corres-
pondence between dynamics and observables that also succeeds in distinguishing between real
and complex quantum theory.
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Sequential measurement

In this chapter we will show that, in finite dimension, quantum theory is the unique
non-classical physical theory where sequential measurement is suitably well-behaved.
Given two effects a and b we have an effect a & b that corresponds to ‘measure a and
then b’ In classical theory the order of measurements is not important so that we have
a & b = b& a for all measurements a and b. There is however no reason to assume that
this would continue to hold for general physical theories, because a measurement will
change the state of the system in a way that modifies the subsequent measurement
probabilities (as is indeed the case in quantum theory). However, some effects a and
b will be ‘compatible’ in the sense that although a changes the state, this does not
affect the probability of observing b, and hence we can still have a & b = b & a for such
effects. Our assumptions regarding sequential measurement can be intuitively stated
as ‘classical operations preserve compatibility of effects’.

Mathematically the results of this chapter state that a finite-dimensional order
unit space equipped with a sequential product [95] that is continuous must be order-
isomorphic to a Euclidean Jordan algebra, while the only such systems that have a
locally tomographic composite with themselves are C*-algebras.

With an eye on the extensive existing literature on reconstructions of quantum
theory covered in Section [I.5] it is worthwhile considering how the approach of this
chapter is different from and adds to the literature. To start, this is the first recon-
struction to use the concept of sequential measurement in a principled way, hence
highlighting the importance of the structure of this operation to quantum theoryB It
is furthermore noteworthy just how few different concepts we need to refer to in our
assumptions: just effects, states and the sequential product. We require no specific
assumptions regarding (reversible) transformations, pure states, information capacity,
etc. In this sense, our reconstruction is ‘focused’. Finally, as we will see in Chapter [4]
the assumptions we have on the sequential product continue to hold in infinite dimen-
sion, in contrast to most (modern) reconstructions that employ assumptions that only
hold in finite dimension. Hence, our assumptions could be considered more natural as
they do not rely on the peculiarities of finite-dimensional systems. This naturality of
the assumptions is further highlighted by the fact that (almost all) the assumptions we
make on the sequential product were already considered in an axiomatic manner [95],
making it seem more plausible that someone could have independently come up with

1The work of Niestegge [172] reconstructs a part of quantum theory using assumptions on conditional
probabilities, which are closely related to sequential measurement. He however only considers
sharp measurements, and his assumptions are not satisfied by all quantum systems, such as the
qubit system.
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our assumptions, without knowing a priori about quantum theory.

This chapter is structured as follows. We discuss our version of the GPT framework
in Section [2.1) which results in our systems being described by order unit spaces. Then
we introduce the axioms of the sequential product in Section ‘We prove some basic
results culminating in a spectral theorem and a proof of homogeneity of the space in
Section [2:3] The most technical part of the proof is establishing the self-duality of the
space, which is done in Section [2:4] We discuss some consequences of self-duality with
regards to the Born rule in Section As the space is homogeneous and self-dual
we could use the Koecher—Vinberg theorem to conclude that our spaces are Euclidean
Jordan algebras, but instead we will demonstrate an explicit construction of the Jordan
product in Section [2.6] In Section [2.7] we study central effects which are necessary for
our results regarding locally tomographic composites in Section [2.8 which show that
the only systems allowing such a composite are complex C*-algebras. In Section [2.9]
we sketch how our results imply the regular allowed dynamics of quantum theory. We
end with some concluding remarks in Section [2.10

2.1 Framework

For this chapter we adopt the GPT framework as outlined in Section [I.4] in particular
Assumption [I.4.5] Hence we represent a physical system A with a finite-dimensional
real ordered vector space V4 such that Eff(A) C [0, 1]y, and St(A4) C St(Va). We will
however require a bit more structure then that.

Imagine we have an ensemble of identical systems, each of which is prepared in the
same state w. We can measure an effect a on some of the states and an effect b on
some of the others. The probabilities of success are then given respectively by w(a)
and w(b). When w(a) + w(b) < 1 for every possible state w, we wish to define the
‘statistical’ effect a + b € V4 which can be interpreted as measuring “a or b is true”.
In other words, we expect a + b € Eff(A) is an effect whenever w(a + b) < 1 for all
states w € Q. Similarly, if w(b) — w(a) > 0 for all states w then we can consider the
effect b — a € V4 which can be interpreted as measuring “b is true and a is not true”.

Assumption 2.1.1. For a,b € Eff(A4), if w(a) + w(b) < 1 for all w € St(A), then
a+b e Eff(A). If w(b) —w(a) > 0 for all w € St(A), then b — a € Eff(A).

Remark 2.1.2. One could think that we can define the statistical effect by flipping a
fair coin and based on that deciding whether to measure a or b. However, this results
in the effect %a + %b instead of a + b. While the effect %a + %b is guaranteed to exist
by the Assumptions m (since the effects are closed under convex combinations),
the effect a + b does not necessarily exist just based on these assumptions. Indeed, as
will become clear from the next proposition, the existence of effects like a + b implies
that all mathematical effects necessarily correspond to physical effects, which is not
the case when just using the Assumptions [[.4.5

Proposition 2.1.3. Let V4 be the vector space associated to a system A satisfying
Assumptions and Then Eff(4) = [0,1]y,.

Proof. The inclusion Eff(A) C [0,1]y, is of course trivial. Solet 0 < ¢ <1 in Vy, our
goal is to show that c is an effect, i.e. ¢ € Eff(A).



2.2. Sequential Measurement 23

The vector space V4 is by definition spanned by linear combinations of effects of
A, and hence ¢ = ) . \ja; for a; € Eff(A). We split this sum up into a positive
and negative part based on whether \; is positive or negative to get ¢ = Y. \ja; —
Zj pib; where all A;, u; > 0. Let A =), \; so that %ZZ Xia; =), %pz is a convex
combination of effects, and hence lies in Eff(A). By doing the same with the b; we see
that we can write ¢ = Aa — ub where a,b € Eff(A), a =), )\ ta; and b=}, Ltb;. We
now make a case distinction based on whether A <y or A > pu.

Suppose A < p. Then % < 1 and hence %a = %a + (1 — 2)0 € Eff(A) so that
0 < ic = %a — b, is a difference of effects. Assumption then implies that
1c € Bff(A). If p < 1, then pu(;; Lc) = ¢ € Eff(A) and we are done. If > 1, then we

wrlteﬂ—n—i—ewhereneNand0<e<1Wen0tethatz 70—7 c<be=c<1
and hence by Assumptlonnls an effect. Similarly fc—i— ne= c < 1 is also an effect,
and we are done.

The case where A > p is handled analogously. |

Remark 2.1.4. The property that Eff(A) = [0,1]y,, i.e. that the physically realisable
effects exactly match the mathematically definable effects is a common assumption
in GPTs known as the no-restriction hypothesis |39, [121]. Note that we have
not shown that the states of the system satisfy the no-restriction hypothesis. The
only thing that we currently have shown about the state space is that there are
enough physical states to order-separate the effects. We revisit this issue for states in

Section 2.5

Proposition 2 1.5. Let V4 be the vector space associated to a system A satisfying
Assumptions [[.4.5 and 2.1.1] Then V, is an order unit space.

Proof. We will show that the states order-separate the effects, which is sufficient by
Proposition So suppose we have a,b € [0, 1]y, such that w(a) < w(b) for all
w € St(V). We need to show that a < b.

By Proposition we have a,b € Eff(A). Note also that St(A) C St(V4) and
hence w(a) < w(b) for all w € St(A) so that w(b) —w(a) > 0. By Assumption [2.1.1] we
then have b — a € Eff(A) and hence b — a > 0. But then a < b and we are done. W

Based on the results of Propositions and we will identify a physical system
with its associated order unit space V4 and its effect space with [0, 1]y, . We however
still cannot know exactly which subset St(A) is of St(Vy).

Remark 2.1.6. In the basic GPT framework of Section [I.4] we only require that
effects are separated by states, instead of order-separated. Separation of states is
sufficient for the norm defined in Proposition to be an actual norm. The order-
separation is hence equivalent to requiring that the set of effects is closed in this norm,
which is an assumption that is also made regularly in the literature on GPTs [39).

2.2 Sequential Measurement

Let a and b denote two effects that can be measured on the same system. Their
sequential product is the effect that is implemented by first measuring a and then
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measuring b. The sequential product, that we will denote by a & b, is considered
successful when a and b are both successful. Hence, letting w, denote the state that
results from an observation of a after a preparation of w, we have w(a & b) = wq(b)w(a).
The expression a & b can be read as “we measure a and then we measure b.”

The sequential product gives us a map & : Eff(A) x Eff(A) — Eff(A) that takes
two effects and produces a new one. In the following paragraphs we will motivate the
conditions we require of this map. The reader not interested in the physical motivation
of our assumptions is welcome to skip to Definition [2.2.3

Since both the measurements of @ and b can influence the system in some non-trivial
way, we wouldn’t expect the outcome probabilities of a & b to be the same as those of
b & a, the measurement that is implemented by reversing the order of measurement.
For some measurements however, the order might not be important. When this is the
case we will call the measurements compatible. Following Gudder and Greechie [95]
we will argue that when compatible measurements are considered, the sequential
product should act in a ‘classical’ way.

Suppose that we have an ensemble of identical states and that we measure the effect
a on all of them. Let b and ¢ now be measurements so that their disjunction b + ¢
exists, and split the ensemble into two. Measure b on the first set and ¢ on the second.
The complete process is now described by the effect a & (b + ¢). The same situation
however can equivalently be described as splitting the ensemble into two and then
measuring a&b on the first group, and a&c on the second group. This measurement
is described by a &b+ a& c. As a result we should have a& (b+c¢) = a& b+ a&ec.
Crucially, we have no reason to expect the same property to hold in the first argument
(that is: (b+c¢)&a=b& a+ c&a) because b+ ¢ is a measurement that only exists in
a statistical sense. The expression (b + ¢) & a hence does not make sense (in general).

When effects a and b are compatible we will write a | b as a shorthand. By definition
we have a|b when w(a & b) = w(b& a) for all states w, but since states separate effects
this is only true when a & b = b& a. As the order of measurement of compatible effects
is not relevant it makes sense to view the measurements as being performed at the
same time. This is captured by the equality a & (b& ¢) = (a & b) & ¢, i.e. measuring
a and then b and then c should be the same as measuring a and b ‘at the same time’
and only then measuring c.

Remark 2.2.1. It would seem to be more natural to require associativity of the
sequential product in all cases, and not just for compatible measurements, as was
pointed out in Ref. [98]. It however turns out that quantum theory does not satisfy
this assumption of associativity. In fact, we will see that in combination with the other
assumptions we will make, the only systems satisfying associativity of the sequential
product are classical (i.e. commutative, see Proposition . To the authors know-
ledge there is still no satisfying interpretation of the expression ‘(a & b) & ¢’ when a
and b are not compatible.

If we have an effect a, its negation a’ can be physically implemented in the same

way, since the negation is merely a change of classical description of its output. We
therefore expect a* | b to hold whenever a |b. Similarly, if a is compatible with b and
with ¢, then a should be compatible with b + ¢ (if it is defined).

Suppose a &b = 0. This states that it is impossible for both effects a and b to
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be observed on a given state. It seems reasonable to expect that this situation does
not change when we interchange the order of execution. We will therefore require
b& a = 0 whenever a& b = 0. In that case we will call ¢ and b orthogonal. Note
that we must of course have 0& a = 0 (and relatedly 1& a = a).

Remark 2.2.2. This assumption that a&b = 0 iff b& a = 0 holds for the Liiders
update rule of quantum theory, but does not hold for other more general types of
updates. We still however feel warranted in using this condition as it is a quite natural
assumption for a hypothetical physical theory and one that someone working in the
framework we have set up who is not aware of quantum theory could still reasonably
come up with independently (for instance by adopting it from the classical framework).
Regardless, in the interest of generality we try to avoid this assumption as much as
possible in the early derivations of this chapter and the results of Section [2:3] do not
require it.

We will need one additional assumption. Any physical measurement is noisy, but
as the amount of noise is reduced, the measurement statistics should converge to
the value of the idealised measurement. We capture this property by requiring the
sequential product to be continuous: if a,, — a then a, &b — a&b for all effects
b. The continuity of the sequential product map in the second argument will follow
automatically, as it turns out to be linear in that argument.

Our framework and all the assumptions regarding the sequential product are sum-
marised in the following definition.

Definition 2.2.3. Let V be an order unit space with a function & : E x E — FE
where F = [0, 1]y is its set of effects. We write a|b when a & b = b& a and say that a
and b are compatible. We call & a sequential product if it satisfies the following
conditions for all a,b,c € E.

S1) Additivity: a& (b4 c¢) = a& b+ a& ¢ whenever b+ ¢ < 1.

S2) Continuity: The map a — a & b is continuous in the norm.

S3) Unit: 1&a = a.

S4) Compatibility of orthogonal effects: If a & b = 0 then also b& a = 0.

S5) Associativity of compatible effects: If a|b then a & (b& ¢) = (a & b) & c.

(S1)
(S2)
(S3)
(S4)
(S5)
(S6)

S6) Additivity of compatible effects: If a|b then a|bt. If furthermore a|c and

b+c<1,thena|(b+c).
We call an order unit space with a sequential product a sequential effect space.

Remark 2.2.4. The properties for the sequential product are close to those required
in a sequential effect algebra as introduced by Gudder and Greechie [95] (cf. Defini-
tion and studied in |94} (96| [125] 219]. The only difference is that we add the
requirement of continuity while they have a further axiom stating that if a |b and
a|c, then also a | (b& ¢). We will require this further axiom in Chapter
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Example 2.2.5. Let X be a compact Hausdorff space. Denote by C(X) the space
of continuous functions f : X — R. Then C(X) is an order unit space with unit the
constant function 1(x) = 1. Its unit interval consists of the continuous functions that
restrict to f: X — [0,1]. We can then define a (commutative) sequential product on
the unit interval by pointwise multiplication: (f & g)(z) = f(z)g(x).

Example 2.2.6. Let V = B(H)s,, the set of self-adjoint operators on a complex
Hilbert space H (representing a quantum system). Given two effects a and b, the
operation a &b := \/aby/a is a sequential product and we have a|b if and only if
ab = ba [99].

Remark 2.2.7. As discussed in Section the Liiders rule (a,b) — /aby/a is not
the only possibility of an update rule for effects. Another set of update rules that
satisfies the axioms of a sequential product is given by (a,b) + u,+/aby/aul where
U, is a particular unitary commuting with a. This map can be interpreted as the
instrument that implements ‘measure a, wait for a while, and then measure b’, where
in between the two measurements, the system is dynamically evolving in the basis of
a. In fact, this is the most general form of update rule for B(H)g, that satisfies the
axioms [207]. Hence, the most general form of update rule (1.1) is not compatible
with our axioms. It is still not entirely clear why this should be the case. A hint is
given by considering the action of the effect 1. According to our axioms, observing 1
should not affect the state, while with the state could be changed in an almost
arbitrary way. Hence, our axioms require a more strict correspondence between the
effect and its action on the state then the general update rule implies.

While the axioms of Definition do not uniquely pick out the Liiders update
rule as special, some variations on the properties of the sequential product have been
proposed that do characterise this update rule |97, |208] [219].

Our aim now is to study finite-dimensional sequential effect spaces and show that
these correspond to quantum-like systems (we will study a similar structure in infinite
dimension in Chapter [5)). Before we do so however, it is interesting to note that the
assumption that the underlying space has an Archimedean order unit is necessary, as
otherwise some more pathological spaces satisfy our assumptions.

Example 2.2.8. Let V be an ordered vector space and let R be the space of linear
functions f : V — V. For f,g € R we set f < g when f(v) < g(v) for all v > 0 in V,
making R into an ordered vector space. Let E := [0,id]g :={f € R; 0 < f <id}.
Then the regular composition of linear maps f o g is a bilinear associative product on
F that satisfies all the axioms of a sequential product when fog = 0 implies go f = 0.
In particular, let V = R? be equipped with the order determined by (a,b) > 0 iff
a+b >0 and define R and F as above. Of course R is just the space of 2 x 2 real
matrices. With some straightforward but tedious calculation it can be verified that

A::(Z Z)eE — A=0orA=idorl>a+c=b+d>0.

a = b+ d. Then it is straightforward
to check that 7 is monotone (A < B = 7(A4) < 7(B)), multiplicative (7(4 - B) =
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7(A)7(B)),and A =0iff 7(A) =0. Asaresult A-B=0iff A=0or B=0. Hence £
satisfies A- B = 0 iff B- A = 0, so that the regular composition of matrices in E indeed
satisfies all the assumptions of a sequential product. We remark that E is the set of
effects of a 3-dimensional vector space with a separating (but not order-separating)
set of states, and that the product o is non-commutative and associative.

2.3 Basic results

Unless otherwise stated, we will let V' denote a finite-dimensional sequential effect
space, E = [0,1]y its set of effects and & : E x E — FE a sequential product. For
a € E we let a* = 1 — a denote its complement which by virtue of a lying in the
unit interval of V is also an effect.

Proposition 2.3.1 (cf. [95]). Let a,b,c € E.

a) a&l=1&a=a. d) If a <b, then c&a < c&b.

b) a&0=0&a =0.

¢) a&b<a. e) If a|b, a|cand b|e, then a|(b&c).
Proof.

a) We of course have a|a and by [S6| we have a |a*. Using [S6| again we then see
that a|(a+at). Asa+at =1, then a|1 so that byl&a:a&lza.

b) By the previous point a|1 and hence also a |1+ = 0 so that it remains to show
that a& 0 = 0. This follows by [S1]as a &0 =a& (0+0) = a& 0+ a & 0.

¢) By the previous point and[Slja = a&1=a& (b+b") = a& b+ a& b so that
a—a&b=a&bl >0 and hence indeed a &b < a.

d) We have b—a > 0 so by [S1] we have c&b=c& (b—a+a) =c& (b—a) +c&a.
Hence c& (b — a) = c& b — c& a. Since the left-hand side is greater than zero,
the right-hand side must be as well.

e) Using axiom[SHrepeatedly: a& (b&c) = (a&b)&c= (b&a)&c=b& (a&c) =
b& (c&a) = (b&c)&a. [ |

Proposition 2.3.2. Let a,b € F and let ¢ be any rational number between zero and
one, and A\ any real number between zero and one.

a) a& (¢b) = q(a&d). c) (Aa)&b=al& (\b) = Aa&b).
b) a& (Ab) = A(a & ). d) If a|b, then a|\b.
Proof.

a) Ofcourse a& b= a& (nib) =n(a& (1b)) by Dividing by n gives a & (1b) =
%(a & b). By summing this equation multiple times we see that we get a & (gb) =
q(a&b) for any rational 0 < ¢ < 1.
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b) Let ¢; be an increasing sequence of positive rational numbers that converges to
A. Using the order-unit norm of V' we compute

[Mad&eb) —a& (AD)]| = [[(A — ¢i)(a&b) + gi(a&b) — a & (AD)]]
= [0 = qi)(ad&ed) —a&e (A = g:)D)].

Note that (A — ¢;)b < (A — ¢;)]|b]|]1 and hence, using Proposition [2.3.1.d)| we
have [la & ((A = ¢i)b)[| < [lal[[[(A = @:)bll = (A = g;)l|all[|b]]. But then:

[A(a&b) — ade (AD)[| < 2(A — gs)l|all[|b]]-
This expression indeed vanishes as 4 increases so that A(a & b) = a & (A\b).

¢) Clearly +a|La so that by [S6| +a|a. In the same way we also get ga|a and
gat |at for any rational 0 < ¢ < 1. Using the rule a|b == a|b* from
we then also get ga® | a so that a|(ga + ga’) = ¢1, and hence also b|gb. Then
(1) &b = b& (ql) = q(b& 1) = g¢b so that also (ga) &b = (a& (ql)) &b =
a& ((ql)&b)) = a& gb = g(a&b). Now let A € [0, 1] be a real number and let
q; be a sequence of rational numbers converging to A so that also ¢;a — Aa and
gi(a&b) = AMa&b). Then g;(a&b) = (gia) &b — (Aa) &b by We conclude
that (Aa) &b = A(a&b) = a& (\b).

d) Using the previous point we calculate: a & (Ab) = A(a & b) = A(b& a) = (A\b) & a.
|

As a result of this proposition, the left-product map L, : E — F for a € E given
by L.(b) = a& b can be extended by linearity to the entirety of V' by L,(Ab — uc) =
AL, (b) — pLg(c). Similarly we can define the sequential product for any positive a € V'
by rescaling: a&b := Ha||((ma) &b). Note that all L, : V — V are positive maps

and that by [S5| we have a|b <= L,L, = LyL,.

Definition 2.3.3. An effect p € F is called sharp when the only effect below both
p and pt is the zero effect, i.e when b < p and b < p* implies b = 0.

When V = B(H)s, the sharp effects are precisely the projections. This should be
clear considering the following proposition.

Proposition 2.3.4 (|95]). Let a € E be an effect, a is sharp if and only if a& at =0
if and only if a & a = a.

Proof. Note that a = a& 1 =a& (a +at) =a&a+a&a’ and hence a & at = 0 iff
a&a=a.

Let us assume a is sharp. Bywe have a |at so that a& at = at &a. By
we have a & at < aand a&at = at & a < at. Asa& at is then below both @ and a*
we must have a & a* = 0 by assumption of sharpness. Conversely, suppose a & a* = 0
and let b < @ and b < at. Then by we get a& b < a&at =0, and similarly
we get at &b = 0. Then using we conclude that b = b& 1 = b& (a + at) =
b&a+b&at =0+0=0. ]

Let us now introduce the notion of orthogonal effects which was hinted at in [S4t
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Definition 2.3.5. We call two effects a and b orthogonal when a & b = 0.

Of course by [S4] orthogonality is a symmetric relation, and we note that therefore
orthogonal effects are also compatible.

Definition 2.3.6. Let a € E be an effect. We define the powers of a inductively to
be a® :=1 and a" := a & a"~'. We define the classical algebra of a to be the linear
space C(a) spanned by all the powers of a and a™.

Proposition 2.3.7. Let a € E be an effect. Then C(a) is a commutative sequential
effect space.

Proof. C(a) inherits the order structure from V' in the obvious way, and as 1 € C(a)
every state of V also restricts to a state on C(a) so that C(a) is an order unit
space. Of course a|a and a|at and thus by Proposition we have a” | ™ and
a” | (a+)™ for all n and m. Because of |S6/and Proposition linear combinations
of compatible effects are also compatible and hence all effects of C'(a) are compatible.

[ |

The next result uses Kadison’s representation theorem for order unit spaces (The-

orem [1.3.17]).

Proposition 2.3.8. Let a € E be an effect. Then there is an n € N such that C(a)
is both order-isomorphic and algebra-isomorphic (interpreting & as the product) to
R™.

Proof. The sequential product is linear in the second argument. Since C(a) is a
commutative sequential effect space by Proposition 2:3.7} its product is also linear
in the first argument, and hence this operation is bilinear. It obviously preserves
positivity, and since C'(a) C V is finite-dimensional, it is complete, so that Kadison’s
theorem applies and C(a) = C(X) for some compact Hausdorff space X. As C(X)
then also has to be finite-dimensional, we see that X is finite. The only finite Hausdorff
spaces are discrete and hence we conclude that C'(X) = R™ for some n € N. [ |

Corollary 2.3.9. Let a € E be an effect. There exists a set of orthogonal non-zero
sharp effects p; compatible with a and positive A; € R such that a = >, \ip;.

Proof. By the previous proposition C(a) = R™ and this space is obviously spanned
by orthogonal sharp effects, hence we can find the desired p; and A;. By construction
p; € C(a) so that they are compatible with a. |

We will refer to a decomposition of a in the above sense as a spectral decomposition
of a.

We can now show why the lack of associativity of the sequential product is necessary
for non-commutative, and hence non-classical, sequential products.

Proposition 2.3.10. Let V be a finite-dimensional sequential effect space where the
sequential product is associative. Then the sequential product is commutative.
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Proof. Assume & is associative. Let a be any effect and let p be sharp. Of course
pt&a < pt is orthogonal to p and hence 0 = (pt &a)&p = pt & (a&p). But
then p'|a&p, and hence p|a&p. Similarly, we also get p|a&p*. As a result
pl(a& pr+a& p) = a. As a was arbitrary we see that sharp elements are compatible
with every effect and as any effect can be written as a linear combination of sharp
effects, this shows that the sequential product is commutative. |

The existence of spectral decompositions is also enough to show that the space
must be homogeneous (Definition , i.e. that for every pair of internal positive
elements a,b € V there exists an order isomorphism ® such that ®(a) = b. Note
that @ € V is an internal positive element iff there is an € € R5q such that ¢l < a.
Given a spectral decomposition a = ), A\;p; of such an element, it is easy to see that
necessarily >, p; = 1.

Definition 2.3.11. Let a be an internal positive element so that el < a for some
€ € Ry, and let a = Zz Aip; with all A; > 0 and p; # 0 be a spectral decomposition.
We define the inverse of a with respect to this decomposition as a~! := ) A;lpi.

Note that the name of inverse is chosen well as indeed a & ¢! = E” /\i/\j_lpi &p; =
SN = pi =1

Proposition 2.3.12. Let V be a finite-dimensional sequential effect space. Then V
is homogeneous (cf. Definition [1.3.6]).

Proof. Let a be an arbitrary internal positive element with spectral decomposition a =
>, Aipi and inverse ™! = Y, /\i_lpi. The sequential product map Ly (b) := a &b is
positive and since a™! | a it also has a positive inverse L,-1 (using[S5): a=! & (a & b) =
(a='&a)&b = 1&b = b. The map L, is therefore an order isomorphism when a
lies in the interior of the positive cone. Now, for ¢ and b in the interior we define
®:V =V by ®=LyL,-1. As this is a composition of order isomorphisms, it is also
an order isomorphism and of course ®(a) = b& (a"*&a) = b& 1 =b as desired. W

2.4 Proof of self-duality

With homogeneity of V' now established, we set our sights on proving self-duality
(cf. Definition . We do this in a few steps. First we study the lattice of sharp
effects in Section We then consider properties of the atoms of this lattice in
Section 2:4:2] Then in Section [2.4.3] we establish that this lattice has the covering
property as defined in Ref. [5]. The covering property has as a consequence that for
every sharp effect p there is a unique number r called the rank of p such that we can
write p = Z:Zl p; where the p; are atomic and orthogonal. We then define the rank
of a space as the rank of the unit effect. The existence of well-defined ranks of sharp
effects allows us to reduce the question of self-duality to that of self-duality in spaces
of rank 2. This problem is in turn solved by appealing to the classification result of
Ref. [117] that homogeneous spaces of rank 2 are always self-dual, which is done in

Section [2.4.41
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2.4.1 The lattice of sharp effects

First, we establish some results regarding sharp effects.

Proposition 2.4.1. Let a € F be any effect and let p € E be sharp.
a) a <pifand only if p&a = a&p = a if and only if p &a = 0.
b) p<aifandonly if p&a=a&p=p.

Proof.

a) Suppose a < p with p sharp. Then p* & a < p* &p = 0 by Proposition m
and 2.3.1.(:51 Hence a |pt and a|p so that a = a& (p+pt) =a&p+akpt =
a&p = p&a. For the other direction we note that a = p&a < p by

b) Suppose p < a with p sharp, then at < p' with p' sharp so that by the
previous point a |p and p&at = 0 so that p=p& (a +at) = p&a. |

Definition 2.4.2. For an effect a € E we let [a] denote the smallest sharp element
above a, called the ceiling of a and we let |a| denote the largest sharp element below
a, called the floor of a.

A priori, the floor and effect of an effect do not have to exist. In our setting however,
they always do.

Proposition 2.4.3. The ceiling and the floor exist for any a. Moreover, writing
a =Y, \ip; with 1 > X; > 0 and the p; sharp and orthogonal, then [a] = )", p; and
la] = a*]+.

Proof. Write a = ), Aijp;. Of course ), p; is an upper bound of a. Suppose a < r
for some sharp r. Then A\;p; < r, so by Proposition r& (\ip;) = A\ip;. But
as 7 & (\ip;) = A\i(r & p;) this reduces to r & p; = p;. Hence r& Y .pi =Y . r&p; =
>, pi so that by Proposition @ > pi <rsothat ), p; is indeed the least upper

bound. The other statement now follows because a < b < b+ < at. [ |

As a corollary of the above we also see that [Aa] = [a] when 1 > X > 0 and that
a is sharp if and only if [a] = a or |a] = a. We also note that a < b implies that

[a] < [b].

Proposition 2.4.4. The sharp effects form an ortholattice: for two sharp effects ¢
and p, their least upper bound p V ¢ and greatest lower bound p A ¢ exist and the
following relation holds: (pV ¢)* = p~ A ¢ .

Proof. We claim that pvq = [%(p—i—q)]. Note that p < p+q and thus that %p < %(p—f—q)
so that p = [p] = [3p] < [3(p+ ¢)]. Similarly we also have ¢ < [$(p + ¢)] and thus
this is an upper bound. Suppose now that p < a and ¢ < a for some a. Then also
p=lp| < la) and q = |g] < |a] and hence 3(p+q) < (la] + |a]) = a. Taking
the ceiling on both sides then shows that [2(p+¢)] < [|a]] = |a] < a so that indeed
pVa=[3(p+a)]

To find p A ¢ we note that (-)* is an order-anti-isomorphism, and thus that it
interchanges joins with meets: (p Vv ¢)* = pt A ¢*t. |

1
2
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Proposition 2.4.5 ([95]). Let a € E be any effect and let p € E be sharp.

a) p&a =0 if and only if p+ a <1 in which case p+a=pVa. When p&a =0
their sum p + a is sharp if and only if @ is also sharp.

b) If both a and p are sharp and a|p, then p& a is sharp and p Aa =p&a.
Proof.

a) p&a = 0 if and only if p* &a = a which by Proposition is true if
and only if a < p- = 1 — p so that indeed p +a < 1. That p + a is an
upper bound of p and a is obvious. Suppose now that b is also an upper
bound so that p < b and a < b. We then calculate using Proposition
p=p&b=p&(b—a+a) =p&(b—a)+p&a=p&(b— a) so that again
by Proposition p < b—a. Hence p+ a < b and since b was arbitrary
indeed p+a=pAa.

Now to show p+a is sharp if and only if both p and a are sharp: since p& a = 0 we
have p | a and thus also p | p+a and a | p+a by We calculate (p+a) & (p+a) =
p&p+2p&a+a&ka=p+a&a=(p+a)+ (a—a&a). We therefore have
(p+a)&(p+a) =p+aif and only if a — a & a = 0 which proves the result by

Proposition 2.3:4]
b) As p|a we also have a|a & p and p|a & p by Proposition We calculate:

(p&a)&(p&ka)=(p&ka)&(a&p) =p&(a&(akp))
=p&(a&p)=p&(p&a)=pka.

Hence p& a is sharp. It is a lower bound of p and a by Suppose
b < p,a is also a lower bound. We need to show that b < p& a. We calculate
p&a=p&(a—b+b) =p&(a—b)+p&b=p&(a—b)+b>0b, wherep&b=1»>
due to Proposition |

Lemma 2.4.6. Let a,b € FE with b&a = 0. Then b& [a] = 0.

Proof. Write a =Y, \ip; with p; #0 and A\; > 0. If b&a =0= ), A\;b& p;, then we
must have b& p; = 0 for all p;. Since [a] =), p; the claim follows. |

Lemma 2.4.7. Let p € E be sharp and a € E arbitrary. Then [p&a] = [p& [a]].

Proof. Of course p&a < p& [a] and hence [p&a] < [p& [a]] so that it remains
to prove the other inequality. Because p&a < p we also have [p&a] < [p] =
p and hence [p&a]t|p. Now because p&a < [p&a] we can use Proposition
2.4.1.a) to write 0 = [p&alt & (p&a) = ([p&alt&p)&a = ([p&alt &p)&[a] =
[p&alt & (p& [a]) where we have used Lemma [2.4.6| to replace a with [a]. Since
then [p&a]* & (p& [a]) = 0 we use [2.4.1.a)| again to conclude p& [a] < [p&a] so
that indeed [p& [a]] < [p&al. |
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2.4.2 Atomic effects

Definition 2.4.8. An effect p € E is atomic when p is a nonzero sharp effect and if
for all @ € F with a < p we have a = Ap for some X € [0, 1].

The name atomic comes from the fact that in the lattice of sharp effects, the atomic
effects are the smallest nonzero elements. We call a lattice itself atomistic when
every element can be written as a supremum of (possibly an infinite number of) atoms.
This holds for the lattice of sharp elements in our setting:

Proposition 2.4.9. Every sharp effect can be written as a sum of orthogonal atomic
effects.

Proof. Let p be sharp. If p = 0 or p is atomic we are already done, so suppose this is
not the case. Then we can find 0 < a < p such that a # Ap for any A € [0, 1]. Write
a =) .\g; where the ¢; # 0 are sharp and orthogonal and A; > 0. Then X\;¢; < p
and thus also [A\;¢q;] = ¢; < [p] = p. If all the ¢; are equal to p, then a is a multiple
of p, so at least one of the g; is strictly smaller than p. If ¢; and p — ¢; are now
both atomic we are done. If for instance g; is not atomic, we can find a a’ < ¢; with
a’ # Ag; for all A € [0,1] and repeat the argument. In this way we get a sequence of
nonzero orthogonal sharp effects that sum up to p. As the space is finite-dimensional
and orthogonal effects are linearly independent this process must stop after a finite
number of steps in which case we are left with atomic effects. |

Corollary 2.4.10. Every a € V can be written as a = ), \;p; where the p; are
orthogonal atomic effects.

Proof. For every a € V we can find a spectral decomposition in terms of orthogonal
sharp effects. The previous proposition shows that these sharp effects can be further
decomposed into atomic effects. |

Recall that the norm of an element a in an order unit space is the smallest number r
such that —rl < g <rl.

Lemma 2.4.11. A non-zero effect p is atomic if and only if we have p& a = ||p&allp
for all a € E.

Proof. First note that any non-zero sharp effect ¢ satisfies ¢ = ¢& g < ¢& (J|¢||1) =
llgllg & 1 = ||g||lg so that ||g|| > 1. But since also ¢ < 1 we must have ||¢q|| < 1. For an
arbitrary effect a with spectral decomposition a =), Aig; we then get |la| = sup; ;.
Hence, if [jal| = 1 we also have ||a?|| = 1.

Suppose p is atomic. Because 0 < p&a < p we must have p&a = Ap for some
0 < A <1sothat [[p&all = Al|lp|| = A because p is sharp.

Conversely, we first note that p = p& [p] = ||[p& [p]llp = ||p||p so that necessarily
pll = 1 (since p # 0). Then p? = p&p = Hp2||p = p so that p is sharp. Let ¢ < p
be non-zero and sharp. Then ||¢|| = 1 and hence ¢ = p& ¢ = |[p& q|l]p = p. Hence,
there are no non-zero sharp effects strictly below p. Now let a < p be arbitrary with
spectral decomposition a = Y. A\;q;. Then A;g; < p so that [A;¢;] = ¢; < [p] =p and
hence ¢; = p. We conclude that a = Ap. As a was arbitrary, p is indeed atomic. M
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Corollary 2.4.12. The set of atomic effects is closed in the norm topology.

Proof. Let p, — p be a norm-converging set of atomic effects p,,. We need to show
that p is also atomic. Note first of all that since ||p,|| = 1 for all n that also ||p|| =1
and hence p # 0. Furthermore, by the previous lemma we have p, & a = ||p, & a||pn
for all effects a. By continuity of & (i.e. axiom [S2]) we have p, & a — p& a so that
p&a =limp, &a = lim ||p, & al|p, = ||[p& a||p. Using the previous lemma again we
conclude that p is indeed atomic. |

Proposition 2.4.13. Let a € E be arbitrary and p € F be atomic. Then a & p is
proportional to an atomic effect, i.e. a & p = Ag where ¢ is atomic and X € [0, 1].

Proof. Let ® be an order isomorphism and suppose 0 < a < ®(p). Then 0 < <I>_1(a) <
p so that ®71(a) = Ap and hence a = A®(p). This shows that ®(p) is proportional
to an atomic effect. If a is invertible then L, : V' — V given by L,(b) := a & b is an
order isomorphism (cf. Proposition , so that L,(p) must be proportional to an
atomic effect.

Suppose now that a is not necessarily invertible. If a&p = 0 we are already
done, so assume that a&p # 0. Define a,, = a + %1, so that a,, is invertible and
the sequence a,, converges to a. Set ¢, = (a, &p)/|lan, &p||. Then all the g, are
atomic. By the continuity condition [S2] we have lim, a, &p = a& p so that also

lim, |la, &p|| = |la&p|| # 0. The sequence g, is therefore also convergent and
since the set of atomic effects is closed by the previous corollary we conclude that
lim, ¢, = (a&p)/|la & p|| is atomic. [ |

2.4.3 The Covering Property

At this point we know that the set of sharp effects forms an atomic lattice, but in fact
we can show that it has the much stronger covering property that allows us to attach
a rank to each sharp effect: the number of atomic effects needed to make the effect.

Definition 2.4.14. Let L be an atomistic lattice. For p,q € L we say p covers ¢
when ¢ # p, ¢ < p and for any r with ¢ < r < p we have r = ¢ or r = p (in other
words: p is the smallest element above ¢). We say L has the covering property
when for any g € L atomic and p € L arbitrary, either ¢ V p = p or g V p covers p.

To prove this property for the lattice of sharp effects in a sequential effect space
we will adapt some results from Alfsen and Shultz |4] that were proven in a slightly
different setting.

Lemma 2.4.15 (cf. [4, Lemma 8.9]). Let p,q € E be sharp with ¢ < p. Then
pP—q=pAg-.

Proof. We note that ¢|p so that it is easily seen that p — ¢ is sharp. Since also p | g™+
we conclude using Proposition [2.4.5.b)| that indeed p — ¢ = p& ¢+ = p A ¢*. [ |

Lemma 2.4.16 (cf. [4, Theorem 8.32]). Let p € E be sharp and a € E arbitrary,
then [p&a] = ([a] V p*) Ap.
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Proof. Because [p&a| = [p& [a]] by Lemma it suffices to prove this for sharp
a. We prove the equality by showing that an inequality holds in both directions.

Since pt < a V pt we have p |(a V p) by Proposition so that in turn
p|(aVpt) by We proceed by using

(avph)&(p&a) = ((aVp")&p)&a=p&((aVp")&a) =pka,

where in the last step (a V pt) & a = a because a V p* > a. Therefore p&a < aVp*t
which implies that [p&a] < a V pt. Since also p& a < p and therefore [p&a] < p
we conclude that [p&a] < (aV pt) A p as desired.

Now for the converse direction: we obviously have p* & (p&a) = (p* & p) & a =0
by [S6| and |S5[ so that by Lemma pt & [p&a] = 0. Then p|[p&a]t and by
Proposition we have [p&a]t &p = [p&a]t Ap. Since p&a < [p&al we
calculate using Proposition [2.4.1.a)|

0=[p&al*&(p&a) = ([p&al* &p)&a= ([p&kalt Ap)&a

so that a < ([p&al* Ap)t = [p&a] vV pt by Proposition m Then of course also
aVpt < [p&a]Vpt and by noting that [p& a] and p* are orthogonal and using
Proposition [p&a]Vpt = [p&a]+pt. Bringing the pt to the other side we
then have (aVp)—pt < [p&a]. Finally, we have aVp* —pt = (aVp*)Ap because of
Lemma (which applies because p* < aVp*t). Hence indeed (aVpt)Ap < [p&a]
as desired. |

Proposition 2.4.17 (cf. [4, Proposition 9.7]). For ¢ atomic and p sharp, the expres-
sion (¢ Vp) Apt = (qV p) — p is either zero or atomic. Consequently, the lattice of
sharp effects has the covering property.

Proof. Let us first demonstrate how (¢Vp)Apt = (gVp)—p being zero or atomic implies
the covering property. Suppose p < r < ¢gVp. Subtracting p gives 0 < r—p < (¢Vp)—p.
Hence, as r—p is sharp and (¢Vp)—p is atomic we must have r—p = O or r—p = (qVp)—p
so that indeed r =porr=qVp.

The previous lemma gives (qVp)Apt = [p* & ¢, while Propositionshows that
p* & q is proportional to an atom. Hence p* & ¢ = 0, in which case (¢ V p) Apt =0,
or pt&q # 0 in which case [pt&q] = (¢ V p) A pt is an atom. The equality
(qVp) Apt = (qV p) — p follows directly from Lemma [ |

Definition 2.4.18. Let p be sharp and let p; be a collection of atomic orthogonal
effects such that p = Y. p;. The minimal size of such a collection is called the rank
of p. We define the rank of a sequential effect space to be the rank of the unit effect 1.

The covering property has as a consequence the following ‘dimension theorem’:

Proposition 2.4.19 (cf. |5, Proposition 1.66]). Write p = > p; where the p; are
orthogonal and atomic. Then n = rnk p, i.e. all ways of writing p as a sum of atomic
effects require an equal number of atomic effects. Furthermore, when ¢ < p we have
rnk ¢ < rnk p and if also rnk ¢ = rnk p then necessarily ¢ = p.
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Proof. Note that since all the p; are orthogonal that we have p; V p; = p; + p; when
i # j by Proposition Let p =p1 V...Vpy_1. Then p’ V p, = p and by the
covering property there is no sharp effect strictly between p’ and p. Suppose now
g < p is atomic and suppose that g is not below p’. Then p’V g must be strictly greater
than p’, but since this must also lie below p we conclude that p’ V ¢ = p.

Let p = Z; ¢ = q1 V...V q- where r := rnk p is the minimal number of terms
needed to write p as a sum of atomic effects. We must then of course have r < n. Let
qg=q2V...Vq, so that ¢ lies strictly below p (as g1 < p but not ¢1 < g). It then
follows that there must be a p; such that p; does not lie below ¢ as well, since otherwise
p=p1V...Vp, < g < p. Without loss of generality let this p; be p;. By the previous
paragraph we must have p; Vg = p1Vgs ...Vq, = p. This shows that ¢; can be replaced
with p; in this decomposition of p. We can do the same with g, ..., ¢, until we are
left with the equation p; V...V p, = p. Suppose n > r, then because p,, is orthogonal
to all the other p;’s we have in particular p, <pf A...Apt = (p1V...Vp. )t =pt.
Since also p,, < p we have p, < p A pt = 0 which contradicts p,, # 0. We therefore
have n =r.

Now suppose ¢ = >.7q; < p=>_; p; where s = rnk ¢. Since p — ¢ is sharp we can
write p—q = Z}; vy, for some atoms v,. Then because p = Zj q; + ZZ v, we must by
the above argument have s+t = r so that indeed rnk ¢ < rnk p. When rnk ¢ = rnk p
we must have ¢ = 0 so that indeed p — ¢ = 0. |

Corollary 2.4.20. Let p # g be two atomic sharp effects and suppose 0 < a < pV q.
Then a = A1 + Aoy where the r; are orthogonal and atomic and ry + 1, =p V q.

Proof. By Proposition (pVq)—p is atomic so that pV¢ can be written as the sum
of two atomic sharp effects. The previous proposition consequently gives rnk pVq = 2.
Suppose 0 < a < pVg. Let a = >""" \;7; be a spectral decomposition of a with the r;
orthogonal and atomic. Of course [a] < pV ¢ so that by the previous proposition we
must have rnk[a] < 2. Since also by the previous proposition rnk ZZL r; =N We see
that we must have n = 2 and thus that a is as desired. |

2.4.4 Self-duality

In this section we will apply the characterisation theorem of strictly convex homogen-
eous cones of Proposition to show sequential effect spaces must be self-dual.

Definition 2.4.21. Let p # ¢ be a pair of atomic effects. We define the order ideal
generated by p and g as Vpyg:={v eV ; In: —npVvg<v<npVg}

Vpvgq is an order unit space with order unit p V ¢. If we have a,b € [0,1]y,,, then
ad&b<a<pVgso that the sequential product of V' restricts to Vjve. Hence, Vjyq is
also a sequential effect space so that by Proposition we see that this space has
a homogeneous positive cone, while the results of the previous section show that the
sharp effects in Vj,,, have the covering property. Furthermore, V,, has rank 2 and
since for any atom r € Vv, we have r + r+ =1 we see that - must also be an atom.

Lemma 2.4.22. Let p # ¢ be a pair of atomic effects. The positive cone of V4 is
strictly convex (cf. Definition [1.3.8)).
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Proof. Let F be a proper face of the positive cone of V4. We must show that it is
an extreme ray, or equivalently, that it contains a unique atom. Let a € F' and let
A € Rsg. Then we can write a = A(A~'a) + A*0, so that also A~'a € F and hence F
is closed under positive scalar multiplication, so that F' is completely determined by
the effects it contains. As F' is already closed under convex combinations we see that
it is now also closed under sums. Let a € F be an effect. By Corollary [2.4.20] we can
write @ = A + pr® for some A, > 0 and 7 atomic. Suppose both A,z > 0. Then we
must have r,7+ € F so that 1 =+ r+ € F. For any atomic s we have 1 = s + s+ so
that then also s, s+ € F. As s is arbitrary, F' must then be the entire positive cone,
contradicting the assumption that F' is proper. Hence, we must have had a = Ar
for some atomic r. If there were some other atomic s € F', then we can consider
a’ = 3(r+s). We know that a’ can’t be atomic so we can write it as a = A\t + pt*
for some atomic ¢t with A, x> 0 which by our previous argument would contradict the
properness of F. We conclude that F' indeed contains a unique atom so that it is an
extreme ray. |

Corollary 2.4.23. Let p # ¢ be a pair of atomic effects. Then V), is isomorphic to
a spin factor (cf. Definition |1.2.9)).

Proof. Combine the previous lemma with Proposition [I.3.9] [ |

Recall that a state on an order unit space is a positive linear map w : V. — R
such that w(1) = 1. For an atomic effect p in a spin factor (or any Euclidean Jordan
algebra) there exists a unique state w, such that w,(p) = 1. Indeed, any state w on
an Euclidean Jordan algebra (EJA) is determined by some effect p via the EJAs inner
product: w(a) = (a,p). The only state which has w(p) = 1 must then have p = p.
EJAs furthermore satisfy symmetry of transition probabilities [4]: w,(q) = wqy(p)
for any two atomic effects p and ¢. This again easily follows by the correspondence of
states and effects via the inner product: w,(q) = (g, p) = (p,q) = wq(p)-

Proposition 2.4.24. For any atomic p € E there is a unique state w, satisfying
wp(p) = 1. For any pair of atomic effects p, ¢ € E these states satisfy wy(q) = wq(p).

Proof. The states separate the effects in an order unit space (Proposition S0
that for p we can find a state w such that w(p) # 0. Let wy(a) := w(p&a)/(w(p)).
Then w), is a state and wy(p) = 1. Suppose there is another state w’ such that w’(p) = 1.
Let ¢ # p be any other atomic effect (if there is no atomic g # p then V = R and
we are already done) and look at the restrictions of the states w, and w’ to the space
Vpvg- These restriction maps are still states as wy(p V ¢) > wp(p) =1 (and similarly
for w'). Because states with the property w(p) = 1 are unique on spin factors we see
that the states w’ and w, are equal on V,y, and hence in particular wy(q) = w'(q).
Since g was arbitrary and the atomic effects span V' we conclude that w, = w’ so that
wyp is indeed unique.

For any two atomic p and ¢ their unique states w, and w, when restricted to the spin
factor V4 are still the unique states satisfying w,(p) = 1 and wy(q) = 1. As spin factor
satisfy symmetry of transition probabilities we then see that indeed wy(q) = wq(p). W

Proposition 2.4.25. Let p,q € E be atomic. Then p& q¢ = wp(g)p. Consequently, p
and ¢ are orthogonal if and only if w,(q) = w,(p) = 0.
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Proof. Because p is atomic we have p& ¢ = Ap for some A > 0. Let w'(a) = wp(p & a).
Then w'(p) = wy(p& p) = wp(p) = 1, so that by the uniqueness of w, we have w’ = wy,.
We then see that w,(q) = w'(¢) = wp(p& q) = wp(Ap) = Aw,(p) = A. Hence indeed
p&q=wy(q)p. n

Proposition 2.4.26. There exists an inner product (-,-) on V such that the positive
cone is self-dual with respect to this inner product.

Proof. For atomic p and ¢ we set (p,q) := wp(q) = we(p) = (¢,p). We can then
extend it by linearity to arbitrary a = >, \ip; and b = 3, pu;q; in V' by (a,b) :=
Zi’j Aittj(pi, q;). For this to be well-defined, the inner product must be independent
of the choice of spectral decomposition of a and b. So suppose b = >, pp.q;, is a
different spectral decomposition. Then

D it ag) =D Niwp (O 15q5) = D Niww (b Z Aiwp, Z 115:41)
,J i J i

as desired. The well-definedness in the first argument follows via commutativity of
the expression:

Zz\lujwpl qj ZMJ iWg, pz <b7 a’>

We see that (a,a) =37, ; Nidjwp, (p;) = 3, A7 since p; and p; are orthogonal when
i # j and wy, (p;) = 1. We conclude that (a,a) > 0 and that it is only equal to zero
when a = 0 so that (-,-) is indeed an inner product.

If a and b are positive elements then we can write them as a = ) . A\;p; and
b = >_;njq; where all the A; and p; are greater than zero. But then (a,b) > 0
because wy,(g;) > 0 for all < and j. Conversely, if a = ), A\ip; with \; not necessarily
positive and (a,b) > 0 for all b > 0, then by taking b = p; we see that 0 < (a,p;) = A;.
Hence we must have A; > 0 for all j and thus a > 0. [ |

Remark 2.4.27. Since we have now shown that finite-dimensional sequential effect
spaces are both homogeneous (Proposition and self-dual (Proposition [2.4.26)),
we could use the Koecher—Vinberg theorem (T heorem to show that these spaces
are order-isomorphic to Euclidean Jordan algebras. For completeness sake we will
explicitly construct a Jordan product from the sequential product in Section

2.5 The Born rule

Now that we have seen that the sequential effect spaces are self-dual we can recover
the familiar Born rule of quantum mechanics.

Recall that the states of a quantum mechanical system represented by the matrix
algebra M, (C) are the density operators p € M, (C) (i.e. positive matrices with
tr(p) = 1). A measurement is represented by a POVM {E;} where the E; € M, (C)
are a set of effects satisfying ) . E; = 1.

The probability of observing the outcome ¢ when measuring p with the POVM {E; }
is then given by the Born rule: P(pli) = tr(pF;). A more convenient form of the Born
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rule is the equality tr(pE;) = tr(ﬁEl\/ﬁ) The expression /pE;,/p corresponds to
the standard sequential product p & E; on M,,(C)s,. Hence, the Born rule can also
be presented as P(pli) = tr(p & E;). We will see that a similar rule can be derived for
sequential effect spaces.

Remark 2.5.1. The expression tr(\/ﬁEl\/ﬁ) might seem a bit foreign. Recall that
we are working in the Heisenberg picture, in which our primary concern is the effects
instead of the states. This is why we chose to represent this expression in such a

way to highlight the linearity in the effects instead of the more well-known expression
tr(\/EZ-p\/ El) which highlights the linearity in the states.

As before, we will let V' be a finite-dimensional sequential effect space.

Definition 2.5.2. Let a € V. The trace of a is tr(a) := {(a,1). A density operator
on V is an element a € V with a > 0 and tr(a) = 1.

Proposition 2.5.3. Let w: V — R be a state. Then there exists a density operator
p € V such that w(a) = (p,a) for all a € V. Conversely, any density operator defines
a state on V in this manner.

Proof. Let V* :={f:V — R linear} denote the dual space of V. The inner product
on V gives amap ® : V. — V* defined by ®(v)(w) = (v, w). Note that if ®(v) = &(v'),
then (v —v’,w) = 0 for all w € V and in particular for w = v — v’ so that v = v'.
Hence, @ is injective and because V' is finite-dimensional, dim V* = dim V' so that ®
is necessarily also bijective.

For each state w : V' — R we can then find a unique p € V such that ®(p) = w.
By definition of ® we have w(a) = (p,a) for all @ € V. As w is positive, we have
0 < w(a) = {p,a) for all a positive and hence by self-duality of V' we have p > 0.
Furthermore 1 = w(1) = {(p, 1) = tr(p), and hence p is indeed a density operator.

Conversely it is clear how any p > 0 with tr(p) = 1 defines a state w,(a) = (p,a). W

Lemma 2.5.4. Let L, : V — V denote the sequential product map of a, and let
L: : V — V denote its adjoint with respect to the inner product. Then L*(1) = a.

Proof. We note that the classical algebra C(a) of a is isomorphic to R™ and that the
sequential product there is the standard coordinatewise product. The inner product is
also the standard inner product on R™ so that L} = L, when the maps are restricted
to this associative algebra. Since 1 € C(a) we indeed have L (1) = L,(1) = a. [

We can now prove a Born rule for sequential effect spaces.

Proposition 2.5.5. Let w: V — R be a state. Then there exists a density operator
p € V such that w(a) = tr(p&a) for all @ € V. Conversely any density operator
defines a state in this way.

Proof. By Proposition there is a density operator p € V' such that w(a) = (p, a)
for all a. Using Lemma we calculate: w(a) = (p,a) = (a,p) = (a,L}(1)) =
(Lp(a),1) = (p&a,1) =tr(p&a). |
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Given a system A we associated an order unit space Vy4 to it, and we know that
St(A) C St(V4). We however do not yet know whether every state of V4 corresponds
to an actual state of A, i.e. whether the states satisfy the no-restriction hypothesis
(cf. Remark . This will require an additional assumption. This assumption has
no bearing on the results outside this section, we merely include it to show how one
could get all the mathematical states to be physical states.

Given a state w € St(A) and some effect a € Eff(A) such that w(a) # 0 there should
be some state w, that results from observing a on w. Any effect b measured on this
state has (by definition) the same probabilities as a & b measured on w, and hence
the state should satisfy w,(b) = w(a & b). But in fact, this state is not normalized as
wa(l) =w(a& 1) = w(a) does not have to be equal to 1. In order to fix this we define
the state wg to be wq(b) := ﬁw(a& b). Dividing by the probability w(a) captures
the fact that we have “post-selected” for a being true on w.

Assumption 2.5.6. Suppose w € St(A) and a € Eff(A) such that w(a) # 0. Then
there is a state w, € St(A) satistying w,(b) = ﬁa)w(a& b) for all b € Eff(A).

Note that this assumption is merely saying that the mathematical state w, on V'
defined by w,(b) := ﬁw(a& b) is in fact a physical state in our framework.

Proposition 2.5.7. Let A be a physical system satisfying Assumption (in
addition to the Assumptions and that we made before). Then St(A) =
St(Va).

Proof. Let w € St(V4). We need to show that w € St(A). By Proposition there
is a density operator p € V4 such that w(a) = (p,a) for all a € V. Write p =", \ip;
where the p; are atomic. Note that A\; > 0 and 1 = tr(p) = >, Aitr(p;) = >, Ai, so
that the \; form a probability distribution. Hence p is a convex combination of the
pi so that w =Y. \wp, is a convex combination of the wy, that are the unique states
satisfying wy, (p;) = 1. By Assumption St(A) is a convex set, so it remains to
show that w,, € St(A).

Let p € [0,1]y, be atomic. By Proposition [0,1]y, = Eff(A4), and since the
states separate the effects by Assumption e can find a state w € St(A) so
that w(p) # 0. Then Assumption implies there is a state w, € St(A) such that

wp(p) = ﬁw(p&p) = % = 1. But such states are unique by Proposition [2.4.24

and hence we are done.

Combining Propositions [2.1.3] [2.5.5] and [2.5.7] we see that for a system A we can
find a self-dual order unit space V4 such that Eff(4) = Eff(V,), St(A) = St(V4) and
there is a one-to-one correspondence between states w € St(A) and density operators
Pw € Va4 so that the Born rule holds: w(a) = tr(p,, & a) for all a € Eff(a).

2.6 The Jordan product

We wish to show that the order unit spaces we have been working with are actually
Euclidean Jordan algebras. To do this we must construct the Jordan product, and
show that it behaves well with respect to the inner product.
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We will use the construction of the Jordan product from the work of Alfsen and
Shultz [4], but then adapted to our setting. In this section we will again let V' be a
finite-dimensional sequential effect space, which by the previous sections is self-dual
and homogeneous.

Proposition 2.6.1. Let p be atomic and let a,b € V' be arbitrary.
a) p&a=wy(a)p = (p,a)p.
b) (p&a,b) = (a,p&b).
Proof.
a) By Proposition @ this is true when a is atomic. Writing a = >, A\j¢; where
the ¢; are atomic we then get by linearity p&a = >, \in& q; = >, Miwp(qi)p =

wp(D-; Aigi)p = wp(a)p. Since wy(q;) = (p, ¢;) the second equality follows in a
similar way.

b) Follows easily from the previous point as:
<p& a, b> = <<p7 a>p, b> = <p7 a> <pa b> = (a,p)(p, b> = <a’ <p’ b>p> = (a,p& b> u

Lemma 2.6.2. Let p and ¢ be atomic and set p’ =pV ¢ — p. Then pt&q =9 &q.
Proof. First note that pt =1—-p=1—-pVqg+pVqg—p=(pVq)* +p and hence
that p’ < p* so that p’ | p* by Proposition As p|pV q we also have p |pV q
so that p & (pVq) = (pV @) &pt = (Ve & ((pV @)t +p')=p (where in the last

step we used p’ < pV ¢q). As also ¢ < pV ¢ we calculate pt & q=pt & ((pVq) &q) =
(P &(pVae)&qg=p&q u

Recall that L, : V — V is given by L,(b) = a & b.

Definition 2.6.3. Let p € V be an atomic effect and let b € V' be arbitrary. We
define their Jordan product as p b= 3(id + L, — L, )b.

Lemma 2.6.4. [4, Lemma 9.29]: Let p and ¢ be atomic effects.

a) pxg=gxpand pxp=np.

b) When p& q=0we have pxg=0and px (g+xb) =¢gx* (px0b) forallbe V.
Proof.

a) p#*p = p follows immediately from p&p = p and p* &p = 0. Now let p and
q be atomic. If p = ¢ we of course have p x ¢ = ¢ * p, so suppose also that
p # q. Following Lemma define p’ = p VvV q — p. By Proposition p' is
atomic and hence by Proposition we have p& ¢ = wp(q)p = (p, ¢)p and
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p' & q = (p',q)p’. Note that hence pt & q = p' & q = (p,¢)p’ by Lemma
We calculate:

2p*q) =q+ (p,op— ®, 00
=q+pap— ', 9)(pVq—Dp)
=g+ ({(p,op+ @ 0)p— @, 0)(pVa)

=q+®PVagqp+PVa—pqVa)
=q+p+(1—(p,a)(pVa).

This final expression is symmetric in p and ¢ and hence p x ¢ = ¢ * p.

b) When p& q = 0 we have ¢ < p* so that p* & ¢ = ¢ which indeed gives p * ¢ =
%(q +p&q—pt&q) = %(q —¢q) = 0. Furthermore, because p& g = 0 we
have p|q,q* and ¢q|p*t, and hence the maps Ly, L,1, Ly and Ly. all mutually
commute so that the maps b +— p * b and b — ¢ * b commute as well. |

Using these results we extend the Jordan product to the entire space.

Definition 2.6.5. Let a,b € V' be arbitrary. Let a = >, \ip; and b = Zj Kiq; be
spectral decompositions with the p; and g; atomic. Define their Jordan product as
axb=73  Nip;(pi*q;). We write T, : V' — V for the map that sends b to a * b.

Proposition 2.6.6. Let V be a finite-dimensional sequential effect space. The Jordan
product x defined above makes V' a Jordan algebra.

Proof. First we check that x is independent of how a and b are represented as a
linear combination of atoms, so that * is indeed well-defined. Write a as a spectral
decomposition into atomic effects a = ZZ Aipi- Then axb= ZZ Aip; * b so that a xb
is independent of how b is represented as a sum of atomic sharp effects. Using the
previous lemma we easily see that a b = b*a and hence it is also independent of how
a is represented. Bilinearity then follows from linearity in the second argument.

It now remains to show that the Jordan identity ax(a?xb) = ax(axb) holds (where
a® :=ax*a). Write a = >, \;p; with all the p; orthogonal atoms so that p; * p; = 0.
Then a xa = Z” Xidjpi *p; = >, A2p;. We now calculate:

(a®xb) = Z A2 Dk b) Z )\i)\?pj*(pi*b) = a®*(axb).
2%

At this point we do not yet know whether V' is a Fuclidean Jordan algebra. As
we already know that V is a real Hilbert space, it remains to prove the identity
(a % b,c) = (bya*c). This comes down to showing that T, = T where T is the
Hilbert space adjoint of T;,. By linearity it suffices to prove this for a atomic, for which
we have T, = 5(id + Lq — L, ). If we can therefore show that L7 = L, for any sharp
p, we are done.

We know that a has an inverse if and only if L, is invertible and in which case
L;' = L,-1. For these maps we have (L)™' = L*_,. Note furthermore that L, and
Ly commute if and only if L} and Lj commute and that L§ = Lo = 0.
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Proposition 2.6.7. Let ® : V — V be a unital order-isomorphism. Then ®* = &1,

Proof. Any order-isomorphism ® sends an atom p to a ®(p) that is proportional to
an atom (cf. Proposition . When it is furthermore unital, it also preserves
sharpness of effects, so that ®(p) is also atomic and hence (w,®~1)(®(p)) = w,(p) = 1.
By Proposition states with this property are unique so that necessarily wg(,) =
wp® 1. We conclude that (D(p), ®(q)) = wep) P(q) = wp® ' ®(q) = wy(q) = (p,q) for
atomic p and ¢ so that ® preserves the inner product so that indeed ®* = ®~!. R

Lemma 2.6.8. Let a be invertible. There exists a unital order-isomorphism ® that
commutes with L, and L} and satisfies L} = L,®.

Proof. Since a is invertible, L, and L are also invertible. Define ® := L !L*. Then
® is an order isomorphism and using Lemma we have ®(1) = L;1L:(1) =
L;'(a) =1 so that it is unital. By definition we have L,® = L.

For the commutativity we note that for all b and ¢: (Lb,¢) = (L, Pb,c) =
(®b, Lic) = (®b, LyPc) = (1L ®b,c) so that ®~1L*® = L which shows that
® commutes with L* and therefore with L,. |

Lemma 2.6.9. Denote by B(V) the set of bounded linear maps on V' (which by
finite-dimensionality of V" are all the linear maps). The map L : E — B(V') that sends
an effect to its sequential product map is continuous (where B(V) is equipped with
the operator-norm topology).

Proof. For a fixed b the map a — a &b is continuous by [S2] Furthermore, the map
b+ a &b is continuous because it is linear and bounded. With a standard argument
it can then be shown that (a,b) — a &b is jointly continuous. Because V is finite-
dimensional the space of effects E is compact. The map & : E x E — V is therefore
uniformly continuous.

Now for every ¢ > 0 we need to find a § > 0 such that |ja; — az|| < ¢ implies
Loy, — La,|| < €. Recall that ||La, — La, || = supyp<q [|La, (b) — La, (b)[| and hence
it suffices to find a § > 0 such that ||Lq, (b) — La, (b)]| < € for all b € E whenever
llar — az|| < 4, but this is simply the uniform continuity of & : E x E — V. [ |

Proposition 2.6.10. For any a € V positive, L, and L} commute.

Proof. Suppose first that a is invertible. By Lemma we then have L, = L' ® =
®L*. But then L,L} = L,®L, = ®L,L, = L L,. Now if a € E is not invertible then
there is a sequence of invertible effects a,, that converge to a. By the previous lemma
we then also see that L,, converges to L, in the operator norm, and similarly L
converges to L. Therefore 0 = L, L; — L; L, converges to LoL} — L} L,. |

Proposition 2.6.11. For any positive a let U, = L,L} be its quadratic product.
Then

a) Us = Ua27

b) U, = L, for any sharp p, and hence Ly = L, and
c) Tx =T, foranya € V.
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Proof.
a) U2 =LoLiL L% = LoL,L%L} = Ly2L%> = Ugz.

b) We have U? = U, = U,. Furthermore L,U, = L,L,L} = L,L% = U, and
similarly U, L; = Up. Write A = U, — L, and note that A* = U, — L;. Hence:

AA* = (Upy—Ly)(Up—L}) = U =Up Ly — LyUp+ Ly Ly = Up— U, — Up+ Uy, = 0.

But then for arbitrary a € V we calculate (A*a, A*a) = (AA*a,a) = 0 so that
A*a =0 and hence 0 = A* = U, — Ly, so that L, = (Ly)* = Uy = U,.

c) By the previous point, for any sharp p: T, = %(id*—&-L;—L;L) = %(id—f—LP—LpJ_ ).
Now write @ = ), \;p; where the p; are atomic. Then T, = >, \;T},, and
hence Ty = >, \iTyy, = >, ATy, = T |

Theorem 2.6.12. Let V be a finite-dimensional sequential effect space. Then V is a
FEuclidean Jordan algebra.

Proof. By Proposition [2.6.6] it is a Jordan algebra, and by the previous proposition
the Jordan algebra maps are self-adjoint so that V is indeed Euclidean. |

We note that the converse is also true: any Euclidean Jordan algebra is a finite-
dimensional sequential effect space (cf. Theorem [4.7.18]).

2.7 Central effects

Before we go on to study composite systems, we first need to know a bit more out the
structure of a single sequential effect space, and how it decomposes into factors.

Definition 2.7.1. We call a sharp effect central when it is compatible with all effects.
We say a central effect is minimal if it is non-zero and there is no non-zero central
effect beneath it.

Proposition 2.7.2. Let ¢; and ¢y be central effects.

a) ci is central.
b) If ¢; and ¢y are orthogonal, then ¢y + co is central.

d

)

c) c¢1&ca is central.
) If ¢1 < co, then co — ¢ is central.
)

e) If ¢y is minimal, then either ¢; < ¢3, or ¢ is orthogonal to cs.
f) If ¢; # ¢ are both minimal, then ¢; and ¢y are orthogonal.
Proof. We let a denote an arbitrary effect.

a) As a|c for all a, also a|ci. Since ¢; is sharp, i is also sharp.
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b) Since a| ey, ca, we also have a | ¢y + co. The sum of two orthogonal sharp effects
is again sharp.

¢) Similar to the previous point, but using Proposition [2.3.1.¢)|
d) We have ¢3 — ¢ = co & ¢i, and hence it is central by the previous points.

e) By point ¢), ¢1 & ¢y is central and of course ¢; & ¢ < ¢;. Since ¢; is minimal,
we must then have ¢; & ¢y = ¢, or ¢; & co = 0, giving the desired result.

f) Direct consequence of the previous point by minimality of cs. |

Proposition 2.7.3. Every central effect is equal to the sum of the minimal central
effects below it. In particular, 1 is equal to the sum of all minimal central effects.

Proof. Let ¢ be central. If it is minimal then we are done. If it is not minimal, then
there is a non-zero central effect ¢; < ¢. We now have two orthogonal central effects
c1 and ¢ — ¢1. By repeating this procedure these central effects we get a sequence of
orthogonal central elements below ¢. As orthogonal elements are linearly independent,
by finite-dimensionality, this procedure has to terminate and hence we have ¢ =), ¢;
where all the ¢; are minimal.

Now suppose ¢’ < ¢ is minimal. Then ¢ = '&c¢ = >, &¢;. Each of these
summands is either zero or equal to ¢; by the previous proposition, and hence ¢’ = ¢;
for some i. As a result, all the minimal central elements below ¢ are already included
in the set {¢;}. |

Proposition 2.7.4. Let {c;} be a collection of central effects that sums to 1, and
let a be an arbitrary effect. Then there are unique a; < ¢; such that a = ), a;.
Furthermore, for any other b= )", b; with b; < ¢; we get a&b=>",a; &b;.

Proof. Lettinga; = c;&awegeta=a&l=a& (} ,c;)=>,a&c; =3, c;&a. For
uniqueness suppose now that a =), a; is another decomposition with a; < ¢;. Then
aj =c;j&a=cj&();a;) = a}, because ¢; L c¢; when i # j. Now let b=}, b; with

K]

b <¢i. Thena&b=73,a&b =3, a&(c;&b;)) =3 (a&c;)&b; =) ,a;&b;. B

Lemma 2.7.5. Let ¢ be a central effect and let p be an atom. Then either p < ¢ or
pLe

Proof. Since ¢|p we have c&p = p&c = Ap for some A\. But also \p = c&p =
c& (c&p) = Mc&p) = A\%p. Hence, either A = 0 or A = 1. In the first case p L c,
and in the second case c&p = p so that p < c. |

Proposition 2.7.6. Let ¢ be a central effect and suppose p < ¢ is an atom. Suppose
q is an atom incompatible with p, then also ¢ < c.

Proof. We prove the contrapositive. Suppose ¢ is not below c¢. Then by the previous
lemma ¢&c¢ = 0 and hence ¢&p = q& (c&p) = (¢&c)&p = 0&p = 0 so that
q|p. |

Definition 2.7.7. We call V simple if the only central effects are 0 and 1.
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Definition 2.7.8. Let V and W be sequential effect spaces. We define their direct
sum V & W to be the direct sum of the vector spaces with the order and sequential

product defined coordinatewise. We call a sequential effect space indecomposable
if it is not isomorphic to V & W for VW # {0}.

Proposition 2.7.9. A space is simple if and only if it is indecomposable.

Proof. We will show that V' is decomposable if and only if V' is not simple.

Suppose V' is not simple. Then there is a central effect ¢ # 0,1. Let V} :=c& V :=
{c&a ; a € V} and similarly Vo = ¢+ & V. By Proposition any a € V can
be written as a = a; + as where a; € V;. Also by that proposition, when we have
b = by + by split in the same way, then a& b = a1 &by + a2 & bs, and hence the
sequential product separates over Vi and V5. Hence V = V) @ V5.

For the other direction, suppose V' = V; @ V, then it is straightforward to verify
that (1,0) € V3 @ V4 is central, and hence that V' is not simple. |

Proposition 2.7.10. Let V be a finite-dimensional sequential effect space. There
exist unique (up to permutation) simple sequential effect spaces Vi, ...V, such that
VEVI®...eV,.

Proof. Let cq1,...,c, be the set of minimal non-zero central effects in V' and set
V; = ¢; & V. By Proposition we then indeed get V =V, @ ... ® V,,. Since the ¢;
are minimal, each of the V; must be simple.

Suppose there is another decomposition V= W7 & ... & Wy, into simple sequential
effect spaces W;. The 1y, are minimal central effects, and hence they must correspond
to the ¢; so that there is some permutation § such that V; = ¢; &V = Tws &V =
Wi(iy-

We will need the following proposition. Unfortunately the author does not know
of a simple proof of this fact using the sequential product. However, because V is a
Euclidean Jordan algebra, we can resort to the extensive literature on that subject.

Proposition 2.7.11. Suppose V is simple and let p € V' be any sharp effect. Then
p& V is again simple.

Proof. As V is a Euclidean Jordan algebra, it is also a JBW-algebra (Proposi-
tion [4.2.18) and hence Proposition 5.2.17 of Ref. [107] applies that states exactly
this result. |

2.8 Composite systems

Definition [2.2.3] only concerns single systems, but a physical theory must also describe
how multiple systems combine into a larger one. Let A and B denote a pair of
systems where the effects come from order unit spaces V4 and Vg. The composite
system A ® B is then represented by some space Vagp. Given states wa : V4 — R
and wp : Vg — R and effects a € V4 and b € Vg, we represent their composites
on the system A ® B by wa ® wg and a ® b (note that a priori the symbol ‘®’
does not have to be related to the regular tensor product of vector spaces). Since
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these are product states and effects, they represent non-interacting systems. The
probability of the outcome a ® b being observed on ws ® wg is therefore given by
(wa ®@wp)(a®b) =wa(a)wp(b). Similarly, when we have effects a; and ag on A and
effects b, and b; on B, the independence of their composites should be respected by
the sequential product: (a1 ® b1) & (a2 ® be) = (a1 & az) ® (b1 & be).

We will also assume that our composites satisfy local tomography. Recall from
Section[I.4] that local tomography demands that a state defined on a composite system
is completely determined by measurements on each separate component (the local
measurements). In other words, given states wy,ws € St(A ® B) we only have w;(a ®
b) = wa(a®Db) for all a € Eff(A) and b € Eff(B) when wy; = wy. As our systems satisfy
the no-restriction hypothesis, this requirement reduces to the equality dim(Vagp) =
dim(Vy4) dim(Vg) [23].

Definition 2.8.1. Let V and W be finite-dimensional sequential effect spaces. We
say that V @ W is a locally tomographic composite when there is a bilinear map
®@:VxW—->VW and

a) dim(V @ W) = dim (V') dim(W),
b) for all ay, ez € V, bl,bz eWw: (a1 ® bl)&(ag (39 bg) = (a1 &ag) & (bl&bg),

c) for all states w1 : V. — R, wg : W — R, there is a state w : VW — R
satisfying for alla € V and b € W: w(a®b) = wy(a)wz(b). We denote this state
by w1 ® ws.

For the remainder of this section we will let V' and W denote finite-dimensional
sequential effect spaces, and V ® W a locally tomographic composite of them.

Lemma 2.8.2. The bilinear map V x W — V @ W given by (a,b) — a®b is bijective.

Proof. Let {p;} be a basis of atomic effects of V and similarly let {g;} be a basis of
atomic effects in W. We will show that {p; ® ¢;} is linearly independent in V @ W
and hence the dimension of the image of the tensor product map is dim(V") dim(W).
Since dim(V @ W) = dim(V') dim (W) the map must then be bijective.

Reasoning towards a contradiction, suppose that the set {p; ® ¢;} is linearly de-
pendent. Without loss of generality we can then write p; ® ¢ = El j AijPi ® q; where
the \;; are some real numbers and the sum goes over all 4, j except i = j = 1. Let w;
and wy be arbitrary states on V respectively W and apply the map w; ® ws to both
sides to get

w1 (p1)w2(q1) Z)\wwl (pi)wa(q;) = wi(p1) Z)qng (q5) +Zw1(]9i) Z)\ijWQ(Qj)
] i>1 J

Rewrite this to

w1(p1) | wa(q) ZM]wz q) | = szz)‘w“& q5)

i>1
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This holds for all states w; and since states separate the effects, we hence have

pr | walar) = ) Aijwa(ay) | =D iy Aigwalgy).
j i>1
By assumption the p; are linearly independent and so this can only hold when
> Aijwa(gs) = w2(32; Aijgz) = 0 for all i > 1. This must again hold for all states wy
so that Zj Aijq; = 0. Since the ¢; are also linearly independent this shows that A;; = 0
when ¢ > 1. By interchanging the role of p; and ¢; we also get A\;; = 0 when j > 1,
so that the only nonzero value could be A1, which finishes the contradiction. [ |

Lemma 2.8.3. Let ¢ € V ® W be arbitrary. Then ¢ =, \ja; ® b; for some a; € V,
b; € W and \; € R.

Proof. By the previous proposition, the ‘pure tensors’ a ® b span V' ® W and hence
we can find a basis of V ® W that consists of pure tensors a; ® b;. |

Proposition 2.8.4. The following are true.
a) p®q eV ®W is atomic when p € V and ¢ € W are atomic.
b) ¢c®d is central in V@ W when ¢ € V and d € W are central.
Proof.

a) Because (p®q)& (p®q) = (p&p) @ (¢& q) = p® q, we see p ® ¢ is sharp. Let
c =), Aia; ®b; be an arbitrary element of V ® W, then using Lemma [2.4.11
(P®q)&c=73 Ailp&ai) @ (q&bi) =32 Aillp& aillllg & bil|(p ® q) = u(p @ q)
for some p € R. Now suppose 0 < ¢ < p® ¢q. Since p ® ¢ is sharp we get
c=(p®q)&c=pu(p®q), and hence p ® ¢ is indeed atomic.

b) c¢|a for alla € V and d|b for all b € W, and hence ¢ ® d|a ® b. Consequently
¢ ® d is compatible with all linear combinations of pure tensors, which span the
entirety of V@ W. |

Lemma 2.8.5. Suppose V is simple and let p,q € V be atoms. Then there is an
atom r € V such that r&p # 0 and r & g # 0.

Proof. If p& q # 0 then we are done (pick r = p), so assume that p and ¢ are
orthogonal and hence p|q. Consider W := (p + ¢) & V. If the only atoms in W are p
and ¢ then both p and ¢ are central in W and hence W would not be simple, which
contradicts Proposition 2.7.11] Hence, there is an atom r € W with r # p,q. If
r&p =0, then p+r < 1y = p+¢. As W has rank 2 by Corollary [2:4.20] this is
only possible when r = ¢, a contradiction. Hence r & p # 0 and by symmetry also
r&q#0. |

Proposition 2.8.6. Decompose V=F1&... o FE,and W = F} ®...P F,, with the
E; and F; simple as in Proposition @ Pick 1<k <nand1l<!<mand let
p1,--.,Pr be a maximal collection of orthogonal atomic effects in Ey, and q1,...,qs
a maximal collection of orthogonal atoms in Fj. Then (p; ® qj)z’:SL j—1 belong to the
same simple summand in V' ® W and they form a maximal collection of orthogonal
non-zero atomic effects in this summand.
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Proof. For each pair p; and p; pick an atom r;; such that r;; & p; # 0 and r;; & p; # 0,
which exists by Lemma Similarly, for every g and ¢; pick an atom 7, such that
r, & qr # 0 and 7, & ¢ # 0.

By Propositionrij ®ry,; and p; ®qy, are atomic for all 4, j, k, . By construction
we of course have 0 # (r;; &pi) ® (r, &aqr) = (ri; @ 11;) & (pi ® 