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Introduction
This thesis deals with the question of how quantum theory can be recovered from first
principles and how we can study quantum computation using diagrammatic methods.
As these are quite disparate topics, this thesis is divided into two parts that can be
read separately.

Part A: quantum theory from principles
In the early 20th century a series of discoveries was made that showed there was
something wrong with the classical description of the universe. It took a number of
decades for physicists to develop consistent mathematical theories that could explain
these strange new phenomena. At first there were the theories of matrix mechanics of
Heisenberg and wave mechanics of Schrödinger. These were later unified by von Neu-
mann into the mathematical description of quantum theory as we know it today [169]:
Hilbert spaces, unitary maps, complex numbers, tensor products, and so on.

This raises the question why these mathematical concepts should describe our reality
so well. Why do we need to describe a system by a Hilbert space? Why do we need to
use complex numbers instead of real numbers? Why are composite systems described
by a tensor product?

It is instructive to compare the situation of quantum theory to that of Einstein’s
relativity. Unlike quantum theory, relativity was originally not based on much physical
evidence. Instead, Einstein entertained a small number of physically compelling
principles: the constancy of the speed of light, the invariance of the laws of physics
on a chosen reference frame, and the equivalence of gravitational and inertial mass.
Using these physical principles he worked through several thought experiments and
managed to derive new mathematical laws of physics based on the mathematics of
Lorentz, Minkowski and Riemann. This provides an answer to the question of why we
would need to use, for instance, Lorentz transformations for the physical laws: “our
chosen physical principles demand it”.

The goal of this part of the thesis is to explore possible principles from which the
mathematics of quantum theory can be derived. As already mentioned, there is a
philosophical reason for doing so: if we can derive quantum theory from a small set
of physically compelling principles, then it shows our laws of nature could not have
been different without breaking one of these principles, hence providing a satisfying
answer to the question of why our universe ‘needs’ quantum mechanics. Another
related reason is that the search for principles allows us to see which parts of quantum
theory are specific to it, and which are ‘generic’ for a broad class of physical theor-
ies. For instance, the impossibility of cloning a quantum state has been shown to
hold in basically any non-classical alternative [23], while the Tsirelson bound on the
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strength of quantum correlations holds in any physical theory satisfying the principle
of information causality [176]. Lastly, if quantum theory is derivable from some set of
principles, then we know that any alternative or generalisation must abandon at least
one of these principles, which simplifies the search for such alternatives.

Much work has been done this last century on deriving quantum theory from
physically motivated principles, from von Neumann’s seminal quantum logic approach,
to the more modern approach of using generalised probabilistic theories (a short historic
overview of which is given in Section 1.5). In Part A of this thesis we add to these
results two new approaches to deriving quantum theory from first principles.

The first approach defines principles for how the process of sequential measurement
should behave. A crucial difference between classical and quantum theory is that in
the latter case a measurement generally affects the state of the system. As a result,
when doing a sequence of measurements, the order in which the measurements are
performed is relevant. Chapter 2 considers general physical theories that allow se-
quential measurement and then restricts the possibilities by assuming this process
is well-behaved in certain ways; namely that “compatible measurements should act
classically”. We find that this is sufficient to recover standard quantum theory. So
even though quantum theory is more complicated than classical theory because meas-
urements don’t necessarily commute, it is special in that sequential measurements are
still ‘nice’ in certain ways.

The second approach takes an entirely different route. In quantum theory we can
distinguish between ‘pure’ processes that represent in a sense the true processes of
nature, and ‘mixed’ processes that arise from interactions with the classical world,
for instance via measurements or noise. In Chapter 3 we consider general physical
theories where the subset of pure processes has certain properties one would expect
to hold for the true processes of nature in a ‘nice’ physical theory. Again we find that
this forces such theories to be part of standard quantum theory. The crux here is
that we define ‘pure process’ in a different way than is usual, by using the abstract
language of category theory.

Let us now outline in more detail the results of each of the chapters in Part A.
Chapter 1 presents the necessary preliminaries for this part of the thesis. We

cover the basic mathematics of quantum theory, and recall the definitions and some
important results regarding C∗-algebras, Euclidean Jordan algebras (EJAs), order
unit spaces and generalised probabilistic theories (GPTs). We end the chapter with a
brief history of results in the principled approach to quantum theory.

Then in Chapter 2 we present our first reconstruction of quantum theory. We
consider the operation of sequential measurement, where we first perform some meas-
urement a and then a measurement b, resulting in their sequential product a& b.
We find that a variation on the axioms for the sequential product of Gudder and
Greechie [95] can be operationally motivated. Using these axioms on the sequential
product we show that the space of effects of a finite-dimensional single system must be
a Euclidean Jordan algebra, a space generalising the space of observables of a quantum
system [124]. We furthermore show that the only EJAs that compose in a locally
tomographic manner are the C∗-algebras, hence recovering the standard systems of
quantum theory. In addition to recovering the space of observables of a quantum
system, we also show how to recover the Born rule and the Schrödinger equation.
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Chapter 3 also presents a reconstruction of quantum theory, but based on wholly
different assumptions. We cover the basics of effectus theory, a new approach to
categorical logic developed by Jacobs in 2015 [118]. It generalises the convex structure
of state and effect spaces that are required in a generalised probabilistic theory to
allow arbitrary effect algebras [77]. Since an effectus has much less structure than a
GPT it naturally leads to a different viewpoint, and hence different ideas as to which
notions are important. In particular, from effectus theory we get a new notion of pure
transformation, which is based on maps satisfying some particular universal properties.
We succeed in reconstructing finite-dimensional quantum theory by postulating some
reasonable assumptions on the set of pure transformations (namely, that they must
form a dagger-category).

The previous chapters introduce a variety of new assumptions for which it might
not a priori be clear that they are actually true in quantum theory. In Chapter 4 we
study JBW-algebras. These are to Euclidean Jordan algebras as what von Neumann
algebras are to finite-dimensional C∗-algebras, and can be seen as a generalisation of
infinite-dimensional quantum theory. We show that the assumptions regarding the
sequential product and pure maps hold in the category of JBW-algebras with positive
subunital maps. Along the way we find additional new structure in JBW-algebras:
the existence of a division operation on effects, a ‘polar-decomposition-like’ property,
and a useful characterisation of when elements operator commute.

Finally, in Chapter 5 we combine the results of the previous three chapters to present
a (partial) reconstruction of infinite-dimensional quantum theory using a combination
of assumptions from Chapters 2 and 3. Notably, we succeed in classifying the allowed
sets of scalars in a ω-effectus, which allows us to make a reconstruction that a priori
does not refer to the structure of the real numbers.

Part B: quantum software from diagrams
The idea that computers based on quantum-mechanical systems might outperform
‘classical’ computers has been around for a number of decades now [74]. It however
took until very recently for technical advances to proceed to the point where quantum
computers are actually powerful enough to perform computations that would take
impractically long on a classical computer [12] (and even those computations are not
necessarily useful as of yet). Since quantum computers are still very limited in the
number of qubits they possess, and will remain so for the foreseeable future, it is
necessary for computations to be performed as efficiently as possible. In this part of
the thesis we find several ways to reduce the number of qubits and operations needed
to implement a given quantum computation.

We approach quantum computation through a slightly unusual lens: the ZX-calculus.
The ZX-calculus is a language for reasoning about a class of diagrams called ZX-
diagrams developed by Coecke and Duncan in 2008 [48, 49]. These diagrams can
represent any linear map between qubits, and in particular any computation done on
a quantum computer. Their usefulness comes from the ability to graphically rewrite
ZX-diagrams while preserving the linear map they represent. This allows us to reason
about quantum computation in an efficient manner.
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In Chapter 6 we introduce the basics of quantum computation and we present the
ZX-calculus together with several useful rewrite rules. Then in the next two chapters
we study measurement-based quantum computation (MBQC). This is a model of
computation wherein some intricate resource state is prepared, and the computation
proceeds by measuring qubits in a specific pattern (unlike the circuit model of quantum
computation where the computation proceeds by applying unitary quantum gates to
a simple input state). Chapter 7 presents a new concrete model of MBQC that is
deterministic and approximately universal, while only requiring measurements in the
two Pauli bases X and Z. To our knowledge this was the first model to demonstrate
these properties. We verify the correctness of our model using the ZX-calculus. This
chapter doubles as a gentle introduction to the main concepts of MBQC.

In Chapter 8 we consider the most well-studied model of MBQC: the one-way
model [181]. In contrast to most work dealing with the one-way model, we do not
restrict our measurements to a single measurement-plane, but instead allow measure-
ments in all three principal planes of the Bloch sphere. This allows us to present a
general set of rewrite strategies that transform measurement patterns in several useful
ways, in particular reducing the number of qubits needed to implement a measurement
pattern. We show how these rewrites preserve the existence of gflow, a property that
ensures that the measurement pattern is deterministically implementable [35]. We
end this chapter with an efficient algorithm that allows any measurement pattern with
a gflow to be converted into a unitary quantum circuit.

In Chapter 9 we apply the results of Chapter 8 to the problem of quantum circuit
optimisation. We introduce a rewrite strategy based on the ZX-calculus that reduces
Clifford circuits to a new pseudo-normal form that has several desirable properties.
In addition, this rewrite strategy results in an ancilla-free T-count optimiser for
Clifford+T circuits that matches or outperforms every other existing method (at the
moment of writing) at this task. Finally, we discuss how this algorithm can be used
as a powerful circuit equality verifier.

The results in this part of the thesis show that the ZX-calculus can be used to
unify and improve several practical aspects of quantum computing: MBQC, circuit
optimisation and circuit equality verification. We expect the ZX-calculus to be useful
in a much wider array of problems than just the ones discussed in this thesis. In
Chapter 10 we present some preliminary results in the problems of CNOT optimisation,
circuit routing, Toffoli circuit optimisation, and quantum circuit simulation.

Writing style

Whenever a new term is defined, we print it in bold. Some Propositions, Lemmas,
and Theorems in this thesis are labelled with a specific reference, like for instance
Proposition 2.3.1. This denotes that I was not involved with originally proving the
statement. For completeness sake, or when the proof was given for a different setting,
we will still sometimes include a proof for these labelled statements.

Except for in this introduction, I will use ‘we’ to denote myself, including possible
coauthors, and the reader.
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Attribution & main results
This thesis is based on the following publications and preprints, some of which were
joint work with other people: [15, 68, 131–133, 209, 210, 216, 219–222]. Besides the
results presented in this thesis, I also worked on a number of other preprints and
publications during my PhD that did not fit into this thesis [44, 139, 143, 211, 217,
218, 223]. The list below states the main results of each chapter and which material
it was based on.

• Chapter 1: This is an introductory chapter to Part A of the thesis, and does
not contain new results.

• Chapter 2: We reconstruct quantum theory from assumptions on sequential
measurement. Mathematically, we show that a finite-dimensional order unit
space that is a sequential effect algebra [95] is a Euclidean Jordan algebra, and
that the only such spaces which have a tensor product are C∗-algebras. This
chapter is based on the solo-author paper Ref. [221], but expanded to include
more details and background. In particular, Sections 2.5, 2.7 and 2.9 include
new material for the thesis.

• Chapter 3: We reconstruct quantum theory from assumptions on pure maps.
Mathematically we show that a category of finite-dimensional order unit spaces
that has suitably interacting filters and compressions must embed into the
category of Euclidean Jordan algebras. This chapter is based on the solo-author
paper Ref. [220]. Section 3.2 contains basic theory on effect algebras that can
be found in for instance Ref. [77]. The proofs of Section 3.5 are adapted from
Bas Westerbaan’s PhD thesis [214].

• Chapter 4: We show that the category of JBW-algebras satisfies most of the
assumptions outlined in the previous chapters. New results include the existence
of filters and compressions in JBW-algebras, that the pure maps between JBW-
algebras form a dagger-category, and that the unit interval forms a normal
sequential effect algebra. These results generalise those for Euclidean Jordan
algebras originally presented in Ref. [209] — joint work with Bas and Bram
Westerbaan — and von Neumann algebras as presented in Bram Westerbaan’s
PhD thesis [212]. I am especially indebted to Bas and Bram Westerbaan for
Sections 4.5 and 4.6 as they helped prove most of the crucial results in these
sections. Finally, Section 4.7 appeared as Ref. [222]. For known results regarding
JBW-algebras I cite Ref. [107] where possible, with a few remaining results
coming from Ref. [4].

• Chapter 5: The main result is a reconstruction of infinite-dimensional quantum
theory from a combination of assumptions found in the previous chapters. New
results include a characterisation of ω-complete effect monoids, new sufficient
conditions for a convex sequential effect algebra to be isomorphic to a JB-algebra,
and a set of conditions for an ω-effect-theory to embed into the category of JBW-
algebras. Section 5.1 is based on Ref. [210], which is joint work with Bas and
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Bram Westerbaan. Section 5.2 is based on parts of Refs. [219] and [221] while
Sections 5.3 and 5.4 contain new material for this thesis.

• Chapter 6: This is mostly introductory material to the rest of the thesis, except
for a new diagrammatic proof of the Gottesman-Knill theorem that might be of
independent interest. Sections 6.1–6.4 are standard material on the ZX-calculus
and quantum computation. Wherever possible, the proofs and notation follow
Ref. [51]. The exposition on phase gadgets presented in Section 6.5 is based on
Ref. [133], co-authored with Aleks Kissinger. Sections 6.6–6.8 contain material
from Ref. [68] which is joint work with Ross Duncan, Aleks Kissinger and Simon
Perdrix. The diagrammatic proof of the Gottesman-Knill theorem in Section 6.8
is new.

• Chapter 7: We introduce a new model for measurement-based quantum com-
putation that was the first model to be deterministic, approximately universal,
and only require measurements in the Pauli X and Z bases. This chapter is
based on Ref. [131] which is joint work with Aleks Kissinger.

• Chapter 8: We find a set of rewrite rules for measurement patterns in the one-
way model that allow us to remove all non-input qubits measured in a Clifford
angle while preserving deterministic implementability. We find an efficient
algorithm for transforming any measurement pattern with gflow into an ancilla-
free quantum circuit. This chapter is based on Ref. [15] which is joint work with
Miriam Backens, Hector Miller-Bakewell, Giovanni de Felice and Leo Lobski.
That paper itself is a continuation of the results of Ref. [68], joint work with
Ross Duncan, Simon Perdrix and Aleks Kissinger, which included an earlier
version of the circuit extraction algorithm of Section 8.8. I can claim no credit
for the crucial Lemma 8.4.2 which was proved by Miriam Backens, based on
work by Simon Perdrix.

• Chapter 9: We find a simplification routine for ZX-diagrams that allows us
to reduce Clifford circuits to a new normal form with several desirable features,
while simultaneously acting as a state-of-the-art T-count optimisation algorithm
for ancilla-free circuits. Sections 9.2 and 9.5–9.7 are based on Ref. [133] while
Section 9.3 is based on Ref. [132] which both are joint work with Aleks Kissinger.
The new normal form for Clifford circuits in Section 9.4 is from Ref. [68].

• Chapter 10: This chapter mostly contains preliminary results and speculation,
and hence is not based on any concrete publications. The conjecture regarding
hardness of general circuit extraction in Section 10.1 resulted from discussions
with Niel de Beaudrap. The ideas behind Section 10.2 come from Aleks Kissinger
and were further developed by Arianne Meijer-van de Griend in her Master’s
research [130]. The hyperpivoting rule in Section 10.4 was jointly discovered
with Louis Lemonnier during his Masters’ research [143]. The results regarding
graphical proofs of certain Toffoli identities in Ref. [139] are joint work with
Aleks Kissinger and Stach Kuijpers.
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Quantum Theory from
Principles





Chapter 1

Reconstructions of quantum theory
This chapter contains the necessary preliminaries for Chapters 2–5. First, to remind
the reader what it is we wish to reconstruct from first principles, we will recall the basic
mathematical formulation of quantum theory in Section 1.1. Then we introduce two
useful generalisations of quantum mechanical systems in Section 1.2: C∗-algebras and
Jordan algebras. We recall some fundamental results relating ordered vector spaces to
these algebras in Section 1.3. A useful framework for dealing with abstract physical
systems is that of generalised probabilistic theories, which is given in Section 1.4.
Finally, we end the chapter with a brief history of results regarding the derivation of
quantum theory from first principles in Section 1.5.

The mathematics of this chapter can be found in basically any quantum mechanics
textbook that also deals with Jordan algebras, such as that of Alfsen and Shultz [4,
5] or Landsman [141].

1.1 The mathematics of quantum mechanics
In this section we will cover the basics of the mathematics of quantum theory: Hilbert
spaces, unitarity and self-adjoint operators as observables. We will assume the reader
is familiar with undergraduate linear algebra, analysis and point-set topology, in
particular being comfortable with complex numbers, the notion of (orthonormal) bases,
eigenvectors, diagonalisation, norms, completeness of metric spaces, convergence and
continuity.

1.1.1 Unitary quantum mechanics
The standard description of quantum theory is based on Hilbert spaces.

Definition 1.1.1. Let H be a vector space over F where F is either the complex
numbers C or the real numbers R. An inner product on H is a map 〈·, ·〉 : H×H → F
satisfying the following conditions for all a, b, c ∈ H and z ∈ F:

• Linearity: 〈a+ zb, c〉 = 〈a, c〉+ z〈b, c〉.

• Symmetry: 〈b, a〉 = 〈a, b〉, where z denotes the complex conjugation of the
complex number z.

• Positivity: 〈a, a〉 ≥ 0.
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• Definiteness: 〈a, a〉 = 0 iff a = 0.

Linearity and symmetry combine to make the inner product sesquilinear: 〈a, c+zb〉 =
〈a, c〉+ z〈a, b〉. An inner product induces a norm on H given by ‖a‖ :=

√
〈a, a〉. We

call H a (real or complex) Hilbert space when it has an inner product and is complete
in the induced norm of this inner product.

Remark 1.1.2. In finite-dimensional vector spaces, any topology induced by a norm
is complete, and hence any inner product makes a finite-dimensional vector space a
Hilbert space. Any finite-dimensional complex Hilbert space is linearly isomorphic to
Cn for some n ∈ N with the inner product of v =

∑
i xiei and w =

∑
j yjej (where ei

is the standard orthonormal basis) defined as 〈v, w〉 =
∑
i xiyj . A similar statement

holds for finite-dimensional real Hilbert spaces.

In (pure) quantum theory, a physical system is identified with a complex Hilbert
space H. The states of this system correspond to unit vectors of the Hilbert space,
up to a complex phase. I.e. a state is a vector v ∈ H satisfying 〈v, v〉 = 1, with two
normalised vectors v, w ∈ H corresponding to the same physical state when v = eiαw
for some α ∈ R. We will usually denote a state with Dirac notation: |ψ〉. We then
denote the inner product of two quantum states |ψ〉, |φ〉 by 〈ψ|φ〉.

Because states are unit vectors up to complex phase, it is often helpful to represent
states as 1-dimensional subspaces of a Hilbert space, or as the projectors corresponding
to these 1-dimensional subspaces, as those are in 1-to-1 correspondence with the
physical states of the system. For a state |ψ〉 we will denote by |ψ〉〈ψ| the projector
that projects onto the 1-dimensional space {z |ψ〉 ; z ∈ C}. I.e. |ψ〉〈ψ| |φ〉 = 〈ψ|φ〉 |ψ〉.
These projectors are examples of bounded operators.

Definition 1.1.3. Let (V, ‖·‖V ) and (W, ‖·‖W ) be normed vector spaces. Let A : V →
W be a linear map. We say A is bounded when there is a λ ∈ R≥0 such that
‖Av‖W ≤ λ‖v‖V for all v ∈ V . It is an isometry when ‖Av‖W = ‖v‖V for all v ∈ V .
We denote the set of bounded linear maps between V and W by B(V,W ), and we
define the shorthand B(V ) := B(V, V ).

For a finite-dimensional Hilbert space Cn all linear maps are bounded and hence
B(Cn) consists of all n×n complex matrices. We will therefore often write Mn(C) :=
B(Cn) to denote this correspondence. Similarly, we will write Mn(R) := B(Rn).

We can associate an adjoint to every bounded operator on a Hilbert space. This
allows us to define a couple of useful classes of linear maps.

Definition 1.1.4. Let A : H → K be a bounded linear map between (complex
or real) Hilbert spaces. There is a unique linear map A∗ : K → H that satisfies
〈Av,w〉 = 〈v,A∗w〉 for all v, w ∈ H. We call this map the adjoint of A. When
H = K and A∗ = A we say A is self-adjoint.

It is easy to see that a bounded linear map of Hilbert spaces A : H → K is an
isometry iff A∗A = idH . We say A is a unitary when both A and A∗ are isometries,
and hence A∗A = idH and AA∗ = idK .

As quantum states correspond to normalised vectors, unitary maps send quantum
states onto other quantum states. Unitary maps hence describe the possible dynamics
of a quantum systems: the way quantum states can change through time.
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For a given quantum system corresponding to a Hilbert space H we describe the
amount of energy of any given state by a self-adjoint map A ∈ B(H) called the
Hamiltonian. The expectation value of the energy of a state |ψ〉 is given by 〈ψ|A |ψ〉.
The Hamiltonian describes the evolution of a state through time by the Schrödinger
equation: |ψt〉 := e−itA |ψ〉. The linear map e−itA is unitary for all values of t ∈ R,
and hence |ψt〉 indeed remains a normalised vector, and hence a quantum state. Instead
of describing a state by a normalised vector |ψ〉 we can describe it by a projector |ψ〉〈ψ|
in which case the unitary evolution is given by e−itH |ψ〉〈ψ| eitH .

1.1.2 Mixed-state quantum mechanics
To complete the mathematical description of quantum mechanics, we need to include
a notion of measurement.

We will view a measurement as asking a question about a system: we interact with
the system in some manner to determine some property, and the outcome we get is the
answer to our question. The most basic type of question would be ‘Is the system in the
state |ψ〉?’ When our system is actually in the state |φ〉, the answer to this question
has a probability |〈ψ|φ〉|2 of being ‘yes’. The formula giving this probability is known
as the Born rule, and the probability |〈ψ|φ〉|2 is sometimes called the transition
probability from φ to ψ.

The Born rule might look a bit arbitrary — why is there an exponent of 2 there?
— but when we represent the states by their projectors, we can find a more elegant
formula. Write ρ = |φ〉〈φ| and E = |ψ〉〈ψ|. Then 〈ψ|φ〉|2 = tr(Eρ), where tr(·) denotes
the trace of the linear maps in the Hilbert space.

Definition 1.1.5. Let H be a (real or complex) Hilbert space, and fix an orthonormal
basis (ei) of H. Let A : H → H be a bounded linear map. Then we define trace of
A as the (potentially infinite) number1: tr(A) :=

∑
i〈Aei, ei〉.

We used the change of notation to E and ρ deliberately, as it turns out that the
most general type of measurement and state is not described by vectors on H.

Definition 1.1.6. Let A ∈ B(H) be a bounded operator on a Hilbert space. We say
A is positive and write A ≥ 0 when 〈Av, v〉 ≥ 0 for all v ∈ H. We extend this to
a partial order on B(H) by defining A ≤ B iff B − A ≥ 0. We write 1 ∈ B(H) for
the identity: 1v = v for all v ∈ H. We say A is an effect when 0 ≤ A ≤ 1. We write
Eff(H) := [0, 1]B(H) := {A ∈ B(H) ; 0 ≤ A ≤ 1}.

Proposition 1.1.7 ([171]). Let H be a (real or complex) Hilbert space. Then the
following statements are true.

• A positive map is self-adjoint.

• If A ∈ B(H) is positive, then we can find a unique positive map
√
A such that√

A
2 = A.

1The trace is only well-defined for trace class operators. We do not make this distinction here as
we are primarily interested in the finite-dimensional case where this is not an issue.
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• If A ∈ B(H) is positive, then tr(A) ≥ 0.

• If A ∈ B(H) is positive and B ∈ B(H) is arbitrary, then BAB∗ is positive. In
particular, if B is positive,

√
BA
√
B will again be positive.

It turns out that the most general type of ‘questions’ we can ask about states
are given by effects. Any measurement with k outcomes can be represented by a
set of effects E1, E2, . . . , Ek satisfying

∑
iEi = 1. Such a set of effects is called a

POVM (positive operator-valued measure). The probability that we observe outcome
i when the system is in a state ρ is given by tr(Eiρ). We note that this is indeed a
probability: recall that the trace satisfies tr(ABC) = tr(BCA), and hence tr(Eiρ) =
tr
(√
Ei
√
Eiρ

)
= tr

(√
Eiρ
√
Ei
)
≥ 0 as

√
Eiρ
√
Ei is a positive map. Furthermore,∑

i tr(Eiρ) = tr(
∑
iEiρ) = tr(1ρ) = tr(ρ) = 1, and hence the probabilities of all the

outcomes sum up to 1.
The state ρ = |ψ〉〈ψ| is what we call a pure state. It represents a state of maximal

information. We however could also be in a situation where we are unsure in which
state the system is. For instance, if we have a probability of pi to prepare the state
|ψi〉 then our final prepared state is described by a probability distribution over the
states |ψi〉, as ρ =

∑
i pi |ψi〉〈ψi|. The resulting ρ is an example of a density operator.

Definition 1.1.8. Let ρ ∈ B(H) be positive. We say ρ is a density operator when
tr(ρ) = 1.

The condition of having normalised trace replaces the condition of being a norm-
alised state. We see furthermore that for any POVM {Ei} that tr(Eiρ) still forms a
probability distribution.

A measurement applied to a state will in general change the state. If the measured
effect corresponds to a pure state E = |ψ〉〈ψ|, then the state ρ will be updated to
|ψ〉〈ψ| itself. However, for more general measurement effects the update rule is more
complicated, and depends on how the measurement process is actually implemented.
The most general type of state update can be described as follows [36, Chapter III.2]:
if the outcome corresponding to the effect E has been observed on a state ρ, then
there exist operators Ai ∈ B(H) satisfying

∑
iA
∗
iAi = E such that the state ρ has

been updated to ∑
i

AiρA
∗
i

tr(Eρ) . (1.1)

We divide here by tr(Eρ), the probability of observing the outcome associated to E,
in order to preserve the normalisation of the state. Note that we can only observe E
when tr(Eρ) 6= 0, so that this update rule is well-defined.

This update rule is so general that just knowing the effect E barely gives any
information on what the updated state ρ will be. Indeed, the application to ρ of any
completely-positive map (see next section) Φ satisfying Φ(1) = E can be described by
some set of Ai in this way. We can however gain a bit more insight into this generic
update rule by viewing it as consisting of a 3-layered process: a coarse-graining, an
actual update, and a unitary evolution. Let us consider this in more detail.

Write Φi(ρ) := AiρA
∗
i . Then, ignoring the normalisation, the updated state is∑

i Φi(ρ). We can then consider this outermost layer of the update rule as stating
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that we actually measured a more fine-grained set of effects {A∗1A1, A
∗
2A2, . . .}, one of

which was actually observed resulting in the updated state Φi(ρ), but then we ‘forgot’
the outcome of this more fine-grained measurement resulting in the more mixed state∑
i Φi(ρ). This process of ‘forgetting’ or ‘throwing on one heap’ all the outcomes is

called a coarse-graining. So let us now assume that no such coarse-graining happened
in order to find what lies at the core of the state update rule of quantum theory. Hence
assume that we have a single operator A satisfying A∗A = E. Ignoring normalisation,
the updated state is then AρA∗. We can take the polar decomposition of A in order
to write it as A = U

√
A∗A for some unitary U . Since A∗A = E we can write this as

A = U
√
E. The updated state is hence U

√
Eρ
√
EU∗. We see then that the update

rule consists of an update ρ 7→
√
Eρ
√
E, followed by a unitary evolution ρ′ 7→ Uρ′U∗.

A unitary evolution is reversible, and hence the ‘core part’ of the update rule is the
conjugation with

√
E. Stripping away the coarse-graining and the unitary update we

then arrive at what is known as the Lüders update rule:

ρ 7→
√
Eρ
√
E

tr(Eρ) (1.2)

Assume now that we are doing measurements in such a way that the state update
is implemented by the Lüders rule. Suppose we have observed the effect E1 on the
state ρ, resulting in the updated state

√
E1ρ
√
E1/ tr(E1ρ). The probability that we

now observe the outcome associated to an effect E2 is given by:

tr
(
E2

√
E1ρ
√
E1

tr(E1ρ)

)
=

tr
(√
E1E2

√
E1ρ

)
tr(E1ρ)

By using standard classical conditioning of probabilities we can then calculate the
combined probability of observing first the outcome associated to E1 and then that
of E2:

tr
(√
E1E2

√
E1ρ

)
tr(E1ρ) tr(E1ρ) = tr

(√
E1E2

√
E1ρ

)
.

We remark that
√
E1E2

√
E1 is again an effect, and that it produces precisely the same

statistics as first observing E1 and then observing E2. We hence are motivated to
define the sequential product E1 &E2 :=

√
E1E2

√
E1 [98]. This can be seen as an

update rule for effects. Given POVMs (Ei)ni=1 and (Fj)mj=1, the POVM corresponding
to the ‘sequential measurement’ where (Ei) is applied first followed by (Fj), is then
(
√
EiFj

√
Ei)n,mi=j=1. As compositions of linear maps are generally not commutative, so

that in general E1 &E2 6= E2 &E1, this joint POVM might give different measurement
statistics than the joint measurement (

√
FjEi

√
Fj)n,mi=j=1. So, unlike in classical

mechanics, the order in which we do measurements is important.

1.1.3 Composite systems
Let ρ be a density operator representing a state. The unitary evolution of ρ under a
unitary U is given by UρU∗. We see that UρU∗ ≥ 0, and tr(UρU∗) = tr(ρU∗U) =
tr(ρ1) = 1, so that this is again a density operator.
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Just as density operators are a generalisation of pure states to allow for a lack of
full information regarding the system, we can generalise unitary evolution to allow for
transformations that include uncertainty.

Definition 1.1.9. Let H and H ′ be (real or complex) Hilbert spaces. We say a linear
map Φ : B(H) → B(H ′) is positive when for all A ∈ B(H) with A ≥ 0 we have
Φ(A) ≥ 0 in B(H ′). A positive map is trace-preserving when furthermore for all
positive A we have tr(Φ(A)) = tr(A).

A positive trace-preserving map sends density operators to density operators and
hence seems like a good candidate for a more general type of transformation. This
however misses an important point that we have so far not discussed: composite
systems.

Definition 1.1.10. Let H1 and H2 be (complex or real) Hilbert spaces. Their vector
space tensor product has an inner product defined by setting 〈v1 ⊗ v2, w1 ⊗ w2〉 :=
〈v1, w1〉〈v2, w2〉 and extending by linearity. We define the tensor product of Hilbert
spaces H1 ⊗H2 to be the completion in the norm given by this inner product. This
gives a bilinear map Φ : B(H1)×B(H2)→ B(H1⊗H2) defined by Φ(A1, A2)(v1⊗v2) =
(A1v1)⊗ (A2v2). We will simply write A1 ⊗ A2 := Φ(A1, A2) for the resulting linear
map on B(H1 ⊗H2).

Given two physical systems, described respectively by the Hilbert spaces H1 and
H2, their composite system consisting of both systems at once is described by the
tensor product H1 ⊗H2. If the spaces Hi are in the states ρi (describing the state
by a density operator), then the state of the composite system is ρ1 ⊗ ρ2. These
states are called separable, as they describe non-interacting physical systems. We
however also have states that are entangled. These result from interactions between
the two separate systems, and hence those systems can no longer be seen as truly
separate. For instance, let |0〉 , |1〉 be the standard orthonormal basis of C2. Then the
(unnormalised) state |ψ〉 on C2 ⊗ C2 ∼= C4 given by |ψ〉 := |00〉+ |11〉 is entangled.

The existence of entanglement explains why it is not sufficient for a map between
operators of Hilbert spaces to be positive and trace-preserving: given such a map
Φ : B(H)→ B(H ′) it should also be valid to apply this map to a part of a larger system,
giving a map Φ⊗ idK : B(H ⊗K)→ B(H ′⊗K). Let for instance H = H ′ = K = C2

and take Φ to be the transpose map. Letting |ψ〉 be the entangled state above we
have |ψ〉〈ψ| = |0〉〈0| ⊗ |0〉〈0|+ |0〉〈1| ⊗ |0〉〈1|+ |1〉〈0| ⊗ |1〉〈0|+ |1〉〈1| ⊗ |1〉〈1| and hence
ρ′ = (Φ⊗ id)(|ψ〉〈ψ|) = |0〉〈0|⊗|0〉〈0|+ |1〉〈0|⊗|0〉〈1|+ |0〉〈1|⊗|1〉〈0|+ |1〉〈1|⊗|1〉〈1|. If we
now let v := − |01〉+ |10〉 in C2 ⊗C2 then we can easily verify that 〈ρ′v, v〉 = −2 and
hence that ρ′ is not positive. Hence, just sending positive maps to positive maps on
your own system is not enough: the map must also preserve positivity when applied
to part of a larger system.

Definition 1.1.11. Let Φ : B(H) → B(H ′) be a positive map. It is completely
positive when the maps Φ⊗ idn : B(H⊗Cn)→ B(H ′⊗Cn) are positive for all n ∈ N.

The physically realisable processes in quantum theory (at least in finite dimension)
are precisely the completely positive trace-preserving maps.
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Let Φ : Mn(C)→Mm(C) be a completely positive map between finite-dimensional
Hilbert spaces. Then there exist linear maps Vi : Cm → Cn for i = 1, . . . , nm such that
Φ(A) =

∑nm
i=1 ViAV

∗
i for all A ∈Mn(C). If Φ is trace-preserving then we furthermore

have
∑
i ViV

∗
i = 1. This representation of Φ is called a Kraus decomposition of Φ,

and the maps Vi are called Kraus operators. The minimal number of non-zero maps
Vi that are needed to represent Φ is called the Kraus-rank of Φ. In particular, the
completely positive maps with Kraus-rank 1 are Φ(A) = V AV ∗ for some V : Cm → Cn.
If Φ is furthermore trace-preserving then we must have V V ∗ = 1, so that V ∗ is an
isometry. Hence, when furthermore n = m, the only trace-preserving Kraus-rank 1
maps are given by a unitary V .

Another useful result concerning completely positive maps is Stinespring’s dila-
tion theorem [195]. In finite dimension, this states that for any trace-preserving
completely positive map Φ : B(H) → B(H ′) we can find a Hilbert space K and an
isometry V : H → H ′⊗K such that Φ(A) := (idH′ ⊗ trK)(V AV ∗). When considering
generalised probabilistic theories, or other abstracted versions of quantum theory, a
Stinespring dilation of a map (or analogous constructions in their respective settings)
is often called a purification, as it ‘purifies’ the mixed map Φ to a ‘pure’ isometry
V .

1.2 Operator algebras
Our introduction to quantum theory in the previous section focused on the states of
a system. Instead, we can focus on the sort of properties that can be measured of a
system: the observables2.

We already saw an example of an observable, the Hamiltonian, which observes
the amount of energy in a system. Mathematically we identify observables with the
self-adjoint maps of the Hilbert space.

Early on in the development of the mathematics of quantum theory it was realised
that it would be useful to study spaces of observables abstractly as a particular type of
algebra. These algebras are now known as operator algebras. The most well-known
type of operator algebra is a C∗-algebra.

Definition 1.2.1. Let (A, ‖·‖, ·, ∗) be a complex normed vector space with a bilinear
associative operation · and a sesquilinear involution ∗ (i.e. (a∗)∗ = a, (a+b)∗ = a∗+b∗
and (za)∗ = za∗ for all a, b ∈ A and z ∈ C). We say A is a C∗-algebra when it
satisfies the following conditions.

• It is complete in the norm ‖·‖.

• (a · b)∗ = b∗ · a∗ for all a, b ∈ A.

• ‖a∗ · a‖ = ‖a‖‖a∗‖.
2For physicists this shift in focus can be framed as a change from the Schrödinger picture to the

Heisenberg picture, while a computer scientist might describe it as a change of description from
state-transformers to predicate-transformers.
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Example 1.2.2. LetH be a complex Hilbert space. For a bounded operatorA ∈ B(H)
define the operator norm as ‖A‖ := inf{λ ∈ R≥0 ; ‖Av‖ ≤ λ‖v‖ for all v ∈ H}.
Then B(H) with the operator norm, composition of linear maps, and adjoint forms a
C∗-algebra. Furthermore, let A ⊆ B(H) be any subspace of bounded linear maps that
is closed in the operator norm and under taking adjoints. Then A is a C∗-algebra.

The converse of the above result is also true.

Theorem 1.2.3 (Gelfand-Naimark [82]). Let A be a C∗-algebra. Then there exists
a complex Hilbert space H and an injective linear map φ : A → B(H) that is a ∗-
homomorphism, i.e. φ(a · b) = φ(a)φ(b) and φ(a∗) = φ(a)∗, and an isometry, ‖φ(a)‖ =
‖a‖.

In finite dimension, C∗-algebras are particularly simple.

Theorem 1.2.4 ([128]). Let A be a finite-dimensional C∗-algebra. Then there exist
(unique) numbers n1, . . . nk ∈ N>0 such that A is isomorphic as a C∗-algebra to
Mn1(C)⊕ · · · ⊕Mnk(C), where ‘⊕’ denotes the direct sum of algebras, consisting of
the Cartesian product of the spaces with pointwise operations.

Interpreting matrix algebras as quantum systems, we can view the direct sum in the
above theorem as a ‘classical mixture’ of quantum systems, where we are allowed to
prepare any of the quantum system Mni(C). Hence, in finite-dimension, a C∗-algebra
essentially describes a quantum system just like a Hilbert space would.

As remarked, observables correspond to self-adjoint operators. But a C∗-algebra ne-
cessarily contains non-self-adjoint, and hence ‘non-physical’ elements. This is because
of two reasons. First, for any A ∈ B(H) self-adjoint we have (iA)∗ = −iA (where i
is the imaginary unit), and hence iA is not self-adjoint when A 6= 0. In other words,
the space of self-adjoint maps does not form a complex vector space. Second, the
product AB of self-adjoint A,B ∈ B(H) is self-adjoint if and only if AB = BA.

In order to get an algebra that consists solely of the ‘physical’ operators, i.e. self-
adjoint maps, we need to resolve these two problems. The first is easily solved by
working with real vector spaces instead of complex ones, but for the second problem
we will need a different algebra operation.

The crucial observation, made by Jordan and von Neumann, is that self-adjoint
maps stay self-adjoint when you square them. As self-adjoint maps also form a real
vector space, we can then define a binary operation

A ∗B := 1
2((A+B)2 −A2 −B2) = 1

2(AB +BA).

This product has quite different properties than the usual composition of linear maps.
Like the usual composition, it is bilinear, but unlike composition, it is commutative
(which is easily seen) and not associative. Let us demonstrate this last point with an
example. Take

A =
(

1 0
0 0

)
, B =

(
0 0
0 1

)
, C =

(
0 1
1 0

)
,

then (A ∗B) ∗ C = 0 while A ∗ (B ∗ C) = 1
4C.
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The product ∗ however does satisfy a weaker form of associativity. For any A,B ∈
B(H) we have A ∗ (B ∗A2) = (A ∗B) ∗A2 (note that A2 = A ∗A).

Definition 1.2.5. Let (E, ∗) be a vector space with a bilinear commutative product ∗.
We say E is a Jordan algebra when ∗ satisfies the Jordan identity a∗(b∗(a∗a)) =
(a ∗ b) ∗ (a ∗ a) for all a, b ∈ E.

Example 1.2.6. Let (A, ·) be an associative algebra (such as a C∗-algebra). Then
the product

a ∗ b := 1
2(a · b+ b · a) (1.3)

makes (A, ∗) a Jordan algebra. We will refer to this product as the special Jordan
product.

Our goal was to make an algebra of self-adjoint elements, but the above example
shows that any C∗-algebra is a Jordan algebra. We will hence require additional
restrictions.

Definition 1.2.7. Let (E, ∗) be a Jordan algebra over the real numbers. It is formally
real when for any finite set of elements a1, . . . , an ∈ E the sum

∑n
i ai ∗ ai = 0 iff

ai = 0 for all i. It is Euclidean when it is a finite-dimensional real vector space that
has an inner product satisfying 〈a ∗ b, c〉 = 〈b, a ∗ c〉 for all a, b, c ∈ E.

We will often abbreviate Euclidean Jordan algebra to EJA.
As it turns out, in finite dimension, being formally real and being Euclidean are

equivalent, although showing this is highly non-trivial [73, Proposition VIII.4.2].

Example 1.2.8. Let A be a C∗-algebra, and denote by Asa its set of self-adjoint
elements. Then Asa equipped with the special Jordan product of Eq. (1.3) is a formally
real Jordan algebra. If A is finite-dimensional, so that we can view it as a subspace of
a B(H) with H finite-dimensional, then Asa is a Euclidean Jordan algebra with inner
product 〈a, b〉 := tr(ab).

C∗-algebras are complex vector spaces, but we can also define a real analogue, which
we can see as closed subspaces of real Hilbert spaces. The space of self-adjoint elements
of real C∗-algebras, in particular Mn(R)sa, also forms a formally real Jordan algebra.

The quaternions H are a division algebra (i.e. a ‘non-commutative field’) which
can be seen as a 4-dimensional vector space over the real numbers with a basis 1, i, j, k
satisfying the identities i2 = j2 = k2 = ijk = −1. For a quaternion w = a+bi+cj+dk
we define its conjugate as w := a− bi− cj − dk. We can then define a quaternionic
Hilbert space similar to how we defined a complex Hilbert space. The set of bounded
maps on an n-dimensional quaternionic Hilbert space is then Mn(H), the set of n× n
quaternionic matrices. It turns out that the space of self-adjoint quaternionic matrices
Mn(H)sa is also a formally real (and Euclidean) Jordan algebra.

The octonions O form a division algebra, which has dimension 8 over the real
numbers. Unlike the real, complex and quaternionic number systems, the octonions
are not associative. We can also define an analogue to Hilbert spaces with octonions,
which allows us to define Mn(O)sa. It turns out that this is a Jordan algebra if and
only if n ≤ 3.
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Jordan, von Neumann and Wigner introduced (formally real) Jordan algebras
(then called ‘r-number systems’), because they hoped it would lead to alternatives to
quantum theory. They were however disappointed to learn that the above examples al-
most exhaust the possibilities. In fact, there is only one other type of finite-dimensional
formally real Jordan algebra.

Definition 1.2.9. Let n > 1 and let H ∼= Rn be the real n-dimensional Hilbert space.
Set Vn = H⊕R. Equip this space with the product (v, r)∗(w, s) := (sv+rw, 〈v, w〉+rs),
so that for example the product of vectors v, w ∈ H is the scalar 〈v, w〉. Then (Vn, ∗)
is a formally-real Jordan algebra that we call the n-dimensional spin factor.

We have already encountered a few examples of spin factors. For M2(C)sa an
orthonormal basis is given by the three Pauli matrices σ1, σ2 and σ3 in combination
with the identity matrix I. Letting H be the restriction of M2(C)sa to the linear
span of the Pauli matrices and noting that σi ∗ σj = δijI we see that as a Jordan
algebra we indeed have M2(C)sa ∼= H ⊕R = V3. Similarly we also have M2(R)sa ∼= V2,
M2(H)sa ∼= V5 and M2(O)sa ∼= V9.

Theorem 1.2.10 (Jordan-von Neumann-Wigner [124]). Let A be a finite-dimensional
formally real (or equivantly, Euclidean) Jordan algebra. Then A ∼= A1 ⊕ · · ·Ak where
each Ai is equal to one of the following non-isomorphic Jordan algebras.

• The set of real numbers R.

• The algebras Mn(F )sa where F = R, F = C or F = H for n ≥ 3.

• The spin factors Vn for n ≥ 2.

• The exceptional Jordan algebra M3(O)sa.

We revisit Euclidean Jordan algebras and (their generalisation) JBW-algebras in
detail in Chapter 4.

1.3 Ordered vector spaces
In the previous section we considered abstractions of the algebraic structure of B(H).
Let us now abstract its order structure.

Definition 1.3.1. An ordered vector space (V,≤) is a real vector space with a
partial order ≤ such that for all a, b, c ∈ V :

• If a ≤ b, then also a+ c ≤ b+ c.

• If a ≤ b, then also λa ≤ λb for λ ∈ R≥0.

We call an element a ∈ V positive when a ≥ 0. A positive map f : V → W is a
linear map between ordered vector spaces such that if a ≥V 0, then f(a) ≥W 0.

Example 1.3.2. The set of self-adjoint maps on a Hilbert space B(H)sa is an ordered
vector space with the order as defined in Definition 1.1.6.
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Example 1.3.3. Let E be a formally real Jordan algebra. We say a ∈ E is positive
and write a ≥ 0 when ∃b : a = b ∗ b. We extend this to a partial order via a ≤ b iff
b− a ≥ 0. This makes E into an ordered vector space (although showing that this is
the case is actually quite non-trivial).

Remark 1.3.4. In an ordered vector space V , a ≤ b if and only if b − a ≥ 0. As a
result the set of positive elements of an ordered vector space completely determines the
partial order. Consequently, a positive map f : V →W is automatically monotone:
if a ≥V b then f(a) ≥W f(b).

Remark 1.3.5. The set of positive elements of an ordered vector space forms a cone:
a subset C ⊆ V that is closed under addition and positive scalar multiplication. This
cone is furthermore proper, meaning that C ∩ (−C) = {0}. Conversely, any proper
cone determines a partial order that makes V into an ordered vector space.

The Koecher–Vinberg theorem is an important result that links the theory of ordered
vector spaces to that of Jordan algebras. Before we state it we recall a few more
definitions.

Definition 1.3.6. Let V be an ordered vector space. An order isomorphism is
a linear map Φ : V → V such that Φ(a) ≥ 0 ⇐⇒ a ≥ 0 for all a ∈ V (such a
map is necessarily bijective). Suppose V has a given topology (for instance, if V is
finite-dimensional, the unique topology compatible with the linear structure). We
say V is homogeneous when for every a, b ≥ 0 in the interior of the positive cone
we can find an order isomorphism Φ : V → V such that Φ(a) = b (i.e. when the
order-automorphism group acts transitively on the interior of the positive cone). We
say V is self-dual when it has an inner product 〈·, ·〉 such that 〈a, b〉 ≥ 0 for all b ≥ 0
if and only if a ≥ 0 (i.e. when the inner product determines the order).

Theorem 1.3.7 (Koecher–Vinberg [136, 203]). Let V be a finite-dimensional ordered
vector space that is homogeneous and self-dual. Then V is order-isomorphic to a
formally real Jordan algebra. Conversely, any finite-dimensional formally real Jordan
algebra is homogeneous and self-dual.

It turns out that for spaces that have a particularly simple positive cone, the
requirement of self-duality is even superfluous.

Definition 1.3.8. Let C be a positive cone of an order unit space V . We call F ⊆ C
a face of C if F is a convex set such that whenever λa+ (1− λ)b ∈ F with 0 < λ < 1
for some a, b ∈ C, then a, b ∈ F . The face {λp ; λ ∈ R≥0} of C defined by an extreme
point p ∈ C is called an extreme ray. A face of C is called proper when it is
non-empty and not equal to C. If the only proper faces of a cone are extreme rays
the cone is strictly convex.

Proposition 1.3.9 ([117]). Let V be a finite-dimensional ordered vector space with
a strictly convex homogeneous positive cone, then V is order-isomorphic to a spin
factor, i.e. V ∼= H ⊕ R where H is a real finite-dimensional Hilbert space with the
order on H ⊕ R given by (v, t) ≥ 0 ⇐⇒ t ≥

√
〈v, v〉. Consequently, V is self-dual3.

3We attribute this result to Ref. [117], but it was probably already known by Vinberg in 1967 [203]:
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Most of the time, we will require a bit more structure than just an order on a vector
space.

Definition 1.3.10. Let V be an ordered vector space. For a positive u ∈ V we write
[0, u]V := {v ∈ V ; 0 ≤ v ≤ u}. We call an element u ∈ V an order unit when for
all a ∈ V we can find n ∈ N such that −nu ≤ a ≤ nu, or equivalently, when the unit
interval [0, u]V spans V . We call an order unit u Archimedean when a ≤ 1

nu for
all n ∈ N>0 implies a ≤ 0.

An ordered vector space V is an order unit space (OUS) when it has an Archimedean
order unit. We will write 1 ∈ V for the designated order unit of the order unit space
V .

Remark 1.3.11. Some authors define an order unit space as any ordered vector space
with an order unit, and our definition is then referred to as an Archimedean order
unit space. Since we will usually have Archimedean order units we will refer to this
weaker type of space as a ‘vector space with an order unit’.

Definition 1.3.12. Let (V, u) be a vector space with order unit u. An element a ∈ V
is an effect when 0 ≤ a ≤ u and hence a ∈ [0, u]V . A state is a positive map
ω : V → R satisfying ω(u) = 1. We will denote the set of states of an order unit space
by St(V ).

Example 1.3.13. The set of self-adjoint maps of a Hilbert space B(H)sa is an order
unit space. The identity 1 is an Archimedean order unit. If H is finite-dimensional4
all states ω : B(H)sa → R are given by a density operator ρ via ω(A) = tr(ρA).

There are different equivalent ways to define an OUS.

Proposition 1.3.14 ([5, Chapter 1]). Let V be a vector space with order unit u. The
following are equivalent.

a) V is an order unit space (i.e. u is Archimedean).

b) The expression ‖a‖ := inf{r ∈ R≥0 ; −ru ≤ a ≤ ru} defines a norm, and the
set of positive elements is closed in this norm.

c) The set of states order-separate the effects: for all a, b ∈ [0, u]V , if ω(a) ≤ ω(b)
for all states ω then a ≤ b.

Definition 1.3.15. Let (V, 1) be an order unit space. The order-unit norm is
defined as ‖a‖ := inf{r ∈ R≥0 ; −r1 ≤ a ≤ r1}. We say V is complete when it is
complete in the topology induced by the order-unit norm.

Note that for B(H)sa the order-unit norm coincides with the operator norm.
An important result in the theory of order unit spaces is Kadison’s representation

theorem. Before we state it we will give one more important class of order unit spaces.
strictly convex homogeneous cones are precisely those cones that are of rank (in the sense of
Vinberg) at most 2, and Vinberg gives a complete classification of non-self-dual homogeneous
cones of rank 3, seemingly implying that he knows there are no non-self-dual homogeneous cones
of rank 2. Nevertheless, as far as the author is aware, Vinberg has never formally proved this
result.

4In infinite dimension we need the further assumption that the state is normal.
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Definition 1.3.16. Let X be a compact Hausdorff space. We denote by C(X) the
space of continuous functions f : X → R. This space has a partial order given by
pointwise comparison. This partial order makes C(X) into an OUS with the order
unit given by the constant function 1(x) = 1. Additionally, C(X) is a commutative
associative algebra by pointwise multiplication: (f · g)(x) := f(x)g(x). Note that if
f, g ≥ 0 that then f · g ≥ 0.

Theorem 1.3.17 (Kadison’s representation theorem [126]). Let V be a complete
order unit space with a bilinear operation · that preserves positivity: a · b ≥ 0 when
a, b ≥ 0. Then there exists a compact Hausdorff space X and a linear bijection
Φ : V ∼= C(X) that is both an order-isomorphism and an algebra-isomorphism.

Note that this theorem does not require the multiplication to be commutative nor
associative, and that hence these properties follow for free.

1.4 Generalised probabilistic theories
We will in this section present the basic concepts of generalised probabilistic theories
(GPTs). This name was coined by Barrett in 2007 [23], describing a framework based
on the work of Hardy [109] (although similar ideas had been considered earlier, see
for instance Refs. [71, 101, 145])5.

Although there is no consensus on what exactly the mathematical description of
a GPT should be, the main idea that unifies all versions is that ultimately any
physical theory must describe what outcomes can be expected when an experiment is
performed. An ‘experiment’ in the GPT framework is divided into three parts. First,
a given system is prepared in some state. Then, some transformation is applied to the
system, potentially changing the state. And finally, the system is measured, giving a
classical outcome. Every possible outcome of the measurement has a probability of
occurring, and this gives a probability distribution of the measurement outcomes over
the transformed input state.

As an illustration, the system could be a molecule, with the preparation stage
preparing it in the ground state. The transformation could be the exposure of the
molecule to a laser, and the measurement outcome could be whether we detect a
photon emitted from the molecule.

Let us formalise these ideas a bit more. We will label the physical systems as
A,B,C, . . . and we associate to each system A a set of states St(A) that we can
prepare the system in. A transformation T : A → B from system A to B is then a
map T : St(A)→ St(B) that transforms every given state into another one. Finally, we
represent measurements by a collection of outcomes a1, a2, . . . , an that we call effects,
collected in the set Eff(A). Given a state ω ∈ St(A) and a measurement consisting
of effects ai ∈ Eff(A) we have probabilities ω(ai) ∈ [0, 1] that tell us the likelihood of
observing the outcome associated to the effect ai when the system A is prepared in

5Some authors use the term ‘operational probabilistic theory’ [38, 39]. Although one could argue
that there are differences, with operational probabilistic theories relying more on a graphical
description and the existence of composite systems, we will here conflate operational probabilistic
theories with GPTs.
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the state ω. So for a1, . . . , an to be a valid measurement, we should have
∑
i ω(ai) = 1

for all states ω ∈ St(A).
Remark 1.4.1. Following the literature on operator algebras we write ω(a) for the
probability of observing a when the system is in the state ω. Note that in the literature
on GPTs it is more common to write this the other way around: a(ω). This notation
is useful in the Schrödinger picture where we view operations as modifying the state
of the system. We will however focus more on the observables of a system, and hence
it will be more convenient to adopt the Heisenberg picture wherein we view operations
as modifying the effects.

When we have a procedure to prepare one of ω1, ω2 ∈ St(A), we can also prepare a
mixture by flipping a biased coin and preparing either ω1 or ω2. From the operational
perspective, this results in a mixture of the measurement outcomes we will observe. For
a given probability t ∈ [0, 1] we will call this mixed state tω1+(1−t)ω2. This structures
makes the state space St(A) a convex set. For any effect a ∈ Eff(A) we should then
have (tω1 + (1− t)ω2)(a) = tω1(a) + (1− t)ω2(a). Analogously, we allow mixtures of
effects ta1 + (1− t)a2, and we require that ω(ta+ (1− t)a2) = tω(a) + (1− t)ω(a).

When two states have exactly the same outcome probabilities for every possible
measurement, then there is no way to physically detect any difference between the
states. We say that these states are then operationally equivalent. Similarly, two
effects are operationally equivalent when they give the same outcome probabilities
on every possible state they can be tested against. A common assumption in the
GPT framework, that we will make here as well, is that two states or effects that are
operationally equivalent are in fact equal. So if ω1, ω2 ∈ St(A) satisfy ω1(a) = ω2(a)
for all a ∈ Eff(A) then ω1 = ω2. Mathematically, we say that the effects separate
the states. Similarly, the states separate the effects: if we have ω(a1) = ω(a2) for
some a1, a2 ∈ Eff(A) for all ω ∈ St(A), then a1 = a2. We can now introduce a useful
concept.
Definition 1.4.2. Let A be a system. It’s associated vector space VA is defined
to be the space of formal linear combinations

∑
i λiai where ai ∈ Eff(A) and λi ∈ R,

modulo equality among all states:∑
i

λiai ∼
∑
j

µja
′
j ⇐⇒

∑
i

λiω(ai) =
∑
j

µjω(a′j) for all ω ∈ St(A)

Because the states separate the effects, the effects of A embed into its associated
vector space: Eff(A) ⊆ VA, and because the states act affinely on the effects, i.e. ω(ta1+
ta2) = tω(a1) + (1 − t)ω(a2), this embedding preserves the convex structure of the
effects. We hence consider the effect space Eff(A) as simply a convex subset of
the vector space VA. This allows us to define expressions such as a + b for effects
a, b ∈ Eff(A), where we take a+ b to be an element of VA.

We will posit the existence of two ‘trivial’ effects that we will call 0 and 1. The
first is the effect that is never successful and thus has ω(0) = 0 for all states ω. The
second is the opposite, always being successful: ω(1) = 1. These effects always exist
for any system, because we can just decide to make a measurement device that doesn’t
interact with the state, and simply always outputs “success” or “fail”. Alternatively,
we can interpret the effect 1 as the effect that measures “Does the system exist?”.
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Remark 1.4.3. The existence of an effect like 1, a ‘deterministic effect’, in every
system is related to the theory obeying causality, or equivalently, not allowed signalling
from the future [38, 47]. In categorical quantum mechanics the effect 1 functions as a
‘discard’ map that is interpreted as throwing away a system [51].

The effect 0 is interesting because it allows us to scale down effects: pe := pe+(1−p)0.
This can be interpreted as doing the measurement e, but deciding with probability
1 − p to throw away the outcome and returning false. In the vector space VA, the
effect 0 corresponds to the zero vector. As a result we can extend the function
ω : Eff(A)→ [0, 1] for any ω ∈ St(A) to a linear map ω : VA → R. Consequently, VA
is in fact an ordered vector space: we set v ≥ w when ω(v) ≥ ω(w) for all ω ∈ St(A).
Furthermore, 1 is an order unit of VA. We remark then that the states ω ∈ St(A) are
also states of VA in the sense of Definition 1.3.12.

Another assumption we will make in our version of the GPT framework is that
effects allow negation. Given an effect a we can consider its negation which returns
true if and only if A returns false. We will denote this effect as a⊥, pronounced “a
perp”, and its probabilities are given by ω(a⊥) = 1 − ω(a). We will sometimes also
refer to the negation as 1− a.

Remark 1.4.4. The existence of negations of effects is closely related to the ability
to ‘coarse-grain’ measurements. Given a measurement of a state ω with n outcomes
defined by the effects a1, . . . an we have a probability distribution with probabilities
{ω(ak)}. A coarse-graining of this measurement is the same measurement where we
conflate some of the outcomes. E.g. we can define a measurement with n−1 outcomes
by identifying the outcomes of an−1 and an to get an outcome with probability
ω(an−1) + ω(an). The resulting effect is then often denoted by an−1 + an so that
ω(an−1 + an) = ω(an−1) + ω(an). When we identify all the outcomes, except for a1,
then that outcome has a probability of

∑n
k=2 ω(ak) = 1− ω(a1) and hence this ‘sum

of effects’ acts as the negation of a1.

Let us now summarise our version of the GPT framework.

Assumption 1.4.5 (GPT framework). For every system A we have an associated
ordered vector space VA with order unit 1 such that Eff(A) ⊆ [0, 1]VA is a convex
subset containing both 0 and 1 and a⊥ := 1 − a when a ∈ Eff(A). The states St(A)
are a convex subset of the states of VA that contains enough states to separate the
elements of VA, i.e. if ω(v) = ω(w) for all ω ∈ St(A) then v = w.

Almost all work that deals with GPTs furthermore assumes that the associated
vector spaces are finite-dimensional. An operational assumption that guarantees this
restriction (and in fact is equivalent to it) is the assumption of finite tomography:
that for every system A we can find a finite set of effects a1, . . . ak such that ω1(aj) =
ω2(aj) for all j = 1, . . . k if and only if ω1 = ω2. If a system does not satisfy finite
tomography it is impossible to (approximately) characterise a state with a finite
number of experiments, and hence this assumption definitely makes sense from an
operational viewpoint.

Let us discuss one more topic in the framework of GPTs: composite systems and
local tomography. When given two independent systems A and B we can consider
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them as parts of a composite system that we will denote by A ⊗ B. If A is in the
state ωA ∈ St(A) and B is in the state ωB ∈ St(B), then the system A ⊗ B is in
the state ωA ⊗ ωB . But A⊗B can also have states that do not arise in this manner
(as is the case with entangled states in quantum theory). We similarly can make
composites a ⊗ b of effects in Eff(A) and Eff(B). These composites need to satisfy
(ta1 + (1− t)a2)⊗ b = t(a1 ⊗ b) + (1− t)(a2 ⊗ b) for operational reasons. This leads
to a bilinear map VA × VB → VA⊗B similar to the bilinear map for tensor products
of vector spaces. We say the composite A⊗B is locally tomographic when every
state of A⊗B is fully characterised by local measurements on the subsystems A and
B, i.e. when for ω1, ω2 ∈ St(A⊗ B) we have ω1(a⊗ b) = ω2(a⊗ b) for all a ∈ Eff(A)
and b ∈ Eff(B) if and only if ω1 = ω2. If the systems satisfy finite tomography, so that
the associated vector spaces are finite-dimensional, local tomography is equivalent
to dimVA⊗B = dimVA dimVB. Interestingly, regular quantum theory (described
by complex C∗-algebras) satisfies local tomography, whereas ‘real’ quantum theory
(where systems are real C∗-algebras) does not [22].

1.5 A history of first principles for quantum theory
In order to put the results of this thesis into context, we will give a brief overview
of previous work in the topic of first principles for quantum theory, highlighting the
most commonly used types of assumptions.

Foundational results — The starting point of the field of reconstructions of
quantum theory can be considered to be von Neumann’s seminal 1932 book Mathem-
atical Foundations of Quantum Mechanics [169], as from that point onwards it was
clear which mathematics actually needed to be explained from first principles. In
these early days, much work was done on axiomatic quantum theory in the hope that
this would lead to some natural generalisation. It turned out however that such gener-
alisations are elusive. For instance, Wigner’s theorem [224] showed that the standard
unitary maps naturally arise as symmetries of quantum states, while Stone’s theorem
on one-parameter unitary groups [196] showed that any unitary time-evolution must
be implemented by a Hamiltonian, reconstructing the basic form of the Schrödinger
equation. Jordan, von Neumann and Wigner studied what later became known as
Jordan algebras as a generalisation of the space of observables of a quantum system.
To their disappointment they discovered that Jordan algebras are in fact very close
to regular quantum theory indeed [124], with almost all formally real Jordan algebras
embedding into the set of bounded operators of a Hilbert space. Another later result
along this same line is Gleason’s theorem [87] which showed that measures on the
space of projections of a Hilbert space are necessarily characterised by a bounded
operator, just like in the Born rule of quantum mechanics.

Quantum logic — The need for a complete axiomatic reconstruction of quantum
theory was outlined by Mackey in 1957 [147]. He wished to do so using the quantum
logic approach of von Neumann and Birkhoff [25] that takes the orthomodular poset
P (H) of projections on a Hilbert space H as the central concept. This approach
was already used by von Neumann in a set of unpublished notes from 1937 [204] to
reconstruct quantum theory, albeit with a rather technical set of assumptions. Mackey
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motivates why a set of observables should be represented by an orthomodular poset,
but stops short of recovering P (H). Mackey’s work was continued by Piron who in
1972 showed that any irreducible complete atomistic orthomodular lattice satisfying
the covering property (cf. Section 2.4.3) must be isomorphic to P (H) where H is a
generalised Hilbert space [180]. This programme was essentially completed decades
later by Sòler when she showed that the only infinite-dimensional generalised Hilbert
spaces are the Hilbert spaces over the reals, complex numbers or quaternions [193].
Hence, this approach essentially recovered the same spaces as the characterisation of
Euclidean Jordan algebras (cf. Theorem 1.2.10), albeit in infinite-dimension instead.
For a more in-depth overview of the foundational work done in quantum logic we refer
to the survey Ref. [52].

Early reconstructions — Contrary to the quantum logic approach that only con-
siders ‘sharp’ observables, i.e. projections, there is the operational approach where
‘fuzzy’ observables (effects) are allowed, bringing us close to the GPT framework. Prob-
ably the first person to use a GPT-like framework for a reconstruction was Gunson in
1967 [101]. His twelve axioms show that the space of observables is isomorphic to a
B(H) where H is an infinite-dimensional real, complex or quaternionic Hilbert space.
Of these twelve axioms, the first 6 essentially recover the GPT framework, the next 3
are algebraic in nature and have no clear physical interpretation, while the last 3 are
related to the existence and properties of filters, specific state transformations that
project the state onto a certain ‘filtered’ subspace (cf. Section 3.5). The importance of
filters was further realised by Mielnik [159, 160] that considered more general physical
systems based on properties of filters and transition probabilities: the probability that
a particle goes through a second filter if it successfully went through a first filter. He
furthermore introduced the axiom of symmetry of transition probabilities that says
the probability stays the same if the order of the filters is interchanged. Symmetry
of transition probabilities has been used as an assumption in many subsequent recon-
structions, such as in Refs. [4, 75, 142, 226] (and the derivation of this property will be
a cornerstone in the reconstructions of Chapters 2 and 3). The work of Gunson and
Mielnik was continued by Guz in 1981 [102] who was the first to realise the connection
between the covering property of the lattice of observables and the well-behavedness
of filters. He used the notion of pure states, states that are convex-extreme in the
state-space. To each pure state ω he associates a unique sharp measurement pω that
represents ‘testing’ for that pure state and this allowed him to define a ‘transition prob-
ability’ between states as 〈ω1, ω2〉 := ω2(pω). This approach has also been adopted by
many other authors.

Modern reconstructions — Most of the previously mentioned works have in
common that they focus on (countably) infinite-dimensional spaces and that they
only consider spaces in isolation, never dealing with composite systems and tensor
products. This stands in contrast to the modern approach, which could be said to have
been initiated with Hardy’s 2001 preprint Quantum Theory From Five Reasonable
Axioms [109]. Hardy’s main innovation was that he considered composite systems
and subsystems in finite dimension, which allowed him to introduce the axiom of local
tomography (cf. Section 1.4). It is this latter axiom that ‘selects’ complex Hilbert
spaces over real or quaternionic ones (which were still possibilities in most previous
approaches) [111]. He also used a pure transitivity axiom. Such axioms state that the
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set of reversible transformations act transitively on the set of pure states, i.e. that
for every pair of pure states ω1 and ω2 we can find a transformation Φ that has an
inverse Φ−1 such that Φ(ω1) = ω2. Versions of pure transitivity are assumed in most
subsequent reconstructions, such as in Refs. [21, 39, 40, 59, 110, 138, 150, 185, 199],
while local tomography is still one of the only compelling ways to distinguish real from
complex quantum theory.

Since Hardy’s work, many reconstructions by various authors have appeared (besides
the ones mentioned above, also Refs. [46, 76, 115, 149, 172, 220, 221, 225]). We
will here only highlight what can be considered the most influential one: that of
Chiribella, D’Ariano and Perinotti [39, 63]. This reconstruction motivates its axioms
by considering them rules on information processing in physical systems. Besides
versions of local tomography, a pure transitivity axiom, and an axiom related to the
existence of filters, it introduces two new axioms. The first basically states that ‘purity
is closed under composition’. Specifically, that the state resulting from measuring a
pure effect on a part of a pure state on a composite system is still pure. The second
new axiom states the possibility of ‘purification’ of states, that any mixed state is
the result of throwing away part of a pure composite state [38] (in quantum theory
such purifications are given by Stinespring dilations; cf. Section 1.1.3). A version of
purification has since been used in other reconstructions [20, 185, 199].

The number of reconstructions that have appeared in the last 20 years show that
there is still little belief that the indisputable ‘right’ set of principles has been dis-
covered. However, the similarities in the assumptions and sometimes even the proofs
in many of the approaches highlight that there are a few key mathematical features
of (finite-dimensional) quantum theory. The properties of ‘pure’ states (where ‘purity’
can mean different things in different contexts; cf. Section 3.6), in particular that
every mixed state can be ‘diagonalised’ in terms of pure states, are a crucial part
of the proof in many reconstructions. Similarly, pure transitivity, which ensures the
existence of ‘enough’ reversible transformations to map the pure states between each
other, is often needed. Finally, the property of local tomography seems to be the only
assumption so far that can distinguish between real and complex quantum theory.6
In fact, by combining these three properties, diagonalisability, pure transitivity, and
local tomography, quantum theory can essentially be derived [19].

6Although it should be noted that Refs. [4, 21] postulate an, arguably somewhat arbitrary, corres-
pondence between dynamics and observables that also succeeds in distinguishing between real
and complex quantum theory.
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Sequential measurement
In this chapter we will show that, in finite dimension, quantum theory is the unique
non-classical physical theory where sequential measurement is suitably well-behaved.
Given two effects a and b we have an effect a& b that corresponds to ‘measure a and
then b’. In classical theory the order of measurements is not important so that we have
a& b = b& a for all measurements a and b. There is however no reason to assume that
this would continue to hold for general physical theories, because a measurement will
change the state of the system in a way that modifies the subsequent measurement
probabilities (as is indeed the case in quantum theory). However, some effects a and
b will be ‘compatible’ in the sense that although a changes the state, this does not
affect the probability of observing b, and hence we can still have a& b = b& a for such
effects. Our assumptions regarding sequential measurement can be intuitively stated
as ‘classical operations preserve compatibility of effects’.

Mathematically the results of this chapter state that a finite-dimensional order
unit space equipped with a sequential product [95] that is continuous must be order-
isomorphic to a Euclidean Jordan algebra, while the only such systems that have a
locally tomographic composite with themselves are C∗-algebras.

With an eye on the extensive existing literature on reconstructions of quantum
theory covered in Section 1.5, it is worthwhile considering how the approach of this
chapter is different from and adds to the literature. To start, this is the first recon-
struction to use the concept of sequential measurement in a principled way, hence
highlighting the importance of the structure of this operation to quantum theory.1 It
is furthermore noteworthy just how few different concepts we need to refer to in our
assumptions: just effects, states and the sequential product. We require no specific
assumptions regarding (reversible) transformations, pure states, information capacity,
etc. In this sense, our reconstruction is ‘focused’. Finally, as we will see in Chapter 4,
the assumptions we have on the sequential product continue to hold in infinite dimen-
sion, in contrast to most (modern) reconstructions that employ assumptions that only
hold in finite dimension. Hence, our assumptions could be considered more natural as
they do not rely on the peculiarities of finite-dimensional systems. This naturality of
the assumptions is further highlighted by the fact that (almost all) the assumptions we
make on the sequential product were already considered in an axiomatic manner [95],
making it seem more plausible that someone could have independently come up with

1The work of Niestegge [172] reconstructs a part of quantum theory using assumptions on conditional
probabilities, which are closely related to sequential measurement. He however only considers
sharp measurements, and his assumptions are not satisfied by all quantum systems, such as the
qubit system.
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our assumptions, without knowing a priori about quantum theory.
This chapter is structured as follows. We discuss our version of the GPT framework

in Section 2.1, which results in our systems being described by order unit spaces. Then
we introduce the axioms of the sequential product in Section 2.2. We prove some basic
results culminating in a spectral theorem and a proof of homogeneity of the space in
Section 2.3. The most technical part of the proof is establishing the self-duality of the
space, which is done in Section 2.4. We discuss some consequences of self-duality with
regards to the Born rule in Section 2.5. As the space is homogeneous and self-dual
we could use the Koecher–Vinberg theorem to conclude that our spaces are Euclidean
Jordan algebras, but instead we will demonstrate an explicit construction of the Jordan
product in Section 2.6. In Section 2.7 we study central effects which are necessary for
our results regarding locally tomographic composites in Section 2.8 which show that
the only systems allowing such a composite are complex C∗-algebras. In Section 2.9
we sketch how our results imply the regular allowed dynamics of quantum theory. We
end with some concluding remarks in Section 2.10.

2.1 Framework
For this chapter we adopt the GPT framework as outlined in Section 1.4, in particular
Assumption 1.4.5. Hence we represent a physical system A with a finite-dimensional
real ordered vector space VA such that Eff(A) ⊆ [0, 1]VA and St(A) ⊆ St(VA). We will
however require a bit more structure then that.

Imagine we have an ensemble of identical systems, each of which is prepared in the
same state ω. We can measure an effect a on some of the states and an effect b on
some of the others. The probabilities of success are then given respectively by ω(a)
and ω(b). When ω(a) + ω(b) ≤ 1 for every possible state ω, we wish to define the
‘statistical’ effect a + b ∈ VA which can be interpreted as measuring “a or b is true”.
In other words, we expect a + b ∈ Eff(A) is an effect whenever ω(a + b) ≤ 1 for all
states ω ∈ Ω. Similarly, if ω(b)− ω(a) ≥ 0 for all states ω then we can consider the
effect b− a ∈ VA which can be interpreted as measuring “b is true and a is not true”.

Assumption 2.1.1. For a, b ∈ Eff(A), if ω(a) + ω(b) ≤ 1 for all ω ∈ St(A), then
a+ b ∈ Eff(A). If ω(b)− ω(a) ≥ 0 for all ω ∈ St(A), then b− a ∈ Eff(A).

Remark 2.1.2. One could think that we can define the statistical effect by flipping a
fair coin and based on that deciding whether to measure a or b. However, this results
in the effect 1

2a+ 1
2b instead of a+ b. While the effect 1

2a+ 1
2b is guaranteed to exist

by the Assumptions 1.4.5 (since the effects are closed under convex combinations),
the effect a+ b does not necessarily exist just based on these assumptions. Indeed, as
will become clear from the next proposition, the existence of effects like a+ b implies
that all mathematical effects necessarily correspond to physical effects, which is not
the case when just using the Assumptions 1.4.5.

Proposition 2.1.3. Let VA be the vector space associated to a system A satisfying
Assumptions 1.4.5 and 2.1.1. Then Eff(A) = [0, 1]VA .

Proof. The inclusion Eff(A) ⊆ [0, 1]VA is of course trivial. So let 0 ≤ c ≤ 1 in VA, our
goal is to show that c is an effect, i.e. c ∈ Eff(A).
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The vector space VA is by definition spanned by linear combinations of effects of
A, and hence c =

∑
i λiai for ai ∈ Eff(A). We split this sum up into a positive

and negative part based on whether λi is positive or negative to get c =
∑
i λiai −∑

j µjbj where all λi, µj ≥ 0. Let λ =
∑
i λi so that 1

λ

∑
i λiai =

∑
i
λi
λ pi is a convex

combination of effects, and hence lies in Eff(A). By doing the same with the bi we see
that we can write c = λa− µb where a, b ∈ Eff(A), a =

∑
i
λi
λ ai and b =

∑
i
µi
µ bi. We

now make a case distinction based on whether λ ≤ µ or λ ≥ µ.
Suppose λ ≤ µ. Then λ

µ ≤ 1 and hence λ
µa = λ

µa + (1 − λ
µ )0 ∈ Eff(A) so that

0 ≤ 1
µc = λ

µa − b, is a difference of effects. Assumption 2.1.1 then implies that
1
µc ∈ Eff(A). If µ ≤ 1, then µ( 1

µc) = c ∈ Eff(A) and we are done. If µ ≥ 1, then we
write µ = n+ ε where n ∈ N and 0 < ε < 1 We note that

∑n
i

1
µc = n

µc ≤
µ
µc = c ≤ 1

and hence by Assumption 2.1.1 is an effect. Similarly ε
µc+ n

µc = c ≤ 1 is also an effect,
and we are done.

The case where λ ≥ µ is handled analogously. �

Remark 2.1.4. The property that Eff(A) = [0, 1]VA , i.e. that the physically realisable
effects exactly match the mathematically definable effects is a common assumption
in GPTs known as the no-restriction hypothesis [39, 121]. Note that we have
not shown that the states of the system satisfy the no-restriction hypothesis. The
only thing that we currently have shown about the state space is that there are
enough physical states to order-separate the effects. We revisit this issue for states in
Section 2.5.

Proposition 2.1.5. Let VA be the vector space associated to a system A satisfying
Assumptions 1.4.5 and 2.1.1. Then VA is an order unit space.

Proof. We will show that the states order-separate the effects, which is sufficient by
Proposition 1.3.14. So suppose we have a, b ∈ [0, 1]VA such that ω(a) ≤ ω(b) for all
ω ∈ St(V ). We need to show that a ≤ b.

By Proposition 2.1.3 we have a, b ∈ Eff(A). Note also that St(A) ⊆ St(VA) and
hence ω(a) ≤ ω(b) for all ω ∈ St(A) so that ω(b)−ω(a) ≥ 0. By Assumption 2.1.1 we
then have b− a ∈ Eff(A) and hence b− a ≥ 0. But then a ≤ b and we are done. �

Based on the results of Propositions 2.1.3 and 2.1.5 we will identify a physical system
with its associated order unit space VA and its effect space with [0, 1]VA . We however
still cannot know exactly which subset St(A) is of St(VA).

Remark 2.1.6. In the basic GPT framework of Section 1.4 we only require that
effects are separated by states, instead of order-separated. Separation of states is
sufficient for the norm defined in Proposition 1.3.14 to be an actual norm. The order-
separation is hence equivalent to requiring that the set of effects is closed in this norm,
which is an assumption that is also made regularly in the literature on GPTs [39].

2.2 Sequential Measurement
Let a and b denote two effects that can be measured on the same system. Their
sequential product is the effect that is implemented by first measuring a and then
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measuring b. The sequential product, that we will denote by a& b, is considered
successful when a and b are both successful. Hence, letting ωa denote the state that
results from an observation of a after a preparation of ω, we have ω(a& b) = ωa(b)ω(a).
The expression a& b can be read as “we measure a and then we measure b.”

The sequential product gives us a map & : Eff(A) × Eff(A) → Eff(A) that takes
two effects and produces a new one. In the following paragraphs we will motivate the
conditions we require of this map. The reader not interested in the physical motivation
of our assumptions is welcome to skip to Definition 2.2.3.

Since both the measurements of a and b can influence the system in some non-trivial
way, we wouldn’t expect the outcome probabilities of a& b to be the same as those of
b& a, the measurement that is implemented by reversing the order of measurement.
For some measurements however, the order might not be important. When this is the
case we will call the measurements compatible. Following Gudder and Greechie [95]
we will argue that when compatible measurements are considered, the sequential
product should act in a ‘classical’ way.

Suppose that we have an ensemble of identical states and that we measure the effect
a on all of them. Let b and c now be measurements so that their disjunction b + c
exists, and split the ensemble into two. Measure b on the first set and c on the second.
The complete process is now described by the effect a& (b+ c). The same situation
however can equivalently be described as splitting the ensemble into two and then
measuring a&b on the first group, and a&c on the second group. This measurement
is described by a& b + a& c. As a result we should have a& (b + c) = a& b + a& c.
Crucially, we have no reason to expect the same property to hold in the first argument
(that is: (b+ c) & a = b& a+ c& a) because b+ c is a measurement that only exists in
a statistical sense. The expression (b+ c) & a hence does not make sense (in general).

When effects a and b are compatible we will write a | b as a shorthand. By definition
we have a | b when ω(a& b) = ω(b& a) for all states ω, but since states separate effects
this is only true when a& b = b& a. As the order of measurement of compatible effects
is not relevant it makes sense to view the measurements as being performed at the
same time. This is captured by the equality a& (b& c) = (a& b) & c, i.e. measuring
a and then b and then c should be the same as measuring a and b ‘at the same time’
and only then measuring c.

Remark 2.2.1. It would seem to be more natural to require associativity of the
sequential product in all cases, and not just for compatible measurements, as was
pointed out in Ref. [98]. It however turns out that quantum theory does not satisfy
this assumption of associativity. In fact, we will see that in combination with the other
assumptions we will make, the only systems satisfying associativity of the sequential
product are classical (i.e. commutative, see Proposition 2.3.10). To the authors know-
ledge there is still no satisfying interpretation of the expression ‘(a& b) & c’ when a
and b are not compatible.

If we have an effect a, its negation a⊥ can be physically implemented in the same
way, since the negation is merely a change of classical description of its output. We
therefore expect a⊥ | b to hold whenever a | b. Similarly, if a is compatible with b and
with c, then a should be compatible with b+ c (if it is defined).

Suppose a& b = 0. This states that it is impossible for both effects a and b to
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be observed on a given state. It seems reasonable to expect that this situation does
not change when we interchange the order of execution. We will therefore require
b& a = 0 whenever a& b = 0. In that case we will call a and b orthogonal. Note
that we must of course have 0 & a = 0 (and relatedly 1 & a = a).

Remark 2.2.2. This assumption that a& b = 0 iff b& a = 0 holds for the Lüders
update rule of quantum theory, but does not hold for other more general types of
updates. We still however feel warranted in using this condition as it is a quite natural
assumption for a hypothetical physical theory and one that someone working in the
framework we have set up who is not aware of quantum theory could still reasonably
come up with independently (for instance by adopting it from the classical framework).
Regardless, in the interest of generality we try to avoid this assumption as much as
possible in the early derivations of this chapter and the results of Section 2.3 do not
require it.

We will need one additional assumption. Any physical measurement is noisy, but
as the amount of noise is reduced, the measurement statistics should converge to
the value of the idealised measurement. We capture this property by requiring the
sequential product to be continuous: if an → a then an & b → a& b for all effects
b. The continuity of the sequential product map in the second argument will follow
automatically, as it turns out to be linear in that argument.

Our framework and all the assumptions regarding the sequential product are sum-
marised in the following definition.

Definition 2.2.3. Let V be an order unit space with a function & : E × E → E
where E = [0, 1]V is its set of effects. We write a | b when a& b = b& a and say that a
and b are compatible. We call & a sequential product if it satisfies the following
conditions for all a, b, c ∈ E.

(S1) Additivity: a& (b+ c) = a& b+ a& c whenever b+ c ≤ 1.

(S2) Continuity: The map a 7→ a& b is continuous in the norm.

(S3) Unit: 1 & a = a.

(S4) Compatibility of orthogonal effects: If a& b = 0 then also b& a = 0.

(S5) Associativity of compatible effects: If a | b then a& (b& c) = (a& b) & c.

(S6) Additivity of compatible effects: If a | b then a | b⊥. If furthermore a | c and
b+ c ≤ 1, then a | (b+ c).

We call an order unit space with a sequential product a sequential effect space.

Remark 2.2.4. The properties for the sequential product are close to those required
in a sequential effect algebra as introduced by Gudder and Greechie [95] (cf. Defini-
tion 5.2.1) and studied in [94, 96, 125, 219]. The only difference is that we add the
requirement of continuity S2, while they have a further axiom stating that if a | b and
a | c, then also a | (b& c). We will require this further axiom in Chapter 5.
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Example 2.2.5. Let X be a compact Hausdorff space. Denote by C(X) the space
of continuous functions f : X → R. Then C(X) is an order unit space with unit the
constant function 1(x) = 1. Its unit interval consists of the continuous functions that
restrict to f : X → [0, 1]. We can then define a (commutative) sequential product on
the unit interval by pointwise multiplication: (f & g)(x) = f(x)g(x).

Example 2.2.6. Let V = B(H)sa, the set of self-adjoint operators on a complex
Hilbert space H (representing a quantum system). Given two effects a and b, the
operation a& b :=

√
ab
√
a is a sequential product and we have a | b if and only if

ab = ba [99].

Remark 2.2.7. As discussed in Section 1.1.2 the Lüders rule (a, b) 7→
√
ab
√
a is not

the only possibility of an update rule for effects. Another set of update rules that
satisfies the axioms of a sequential product is given by (a, b) 7→ ua

√
ab
√
au†a where

ua is a particular unitary commuting with a. This map can be interpreted as the
instrument that implements ‘measure a, wait for a while, and then measure b’, where
in between the two measurements, the system is dynamically evolving in the basis of
a. In fact, this is the most general form of update rule for B(H)sa that satisfies the
axioms [207]. Hence, the most general form of update rule (1.1) is not compatible
with our axioms. It is still not entirely clear why this should be the case. A hint is
given by considering the action of the effect 1. According to our axioms, observing 1
should not affect the state, while with (1.1) the state could be changed in an almost
arbitrary way. Hence, our axioms require a more strict correspondence between the
effect and its action on the state then the general update rule implies.

While the axioms of Definition 2.2.3 do not uniquely pick out the Lüders update
rule as special, some variations on the properties of the sequential product have been
proposed that do characterise this update rule [97, 208, 219].

Our aim now is to study finite-dimensional sequential effect spaces and show that
these correspond to quantum-like systems (we will study a similar structure in infinite
dimension in Chapter 5). Before we do so however, it is interesting to note that the
assumption that the underlying space has an Archimedean order unit is necessary, as
otherwise some more pathological spaces satisfy our assumptions.

Example 2.2.8. Let V be an ordered vector space and let R be the space of linear
functions f : V → V . For f, g ∈ R we set f ≤ g when f(v) ≤ g(v) for all v ≥ 0 in V ,
making R into an ordered vector space. Let E := [0, id]R := {f ∈ R ; 0 ≤ f ≤ id}.
Then the regular composition of linear maps f ◦ g is a bilinear associative product on
E that satisfies all the axioms of a sequential product when f ◦ g = 0 implies g ◦ f = 0.

In particular, let V = R2 be equipped with the order determined by (a, b) > 0 iff
a + b > 0 and define R and E as above. Of course R is just the space of 2 × 2 real
matrices. With some straightforward but tedious calculation it can be verified that

A :=
(
a b
c d

)
∈ E ⇐⇒ A = 0 or A = id or 1 > a+ c = b+ d > 0.

Define a map τ : E → [0, 1] by τ(
(
a b
c d

)
) = a+ c = b+ d. Then it is straightforward

to check that τ is monotone (A ≤ B =⇒ τ(A) ≤ τ(B)), multiplicative (τ(A · B) =
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τ(A)τ(B)), and A = 0 iff τ(A) = 0. As a result A ·B = 0 iff A = 0 or B = 0. Hence E
satisfies A ·B = 0 iff B ·A = 0, so that the regular composition of matrices in E indeed
satisfies all the assumptions of a sequential product. We remark that E is the set of
effects of a 3-dimensional vector space with a separating (but not order-separating)
set of states, and that the product ◦ is non-commutative and associative.

2.3 Basic results
Unless otherwise stated, we will let V denote a finite-dimensional sequential effect
space, E = [0, 1]V its set of effects and & : E × E → E a sequential product. For
a ∈ E we let a⊥ = 1 − a denote its complement which by virtue of a lying in the
unit interval of V is also an effect.

Proposition 2.3.1 (cf. [95]). Let a, b, c ∈ E.

a) a& 1 = 1 & a = a.

b) a& 0 = 0 & a = 0.

c) a& b ≤ a.

d) If a ≤ b, then c& a ≤ c& b.

e) If a | b, a | c and b | c, then a | (b& c).

Proof.

a) We of course have a | a and by S6 we have a | a⊥. Using S6 again we then see
that a | (a+ a⊥). As a+ a⊥ = 1, then a | 1 so that by S3 1 & a = a& 1 = a.

b) By the previous point a | 1 and hence also a | 1⊥ = 0 so that it remains to show
that a& 0 = 0. This follows by S1 as a& 0 = a& (0 + 0) = a& 0 + a& 0.

c) By the previous point and S1 a = a& 1 = a& (b+ b⊥) = a& b+ a& b⊥ so that
a− a& b = a& b⊥ ≥ 0 and hence indeed a& b ≤ a.

d) We have b− a ≥ 0 so by S1 we have c& b = c& (b− a+ a) = c& (b− a) + c& a.
Hence c& (b− a) = c& b− c& a. Since the left-hand side is greater than zero,
the right-hand side must be as well.

e) Using axiom S5 repeatedly: a& (b& c) = (a& b) & c = (b& a) & c = b& (a& c) =
b& (c& a) = (b& c) & a. �

Proposition 2.3.2. Let a, b ∈ E and let q be any rational number between zero and
one, and λ any real number between zero and one.

a) a& (qb) = q(a& b).

b) a& (λb) = λ(a& b).

c) (λa) & b = a& (λb) = λ(a& b).

d) If a | b, then a |λb.

Proof.

a) Of course a& b = a& (n 1
nb) = n(a& ( 1

nb)) by S1. Dividing by n gives a& ( 1
nb) =

1
n (a& b). By summing this equation multiple times we see that we get a& (qb) =
q(a& b) for any rational 0 ≤ q ≤ 1.
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b) Let qi be an increasing sequence of positive rational numbers that converges to
λ. Using the order-unit norm of V we compute

‖λ(a& b)− a& (λb)‖ = ‖(λ− qi)(a& b) + qi(a& b)− a& (λb)‖
= ‖(λ− qi)(a& b)− a& ((λ− qi)b)‖.

Note that (λ − qi)b ≤ (λ − qi)‖b‖1 and hence, using Proposition 2.3.1.d), we
have ‖a& ((λ− qi)b)‖ ≤ ‖a‖‖(λ− qi)b‖ = (λ− qi)‖a‖‖b‖. But then:

‖λ(a& b)− a& (λb)‖ ≤ 2(λ− qi)‖a‖‖b‖.

This expression indeed vanishes as i increases so that λ(a& b) = a& (λb).

c) Clearly 1
na |

1
na so that by S6 1

na | a. In the same way we also get qa | a and
qa⊥ | a⊥ for any rational 0 ≤ q ≤ 1. Using the rule a | b =⇒ a | b⊥ from S6
we then also get qa⊥ | a so that a | (qa+ qa⊥) = q1, and hence also b | qb. Then
(q1) & b = b& (q1) = q(b& 1) = qb so that also (qa) & b = (a& (q1)) & b =
a& ((q1) & b)) = a& qb = q(a& b). Now let λ ∈ [0, 1] be a real number and let
qi be a sequence of rational numbers converging to λ so that also qia→ λa and
qi(a& b)→ λ(a& b). Then qi(a& b) = (qia) & b→ (λa) & b by S2. We conclude
that (λa) & b = λ(a& b) = a& (λb).

d) Using the previous point we calculate: a& (λb) = λ(a& b) = λ(b& a) = (λb) & a.
�

As a result of this proposition, the left-product map La : E → E for a ∈ E given
by La(b) = a& b can be extended by linearity to the entirety of V by La(λb− µc) =
λLa(b)−µLa(c). Similarly we can define the sequential product for any positive a ∈ V
by rescaling: a& b := ‖a‖(( 1

‖a‖a) & b). Note that all La : V → V are positive maps
and that by S5 we have a | b ⇐⇒ LaLb = LbLa.

Definition 2.3.3. An effect p ∈ E is called sharp when the only effect below both
p and p⊥ is the zero effect, i.e when b ≤ p and b ≤ p⊥ implies b = 0.

When V = B(H)sa the sharp effects are precisely the projections. This should be
clear considering the following proposition.

Proposition 2.3.4 ([95]). Let a ∈ E be an effect, a is sharp if and only if a& a⊥ = 0
if and only if a& a = a.

Proof. Note that a = a& 1 = a& (a+ a⊥) = a& a+ a& a⊥ and hence a& a⊥ = 0 iff
a& a = a.

Let us assume a is sharp. By S6 we have a | a⊥ so that a& a⊥ = a⊥& a. By 2.3.1.c)
we have a& a⊥ ≤ a and a& a⊥ = a⊥& a ≤ a⊥. As a& a⊥ is then below both a and a⊥
we must have a& a⊥ = 0 by assumption of sharpness. Conversely, suppose a& a⊥ = 0
and let b ≤ a and b ≤ a⊥. Then by 2.3.1.c) we get a& b ≤ a& a⊥ = 0, and similarly
we get a⊥& b = 0. Then using S4 we conclude that b = b& 1 = b& (a + a⊥) =
b& a+ b& a⊥ = 0 + 0 = 0. �

Let us now introduce the notion of orthogonal effects which was hinted at in S4:
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Definition 2.3.5. We call two effects a and b orthogonal when a& b = 0.

Of course by S4 orthogonality is a symmetric relation, and we note that therefore
orthogonal effects are also compatible.

Definition 2.3.6. Let a ∈ E be an effect. We define the powers of a inductively to
be a0 := 1 and an := a& an−1. We define the classical algebra of a to be the linear
space C(a) spanned by all the powers of a and a⊥.

Proposition 2.3.7. Let a ∈ E be an effect. Then C(a) is a commutative sequential
effect space.

Proof. C(a) inherits the order structure from V in the obvious way, and as 1 ∈ C(a)
every state of V also restricts to a state on C(a) so that C(a) is an order unit
space. Of course a | a and a | a⊥ and thus by Proposition 2.3.1.e) we have an | am and
an | (a⊥)m for all n and m. Because of S6 and Proposition 2.3.2.d) linear combinations
of compatible effects are also compatible and hence all effects of C(a) are compatible.

�

The next result uses Kadison’s representation theorem for order unit spaces (The-
orem 1.3.17).

Proposition 2.3.8. Let a ∈ E be an effect. Then there is an n ∈ N such that C(a)
is both order-isomorphic and algebra-isomorphic (interpreting & as the product) to
Rn.

Proof. The sequential product is linear in the second argument. Since C(a) is a
commutative sequential effect space by Proposition 2.3.7, its product is also linear
in the first argument, and hence this operation is bilinear. It obviously preserves
positivity, and since C(a) ⊆ V is finite-dimensional, it is complete, so that Kadison’s
theorem applies and C(a) ∼= C(X) for some compact Hausdorff space X. As C(X)
then also has to be finite-dimensional, we see that X is finite. The only finite Hausdorff
spaces are discrete and hence we conclude that C(X) ∼= Rn for some n ∈ N. �

Corollary 2.3.9. Let a ∈ E be an effect. There exists a set of orthogonal non-zero
sharp effects pi compatible with a and positive λi ∈ R such that a =

∑
i λipi.

Proof. By the previous proposition C(a) ∼= Rn and this space is obviously spanned
by orthogonal sharp effects, hence we can find the desired pi and λi. By construction
pi ∈ C(a) so that they are compatible with a. �

We will refer to a decomposition of a in the above sense as a spectral decomposition
of a.

We can now show why the lack of associativity of the sequential product is necessary
for non-commutative, and hence non-classical, sequential products.

Proposition 2.3.10. Let V be a finite-dimensional sequential effect space where the
sequential product is associative. Then the sequential product is commutative.
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Proof. Assume & is associative. Let a be any effect and let p be sharp. Of course
p⊥& a ≤ p⊥ is orthogonal to p and hence 0 = (p⊥& a) & p = p⊥& (a& p). But
then p⊥ | a& p, and hence p | a& p. Similarly, we also get p | a& p⊥. As a result
p | (a& p⊥+ a& p) = a. As a was arbitrary we see that sharp elements are compatible
with every effect and as any effect can be written as a linear combination of sharp
effects, this shows that the sequential product is commutative. �

The existence of spectral decompositions is also enough to show that the space
must be homogeneous (Definition 1.3.6), i.e. that for every pair of internal positive
elements a, b ∈ V there exists an order isomorphism Φ such that Φ(a) = b. Note
that a ∈ V is an internal positive element iff there is an ε ∈ R>0 such that ε1 ≤ a.
Given a spectral decomposition a =

∑
i λipi of such an element, it is easy to see that

necessarily
∑
i pi = 1.

Definition 2.3.11. Let a be an internal positive element so that ε1 ≤ a for some
ε ∈ R>0, and let a =

∑
i λipi with all λi > 0 and pi 6= 0 be a spectral decomposition.

We define the inverse of a with respect to this decomposition as a−1 :=
∑
i λ
−1
i pi.

Note that the name of inverse is chosen well as indeed a& a−1 =
∑
i,j λiλ

−1
j pi & pj =∑

i λiλ
−1
i pi =

∑
i pi = 1.

Proposition 2.3.12. Let V be a finite-dimensional sequential effect space. Then V
is homogeneous (cf. Definition 1.3.6).

Proof. Let a be an arbitrary internal positive element with spectral decomposition a =∑
i λipi and inverse a−1 =

∑
i λ
−1
i pi. The sequential product map La(b) := a& b is

positive and since a−1 | a it also has a positive inverse La−1 (using S5): a−1 & (a& b) =
(a−1 & a) & b = 1 & b = b. The map La is therefore an order isomorphism when a
lies in the interior of the positive cone. Now, for a and b in the interior we define
Φ : V → V by Φ = LbLa−1 . As this is a composition of order isomorphisms, it is also
an order isomorphism and of course Φ(a) = b& (a−1 & a) = b& 1 = b as desired. �

2.4 Proof of self-duality
With homogeneity of V now established, we set our sights on proving self-duality
(cf. Definition 1.3.6). We do this in a few steps. First we study the lattice of sharp
effects in Section 2.4.1. We then consider properties of the atoms of this lattice in
Section 2.4.2. Then in Section 2.4.3 we establish that this lattice has the covering
property as defined in Ref. [5]. The covering property has as a consequence that for
every sharp effect p there is a unique number r called the rank of p such that we can
write p =

∑r
i=1 pi where the pi are atomic and orthogonal. We then define the rank

of a space as the rank of the unit effect. The existence of well-defined ranks of sharp
effects allows us to reduce the question of self-duality to that of self-duality in spaces
of rank 2. This problem is in turn solved by appealing to the classification result of
Ref. [117] that homogeneous spaces of rank 2 are always self-dual, which is done in
Section 2.4.4.
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2.4.1 The lattice of sharp effects
First, we establish some results regarding sharp effects.

Proposition 2.4.1. Let a ∈ E be any effect and let p ∈ E be sharp.

a) a ≤ p if and only if p& a = a& p = a if and only if p⊥& a = 0.

b) p ≤ a if and only if p& a = a& p = p.

Proof.

a) Suppose a ≤ p with p sharp. Then p⊥& a ≤ p⊥& p = 0 by Proposition 2.3.4
and 2.3.1.c). Hence a | p⊥ and a | p so that a = a& (p+ p⊥) = a& p+ a& p⊥ =
a& p = p& a. For the other direction we note that a = p& a ≤ p by 2.3.1.c).

b) Suppose p ≤ a with p sharp, then a⊥ ≤ p⊥ with p⊥ sharp so that by the
previous point a | p and p& a⊥ = 0 so that p = p& (a+ a⊥) = p& a. �

Definition 2.4.2. For an effect a ∈ E we let dae denote the smallest sharp element
above a, called the ceiling of a and we let bac denote the largest sharp element below
a, called the floor of a.

A priori, the floor and effect of an effect do not have to exist. In our setting however,
they always do.

Proposition 2.4.3. The ceiling and the floor exist for any a. Moreover, writing
a =

∑
i λipi with 1 ≥ λi > 0 and the pi sharp and orthogonal, then dae =

∑
i pi and

bac = da⊥e⊥.

Proof. Write a =
∑
i λipi. Of course

∑
i pi is an upper bound of a. Suppose a ≤ r

for some sharp r. Then λipi ≤ r, so by Proposition 2.4.1.a) r& (λipi) = λipi. But
as r& (λipi) = λi(r& pi) this reduces to r& pi = pi. Hence r&

∑
i pi =

∑
i r& pi =∑

i pi so that by Proposition 2.4.1.a)
∑
i pi ≤ r so that

∑
i pi is indeed the least upper

bound. The other statement now follows because a ≤ b ⇐⇒ b⊥ ≤ a⊥. �

As a corollary of the above we also see that dλae = dae when 1 ≥ λ > 0 and that
a is sharp if and only if dae = a or bac = a. We also note that a ≤ b implies that
dae ≤ dbe.

Proposition 2.4.4. The sharp effects form an ortholattice: for two sharp effects q
and p, their least upper bound p ∨ q and greatest lower bound p ∧ q exist and the
following relation holds: (p ∨ q)⊥ = p⊥ ∧ q⊥.

Proof. We claim that p∨q = d 1
2 (p+q)e. Note that p ≤ p+q and thus that 1

2p ≤
1
2 (p+q)

so that p = dpe = d 1
2pe ≤ d

1
2 (p+ q)e. Similarly we also have q ≤ d 1

2 (p+ q)e and thus
this is an upper bound. Suppose now that p ≤ a and q ≤ a for some a. Then also
p = bpc ≤ bac and q = bqc ≤ bac and hence 1

2 (p + q) ≤ 1
2 (bac + bac) = bac. Taking

the ceiling on both sides then shows that d 1
2 (p+ q)e ≤ dbace = bac ≤ a so that indeed

p ∨ q = d 1
2 (p+ q)e.

To find p ∧ q we note that (·)⊥ is an order-anti-isomorphism, and thus that it
interchanges joins with meets: (p ∨ q)⊥ = p⊥ ∧ q⊥. �
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Proposition 2.4.5 ([95]). Let a ∈ E be any effect and let p ∈ E be sharp.

a) p& a = 0 if and only if p+ a ≤ 1 in which case p+ a = p ∨ a. When p& a = 0
their sum p+ a is sharp if and only if a is also sharp.

b) If both a and p are sharp and a | p, then p& a is sharp and p ∧ a = p& a.

Proof.

a) p& a = 0 if and only if p⊥& a = a which by Proposition 2.4.1.b) is true if
and only if a ≤ p⊥ = 1 − p so that indeed p + a ≤ 1. That p + a is an
upper bound of p and a is obvious. Suppose now that b is also an upper
bound so that p ≤ b and a ≤ b. We then calculate using Proposition 2.4.1.b)
p = p& b = p& (b − a + a) = p& (b − a) + p& a = p& (b − a) so that again
by Proposition 2.4.1.b) p ≤ b − a. Hence p + a ≤ b and since b was arbitrary
indeed p+ a = p ∧ a.

Now to show p+a is sharp if and only if both p and a are sharp: since p& a = 0 we
have p | a and thus also p | p+a and a | p+a by S6. We calculate (p+a) & (p+a) =
p& p + 2p& a + a& a = p + a& a = (p + a) + (a − a& a). We therefore have
(p+ a) & (p+ a) = p+ a if and only if a− a& a = 0 which proves the result by
Proposition 2.3.4.

b) As p | a we also have a | a& p and p | a& p by Proposition 2.3.1.e). We calculate:

(p& a) & (p& a) = (p& a) & (a& p) = p& (a& (a& p))
= p& (a& p) = p& (p& a) = p& a.

Hence p& a is sharp. It is a lower bound of p and a by 2.3.1.c). Suppose
b ≤ p, a is also a lower bound. We need to show that b ≤ p& a. We calculate
p& a = p& (a− b+ b) = p& (a− b) +p& b = p& (a− b) + b ≥ b, where p& b = b
due to Proposition 2.4.1.a). �

Lemma 2.4.6. Let a, b ∈ E with b& a = 0. Then b& dae = 0.

Proof. Write a =
∑
i λipi with pi 6= 0 and λi > 0. If b& a = 0 =

∑
i λib& pi, then we

must have b& pi = 0 for all pi. Since dae =
∑
i pi the claim follows. �

Lemma 2.4.7. Let p ∈ E be sharp and a ∈ E arbitrary. Then dp& ae = dp& daee.

Proof. Of course p& a ≤ p& dae and hence dp& ae ≤ dp& daee so that it remains
to prove the other inequality. Because p& a ≤ p we also have dp& ae ≤ dpe =
p and hence dp& ae⊥ | p. Now because p& a ≤ dp& ae we can use Proposition
2.4.1.a) to write 0 = dp& ae⊥& (p& a) = (dp& ae⊥& p) & a = (dp& ae⊥& p) & dae =
dp& ae⊥& (p& dae) where we have used Lemma 2.4.6 to replace a with dae. Since
then dp& ae⊥& (p& dae) = 0 we use 2.4.1.a) again to conclude p& dae ≤ dp& ae so
that indeed dp& daee ≤ dp& ae. �
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2.4.2 Atomic effects
Definition 2.4.8. An effect p ∈ E is atomic when p is a nonzero sharp effect and if
for all a ∈ E with a ≤ p we have a = λp for some λ ∈ [0, 1].

The name atomic comes from the fact that in the lattice of sharp effects, the atomic
effects are the smallest nonzero elements. We call a lattice itself atomistic when
every element can be written as a supremum of (possibly an infinite number of) atoms.
This holds for the lattice of sharp elements in our setting:

Proposition 2.4.9. Every sharp effect can be written as a sum of orthogonal atomic
effects.

Proof. Let p be sharp. If p = 0 or p is atomic we are already done, so suppose this is
not the case. Then we can find 0 ≤ a ≤ p such that a 6= λp for any λ ∈ [0, 1]. Write
a =

∑
i λiqi where the qi 6= 0 are sharp and orthogonal and λi > 0. Then λiqi ≤ p

and thus also dλiqie = qi ≤ dpe = p. If all the qi are equal to p, then a is a multiple
of p, so at least one of the qi is strictly smaller than p. If qi and p − qi are now
both atomic we are done. If for instance qi is not atomic, we can find a a′ ≤ qi with
a′ 6= λqi for all λ ∈ [0, 1] and repeat the argument. In this way we get a sequence of
nonzero orthogonal sharp effects that sum up to p. As the space is finite-dimensional
and orthogonal effects are linearly independent this process must stop after a finite
number of steps in which case we are left with atomic effects. �

Corollary 2.4.10. Every a ∈ V can be written as a =
∑
i λipi where the pi are

orthogonal atomic effects.

Proof. For every a ∈ V we can find a spectral decomposition in terms of orthogonal
sharp effects. The previous proposition shows that these sharp effects can be further
decomposed into atomic effects. �

Recall that the norm of an element a in an order unit space is the smallest number r
such that −r1 ≤ a ≤ r1.

Lemma 2.4.11. A non-zero effect p is atomic if and only if we have p& a = ‖p& a‖p
for all a ∈ E.

Proof. First note that any non-zero sharp effect q satisfies q = q& q ≤ q& (‖q‖1) =
‖q‖q& 1 = ‖q‖q so that ‖q‖ ≥ 1. But since also q ≤ 1 we must have ‖q‖ ≤ 1. For an
arbitrary effect a with spectral decomposition a =

∑
i λiqi we then get ‖a‖ = supi λi.

Hence, if ‖a‖ = 1 we also have
∥∥a2
∥∥ = 1.

Suppose p is atomic. Because 0 ≤ p& a ≤ p we must have p& a = λp for some
0 ≤ λ ≤ 1 so that ‖p& a‖ = λ‖p‖ = λ because p is sharp.

Conversely, we first note that p = p& dpe = ‖p& dpe‖p = ‖p‖p so that necessarily
‖p‖ = 1 (since p 6= 0). Then p2 = p& p =

∥∥p2
∥∥p = p so that p is sharp. Let q ≤ p

be non-zero and sharp. Then ‖q‖ = 1 and hence q = p& q = ‖p& q‖p = p. Hence,
there are no non-zero sharp effects strictly below p. Now let a ≤ p be arbitrary with
spectral decomposition a =

∑
i λiqi. Then λiqi ≤ p so that dλiqie = qi ≤ dpe = p and

hence qi = p. We conclude that a = λp. As a was arbitrary, p is indeed atomic. �
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Corollary 2.4.12. The set of atomic effects is closed in the norm topology.

Proof. Let pn → p be a norm-converging set of atomic effects pn. We need to show
that p is also atomic. Note first of all that since ‖pn‖ = 1 for all n that also ‖p‖ = 1
and hence p 6= 0. Furthermore, by the previous lemma we have pn & a = ‖pn & a‖pn
for all effects a. By continuity of & (i.e. axiom S2) we have pn & a → p& a so that
p& a = lim pn & a = lim ‖pn & a‖pn = ‖p& a‖p. Using the previous lemma again we
conclude that p is indeed atomic. �

Proposition 2.4.13. Let a ∈ E be arbitrary and p ∈ E be atomic. Then a& p is
proportional to an atomic effect, i.e. a& p = λq where q is atomic and λ ∈ [0, 1].

Proof. Let Φ be an order isomorphism and suppose 0 ≤ a ≤ Φ(p). Then 0 ≤ Φ−1(a) ≤
p so that Φ−1(a) = λp and hence a = λΦ(p). This shows that Φ(p) is proportional
to an atomic effect. If a is invertible then La : V → V given by La(b) := a& b is an
order isomorphism (cf. Proposition 2.3.12), so that La(p) must be proportional to an
atomic effect.

Suppose now that a is not necessarily invertible. If a& p = 0 we are already
done, so assume that a& p 6= 0. Define an = a + 1

n1, so that an is invertible and
the sequence an converges to a. Set qn = (an & p)/‖an & p‖. Then all the qn are
atomic. By the continuity condition S2 we have limn an & p = a& p so that also
limn ‖an & p‖ = ‖a& p‖ 6= 0. The sequence qn is therefore also convergent and
since the set of atomic effects is closed by the previous corollary we conclude that
limn qn = (a& p)/‖a& p‖ is atomic. �

2.4.3 The Covering Property
At this point we know that the set of sharp effects forms an atomic lattice, but in fact
we can show that it has the much stronger covering property that allows us to attach
a rank to each sharp effect: the number of atomic effects needed to make the effect.

Definition 2.4.14. Let L be an atomistic lattice. For p, q ∈ L we say p covers q
when q 6= p, q ≤ p and for any r with q ≤ r ≤ p we have r = q or r = p (in other
words: p is the smallest element above q). We say L has the covering property
when for any q ∈ L atomic and p ∈ L arbitrary, either q ∨ p = p or q ∨ p covers p.

To prove this property for the lattice of sharp effects in a sequential effect space
we will adapt some results from Alfsen and Shultz [4] that were proven in a slightly
different setting.

Lemma 2.4.15 (cf. [4, Lemma 8.9]). Let p, q ∈ E be sharp with q ≤ p. Then
p− q = p ∧ q⊥.

Proof. We note that q | p so that it is easily seen that p− q is sharp. Since also p | q⊥
we conclude using Proposition 2.4.5.b) that indeed p− q = p& q⊥ = p ∧ q⊥. �

Lemma 2.4.16 (cf. [4, Theorem 8.32]). Let p ∈ E be sharp and a ∈ E arbitrary,
then dp& ae = (dae ∨ p⊥) ∧ p.
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Proof. Because dp& ae = dp& daee by Lemma 2.4.7 it suffices to prove this for sharp
a. We prove the equality by showing that an inequality holds in both directions.

Since p⊥ ≤ a ∨ p⊥ we have p⊥ | (a ∨ p⊥) by Proposition 2.4.1.a) so that in turn
p | (a ∨ p⊥) by S6. We proceed by using S5:

(a ∨ p⊥) & (p& a) = ((a ∨ p⊥) & p) & a = p& ((a ∨ p⊥) & a) = p& a,

where in the last step (a ∨ p⊥) & a = a because a ∨ p⊥ ≥ a. Therefore p& a ≤ a ∨ p⊥
which implies that dp& ae ≤ a ∨ p⊥. Since also p& a ≤ p and therefore dp& ae ≤ p
we conclude that dp& ae ≤ (a ∨ p⊥) ∧ p as desired.

Now for the converse direction: we obviously have p⊥& (p& a) = (p⊥& p) & a = 0
by S6 and S5 so that by Lemma 2.4.6 p⊥& dp& ae = 0. Then p | dp& ae⊥ and by
Proposition 2.4.5.b) we have dp& ae⊥& p = dp& ae⊥ ∧ p. Since p& a ≤ dp& ae we
calculate using Proposition 2.4.1.a):

0 = dp& ae⊥& (p& a) = (dp& ae⊥& p) & a = (dp& ae⊥ ∧ p) & a

so that a ≤ (dp& ae⊥ ∧ p)⊥ = dp& ae ∨ p⊥ by Proposition 2.4.4. Then of course also
a ∨ p⊥ ≤ dp& ae ∨ p⊥ and by noting that dp& ae and p⊥ are orthogonal and using
Proposition 2.4.5.a): dp& ae∨p⊥ = dp& ae+p⊥. Bringing the p⊥ to the other side we
then have (a∨p⊥)−p⊥ ≤ dp& ae. Finally, we have a∨p⊥−p⊥ = (a∨p⊥)∧p because of
Lemma 2.4.15 (which applies because p⊥ ≤ a∨p⊥). Hence indeed (a∨p⊥)∧p ≤ dp& ae
as desired. �

Proposition 2.4.17 (cf. [4, Proposition 9.7]). For q atomic and p sharp, the expres-
sion (q ∨ p) ∧ p⊥ = (q ∨ p) − p is either zero or atomic. Consequently, the lattice of
sharp effects has the covering property.

Proof. Let us first demonstrate how (q∨p)∧p⊥ = (q∨p)−p being zero or atomic implies
the covering property. Suppose p ≤ r ≤ q∨p. Subtracting p gives 0 ≤ r−p ≤ (q∨p)−p.
Hence, as r−p is sharp and (q∨p)−p is atomic we must have r−p = 0 or r−p = (q∨p)−p
so that indeed r = p or r = q ∨ p.

The previous lemma gives (q∨p)∧p⊥ = dp⊥& qe, while Proposition 2.4.13 shows that
p⊥& q is proportional to an atom. Hence p⊥& q = 0, in which case (q ∨ p) ∧ p⊥ = 0,
or p⊥& q 6= 0 in which case dp⊥& qe = (q ∨ p) ∧ p⊥ is an atom. The equality
(q ∨ p) ∧ p⊥ = (q ∨ p)− p follows directly from Lemma 2.4.15. �

Definition 2.4.18. Let p be sharp and let pi be a collection of atomic orthogonal
effects such that p =

∑n
i pi. The minimal size of such a collection is called the rank

of p. We define the rank of a sequential effect space to be the rank of the unit effect 1.

The covering property has as a consequence the following ‘dimension theorem’:

Proposition 2.4.19 (cf. [5, Proposition 1.66]). Write p =
∑n
i pi where the pi are

orthogonal and atomic. Then n = rnk p, i.e. all ways of writing p as a sum of atomic
effects require an equal number of atomic effects. Furthermore, when q ≤ p we have
rnk q ≤ rnk p and if also rnk q = rnk p then necessarily q = p.
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Proof. Note that since all the pi are orthogonal that we have pi ∨ pj = pi + pj when
i 6= j by Proposition 2.4.5. Let p′ = p1 ∨ . . . ∨ pn−1. Then p′ ∨ pn = p and by the
covering property there is no sharp effect strictly between p′ and p. Suppose now
q ≤ p is atomic and suppose that q is not below p′. Then p′∨q must be strictly greater
than p′, but since this must also lie below p we conclude that p′ ∨ q = p.

Let p =
∑r
j qj = q1 ∨ . . . ∨ qr where r := rnk p is the minimal number of terms

needed to write p as a sum of atomic effects. We must then of course have r ≤ n. Let
q = q2 ∨ . . . ∨ qr, so that q lies strictly below p (as q1 ≤ p but not q1 ≤ q). It then
follows that there must be a pi such that pi does not lie below q as well, since otherwise
p = p1 ∨ . . .∨ pn ≤ q < p. Without loss of generality let this pi be p1. By the previous
paragraph we must have p1∨q = p1∨q2 . . .∨qr = p. This shows that q1 can be replaced
with p1 in this decomposition of p. We can do the same with q2, . . . , qr until we are
left with the equation p1 ∨ . . .∨ pr = p. Suppose n > r, then because pn is orthogonal
to all the other pi’s we have in particular pn ≤ p⊥1 ∧ . . . ∧ p⊥r = (p1 ∨ . . . ∨ pr)⊥ = p⊥.
Since also pn ≤ p we have pn ≤ p ∧ p⊥ = 0 which contradicts pn 6= 0. We therefore
have n = r.

Now suppose q =
∑s
j qj ≤ p =

∑r
i pi where s = rnk q. Since p− q is sharp we can

write p− q =
∑t
k vk for some atoms vk. Then because p =

∑s
j qj +

∑t
k vk we must by

the above argument have s+ t = r so that indeed rnk q ≤ rnk p. When rnk q = rnk p
we must have t = 0 so that indeed p− q = 0. �

Corollary 2.4.20. Let p 6= q be two atomic sharp effects and suppose 0 ≤ a ≤ p ∨ q.
Then a = λ1r1 + λ2r2 where the ri are orthogonal and atomic and r1 + r2 = p ∨ q.

Proof. By Proposition 2.4.17 (p∨q)−p is atomic so that p∨q can be written as the sum
of two atomic sharp effects. The previous proposition consequently gives rnk p∨ q = 2.
Suppose 0 ≤ a ≤ p ∨ q. Let a =

∑n
i λiri be a spectral decomposition of a with the ri

orthogonal and atomic. Of course dae ≤ p ∨ q so that by the previous proposition we
must have rnkdae ≤ 2. Since also by the previous proposition rnk

∑n
i ri = n we see

that we must have n = 2 and thus that a is as desired. �

2.4.4 Self-duality
In this section we will apply the characterisation theorem of strictly convex homogen-
eous cones of Proposition 1.3.9 to show sequential effect spaces must be self-dual.

Definition 2.4.21. Let p 6= q be a pair of atomic effects. We define the order ideal
generated by p and q as Vp∨q := {v ∈ V ; ∃n : −n p ∨ q ≤ v ≤ n p ∨ q}.

Vp∨q is an order unit space with order unit p ∨ q. If we have a, b ∈ [0, 1]Vp∨q then
a& b ≤ a ≤ p∨ q so that the sequential product of V restricts to Vp∨q. Hence, Vp∨q is
also a sequential effect space so that by Proposition 2.3.12 we see that this space has
a homogeneous positive cone, while the results of the previous section show that the
sharp effects in Vp∨q have the covering property. Furthermore, Vp∨q has rank 2 and
since for any atom r ∈ Vp∨q we have r+ r⊥ = 1 we see that r⊥ must also be an atom.

Lemma 2.4.22. Let p 6= q be a pair of atomic effects. The positive cone of Vp∨q is
strictly convex (cf. Definition 1.3.8).
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Proof. Let F be a proper face of the positive cone of Vp∨q. We must show that it is
an extreme ray, or equivalently, that it contains a unique atom. Let a ∈ F and let
λ ∈ R>0. Then we can write a = λ(λ−1a) + λ⊥0, so that also λ−1a ∈ F and hence F
is closed under positive scalar multiplication, so that F is completely determined by
the effects it contains. As F is already closed under convex combinations we see that
it is now also closed under sums. Let a ∈ F be an effect. By Corollary 2.4.20 we can
write a = λr + µr⊥ for some λ, µ ≥ 0 and r atomic. Suppose both λ, µ > 0. Then we
must have r, r⊥ ∈ F so that 1 = r + r⊥ ∈ F . For any atomic s we have 1 = s+ s⊥ so
that then also s, s⊥ ∈ F . As s is arbitrary, F must then be the entire positive cone,
contradicting the assumption that F is proper. Hence, we must have had a = λr
for some atomic r. If there were some other atomic s ∈ F , then we can consider
a′ = 1

2 (r + s). We know that a′ can’t be atomic so we can write it as a = λt + µt⊥

for some atomic t with λ, µ > 0 which by our previous argument would contradict the
properness of F . We conclude that F indeed contains a unique atom so that it is an
extreme ray. �

Corollary 2.4.23. Let p 6= q be a pair of atomic effects. Then Vp∨q is isomorphic to
a spin factor (cf. Definition 1.2.9).

Proof. Combine the previous lemma with Proposition 1.3.9. �

Recall that a state on an order unit space is a positive linear map ω : V → R
such that ω(1) = 1. For an atomic effect p in a spin factor (or any Euclidean Jordan
algebra) there exists a unique state ωp such that ωp(p) = 1. Indeed, any state ω on
an Euclidean Jordan algebra (EJA) is determined by some effect ρ via the EJAs inner
product: ω(a) = 〈a, ρ〉. The only state which has ω(p) = 1 must then have ρ = p.
EJAs furthermore satisfy symmetry of transition probabilities [4]: ωp(q) = ωq(p)
for any two atomic effects p and q. This again easily follows by the correspondence of
states and effects via the inner product: ωp(q) = 〈q, p〉 = 〈p, q〉 = ωq(p).

Proposition 2.4.24. For any atomic p ∈ E there is a unique state ωp satisfying
ωp(p) = 1. For any pair of atomic effects p, q ∈ E these states satisfy ωp(q) = ωq(p).

Proof. The states separate the effects in an order unit space (Proposition 1.3.14) so
that for p we can find a state ω such that ω(p) 6= 0. Let ωp(a) := ω(p& a)/(ω(p)).
Then ωp is a state and ωp(p) = 1. Suppose there is another state ω′ such that ω′(p) = 1.
Let q 6= p be any other atomic effect (if there is no atomic q 6= p then V ∼= R and
we are already done) and look at the restrictions of the states ωp and ω′ to the space
Vp∨q. These restriction maps are still states as ωp(p ∨ q) ≥ ωp(p) = 1 (and similarly
for ω′). Because states with the property ω(p) = 1 are unique on spin factors we see
that the states ω′ and ωp are equal on Vp∨q and hence in particular ωp(q) = ω′(q).
Since q was arbitrary and the atomic effects span V we conclude that ωp = ω′ so that
ωp is indeed unique.

For any two atomic p and q their unique states ωp and ωq when restricted to the spin
factor Vp∨q are still the unique states satisfying ωp(p) = 1 and ωq(q) = 1. As spin factor
satisfy symmetry of transition probabilities we then see that indeed ωp(q) = ωq(p). �

Proposition 2.4.25. Let p, q ∈ E be atomic. Then p& q = ωp(q)p. Consequently, p
and q are orthogonal if and only if ωp(q) = ωq(p) = 0.
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Proof. Because p is atomic we have p& q = λp for some λ ≥ 0. Let ω′(a) = ωp(p& a).
Then ω′(p) = ωp(p& p) = ωp(p) = 1, so that by the uniqueness of ωp we have ω′ = ωp.
We then see that ωp(q) = ω′(q) = ωp(p& q) = ωp(λp) = λωp(p) = λ. Hence indeed
p& q = ωp(q)p. �

Proposition 2.4.26. There exists an inner product 〈·, ·〉 on V such that the positive
cone is self-dual with respect to this inner product.

Proof. For atomic p and q we set 〈p, q〉 := ωp(q) = ωq(p) = 〈q, p〉. We can then
extend it by linearity to arbitrary a =

∑
i λipi and b =

∑
j µjqj in V by 〈a, b〉 :=∑

i,j λiµj〈pi, qj〉. For this to be well-defined, the inner product must be independent
of the choice of spectral decomposition of a and b. So suppose b =

∑
k µ
′
kq
′
k is a

different spectral decomposition. Then∑
i,j

λiµj〈pi, qj〉 =
∑
i

λiωpi(
∑
j

µjqj) =
∑
i

λiωpi(b) =
∑
i

λiωpi(
∑
k

µ′kq
′
k),

as desired. The well-definedness in the first argument follows via commutativity of
the expression:

〈a, b〉 =
∑
i,j

λiµjωpi(qj) =
∑
j,i

µjλiωqj (pi) = 〈b, a〉

We see that 〈a, a〉 =
∑
i,j λiλjωpi(pj) =

∑
i λ

2
i since pi and pj are orthogonal when

i 6= j and ωpi(pi) = 1. We conclude that 〈a, a〉 ≥ 0 and that it is only equal to zero
when a = 0 so that 〈·, ·〉 is indeed an inner product.

If a and b are positive elements then we can write them as a =
∑
i λipi and

b =
∑
j µjqj where all the λi and µj are greater than zero. But then 〈a, b〉 ≥ 0

because ωpi(qj) ≥ 0 for all i and j. Conversely, if a =
∑
i λipi with λi not necessarily

positive and 〈a, b〉 ≥ 0 for all b ≥ 0, then by taking b = pj we see that 0 ≤ 〈a, pj〉 = λj .
Hence we must have λj ≥ 0 for all j and thus a ≥ 0. �

Remark 2.4.27. Since we have now shown that finite-dimensional sequential effect
spaces are both homogeneous (Proposition 2.3.12) and self-dual (Proposition 2.4.26),
we could use the Koecher–Vinberg theorem (Theorem 1.3.7) to show that these spaces
are order-isomorphic to Euclidean Jordan algebras. For completeness sake we will
explicitly construct a Jordan product from the sequential product in Section 2.6.

2.5 The Born rule
Now that we have seen that the sequential effect spaces are self-dual we can recover
the familiar Born rule of quantum mechanics.

Recall that the states of a quantum mechanical system represented by the matrix
algebra Mn(C) are the density operators ρ ∈ Mn(C) (i.e. positive matrices with
tr(ρ) = 1). A measurement is represented by a POVM {Ei} where the Ei ∈ Mn(C)
are a set of effects satisfying

∑
iEi = 1.

The probability of observing the outcome i when measuring ρ with the POVM {Ei}
is then given by the Born rule: P (ρ|i) = tr(ρEi). A more convenient form of the Born
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rule is the equality tr(ρEi) = tr
(√
ρEi
√
ρ
)
. The expression √ρEi

√
ρ corresponds to

the standard sequential product ρ&Ei on Mn(C)sa. Hence, the Born rule can also
be presented as P (ρ|i) = tr(ρ&Ei). We will see that a similar rule can be derived for
sequential effect spaces.

Remark 2.5.1. The expression tr
(√
ρEi
√
ρ
)

might seem a bit foreign. Recall that
we are working in the Heisenberg picture, in which our primary concern is the effects
instead of the states. This is why we chose to represent this expression in such a
way to highlight the linearity in the effects instead of the more well-known expression
tr
(√
Eiρ
√
Ei
)

which highlights the linearity in the states.

As before, we will let V be a finite-dimensional sequential effect space.

Definition 2.5.2. Let a ∈ V . The trace of a is tr(a) := 〈a, 1〉. A density operator
on V is an element a ∈ V with a ≥ 0 and tr(a) = 1.

Proposition 2.5.3. Let ω : V → R be a state. Then there exists a density operator
ρ ∈ V such that ω(a) = 〈ρ, a〉 for all a ∈ V . Conversely, any density operator defines
a state on V in this manner.

Proof. Let V ∗ := {f : V → R linear} denote the dual space of V . The inner product
on V gives a map Φ : V → V ∗ defined by Φ(v)(w) = 〈v, w〉. Note that if Φ(v) = Φ(v′),
then 〈v − v′, w〉 = 0 for all w ∈ V and in particular for w = v − v′ so that v = v′.
Hence, Φ is injective and because V is finite-dimensional, dimV ∗ = dimV so that Φ
is necessarily also bijective.

For each state ω : V → R we can then find a unique ρ ∈ V such that Φ(ρ) = ω.
By definition of Φ we have ω(a) = 〈ρ, a〉 for all a ∈ V . As ω is positive, we have
0 ≤ ω(a) = 〈ρ, a〉 for all a positive and hence by self-duality of V we have ρ ≥ 0.
Furthermore 1 = ω(1) = 〈ρ, 1〉 = tr(ρ), and hence ρ is indeed a density operator.

Conversely it is clear how any ρ ≥ 0 with tr(ρ) = 1 defines a state ωρ(a) = 〈ρ, a〉. �

Lemma 2.5.4. Let La : V → V denote the sequential product map of a, and let
L∗a : V → V denote its adjoint with respect to the inner product. Then L∗a(1) = a.

Proof. We note that the classical algebra C(a) of a is isomorphic to Rn and that the
sequential product there is the standard coordinatewise product. The inner product is
also the standard inner product on Rn so that L∗a = La when the maps are restricted
to this associative algebra. Since 1 ∈ C(a) we indeed have L∗a(1) = La(1) = a. �

We can now prove a Born rule for sequential effect spaces.

Proposition 2.5.5. Let ω : V → R be a state. Then there exists a density operator
ρ ∈ V such that ω(a) = tr(ρ& a) for all a ∈ V . Conversely any density operator
defines a state in this way.

Proof. By Proposition 2.5.3 there is a density operator ρ ∈ V such that ω(a) = 〈ρ, a〉
for all a. Using Lemma 2.5.4 we calculate: ω(a) = 〈ρ, a〉 = 〈a, ρ〉 = 〈a, L∗ρ(1)〉 =
〈Lρ(a), 1〉 = 〈ρ& a, 1〉 = tr(ρ& a). �
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Given a system A we associated an order unit space VA to it, and we know that
St(A) ⊆ St(VA). We however do not yet know whether every state of VA corresponds
to an actual state of A, i.e. whether the states satisfy the no-restriction hypothesis
(cf. Remark 2.1.4). This will require an additional assumption. This assumption has
no bearing on the results outside this section, we merely include it to show how one
could get all the mathematical states to be physical states.

Given a state ω ∈ St(A) and some effect a ∈ Eff(A) such that ω(a) 6= 0 there should
be some state ωa that results from observing a on ω. Any effect b measured on this
state has (by definition) the same probabilities as a& b measured on ω, and hence
the state should satisfy ωa(b) = ω(a& b). But in fact, this state is not normalized as
ωa(1) = ω(a& 1) = ω(a) does not have to be equal to 1. In order to fix this we define
the state ωa to be ωa(b) := 1

ω(a)ω(a& b). Dividing by the probability ω(a) captures
the fact that we have “post-selected” for a being true on ω.

Assumption 2.5.6. Suppose ω ∈ St(A) and a ∈ Eff(A) such that ω(a) 6= 0. Then
there is a state ωa ∈ St(A) satisfying ωa(b) = 1

ω(a)ω(a& b) for all b ∈ Eff(A).

Note that this assumption is merely saying that the mathematical state ωa on V
defined by ωa(b) := 1

ω(a)ω(a& b) is in fact a physical state in our framework.

Proposition 2.5.7. Let A be a physical system satisfying Assumption 2.5.6 (in
addition to the Assumptions 1.4.5 and 2.1.1 that we made before). Then St(A) =
St(VA).

Proof. Let ω ∈ St(VA). We need to show that ω ∈ St(A). By Proposition 2.5.3 there
is a density operator ρ ∈ VA such that ω(a) = 〈ρ, a〉 for all a ∈ V . Write ρ =

∑
i λipi

where the pi are atomic. Note that λi ≥ 0 and 1 = tr(ρ) =
∑
i λi tr(pi) =

∑
i λi, so

that the λi form a probability distribution. Hence ρ is a convex combination of the
pi so that ω =

∑
i λiωpi is a convex combination of the ωpi that are the unique states

satisfying ωpi(pi) = 1. By Assumption 1.4.5 St(A) is a convex set, so it remains to
show that ωpi ∈ St(A).

Let p ∈ [0, 1]VA be atomic. By Proposition 2.1.3 [0, 1]VA = Eff(A), and since the
states separate the effects by Assumption 1.4.5, we can find a state ω ∈ St(A) so
that ω(p) 6= 0. Then Assumption 2.5.6 implies there is a state ωp ∈ St(A) such that
ωp(p) = 1

ω(p)ω(p& p) = ω(p)
ω(p) = 1. But such states are unique by Proposition 2.4.24

and hence we are done. �

Combining Propositions 2.1.3, 2.5.5 and 2.5.7 we see that for a system A we can
find a self-dual order unit space VA such that Eff(A) = Eff(VA), St(A) = St(VA) and
there is a one-to-one correspondence between states ω ∈ St(A) and density operators
ρω ∈ VA so that the Born rule holds: ω(a) = tr(ρω & a) for all a ∈ Eff(a).

2.6 The Jordan product
We wish to show that the order unit spaces we have been working with are actually
Euclidean Jordan algebras. To do this we must construct the Jordan product, and
show that it behaves well with respect to the inner product.
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We will use the construction of the Jordan product from the work of Alfsen and
Shultz [4], but then adapted to our setting. In this section we will again let V be a
finite-dimensional sequential effect space, which by the previous sections is self-dual
and homogeneous.

Proposition 2.6.1. Let p be atomic and let a, b ∈ V be arbitrary.

a) p& a = ωp(a)p = 〈p, a〉p.

b) 〈p& a, b〉 = 〈a, p& b〉.

Proof.

a) By Proposition 2.4.25 this is true when a is atomic. Writing a =
∑
i λiqi where

the qi are atomic we then get by linearity p& a =
∑
i λip& qi =

∑
i λiωp(qi)p =

ωp(
∑
i λiqi)p = ωp(a)p. Since ωp(qi) = 〈p, qi〉 the second equality follows in a

similar way.

b) Follows easily from the previous point as:

〈p& a, b〉 = 〈〈p, a〉p, b〉 = 〈p, a〉〈p, b〉 = 〈a, p〉〈p, b〉 = 〈a, 〈p, b〉p〉 = 〈a, p& b〉. �

Lemma 2.6.2. Let p and q be atomic and set p′ = p ∨ q − p. Then p⊥& q = p′& q.

Proof. First note that p⊥ = 1− p = 1− p ∨ q + p ∨ q − p = (p ∨ q)⊥ + p′ and hence
that p′ ≤ p⊥ so that p′ | p⊥ by Proposition 2.4.1.a). As p | p∨ q we also have p⊥ | p∨ q
so that p⊥& (p ∨ q) = (p ∨ q) & p⊥ = (p ∨ q) & ((p ∨ q)⊥ + p′) = p′ (where in the last
step we used p′ ≤ p ∨ q). As also q ≤ p ∨ q we calculate p⊥& q = p⊥& ((p ∨ q) & q) =
(p⊥& (p ∨ q)) & q = p′& q. �

Recall that La : V → V is given by La(b) = a& b.

Definition 2.6.3. Let p ∈ V be an atomic effect and let b ∈ V be arbitrary. We
define their Jordan product as p ∗ b = 1

2 (id + Lp − Lp⊥)b.

Lemma 2.6.4. [4, Lemma 9.29]: Let p and q be atomic effects.

a) p ∗ q = q ∗ p and p ∗ p = p.

b) When p& q = 0 we have p ∗ q = 0 and p ∗ (q ∗ b) = q ∗ (p ∗ b) for all b ∈ V .

Proof.

a) p ∗ p = p follows immediately from p& p = p and p⊥& p = 0. Now let p and
q be atomic. If p = q we of course have p ∗ q = q ∗ p, so suppose also that
p 6= q. Following Lemma 2.6.2 define p′ = p ∨ q − p. By Proposition 2.4.17 p′ is
atomic and hence by Proposition 2.4.25 we have p& q = ωp(q)p = 〈p, q〉p and
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p′& q = 〈p′, q〉p′. Note that hence p⊥& q = p′& q = 〈p′, q〉p′ by Lemma 2.6.2.
We calculate:

2(p ∗ q) = q + 〈p, q〉p− 〈p′, q〉p′

= q + 〈p, q〉p− 〈p′, q〉(p ∨ q − p)
= q + (〈p, q〉p+ 〈p′, q〉)p− 〈p′, q〉(p ∨ q)
= q + 〈p ∨ q, q〉p+ 〈p ∨ q − p, q〉(p ∨ q)
= q + p+ (1− 〈p, q〉)(p ∨ q).

This final expression is symmetric in p and q and hence p ∗ q = q ∗ p.

b) When p& q = 0 we have q ≤ p⊥ so that p⊥& q = q which indeed gives p ∗ q =
1
2 (q + p& q − p⊥& q) = 1

2 (q − q) = 0. Furthermore, because p& q = 0 we
have p | q, q⊥ and q | p⊥, and hence the maps Lp, Lp⊥ , Lq and Lq⊥ all mutually
commute so that the maps b 7→ p ∗ b and b 7→ q ∗ b commute as well. �

Using these results we extend the Jordan product to the entire space.

Definition 2.6.5. Let a, b ∈ V be arbitrary. Let a =
∑
i λipi and b =

∑
j µjqj be

spectral decompositions with the pi and qj atomic. Define their Jordan product as
a ∗ b =

∑
i,j λiµj(pi ∗ qj). We write Ta : V → V for the map that sends b to a ∗ b.

Proposition 2.6.6. Let V be a finite-dimensional sequential effect space. The Jordan
product ∗ defined above makes V a Jordan algebra.

Proof. First we check that ∗ is independent of how a and b are represented as a
linear combination of atoms, so that ∗ is indeed well-defined. Write a as a spectral
decomposition into atomic effects a =

∑
i λipi. Then a ∗ b =

∑
i λipi ∗ b so that a ∗ b

is independent of how b is represented as a sum of atomic sharp effects. Using the
previous lemma we easily see that a ∗ b = b ∗ a and hence it is also independent of how
a is represented. Bilinearity then follows from linearity in the second argument.

It now remains to show that the Jordan identity a∗(a2∗b) = a2∗(a∗b) holds (where
a2 := a ∗ a). Write a =

∑
i λipi with all the pi orthogonal atoms so that pi ∗ pj = 0.

Then a ∗ a =
∑
i,j λiλjpi ∗ pj =

∑
i λ

2
i pi. We now calculate:

a∗(a2∗b) =
∑
i,j

λiλ
2
jpi∗(pj∗b)

2.6.4.b)=
∑
i,j

λiλ
2
jpj∗(pi∗b) = a2∗(a∗b). �

At this point we do not yet know whether V is a Euclidean Jordan algebra. As
we already know that V is a real Hilbert space, it remains to prove the identity
〈a ∗ b, c〉 = 〈b, a ∗ c〉. This comes down to showing that Ta = T ∗a where T ∗a is the
Hilbert space adjoint of Ta. By linearity it suffices to prove this for a atomic, for which
we have Ta = 1

2 (id + La − La⊥). If we can therefore show that L∗p = Lp for any sharp
p, we are done.

We know that a has an inverse if and only if La is invertible and in which case
L−1
a = La−1 . For these maps we have (L∗a)−1 = L∗a−1 . Note furthermore that La and

Lb commute if and only if L∗a and L∗b commute and that L∗0 = L0 = 0.
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Proposition 2.6.7. Let Φ : V → V be a unital order-isomorphism. Then Φ∗ = Φ−1.

Proof. Any order-isomorphism Φ sends an atom p to a Φ(p) that is proportional to
an atom (cf. Proposition 2.4.13). When it is furthermore unital, it also preserves
sharpness of effects, so that Φ(p) is also atomic and hence (ωpΦ−1)(Φ(p)) = ωp(p) = 1.
By Proposition 2.4.24 states with this property are unique so that necessarily ωΦ(p) =
ωpΦ−1. We conclude that 〈Φ(p),Φ(q)〉 = ωΦ(p)Φ(q) = ωpΦ−1Φ(q) = ωp(q) = 〈p, q〉 for
atomic p and q so that Φ preserves the inner product so that indeed Φ∗ = Φ−1. �

Lemma 2.6.8. Let a be invertible. There exists a unital order-isomorphism Φ that
commutes with La and L∗a and satisfies L∗a = LaΦ.

Proof. Since a is invertible, La and L∗a are also invertible. Define Φ := L−1
a L∗a. Then

Φ is an order isomorphism and using Lemma 2.5.4 we have Φ(1) = L−1
a L∗a(1) =

L−1
a (a) = 1 so that it is unital. By definition we have LaΦ = L∗a.
For the commutativity we note that for all b and c: 〈L∗ab, c〉 = 〈LaΦb, c〉 =

〈Φb, L∗ac〉 = 〈Φb, LaΦc〉 = 〈Φ−1L∗aΦb, c〉 so that Φ−1L∗aΦ = L∗a which shows that
Φ commutes with L∗a and therefore with La. �

Lemma 2.6.9. Denote by B(V ) the set of bounded linear maps on V (which by
finite-dimensionality of V are all the linear maps). The map L : E → B(V ) that sends
an effect to its sequential product map is continuous (where B(V ) is equipped with
the operator-norm topology).

Proof. For a fixed b the map a 7→ a& b is continuous by S2. Furthermore, the map
b 7→ a& b is continuous because it is linear and bounded. With a standard argument
it can then be shown that (a, b) 7→ a& b is jointly continuous. Because V is finite-
dimensional the space of effects E is compact. The map & : E ×E → V is therefore
uniformly continuous.

Now for every ε > 0 we need to find a δ > 0 such that ‖a1 − a2‖ ≤ δ implies
‖La1 − La2‖ ≤ ε. Recall that ‖La1 − La2‖ = sup‖b‖≤1 ‖La1(b)− La2(b)‖ and hence
it suffices to find a δ > 0 such that ‖La1(b)− La2(b)‖ < ε for all b ∈ E whenever
‖a1 − a2‖ < δ, but this is simply the uniform continuity of & : E × E → V . �

Proposition 2.6.10. For any a ∈ V positive, La and L∗a commute.

Proof. Suppose first that a is invertible. By Lemma 2.6.8 we then have La = L∗aΦ =
ΦL∗a. But then LaL∗a = LaΦLa = ΦLaLa = L∗aLa. Now if a ∈ E is not invertible then
there is a sequence of invertible effects an that converge to a. By the previous lemma
we then also see that Lan converges to La in the operator norm, and similarly L∗an
converges to L∗a. Therefore 0 = LanL

∗
an − L

∗
anLan converges to LaL∗a − L∗aLa. �

Proposition 2.6.11. For any positive a let Ua = LaL
∗
a be its quadratic product.

Then

a) U2
a = Ua2 ,

b) Up = Lp for any sharp p, and hence L∗p = Lp, and

c) T ∗a = Ta for any a ∈ V .
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Proof.

a) U2
a = LaL

∗
aLaL

∗
a∗ = LaLaL

∗
aL
∗
a = La2L∗a2 = Ua2 .

b) We have U2
p = Up2 = Up. Furthermore LpUp = LpLpL

∗
p = LpL

∗
p = Up and

similarly UpL∗p = Up. Write A = Up − Lp and note that A∗ = Up − L∗p. Hence:

AA∗ = (Up−Lp)(Up−L∗p) = U2
p−UpL∗p−LpUp+LpL∗p = Up−Up−Up+Up = 0.

But then for arbitrary a ∈ V we calculate 〈A∗a,A∗a〉 = 〈AA∗a, a〉 = 0 so that
A∗a = 0 and hence 0 = A∗ = Up − L∗p, so that Lp = (L∗p)∗ = U∗p = Up.

c) By the previous point, for any sharp p: T ∗p = 1
2 (id∗+L∗p−L∗p⊥) = 1

2 (id+Lp−Lp⊥).
Now write a =

∑
i λipi where the pi are atomic. Then Ta =

∑
i λiTpi , and

hence T ∗a =
∑
i λiT

∗
pi =

∑
i λiTpi = Ta. �

Theorem 2.6.12. Let V be a finite-dimensional sequential effect space. Then V is a
Euclidean Jordan algebra.

Proof. By Proposition 2.6.6 it is a Jordan algebra, and by the previous proposition
the Jordan algebra maps are self-adjoint so that V is indeed Euclidean. �

We note that the converse is also true: any Euclidean Jordan algebra is a finite-
dimensional sequential effect space (cf. Theorem 4.7.18).

2.7 Central effects
Before we go on to study composite systems, we first need to know a bit more out the
structure of a single sequential effect space, and how it decomposes into factors.

Definition 2.7.1. We call a sharp effect central when it is compatible with all effects.
We say a central effect is minimal if it is non-zero and there is no non-zero central
effect beneath it.

Proposition 2.7.2. Let c1 and c2 be central effects.

a) c⊥1 is central.

b) If c1 and c2 are orthogonal, then c1 + c2 is central.

c) c1 & c2 is central.

d) If c1 ≤ c2, then c2 − c1 is central.

e) If c1 is minimal, then either c1 ≤ c2, or c1 is orthogonal to c2.

f) If c1 6= c2 are both minimal, then c1 and c2 are orthogonal.

Proof. We let a denote an arbitrary effect.

a) As a | c1 for all a, also a | c⊥1 . Since c1 is sharp, c⊥1 is also sharp.
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b) Since a | c1, c2, we also have a | c1 + c2. The sum of two orthogonal sharp effects
is again sharp.

c) Similar to the previous point, but using Proposition 2.3.1.e).

d) We have c2 − c1 = c2 & c⊥1 , and hence it is central by the previous points.

e) By point c), c1 & c2 is central and of course c1 & c2 ≤ c1. Since c1 is minimal,
we must then have c1 & c2 = c1, or c1 & c2 = 0, giving the desired result.

f) Direct consequence of the previous point by minimality of c2. �

Proposition 2.7.3. Every central effect is equal to the sum of the minimal central
effects below it. In particular, 1 is equal to the sum of all minimal central effects.

Proof. Let c be central. If it is minimal then we are done. If it is not minimal, then
there is a non-zero central effect c1 < c. We now have two orthogonal central effects
c1 and c− c1. By repeating this procedure these central effects we get a sequence of
orthogonal central elements below c. As orthogonal elements are linearly independent,
by finite-dimensionality, this procedure has to terminate and hence we have c =

∑
i ci

where all the ci are minimal.
Now suppose c′ ≤ c is minimal. Then c′ = c′& c =

∑
i c
′& ci. Each of these

summands is either zero or equal to ci by the previous proposition, and hence c′ = ci
for some i. As a result, all the minimal central elements below c are already included
in the set {ci}. �

Proposition 2.7.4. Let {ci} be a collection of central effects that sums to 1, and
let a be an arbitrary effect. Then there are unique ai ≤ ci such that a =

∑
i ai.

Furthermore, for any other b =
∑
i bi with bi ≤ ci we get a& b =

∑
i ai & bi.

Proof. Letting ai = ci & a we get a = a& 1 = a& (
∑
i ci) =

∑
i a& ci =

∑
i ci & a. For

uniqueness suppose now that a =
∑
i a
′
i is another decomposition with a′i ≤ ci. Then

aj = cj & a = cj & (
∑
i a
′
i) = a′j , because ci ⊥ cj when i 6= j. Now let b =

∑
i bi with

bi ≤ ci. Then a& b =
∑
i a& bi =

∑
i a& (ci & bi) =

∑
i(a& ci) & bi =

∑
i ai & bi. �

Lemma 2.7.5. Let c be a central effect and let p be an atom. Then either p ≤ c or
p ⊥ c.

Proof. Since c | p we have c& p = p& c = λp for some λ. But also λp = c& p =
c& (c& p) = λ(c& p) = λ2p. Hence, either λ = 0 or λ = 1. In the first case p ⊥ c,
and in the second case c& p = p so that p ≤ c. �

Proposition 2.7.6. Let c be a central effect and suppose p ≤ c is an atom. Suppose
q is an atom incompatible with p, then also q ≤ c.

Proof. We prove the contrapositive. Suppose q is not below c. Then by the previous
lemma q& c = 0 and hence q& p = q& (c& p) = (q& c) & p = 0 & p = 0 so that
q | p. �

Definition 2.7.7. We call V simple if the only central effects are 0 and 1.
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Definition 2.7.8. Let V and W be sequential effect spaces. We define their direct
sum V ⊕W to be the direct sum of the vector spaces with the order and sequential
product defined coordinatewise. We call a sequential effect space indecomposable
if it is not isomorphic to V ⊕W for V,W 6= {0}.

Proposition 2.7.9. A space is simple if and only if it is indecomposable.

Proof. We will show that V is decomposable if and only if V is not simple.
Suppose V is not simple. Then there is a central effect c 6= 0, 1. Let V1 := c&V :=

{c& a ; a ∈ V } and similarly V2 = c⊥&V . By Proposition 2.7.4 any a ∈ V can
be written as a = a1 + a2 where ai ∈ Vi. Also by that proposition, when we have
b = b1 + b2 split in the same way, then a& b = a1 & b1 + a2 & b2, and hence the
sequential product separates over V1 and V2. Hence V ∼= V1 ⊕ V2.

For the other direction, suppose V = V1 ⊕ V2, then it is straightforward to verify
that (1, 0) ∈ V1 ⊕ V2 is central, and hence that V is not simple. �

Proposition 2.7.10. Let V be a finite-dimensional sequential effect space. There
exist unique (up to permutation) simple sequential effect spaces V1, . . . Vn such that
V ∼= V1 ⊕ . . .⊕ Vn.

Proof. Let c1, . . . , cn be the set of minimal non-zero central effects in V and set
Vi = ci &V . By Proposition 2.7.4 we then indeed get V = V1 ⊕ . . .⊕ Vn. Since the ci
are minimal, each of the Vi must be simple.

Suppose there is another decomposition V ∼= W1 ⊕ . . .⊕Wk into simple sequential
effect spaces Wj . The 1Wj are minimal central effects, and hence they must correspond
to the ci so that there is some permutation δ such that Vi = ci &V = 1Wδ(i) &V =
Wδ(i). �

We will need the following proposition. Unfortunately the author does not know
of a simple proof of this fact using the sequential product. However, because V is a
Euclidean Jordan algebra, we can resort to the extensive literature on that subject.

Proposition 2.7.11. Suppose V is simple and let p ∈ V be any sharp effect. Then
p&V is again simple.

Proof. As V is a Euclidean Jordan algebra, it is also a JBW-algebra (Proposi-
tion 4.2.18) and hence Proposition 5.2.17 of Ref. [107] applies that states exactly
this result. �

2.8 Composite systems
Definition 2.2.3 only concerns single systems, but a physical theory must also describe
how multiple systems combine into a larger one. Let A and B denote a pair of
systems where the effects come from order unit spaces VA and VB. The composite
system A ⊗ B is then represented by some space VA⊗B. Given states ωA : VA → R
and ωB : VB → R and effects a ∈ VA and b ∈ VB, we represent their composites
on the system A ⊗ B by ωA ⊗ ωB and a ⊗ b (note that a priori the symbol ‘⊗’
does not have to be related to the regular tensor product of vector spaces). Since
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these are product states and effects, they represent non-interacting systems. The
probability of the outcome a ⊗ b being observed on ωA ⊗ ωB is therefore given by
(ωA ⊗ ωB)(a⊗ b) = ωA(a)ωB(b). Similarly, when we have effects a1 and a2 on A and
effects b1 and b2 on B, the independence of their composites should be respected by
the sequential product: (a1 ⊗ b1) & (a2 ⊗ b2) = (a1 & a2)⊗ (b1 & b2).

We will also assume that our composites satisfy local tomography. Recall from
Section 1.4 that local tomography demands that a state defined on a composite system
is completely determined by measurements on each separate component (the local
measurements). In other words, given states ω1, ω2 ∈ St(A⊗B) we only have ω1(a⊗
b) = ω2(a⊗ b) for all a ∈ Eff(A) and b ∈ Eff(B) when ω1 = ω2. As our systems satisfy
the no-restriction hypothesis, this requirement reduces to the equality dim(VA⊗B) =
dim(VA) dim(VB) [23].

Definition 2.8.1. Let V and W be finite-dimensional sequential effect spaces. We
say that V ⊗W is a locally tomographic composite when there is a bilinear map
⊗ : V ×W → V ⊗W and

a) dim(V ⊗W ) = dim(V ) dim(W ),

b) for all a1, a2 ∈ V , b1, b2 ∈W : (a1 ⊗ b1) & (a2 ⊗ b2) = (a1 & a2)⊗ (b1 & b2),

c) for all states ω1 : V → R, ω2 : W → R, there is a state ω : V ⊗ W → R
satisfying for all a ∈ V and b ∈W : ω(a⊗ b) = ω1(a)ω2(b). We denote this state
by ω1 ⊗ ω2.

For the remainder of this section we will let V and W denote finite-dimensional
sequential effect spaces, and V ⊗W a locally tomographic composite of them.

Lemma 2.8.2. The bilinear map V ×W → V ⊗W given by (a, b) 7→ a⊗b is bijective.

Proof. Let {pi} be a basis of atomic effects of V and similarly let {qj} be a basis of
atomic effects in W . We will show that {pi ⊗ qj} is linearly independent in V ⊗W
and hence the dimension of the image of the tensor product map is dim(V ) dim(W ).
Since dim(V ⊗W ) = dim(V ) dim(W ) the map must then be bijective.

Reasoning towards a contradiction, suppose that the set {pi ⊗ qj} is linearly de-
pendent. Without loss of generality we can then write p1⊗ q1 =

∑
i,j λijpi⊗ qj where

the λij are some real numbers and the sum goes over all i, j except i = j = 1. Let ω1
and ω2 be arbitrary states on V respectively W and apply the map ω1 ⊗ ω2 to both
sides to get

ω1(p1)ω2(q1) =
∑
i,j

λijω1(pi)ω2(qj) = ω1(p1)

∑
j

λ1jω2(qj)

+
∑
i>1

ω1(pi)

∑
j

λijω2(qj)

 .

Rewrite this to

ω1(p1)

ω2(q1)−
∑
j

λ1jω2(qj)

 = ω1

∑
i>1

pi
∑
j

λijω2(qj)

 .



48 Chapter 2. Sequential measurement

This holds for all states ω1 and since states separate the effects, we hence have

p1

ω2(q1)−
∑
j

λ1jω2(qj)

 =
∑
i>1

pi
∑
j

λijω2(qj).

By assumption the pi are linearly independent and so this can only hold when∑
j λijω2(qj) = ω2(

∑
j λijqj) = 0 for all i > 1. This must again hold for all states ω2

so that
∑
j λijqj = 0. Since the qj are also linearly independent this shows that λij = 0

when i > 1. By interchanging the role of p1 and q1 we also get λij = 0 when j > 1,
so that the only nonzero value could be λ11, which finishes the contradiction. �

Lemma 2.8.3. Let c ∈ V ⊗W be arbitrary. Then c =
∑
i λiai ⊗ bi for some ai ∈ V ,

bi ∈W and λi ∈ R.
Proof. By the previous proposition, the ‘pure tensors’ a⊗ b span V ⊗W and hence
we can find a basis of V ⊗W that consists of pure tensors ai ⊗ bi. �

Proposition 2.8.4. The following are true.
a) p⊗ q ∈ V ⊗W is atomic when p ∈ V and q ∈W are atomic.

b) c⊗ d is central in V ⊗W when c ∈ V and d ∈W are central.
Proof.

a) Because (p⊗ q) & (p⊗ q) = (p& p)⊗ (q& q) = p⊗ q, we see p⊗ q is sharp. Let
c =

∑
i λiai ⊗ bi be an arbitrary element of V ⊗W , then using Lemma 2.4.11

(p⊗ q) & c =
∑
i λi(p& ai)⊗ (q& bi) =

∑
i λi‖p& ai‖‖q& bi‖(p⊗ q) = µ(p⊗ q)

for some µ ∈ R. Now suppose 0 ≤ c ≤ p ⊗ q. Since p ⊗ q is sharp we get
c = (p⊗ q) & c = µ(p⊗ q), and hence p⊗ q is indeed atomic.

b) c | a for all a ∈ V and d | b for all b ∈W , and hence c⊗ d | a⊗ b. Consequently
c⊗ d is compatible with all linear combinations of pure tensors, which span the
entirety of V ⊗W . �

Lemma 2.8.5. Suppose V is simple and let p, q ∈ V be atoms. Then there is an
atom r ∈ V such that r& p 6= 0 and r& q 6= 0.
Proof. If p& q 6= 0 then we are done (pick r = p), so assume that p and q are
orthogonal and hence p | q. Consider W := (p+ q) &V . If the only atoms in W are p
and q then both p and q are central in W and hence W would not be simple, which
contradicts Proposition 2.7.11. Hence, there is an atom r ∈ W with r 6= p, q. If
r& p = 0, then p + r ≤ 1W = p + q. As W has rank 2 by Corollary 2.4.20 this is
only possible when r = q, a contradiction. Hence r& p 6= 0 and by symmetry also
r& q 6= 0. �

Proposition 2.8.6. Decompose V = E1⊕ . . .⊕En and W = F1⊕ . . .⊕Fm with the
Ei and Fj simple as in Proposition 2.7.10. Pick 1 ≤ k ≤ n and 1 ≤ l ≤ m and let
p1, . . . , pr be a maximal collection of orthogonal atomic effects in Ek, and q1, . . . , qs
a maximal collection of orthogonal atoms in Fl. Then (pi ⊗ qj)r,si=1,j=1 belong to the
same simple summand in V ⊗W and they form a maximal collection of orthogonal
non-zero atomic effects in this summand.
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Proof. For each pair pi and pj pick an atom rij such that rij & pi 6= 0 and rij & pj 6= 0,
which exists by Lemma 2.8.5. Similarly, for every qk and ql pick an atom r′kl such that
r′kl & qk 6= 0 and r′kl & ql 6= 0.

By Proposition 2.8.4.a) rij⊗r′kl and pi⊗qk are atomic for all i, j, k, l. By construction
we of course have 0 6= (rij & pi) ⊗ (r′kl & qk) = (rij ⊗ r′kl) & (pi ⊗ qk) and similarly
(rij ⊗ r′kl) & (pj ⊗ ql) 6= 0. Then by Proposition 2.7.6, rij ⊗ r′kl must be below the
same minimal central effect as both pi ⊗ qk and pj ⊗ ql. Doing this with all possible
pairings we see that indeed all the pi⊗ qj are below the same minimal central element
in V ⊗W and hence belong to the same simple summand.

Since
∑
i pi = 1Ek , this sum is a central effect. The same holds for

∑
j qj = 1Fl .

Their tensor product 1Ek⊗1Fl =
∑
i,j pi⊗qj is then also central by Proposition 2.8.4.b).

Since the only nonzero central effect in a simple summand is the identity, this expression
must be equal to the identity of this summand. As a result the set (pi⊗qj)i,j is indeed
maximal. �

Using this proposition we conclude that for each of the simple summands E of V
and F of W there must exist a summand in V ⊗W which has rank (rnk E)(rnk F ).
Because the tensor product map is injective this factor must have dimension at least
dimE dimF , and since the total dimension of the factors must equal dim(V ⊗W ) =
dim(V ) dim(W ) the dimension must be exactly equal to dimE dimF . Now when V
is a sequential effect space for which a locally tomographic composite V ⊗ V exists,
the above must in particular be true when E = F so that for all simple factors E of
V there must exist a simple factor with rank (rnkE)2 and dimension (dimE)2.

To show that this is quite a restrictive property we will use the classification theorem
for Euclidean Jordan algebras presented in Theorem 1.2.10, which allows us to prove
the following proposition.

Proposition 2.8.7. Let E be a simple Euclidean Jordan algebra of rank r and
dimension N . There exists a simple Euclidean Jordan algebra of rank r2 and dimension
N2 if and only if E = Mr(C)sa.

Proof. If E = Mr(C)sa is a complex matrix algebra then dimE = N = r2 and the
property is true because Mr2(C)sa is a simple EJA of rank r2 and dimension r4 = N2.
It remains to check that every other simple EJA does not satisfy the conditions. If
E = M3(O)sa is the 3-dimensional octonion Hilbert space, then r = 3 and N = 27.
The highest-dimensional simple EJA of rank 9 is the quaternionic M9(H)sa which has
dimension 9 · (2 · 9− 1) = 153 < 272 = 729. Hence, there is no simple EJA with the
right dimension and rank. If E = Mr(H)sa is quaternionic, then N = r(2r − 1). The
highest-dimensional simple EJA of rank r2 is also quaternionic so that its dimension is
r2(2r2−1). It is easy to check that N2 = r2(2r−1)2 > r2(2r2−1) when r > 1 so that
again, E does not satisfy the property. If E = Mr(R)sa, then by dimension counting
we can again see that there does not exist an EJA with rank r2 and dimension N2. If
E is a spin factor then its rank is 2. The rank 4 simple EJAs have dimension 10, 16
and 28. The only one of these which is a square is 16, and hence in this case E must
have dimension 4 and hence be the spin factor S3. This spin factor is isomorphic to
M2(C)sa. �
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Theorem 2.8.8. Suppose V is a finite-dimensional sequential effect space which has
a locally tomographic composite with itself. Then there exists a C∗-algebra A such
that V ∼= Asa.

Proof. Decompose V into simple sequential effect spaces Vk using Proposition 2.7.10:
V = V1 ⊕ · · · ⊕ Vn. As a result of Proposition 2.8.6 for each summand Vi of V
there must exist a simple sequential effect space of rank (rnkVi)2 and dimension
(dimVi)2. By Theorem 2.6.12 all the Vi are simple Euclidean Jordan algebras, hence
by Proposition 2.8.7 this is only possible if Vi = Mri(C)sa for some ri ∈ N. Hence
V = Mr1(C)sa ⊕ · · · ⊕Mrn(C)sa = Asa where A is the C∗-algebra A = Mr1(C)⊕ · · · ⊕
Mrn(C). �

This theorem completes our reconstruction of quantum theory. It shows that any
physical theory which satisfies the conditions we specified with regard to sequential
measurements and composite systems must be represented by a complex C∗-algebra.
Conversely, any finite-dimensional complex C∗-algebra satisfies our assumptions.

Remark 2.8.9. The more interesting part of this derivation is that sequential product
spaces correspond to Jordan algebras. The result that Euclidean Jordan algebras that
have a locally tomographic composite correspond to complex C∗-algebras has been
shown in many different ways before. To the authors knowledge the first time a result
like this was shown was by Hanche-Olsen [106]. Local tomography has been used
explicitly as an axiom to force this property in several reconstructions such as in
Refs. [150, 185] and we will use it for the same purpose for a different reconstruction
in Chapter 3.

2.9 Dynamics of the theory
We have so far focused on the states and effects of a physical system, but an important
part of any physical theory is of course the set of allowed dynamics. In this section we
will sketch how our assumptions are also sufficient to retrieve the standard dynamics
of quantum theory: trace-preserving completely positive maps, unitary conjugation,
and the Schrödinger equation.

Any state-transformation T : A → B of a system A to B, which we will assume
to be convex for the same reasons we assumed states to be convex, gives rise to a
map of the effect spaces T : Eff(B) → Eff(A) via ω(T (a)) := T (ω)(a). We then
necessarily have T (0) = 0 as ω(T (0)) = T (ω)(0) = 0 for all ω and similarly T (1) = 1.
Since we have Eff(A) = [0, 1]VA and transformations preserve the convex structure of
the effect space we see that T extends to a positive unital linear map T : VB → VA.
Theorem 2.8.8 shows that we can represent systems by (the self-adjoint part) of
complex C∗-algebras: VA = Asa, VB = Bsa. The linear map T : Bsa → Asa is easily
extended to the entirety of the C∗-algebra by setting T (a+ ib) = T (a) + iT (b). Hence,
transformations correspond to positive unital maps between C∗-algebras. As discussed
in Section 1.1.3, to deal with composite systems, T must furthermore be completely
positive. Hence, we have retrieved the standard type of dynamics that are allowed in
quantum theory. Note that the reason we get unital maps instead of trace-preserving
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maps is because we are dealing with effect-transformations. The adjoint of the map
T gives a state-transformation that is trace-preserving instead of unital.

In order to retrieve the unitary structure of quantum theory we consider reversible
transformations. A transformation T : A → A is reversible when it has an inverse
T−1 : A → A so that T ◦ T−1 = id = T−1 ◦ T . Hence in our setting reversible
transformations are precisely those unital completely positive maps T : A→ A that
have a completely-positive two-sided inverse T−1. Such maps are in particular unital
order-isomorphisms, and hence Jordan-isomorphisms (cf. Proposition 4.2.12). As a
result, T maps (minimal) central effects to (minimal) central effects. This means
that T permutes the simple factors A = A1 ⊕ · · · ⊕ An in some manner (note that
T can only interchange isomorphic factors). Composing T with the map P that
undoes this permutation of the simple factors we get a completely-positive invertible
map P ◦ T that restricts to each Ak ∼= Mrk(C) separately. The unital completely-
positive invertible maps f : Mrk(C) → Mrk(C) have been classified [167] and are
all of the form f(M) = UMU∗ for some unitary U ∈ Mrk(C). We conclude that
reversible transformations consist of a permutation of the simple factors followed by
a unitary conjugation on each of the separate factors. In particular, if the system
is ‘maximally non-classical’, having no non-central effects, then the only possible
reversible transformations are unitary conjugations.

Finally, to reconstruct the Schrödinger equation, let us consider a time-evolution of
the system. We represent the time-evolution of the system A by a family of reversible
transformations {Φt : A → A ; t ∈ R} that maps an initial state ω ∈ St(A) to the
state ωt := Φt(ω) that represents the same state after some time t has passed. Of
course Φ0 = id and Φt ◦ Φs = Φt+s = Φs ◦ Φt, as first letting s units of time pass
and then t is the same as letting t + s units pass at once. Consequently, we also
have Φ−t = Φ−1

t so that t 7→ Φt is a group homomorphism from R to the set of
reversible transformations of A. As each of the Φt is a reversible transformation, it
must consist of a permutation of the simple factors of the C∗-algebra underlying A
followed by a unitary conjugation. However, since we have Φt = (Φt/n)n for every
n, the permutation of Φt must be trivial. Hence the time evolution is implemented
by unitary conjugation on each separate factor of A. Let us then assume that the
C∗-algebra of A is simple and hence equal to Mn(C) for some n. Then for each t
we have Φt(M) = UtMU∗t for some unitary Ut. If we now make the final reasonable
assumption that when t → 0 we have Φt → id (in the strong operator topology),
i.e. that the time-evolution is continuous, or in other words, that small changes in
time lead to small changes in the state, we have the conditions for Stone’s theorem on
one-parameter unitary groups [196]. As a consequence of this theorem there must be
some self-adjoint matrix H ∈ Mn(C) such that Φt(M) = eitHMe−itH , which is the
form of the Schrödinger equation for a Hamiltonian H.

2.10 Conclusion
We have shown that we can reconstruct quantum theory from assumptions on the
behaviour of sequential measurement. We first considered an isolated system and
showed that its effect space must be isomorphic to that of a Euclidean Jordan algebra.
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Then we showed that the only systems that additionally have locally tomographic
composites with themselves must be complex C∗-algebras. The Born rule and the
Schrödinger equation were derived as consequences from these results.

An interesting question is of course to ask whether our assumptions can be weakened.
Example 2.2.8 shows that we need the effect spaces to be order unit spaces — just
having an ordered vector space separated by states is not enough. Of the axioms of
the sequential product in Definition 2.2.3, the orthogonality axiom S4 is perhaps the
least well-motivated from an operational standpoint. We remark however that most
of the results of Section 2.3 do not need this axiom. In particular, the proof of the
spectral theorem and the homogeneity of the space can be derived without it. It is
unclear whether the rest of our results continue to hold without the use of S4. It is
also not clear whether any of the other axioms of Definition 2.2.3 can be dropped.

We dealt in this chapter with finite-dimensional systems. In Chapter 5 we consider
infinite-dimensional systems. In particular, in Section 5.2 we consider a slightly
different variant of the sequential product that allows us to derive many of the same
results in infinite dimension. We identify in particular two additional assumptions
that are sufficient for the space to be isomorphic to a JB-algebra (a generalisation of
EJAs that also allows infinite-dimensional algebras).



Chapter 3

Pure processes
In the previous chapter we used the framework of generalised probabilistic theories.
This framework however has a hidden assumption: the representation of probabilities
with real numbers. This allowed us to work with convex state and effect spaces, and
in turn allowed us to derive that it was sufficient to consider the order unit spaces
associated to physical systems.

In this chapter we start an investigation in what can be said about the basic structure
of state and effect spaces if we do not consider probabilities to take the form of real
numbers. The result will be a structure known as an effect algebra which was originally
introduced in 1994 by Foulis and Bennett [77]. An effect algebra is an axiomatisation
of the structure present in the space of effects of a (quantum) physical system. This
axiomatisation involves a partial addition, negation and existence of a 0 and 1 effect
(abstract versions of Assumptions 1.4.5 and 2.1.1).

Effect algebras are used in a relatively new branch of categorical logic known as
effectus theory which was initiated by Jacobs in 2014 [118]. An effectus is essentially a
generalisation of the type of GPT we described in Section 1.4, and can describe determ-
inistic, probabilistic, and quantum models of logic or even more exotic alternatives [41],
either in finite or infinite dimension [214].

In this chapter we consider a weaker form of an effectus that we call an effect theory.
We use this alternative as it is sufficient for our purposes and easier to define. As
many of the concepts we use were originally framed in the language of effectus theory,
we adapt them where necessary. No previous knowledge on effectus theory is assumed,
as this chapter is a self-contained exposition of the parts of effectus theory that we
will need in this thesis.

This chapter consists basically of two parts. The first part (Sections 3.1–3.5) recalls
the basic concepts of effect algebras and effect theories and introduces some important
structure that can be present in an effect theory: filters, compressions and sharp
effects. These concepts will be essential in this chapter and the remainder of this part
of the thesis. We mostly adapt these results from Refs. [41, 42, 214]. The second
part (Sections 3.6–3.8) presents a reconstruction of quantum theory complementary
to that of Chapter 2. Whereas Chapter 2 reconstructed the effect and state spaces
of quantum theory from assumptions on how sequential measurement should behave,
in this chapter the notion of purity is central. We study what it means for a state,
effect or transformation to be pure, and we find suitable properties that the set of
pure maps should satisfy in a physical theory.

Although the framework of effect theories allows for more general probabilities than
just real numbers, for the reconstruction in this chapter we do still require the structure
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of real numbers. In Chapter 5 we will combine the assumptions of this chapter with
those of Chapter 2 to reconstruct infinite-dimensional quantum theory without a priori
assuming the presence of real numbers.

3.1 A primer on category theory
Some of the results in this chapter will be framed in the language of category theory,
so let us recall some of the basic notions that will be relevant for us before we continue.
A category C consists of a set of objects and a set of morphisms. A morphism
f : A→ B goes from an object A to an object B. Given morphisms f : A→ B and
g : B → C we can compose them to get a morphism g ◦ f : A → C. Composition is
associative. Every object A has a unique identity morphism idA : A→ A satisfying
f ◦ idA = f for all f : A→ B and idA ◦ g = g for all g : B → A.

Let f : A→ B be a morphism in a category. We say f is an isomorphism when
there exists a (necessarily unique) morphism g : B → A so that g ◦ f = idA and
f ◦ g = idB . When there is an isomorphism between two objects A and B we say they
are isomorphic and write A ∼= B. We say f is epic when for every pair of morphisms
g1, g2 : B → C the equality g1 ◦ f = g2 ◦ f implies g1 = g2. Dually, f is monic when
an equality f ◦ g1 = f ◦ g2 for morphisms g1, g2 : C → A implies g1 = g2.

Given categories C and D a functor F : C → D maps each object A of C to an
object F (A) of D, and each morphism f : A→ B in C to a morphism F (f) : F (A)→
F (B) in D and is required to satisfy F (idA) = idF (A) and F (f ◦ g) = F (f) ◦ F (g).
We say a functor is faithful when F (f) = F (g) implies f = g.

Given a category C we denote by Cop the category with the same objects but where
each morphism fop : A→ B is a morphism f : B → A in C. Composition is defined
as gop ◦op fop = (f ◦ g)op.

A monoidal category is intuitively a category with tensor products. Specifically,
for every pair of objects A and B we have an object A ⊗ B and for every pair of
morphisms fi : Ai → Bi we have a morphism f1 ⊗ f2 : A1 ⊗ A2 → B1 ⊗ B2. These
tensor products are required to satisfy (f1 ⊗ f2) ◦ (g1 ⊗ g2) = (f1 ◦ g1) ⊗ (f2 ◦ g2).
Furthermore, we have a special object I called the monoidal unit that satisfies
A ⊗ I ∼= A for all objects A. A monoidal category is required to satisfy certain
‘coherence axioms’ that will not be relevant to us [146].

3.2 Effect algebras
We split up the definition of an effect algebra into two parts, first introducing a more
primitive notion.

Definition 3.2.1 ([119]). A partial commutative monoid (P,>, 0) is a set P
together with a distinguished element 0 ∈ P and a partial binary operation > such
that for all a, b, c ∈ P — writing a ⊥ b whenever a > b is defined — the following
conditions hold.

• Commutativity: Suppose a ⊥ b. Then b ⊥ a and a> b = b> a.
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• Zero: a ⊥ 0 and a> 0 = a.

• Associativity: Suppose a ⊥ b and (a > b) ⊥ c. Then b ⊥ c, a ⊥ (b > c), and
(a> b) > c = a> (b> c).

When a ⊥ b we say that a and b are summable. When we write an equation like
‘a> b = c’ we mean that both a ⊥ b, so that a> b is indeed defined, and a> b = c.

Remark 3.2.2. What we call “summable” is in the literature often referred to as
“orthogonal”. As this does not correspond with the standard notion of orthogonality
in quantum theory for non-projections, we do not use this term in this context.

Definition 3.2.3 ([77]). An effect algebra (E,>, 0, ( )⊥) is a partial commutative
monoid with an additional (total) unary operation a 7→ a⊥ called the complement,
that satisfies the following properties (writing 1 := 0⊥).

• Given a ∈ E, the complement a⊥ is the unique element with a> a⊥ = 1.

• If a ⊥ 1 for some a ∈ E, then a = 0.

Note that as a> a⊥ = 1 we have by uniqueness of complements (a⊥)⊥ = a.

Example 3.2.4. Let V be an order unit space, and let E = [0, 1]V be its unit interval.
Then E is an effect algebra with a⊥ := 1 − a and a ⊥ b iff a + b ≤ 1 and then
a> b := a+ b.

Definition 3.2.5. Let E and F be effect algebras. A morphism between E and F
is a map f : E → F that satisfies for all a, b ∈ E:

• f(1) = 1.

• If a ⊥ b, then f(a) ⊥ f(b) and f(a> b) = f(a) > f(b).

We denote the category of effect algebras with morphisms between them by EA.

Proposition 3.2.6. Let f : E → F be a morphism between effect algebras. Then
f(0) = 0 and f(a)⊥ = f(a⊥).

Proof. As 1 ⊥ 0 we have f(1) ⊥ f(0). But as f(1) = 1 we then have f(0) ⊥ 1 and
hence f(0) = 0. For the second point note that 1 = f(1) = f(a> a⊥) = f(a) > f(a⊥),
and so by uniqueness of complements f(a)⊥ = f(a⊥). �

Proposition 3.2.7. Let E be an effect algebra. Then addition is cancellative: for
a, b, c ∈ E, if a> c = b> c, then a = b.

Proof. We of course have (a> c) > (a> c)⊥ = 1, and hence a> (c> (a> c)⊥) = 1. By
uniqueness of complements we then have a⊥ = c>(a>c)⊥. Similarly b⊥ = c>(b>c)⊥.
But since a>c = b>c, we have (a>c)⊥ = (b>c)⊥, and hence also b⊥ = c>(b>c)⊥ =
c> (a> c)⊥ = a⊥ and thus indeed a = b. �

Definition 3.2.8. Let E be an effect algebra with a, b ∈ E. We write a ≤ b iff there
exists a c ∈ E with a> c = b.
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Proposition 3.2.9. Let E be an effect algebra, and a, b ∈ E.

a) If a> b = 0, then a = b = 0.

b) ≤ is a partial order.

c) a ≤ b iff b⊥ ≤ a⊥.

d) a and b are summable iff a ≤ b⊥ iff b ≤ a⊥.

e) If a ≤ b, then there is a unique c ∈ E, such that a> c = b.

Proof.

a) If a> b = 0, then 1 ⊥ a> b and hence by associativity also 1 ⊥ a, so that a = 0.
Similarly b = 0.

b) Reflexivity and transitivity follow from respectively the existence of 0 ∈ E, and
the associativity of addition. It remains to show anti-symmetry, i.e. that a ≤ b
and b ≤ a implies a = b. So suppose a ≤ b and b ≤ a. By definition there exist
c1, c2 ∈ E such that a > c1 = b and b > c2 = a. Then a > 0 = a = b > c2 =
a>(c1>c2), and hence by cancellativity of addition 0 = c1>c2. By the previous
point then c1 = c2 = 0 and thus indeed a = b.

c) If a ≤ b then by definition a > c = b for some c ∈ E. Hence b⊥ = (a > c)⊥.
We note that a> (c> (a> c)⊥) = 1, and hence by uniqueness of complements
a⊥ = c> (a> c)⊥ = c> b⊥. By definition then b⊥ ≤ a⊥. The same argument
works in the opposite direction.

d) Suppose a and b are summable. Then a> b is defined, and hence a> (b> (a>
b)⊥) = 1, so that a⊥ = b > (a > b)⊥, and thus indeed b ≤ a⊥. The previous
point then also gives a = (a⊥)⊥ ≤ b⊥. Now suppose a ≤ b⊥. Then a> c = b⊥

for some c. Hence, 1 = b > b⊥ = b > (a > c) = (b > a) > c so that b and a are
indeed summable.

e) Follows directly from the definition of ≤ and the cancellativity of addition. �

Definition 3.2.10. Let E be an effect algebra, and a, b ∈ E with a ≤ b. We denote
the unique element c ∈ E such that a> c = b by b	 a.

All the results of this section, e.g. the definition and properties of the partial order
on an effect algebra, and the definition of b	 a will be used without further reference
throughout this chapter.

It might seem that the axioms of an effect algebra are somewhat arbitrary, and
that we might instead want to work with some slightly other definition. The following
remark shows that the definition of an effect algebra is in fact quite “canonical”.

Remark 3.2.11. By the previous results an effect algebra is a bounded poset:
a partially ordered set with a minimal and maximal element (0 respectively 1). In
Ref. [155] it was shown that any bounded poset P can be embedded into a orthomodular
poset K(P ). This is known as the Kalmbach extension, named after the results
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of Ref. [129]. It was then later shown [108] that this extends to a functor from the
category of bounded posets to the category of orthomodular posets, and that this
functor is in fact left adjoint to the forgetful functor going in the opposite direction.
This adjunction gives rise to the Kalmbach monad on the category of bounded
posets. The Eilenberg-Moore category for the Kalmbach monad is isomorphic to the
category of effect algebras, and hence effect algebras form algebras in the category of
bounded posets.

3.3 Effect theories
In Section 1.4 we introduced a general framework for describing physical theories based
on real probabilities. In this section we introduce a generalisation that we call effect
theories.

We will assume that we have some kind of special system I that denotes the ‘empty’
or ‘trivial’ system. A transformation ω : I → A is then a procedure that creates a
system from nothing, i.e. it is a preparation. We will call such transformations states.
They represent the different ways in which a system A can be prepared. We define
the state space of A to be St(A) := {ω : I → A}.

Dually, the transformations a : A→ I are the ways in which the system A can be
destroyed. We call these transformations effects and they model the different types
of measurements you can perform on a system A. We define the effect space of A
to be Eff(A) := {a : A→ I}.

The composition of a state with an effect results in a transformation a ◦ ω : I → I.
Such a transformation from the unit system to itself we will call a scalar.

The framework of Section 1.4 is a special case of this. In that setting, the states
and effects have a convex structure, and the scalars are real numbers from the unit
interval. The scalar a ◦ ω is then the probability that a measurement a returns true
on a state ω. Instead of real numbers and convex structures, our assumption is going
to be that the effect space of a system forms an effect algebra.

Definition 3.3.1. An effect theory is a category E with a designated object I that
we call the trivial system such that for all objects A, its effect space Eff(A) :=
{a : A → I} has a special element 0, a complement operation (·)⊥ and a binary
operation > making it into an effect algebra, such that every map g : B → A preserves
its addition: 0 ◦ g = 0 and (a > b) ◦ g = (a ◦ g) > (b ◦ g) whenever a > b : A → I is
defined as an effect.

As the effects of an object form an effect algebra, we have for each object a special
effect 1. This corresponds to the ‘truth’ effect that always holds on any state.

Remark 3.3.2. Our definition of an effect theory is related to that of an effectus in
partial form [42]. In fact, any such effectus is an effect theory. While an effect theory
only defines addition of some effects (using the effect algebra structure), an effectus
furthermore defines the sum of some morphisms, as all the homsets are required to
be partial commutative monoids (cf. Definition 3.2.1). In addition, an effectus always
has coproducts, allowing the definition of a classical disjunction of physical systems.
All the examples we will see of effect theories in this thesis are also effectuses, and
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essentially all results of this thesis could be reframed for effectuses. The only reason
we work with effect theories in this thesis instead of effectuses is because they are
easier to define and sufficient for our purposes.

We will also need to be able to describe composite systems, i.e. given independent
systems A and B, it should be possible to describe them as forming one bigger system
A⊗B. The structure we wish to use for this is that of a monoidal category.

Definition 3.3.3. We call an effect theory (C, I) monoidal when C is a monoidal
category such that the trivial system I is also the monoidal unit and such that the
tensor product preserves the effect algebra structure: 1⊗ 1 = 1 and for all effects a,
0⊗ a = 0 and whenever b1 > b2 is defined, (b1⊗ a) > (b2⊗ a) is also defined and equal
to (b1 > b2)⊗ a, and similarly (a⊗ b1) > (a⊗ b2) = a⊗ (b1 > b2).

In order to highlight our interpretation of an effect theory as an abstract description
of a physical theory we will often call a morphism in an effect theory a transformation
We end this section with a few observations regarding transformations in an effect
theory. Note that we take composition to bind stronger than addition, so that a1◦f>b
should be interpreted as (a1 ◦ f) > b.

Proposition 3.3.4. The following are true in any effect theory.

1. Let a, b ∈ Eff(A) be effects such that a ≤ b, and let f : B → A be some
transformation. Then a ◦ f ≤ b ◦ f .

2. Let Θ : A → B be an isomorphism, i.e. a transformation that has a 2-sided
inverse Θ−1 : B → A. Then 1 ◦Θ = 1.

Proof.

1. By definition, a ≤ b if and only if there is some c ∈ Eff(A) such that a> c = b.
Maps in an effect theory preserve addition and hence b◦f = (a>c)◦f = a◦f>c◦f
so that indeed a ◦ f ≤ b ◦ f .

2. Let 1 ◦ Θ = a. We need to show that a⊥ = 0. Of course a ◦ Θ−1 = 1 and
hence 1 ◦ Θ−1 = (a > a⊥) ◦ Θ−1 = a ◦ Θ−1 > a⊥ ◦ Θ−1 = 1 > a⊥ ◦ Θ−1.
Since the only effect summable with 1 is 0, we get a⊥ ◦ Θ−1 = 0. As a result
0 = 0 ◦Θ = a⊥ ◦Θ−1 ◦Θ = a⊥ and we are done. �

3.4 Operational effect theories
Before we continue with abstract effect theories, we first relate them to the more
familiar GPT framework. To do that we need to consider the category of order
unit spaces. Recall that a linear map f : V → W between ordered vector spaces
is positive when f(v) ≥ 0 whenever v ≥ 0, or equivalently when it is monotone:
v ≤ w =⇒ f(v) ≤ f(w).

Definition 3.4.1. We call a positive linear map f : V → W between order unit
spaces sub-unital when f(1) ≤ 1. We denote the category of order unit spaces with
positive sub-unital maps by OUS.
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The category OUSop is an effect theory. The states of this category correspond to
positive sub-unital maps ω : V → R in OUS, while the effects are positive sub-unital
maps â : R→ V . These effects are completely determined by â(1) =: a ∈ [0, 1]V and
hence the effects correspond to a ∈ [0, 1]V = {v ∈ V ; 0 ≤ v ≤ 1}.

Remark 3.4.2. The reason that OUSop is an effect theory instead of OUS, is because
we framed the language of effect theories in the Schrödinger picture where states take
a central role, while order unit spaces describe a space of effects and hence are framed
in the Heisenberg picture. The ‘Schrödinger counterpart’ to order unit spaces are
called base norm spaces [4]. These will not play a significant role in this thesis. The
switching of the direction of morphisms when viewing it from the perspective of the
effects is a theme that will repeat itself multiple times throughout this chapter. It
is an artifact of morphisms in an effect theory being naturally interpreted as state
transformers, while we wish to deal with them as effect/predicate transformers.

The category OUSop is important, because it is in a sense the most general example
of what we call an operational effect theory. Such categories roughly correspond to
GPTs. Before we give the definition of an operational effect theory, we must introduce
a few other concepts.

Definition 3.4.3. We say an effect theory satisfies

• order-separation by unital states when for every system A and effects
a, b ∈ Eff(A) we have a ≤ b whenever a ◦ ω ≤ b ◦ ω for all ω ∈ St(A) with
1 ◦ ω = 1;

• local tomography when the effects separate the transformations, i.e. if for all
f, g : B → A we have f = g whenever a ◦ f = a ◦ g for all a ∈ Eff(A);

• tomography when it is monoidal and the effects monoidally separate the
transformations, i.e. if for all f, g : B → A we have f = g whenever a◦(f⊗idC) =
a ◦ (g ⊗ idC) for all systems C and a ∈ Eff(A⊗ C).

Local tomography tells us that transformations are completely determined by what
they do on effects.1 When monoidal structure is present in the theory, there are more
ways to let a transformation interact with an effect, and hence we weaken the definition
to (non-local) tomography. The states order-separating the effects essentially tells us
that there can be no ‘infinitesimal’ effects. These properties allow us to relate effect
theories to order unit spaces.

Definition 3.4.4. Let E be an effect algebra. We say E is convex if there exists an
action · : [0, 1]×E → E, where [0, 1] is the standard real unit interval, satisfying the
following axioms for all a, b ∈ E and λ, µ ∈ [0, 1]:

• λ · (µ · a) = (λµ) · a.
1What we call ‘local tomography’ here might also be called ‘process tomography’. It is in general

not equivalent to the notion of local tomography we adopted in the previous chapter. However,
in the presence of composites which allow for maximally entangled states it is equivalent to local
tomography via an argument involving process-state duality (also known as the Choi-Jamio lkowski
isomorphism) [51, Theorem 7.41].
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• If λ+ µ ≤ 1, then λ · a ⊥ µ · a and λ · a> µ · a = (λ+ µ) · a.

• If a ⊥ b, then λ · a ⊥ λ · b and λ · (a> b) = λ · a> λ · b.

• 1 · a = a.

When the scalars Eff(I) of an effect theory are the real numbers (with the regular
addition, and where composition corresponds to multiplication of real numbers) all
the effect spaces Eff(A) are convex effect algebras, because for every effect a : A→ I
and scalar s : I → I we get a new effect s ◦ a. This action of the real unit interval
of Eff(A) is straightforwardly verified to satisfy the conditions required of a convex
effect algebra.

Proposition 3.4.5 ([100]). Let E be a convex effect algebra. Then there exists
an ordered vector space V with (possibly non-Archimedean) order unit 1 such that
E ∼= [0, 1]V .

Proof. We take the set T (E) of formal linear combinations of elements in E modulo
the evident equalities in E analogous to Definition 1.4.2. It is then straightforward,
but tedious to show that T (E) has the desired properties. See [100] for the details. �

Proposition 3.4.6. Let E be an effect theory where the scalars are the real unit
interval, and where the unital states order-separate the effects. Then for all systems
A of E, there exists an order unit space VA, such that Eff(A) ∼= [0, 1]VA .

Proof. As every effect space Eff(A) is a convex effect algebra, we can associate an
ordered vector space VA with order unit 1 such that Eff(A) ∼= [0, 1]VA . This space
is ordered by the set of states of A, and by assumption the states order-separate
[0, 1]V = E, so that by Proposition 1.3.14, V is an order unit space. �

The order unit space VA associated to A has its effects associated one-to-one with
those of A, but (like we observed in Remark 2.1.4) this is not necessarily true for
the states. Any state ω : I → A can be mapped to a state ω∗ : VA → R (see
Theorem 3.4.10 below), but not every state on VA necessarily comes from some state
in the effect theory.

Definition 3.4.7. Let A be a system in an effect theory with real scalars where the
unital states order-separate the effects and let VA be the OUS such that [0, 1]VA ∼=
Eff(A).

• We say A is finite-dimensional when VA is.

• We say A is state-closed when the collection of unital states St1(A) is closed
as a subset of V ∗A (with respect to the topology induced by the norm of VA).

• We call A scalar-like when Eff(A) ∼= [0, 1].

Definition 3.4.8. A (monoidal) operational effect theory (OET) is a (monoidal)
effect theory satisfying the following additional properties.

1. The set of scalars is the real unit interval: Eff(I) = [0, 1].
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2. The unital states order-separate the effects.

3. All systems are finite-dimensional.

4. All systems are state-closed.

5. Every scalar-like system is isomorphic to the trivial system I.

Note that we do not require an OET to satisfy (local) tomography. As a result,
this last condition is needed to prevent the case where we have multiple copies of the
trivial system that are taken to be non-isomorphic. This property can hence be seen
as a restricted form of tomography.

Remark 3.4.9. The definition of an OET brings us very close to the GPT framework
we adopted in Section 2.1. In both cases the scalars are of course the real numbers.
As in Assumption 2.1.1 we require order-separation of the effects which is related
to the operational equivalence assumption on GPTs [39]. As the effect spaces are
effect algebras, we have a causal effect 1 and furthermore, we have for every effect a
a negation a⊥. As in the previous chapter, we are assuming finite-dimensionality of
the systems. The assumption of the closure of the state space was not needed in the
previous chapter, but is still a standard background assumption in the literature on
GPTs [21, 39].

If an OET satisfies local tomography, then all the information in the theory is
captured by the structure of the effects:

Theorem 3.4.10. Let E be an operational effect theory. Then there is a functor
F : E→ OUSop such that Eff(A) ∼= [0, 1]F (A). Furthermore, this functor is faithful if
and only if E satisfies local tomography.

Proof. For a map f : A→ B we get a map of effect algebras f∗ : Eff(B)→ Eff(A) via
f∗(b) := b◦f . By definition of an effect theory, f∗ preserves the addition. Furthermore,
for any scalar s : I → I, we see that f∗(s ◦ b) = (s ◦ b) ◦ f = s ◦ (b ◦ f) = s ◦ f∗(b), so
that f∗ also preserves the convex action induced by the scalar composition.

For every system A we have the order unit space VA associated to Eff(A) (see
Proposition 3.4.6). Now, every element v ∈ VA can be written as v = λa− µb where
λ, µ ∈ R+ and a, b ∈ [0, 1]VA , and hence a linear map on VA is determined by what it
does on the unit interval (and similarly for VB). It is then straightforward to check
that f∗ : Eff(B)→ Eff(A) extends to a positive linear sub-unital map f∗ : VB → VA.

Hence, we can define the functor as:

F (A) := VA and F (f : A→ B) := (f∗ : VB → VA).

For the details we refer to Ref. [119]. Unfolding the definitions we see that the
faithfulness of this functor exactly corresponds to E satisfying local tomography. �

3.5 Filters and compressions
An important class of maps present in some effect theories are filters and compressions.
These are maps satisfying certain universal properties that can intuitively be thought



62 Chapter 3. Pure processes

of as post-selecting on an effect, respectively embedding a subsystem into a larger
system.

Let us consider a system A in an effect theory and let B be a ‘subsystem’ of A, i.e.
some system with an embedding map π : B → A. If we have some state ω : I → B
on this subsystem, then we can view it as a state on the whole system by ‘forgetting’
it was actually defined on the subsystem: π ◦ ω : I → A. Now let a : A → I be the
effect that ‘witnesses’ whether a state came from the subsystem B. That is, it is the
smallest effect such that a ◦ π ◦ ω = 1 for all states ω : I → B. This is the case when
a ◦ π = 1 ◦ π. Conversely, we can ask for a given effect a on A which subsystem it
witnesses. I.e. what is the subsystem of A where a is true? We will call the map that
maps the subsystem onto A a compression for a as it ‘compresses’ the system onto
the part where a is true.

Definition 3.5.1. Let a : A→ I be an effect in an effect theory. We call a system Aa a
compression system for a when there is a map πa : Aa → A such that 1◦πa = a◦πa
that is final with this property: whenever f : B → A is such that 1 ◦ f = a ◦ f then
there is a unique f : B → Aa such that the following diagram commutes:

Aa A

B

πa

f
f

The map πa is called a compression for a, and as it satisfies a universal property
is unique up to unique isomorphism2. We say an effect theory has compressions
when every effect has a compression.

The universal property of compressions tells us that the system Aa is the ‘largest’
system such that there is a map π : Aa → A with 1 ◦ π = a ◦ π, and hence this is the
system that we should see as the subsystem that a witnesses. As the map goes from
the smaller system to the larger system it might not be apparent why we call these
maps ‘compressions’. However, from the viewpoint of the effect spaces it is a map
π∗ : A→ Aa that does compress the effects into the smaller space.

Example 3.5.2. Let B(H) be the set of bounded operators on a (complex) Hilbert
space and let A ∈ B(H) be an effect. Denote by P the largest projection (idempotent
effect) below A, i.e. P projects to the eigenspace of A of eigenvalue 1. Denote this space
by K ⊆ H. Then a compression of A (in the opposite category of C∗-algebras with
positive sub-unital maps) is the map πA : B(H)→ B(K) given by πA(B) = PBP .

While a compression can be seen as a map that ‘forgets’ that a state came from a
subsystem, a filter is the opposite, describing how a state can be ‘filtered’ to fit inside
a subsystem.

Definition 3.5.3. Let a : A → I be an effect in an effect theory. A filter for a is
a map ξa : A → Aa such that 1 ◦ ξa ≤ a which is initial for this property: for any

2The term ‘compression’ should not be confused with the maps of the same name in Ref. [4]. The
compressions from that paper correspond to what we will later call ‘assert maps’. What we call a
compression is sometimes also known as an ‘encoding’ or ‘embedding’ [39].
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map f : A→ B which satisfies 1 ◦ f ≤ a there is a unique f : Aa → B such that the
following diagram commutes:

Aa A

B

f

ξa

f

We say an effect theory has filters when every effect has a filter.

The interpretation of the filter ξa is that it represents a non-destructive measurement
of a which got a positive outcome, i.e. it is a post-selection for a. The space Aa is the
subsystem where a has a nonzero probability of being true.

Example 3.5.4. Again, let B(H) be the set of bounded operators on a (complex)
Hilbert space and let A ∈ B(H) be an effect. Let K ⊆ H be K = (kerA)⊥, i.e. the
closure of the eigenspaces of A of non-zero eigenvalue. Then a filter for A (in the
opposite category of C∗-algebras with positive sub-unital maps) is the map ξA :
B(K)→ B(H) given by ξA(B) =

√
AB
√
A.

Remark 3.5.5. In effectus theory, compressions are called comprehensions and filters
are called quotients. They arise in a wide variety of settings [43]. Quotients and
comprehensions have an interesting categorical significance relating to fibered category
theory. We refer to Ref. [41] for a full account of this relation.

3.5.1 Sharpness
A compression πa : Aa → A tells us that Aa is a subsystem of A. We also know that
1 ◦ πa = a ◦ πa, but a might not be the smallest effect with this property. This is
because an effect can be fuzzy, meaning that it does not make a sharp distinction
between where it holds true, and where it does not. In contrast, if a is the smallest
effect with this property, then we call it sharp, since it sharply delineates its subspace.

Definition 3.5.6. Let f : A→ B be a transformation in an effect theory. The image
of f , when it exists, is the smallest effect a : B → I such that a ◦ f = 1 ◦ f , i.e. if
b : B → I is also such that b ◦ f = 1 ◦ f , then a ≤ b. We denote the image of f by
im(f). We say an effect theory has images when all the transformations have an
image.

By the discussion above, we would call an effect sharp when im(πa) = a. Instead
we will use the slightly more general formulation used in Ref. [214] that turns out to
be equivalent (cf. Proposition 3.5.12).

Definition 3.5.7. Let a : A → I be an effect. We call a sharp when there is some
transformation f : B → A such that im(f) = a.

In this chapter we will denote arbitrary effects by a, b, c and sharp effects by p, q, r. We
defined sharp effects in Chapter 2 to be those effects p which satisfied p ∧ p⊥ = 0. In
Proposition 3.5.20 we will see that in certain well-behaved effect theories sharp effects
have this property, that we call ‘ortho-sharpness’, as well. In general effect theories,
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it is unclear whether the converse direction holds. However, in quantum theory (or
more generally, in Euclidean Jordan algebras), the two notions of sharpness coincide,
and hence our reconstruction establishes their equivalence.

3.5.2 Properties of filters and compressions
Let us now study some basic consequences of the existence of filters, compressions
and images. These results can be found in Refs. [42, 214], but for completeness we
will give their proofs.

First, the following results are immediate from the universal properties of filters
and compressions.

Proposition 3.5.8. Let a : A→ I be an effect and let πa : Aa → A be a compression
for a and ξa : A→ Aa a filter.

• Let Θ : B → Aa be an isomorphism. Then π ◦ Θ is also a compression for a.
Conversely, for any two compressions π and π′ for a there is an isomorphism Θ
such that π′ = π ◦Θ.

• Let Θ : Aa → B be an isomorphism. Then Θ◦ξ is also a filter for a. Conversely,
for any two filters ξ and ξ′ for a there exists an isomorphism Θ such that
ξ′ = Θ ◦ ξ.

Proposition 3.5.9. Isomorphisms are filters and compressions for the truth effect 1.

Proof. The identity is a filter and compression for the 1 effect. Hence by the previous
proposition the desired result follows. �

In the previous section we described filters as a post-selection of an effect. By the
propositions above we see that it is actually more accurate to describe them as a
measurement post-selection (the filter) followed by some post-processing in the form
of a reversible transformation (the isomorphism). Similarly, a compression allows
some preprocessing in the form of an isomorphism.

Lemma 3.5.10. Let f and g be composable maps and suppose im(f ◦ g) and im(f)
exist. Then im(f ◦ g) ≤ im(f). Furthermore, if g is an isomorphism, then im(f ◦ g) =
im(f).

Proof. We of course have 1 ◦ (f ◦ g) = (1 ◦ f) ◦ g = (im(f) ◦ f) ◦ g = im(f) ◦ (f ◦ g),
and hence im(f) ≤ im(f ◦ g).

If g is an isomorphism, then we furthermore have im(f) = im((f ◦ g) ◦ g−1) ≤
im(f ◦ g) ≤ im(f), and hence im(f) = im(f ◦ g). �

This lemma makes the following well-defined, as any two compressions for the same
effect are related by an isomorphism.

Definition 3.5.11. Let a be an effect and let π be a compression for a. The floor
of a is defined as bac := im(π). The ceiling is defined as the De Morgan dual:
dae = ba⊥c⊥.
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The ceiling and floor are related to the ceiling and floor of Chapter 2, but are a priori
not equal. This is due to the notion of sharpness in an effectus not being equal to
that of sharpness as defined in the previous chapter. For the particular effect theories
we are interested in however (cf. section 3.6.1) they will coincide.

Before we prove some properties of floors and ceilings in the next proposition, let
us remark on a useful computational tool involving images. The image im(f) of a
transformation satisfies im(f) ◦ f = 1 ◦ f . Hence 1 ◦ f = (im(f) > im(f)⊥) ◦ f =
im(f) ◦ f > im(f)⊥ ◦ f = 1 ◦ f > im(f)⊥ ◦ f . Cancelling 1 ◦ f on both sides gives
im(f)⊥ ◦ f = 0. In fact, im(f)⊥ is the largest effect for which f is zero: if a ◦ f = 0,
then a ≤ im(f)⊥. We will use this alternative characterisation of the image without
further reference. Note that as a◦πa = 1◦πa we have for the same reasons a⊥ ◦πa = 0.

Proposition 3.5.12 ([214, §203IV]). In an effect theory with images and compres-
sions, the following are true for any effects a ≤ b and composable map f .

a) bac ≤ a ≤ dae.

b) bbacc = bac.

c) bbc ≤ bac and dbe ≤ dae.

d) da ◦ fe = ddae ◦ fe.

e) dae ◦ f = 0 ⇐⇒ a ◦ f = 0.

f) a is sharp if and only if bac = a.

Proof. Let a, b : A → I be effects, and let πa : Aa → A be a compression for a, and
πb : Ab → A a compression for b.

a) Of course 1 ◦ πa = a ◦ πa, and hence bac := im(πa) ≤ a. Hence also ba⊥c ≤ a⊥,
and thus dae := ba⊥c⊥ ≥ (a⊥)⊥ = a.

b) We will show that πa is a compression for bac, and hence πbac = πa ◦ Θ for
some isomorphism Θ. The result then follows using Lemma 3.5.10, because
bbacc := im(πbac) = im(πa ◦Θ) = im(πa) = bac.
Note first that bac ◦πa = im(πa)◦πa = 1◦πa. Now let f : B → A be some map
with bac ◦ f = 1 ◦ f . As bac ≤ a, we then also have a ◦ f = 1 ◦ f , and hence by
the universal property of πa there is a unique f with f = πa ◦ f . Hence, πa is
also a compression for bac.

c) We have 1 ◦ πb = b ◦ πb ≤ a ◦ πb ≤ 1 ◦ πb, and hence a ◦ πb = 1 ◦ πb. Hence
πb = πa ◦ πb for a unique πb. With Lemma 3.5.10 we calculate bbc := im(πb) =
im(πa ◦ πb) ≤ im(πa) = bac. To show dbe ≤ dae, we note that as b ≤ a, we have
a⊥ ≤ b⊥ and hence ba⊥c ≤ bb⊥c. Then: dbe := bb⊥c⊥ ≤ ba⊥c⊥ = dae.

d) First note that since dae ◦ f ≥ a ◦ f , we have by point c): ddae ◦ fe ≥ da ◦ fe.
It remains to show the inequality in the other direction.
Because a ◦ (f ◦ π(a◦f)⊥) = 0, there must be an h with f ◦ π(a◦f)⊥ = πa⊥ ◦ h.
By point b) there must be some isomorphism Θ such that πa⊥ = πba⊥c ◦Θ =
πdae⊥ ◦Θ. We then calculate:

dae ◦ f ◦ π(a◦f)⊥ = dae ◦ πa⊥ ◦ h = dae ◦ πdae⊥ ◦Θ ◦ h = 0.

Hence dae ◦ f ≤ im(π(a◦f)⊥)⊥ = b(a ◦ f)⊥c⊥ = da ◦ fe. Using points c) and b):
ddae ◦ fe ≤ dda ◦ fee = da ◦ fe.
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e) Of course if dae ◦ f = 0, then a ◦ f ≤ dae ◦ f = 0. For the other direction, we
remark that d0e = b1c⊥ = 1⊥ = 0, so that by the previous point: 0 = d0e =
da ◦ fe = ddae ◦ fe, and hence dae ◦ f ≤ ddae ◦ fe = 0.

f) If bac = a, then a = im(πa), and hence a is sharp. Now suppose a is sharp,
and hence is the image of some map f : a = im(f). Then by the universal
property of πa, there is some f such that f = πa ◦ f . We then calculate using
Lemma 3.5.10 a = im(f) = im(πa ◦ f) ≤ im(πa) = bac. As bac ≤ a by point a),
we are done. �

Note that this proposition implies that the floor of a is the largest sharp predicate
below a (by combining points c) and f)), so that the name is indeed well-chosen.
It is not clear whether dae will always be sharp in an effect theory. For this to
hold we need the implication ‘a is sharp iff a⊥ is sharp’. This is a quite reasonable
assumption: as discussed, when p is a sharp effect, there is some subsystem where
p is ‘true’ and hence it stands to reason that there should also be some subsystem
where p is ‘false’, corresponding to the subsystem of p⊥. Interestingly, we do not
know of any effect theory containing compressions and images where dae is not always
sharp. We will assume this implication on the sharpness of complements starting in
Section 3.5.3. First we will prove some more results that require the existence of all
filters, compressions and images.

Definition 3.5.13. A transformation f : A→ B in an effect theory is unital when
1 ◦ f = 1. It is faithful when a ◦ f = 0 implies a = 0. This is easily seen to be
equivalent to im(f) = 1.

Proposition 3.5.14 ([42]). In an effect theory with filters and compressions the
following are true.

a) Let ξa be a filter for a, then 1 ◦ ξa = a.

b) Filters are epic and faithful.

c) Compressions are monic and unital.

d) A composition of filters is again a filter.

Proof.

a) Since 1◦a = a ≤ a, we can use the universal property of ξa to find an a : Aa → I
with a◦ξa = a. But then a = a◦ξa ≤ 1◦ξa ≤ a, and hence necessarily 1◦ξa = a.

b) Let g1, g2 : Aa → B, such that f := g1 ◦ ξa = g2 ◦ ξa. We see that 1 ◦ f =
1 ◦ g1 ◦ ξa ≤ 1 ◦ ξa = a and hence there is a unique f such that f = f ◦ ξa. But
then necessarily g1 = f = g2. So ξa is indeed epic.

Now suppose b : Aa → I satisfies b ◦ ξa = 0. Since also 0 ◦ ξa = 0 and ξa is epic
we conclude that b = 0. Hence, ξa is indeed faithful.
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c) Showing πa is monic follows along similar lines to the argument in the previous
point. It remains to show that πa is unital. By the universal property of ξ1◦πa
there is an f such that πa = f ◦ ξ1◦πa . Then 1 ◦ f ◦ ξ1◦πa = 1 ◦ πa = a ◦ πa =
a ◦ f ◦ ξ1◦πa . As filters are epic, we then have 1 ◦ f = a ◦ f . Hence by the
universal property of πa there exists a f such that f = πa ◦f . We then calculate
πa = f ◦ ξ1◦πa = πa ◦ f ◦ ξ1◦πa . Since πa is monic we then have f ◦ ξ1◦πa = id.
Now 1 ◦ πa = 1 ◦ ξ1◦πa ≥ (1 ◦ f) ◦ ξ1◦πa = 1 ◦ id = 1, so that indeed 1 ◦ πa = 1.

d) Let ξa and ξb be filters for a respectively b. We claim that ξa ◦ ξb is a filter
for a ◦ ξb. To this end we let ξ be a filter for a ◦ ξb. Then there is a unique
g such that ξa ◦ ξb = g ◦ ξ, which we need to show is an isomorphism. As
1 ◦ ξ = a ◦ ξb ≤ 1 ◦ ξb = b we have ξ = h1 ◦ ξb for a unique h1. Because
1 ◦ h1 ◦ ξb = 1 ◦ ξ = a ◦ ξb we have 1 ◦ h1 = a because ξb is epic and hence
h1 = h2 ◦ ξa. Then

g ◦ h2 ◦ ξa ◦ ξb = g ◦ ξ = ξa ◦ ξb and h2 ◦ g ◦ ξ = h2 ◦ ξa ◦ ξb = h1 ◦ ξb = ξ

so that because ξa ◦ ξb and ξ are epic we have g ◦ h2 = id and h2 ◦ g = id. �

We end this section with a proposition that relates the structure of effects of a filter
space to the bigger space.

Proposition 3.5.15. Let a : A → I be an effect and let ξa : Aa → A be a filter for
a. The set of effects of Aa is isomorphic as an effect algebra to the downset of a:
Eff(Aa) ∼= {b ∈ Eff(A) ; b ≤ a}.

Proof. Let E = {b ∈ Eff(A) ; b ≤ a} be the downset of a in Eff(A). Note that for an
effect c : Aa → I the map c ◦ ξa : A→ I is an effect in A. Moreover c ◦ ξa ≤ 1 ◦ ξa = a,
so that c ◦ ξa ∈ E. We then let the map f : Eff(Aa)→ E be f(c) := c ◦ ξa. This map
is of course additive.

For any b ∈ E we have 1 ◦ b = b ≤ a, and hence by the universal property of ξa
there is a unique b : Aa → I with b ◦ ξa = b. We define the map g : E → Eff(Aa) by
g(b) = b. Using the uniqueness of the b we can show that this map is also additive.

We of course have for any b ∈ E: g(f(b)) = b ◦ ξb = b, so that g ◦ f = id.
For any c ∈ Eff(Aa) we have f(g(c)) = c ◦ ξa. This is the unique effect such that
c ◦ ξa ◦ ξa = c ◦ ξa. But as c also has this property, we must have c ◦ ξa = c. As a
result also f ◦ g = id and hence g = f−1, and we are done. �

3.5.3 �-effect theories
We will now study some further consequences of the existence and interplay of filters,
compressions and images. While we will not need most of these results in this chapter,
they will help to simplify some arguments in Chapter 4.

Definition 3.5.16 ([214, Section 3.5]). We call an effect theory a �-effect theory
when it has images, filters and compressions and an effect p is sharp iff p⊥ is sharp.

The diamond � refers to the ‘possibilistic’ structure that is present in such effect
theories:
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Definition 3.5.17. Let A be a system in a �-effect theory. Let SEff(A) be its poset
of sharp effects. For any transformation f : A→ B we define

f� : SEff(B)→ SEff(A) and f� : SEff(A)→ SEff(B)

by f�(p) := dp ◦ fe for p ∈ SEff(B) and f�(p) := im(f ◦ πp) for p ∈ SEff(A) where πp
is any compression for p.

Note that in a �-effect theory, for any effect a, dae := ba⊥c⊥ is sharp by assumption,
and hence the maps f� are indeed maps between the sharp effects. To prove some
results regarding f� and f� it will be useful to introduce a third such map: f�(p) :=
(f�(p⊥))⊥.

Definition 3.5.18. Let P and Q be posets with functions f : P → Q and g : Q→ P .
When f(a) ≤ b ⇐⇒ a ≤ b we say f and g form a Galois connection and we say f
is left Galois adjoint to g.

Proposition 3.5.19 ([214, Proposition 207]). Let f : A → B and g : B → C be
transformations in a �-effect theory and let p ∈ SEff(B) and q ∈ SEff(A). Then the
following are true.

a) f� and f� are monotone.

b) f�(p) ≤ q⊥ ⇐⇒ f�(q) ≤ p⊥.

c) f� and f� form a Galois connection.

d) f� is monotone.

e) f� ◦ f� ◦ f� = f�.

f) (id)� = (id)� = (id)� = id.

g) (f ◦ g)� = g� ◦ f�, (f ◦ g)� = g� ◦ f�.

h) (f ◦ g)� = f� ◦ g�.

Proof.

a) Suppose p ≤ q. Then p ◦ f ≤ q ◦ f and hence f�(p) = dp ◦ fe ≤ dq ◦ fe = f�(q).
Also q⊥ ≤ p⊥ and hence dq⊥ ◦ fe ≤ dp⊥ ◦ fe. Taking complements again gives
f�(p) ≤ f�(q).

b) Suppose f�(p) ≤ q⊥. Then p ◦ f ≤ dp ◦ fe = f�(p) ≤ q⊥ = im(πq)⊥ and hence
p ◦ f ◦ πq = 0 so that p ≤ im(f ◦ πq)⊥. But then f�(q) = im(f ◦ πq) ≤ p⊥.

c) Suppose f�(q) ≤ p. We need to show q ≤ f�(p). The previous point gives
f�(q) ≤ p iff f�(q⊥) ≤ p⊥ and hence p ≤ f�(q⊥)⊥ =: f�(q).

d) As f�(q) ≤ f�(q) the previous point gives q ≤ f�(f�(q)). Now suppose p ≤ q.
Then p ≤ q ≤ f�(f�(q)) so that again by the previous point f�(p) ≤ f�(q).

e) We have f�(f�(p)) ≤ p. Leting p := f�(q) we get f�f�f�(q) ≤ f�(q). We also
have q ≤ f�f�(q) and hence applying the monotone f� to both sides gives the
other inequality.

f) For sharp p we have dpe = p = im(πp). The statements then follow easily.
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g) By Proposition 3.5.12: (f ◦ g)�(p) = dp ◦ f ◦ ge = ddp ◦ fe ◦ ge = g�(f�(p)).
Furthermore (f ◦ g)�(p) = (f ◦ g)�(p⊥)⊥ = g�(f�(p⊥))⊥ = g�(f�(p)⊥)⊥ =
g�(f�(p)).

h) (f ◦g)� is left Galois adjoint to (f ◦g)�. As Galois adjoints are unique it suffices
to show that f� ◦ g� is also left Galois adjoint to (f ◦ g)�. We calculate:

f�(g�(p)) ≤ q ⇐⇒ g�(p) ≤ f�(q) ⇐⇒ p ≤ g�(f�(q)) = (f ◦ g)�(q). �

Proposition 3.5.20 ([214, §208IX]). Let A be a system in a �-effect theory.

a) If p ∈ Eff(A) is sharp, then it is also ortho-sharp: for any a ∈ Eff(A) with
a ≤ p and a ≤ p⊥ we have a = 0. In other words: p ∧ p⊥ = 0.

b) Every two sharp effects p, q ∈ Eff(A) have a sharp infimum p ∧ q.

c) SEff(A) is an ortholattice and a sub-effect-algebra of Eff(A). In particular sums
and differences of sharp effects are again sharp.

Proof.

a) Let p be sharp, and suppose a ≤ p, p⊥. Then also dae ≤ p, p⊥. But then
1 ◦ πdae = dae ◦ πdae ≤ p ◦ πdae so that by the universal property of πp there is a
map h such that πdae = πp ◦ h. But then 1 ◦ πdae = dae ◦ πdae = dae ◦ πp ◦ h ≤
p⊥ ◦ πp ◦ h = 0, so that a ≤ dae = im(πdae) = 0.

b) Let p, q ∈ SEff(A). We claim that p ∧ q = (πp)�(π�

p(q)). First of all, as q ≤ q,
we have π�

p(q) ≤ π�

p(q) and thus (πp)�(π�

p(q)) ≤ q. Second, (πp)�(π�

p(q)) ≤
(πp)�(1) = im(πp) = p, so it is indeed a lower bound. Now let r be any sharp
element with r ≤ p and r ≤ q. Then as in the previous point πr = πp◦h for some
map h. Now using that (πp)� = (πp)� ◦ (πp)� ◦ (πp)�; cf. Proposition 3.5.19.e):

(πr)� = (πp)� ◦ h� = (πp)� ◦ (πp)� ◦ (πp)� ◦ h� = (πp)� ◦ (πp)� ◦ (πr)�

and thus r = (πr)�(1) = (πp)� ◦ (πp)�(r) ≤ (πp)� ◦ (πp)�(q). Now for a general
a ≤ p, q, we will also have dae ≤ p, q and hence a ≤ dae ≤ p ∧ q.

c) By assumption SEff(A) is closed under complements, so that p∨q = (p⊥∧q⊥)⊥
makes SEff(A) into an ortholattice. Of course 1 and 0 are in SEff(A), so to be
a sub-effect-algebra it suffices to show that it is closed under addition. Suppose
p ⊥ q. Then p ∧ q ≤ p ∧ p⊥ = 0, by the first point. By Ref. [214, §177I] then
p> q = p ∨ q which is again sharp. �

So far we have not required any type of coherence between filters and compressions.
For the next results we however do need to know a bit more about their interplay.

Definition 3.5.21. Let E be an effect theory with filters and compressions. We say
the filters and compressions are compatible when for every compression πp of a sharp
effect p there exists a filter ξp of p such that ξp ◦ πp = id.
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In the next section we will introduce a dagger structure on pure maps which in
particular will entail that π†p is a filter with π†p ◦ πp = id.

The following results seem to require this compatibility assumption in order to be
proven. We will use these in Section 4.6.1.

Proposition 3.5.22 ([214, §211XI]). In a �-effect-theory with compatible filters and
compressions the composition of two compressions is again a compression.

Proof. Let πp and πq be compressions for sharp effects p respectively q. We will show
that πp ◦ πq is a compression for im(πp ◦ πq). To this end let f be any map with
im(πp ◦ πq) ◦ f = 1 ◦ f . As im(πp ◦ πq) ≤ im(πp) = p we also have p ◦ f = 1 ◦ f and
hence f = πp ◦ g1 for a unique g1. Let ξp be a filter for p such that ξp ◦ πp = id. Then
q ◦ ξp ◦ πp ◦ πq = q ◦ πq = 1 ◦ πq = 1 ◦ πp ◦ πq and hence q ◦ ξp ≥ im(πp ◦ πq) so that

q ◦ g1 = q ◦ ξp ◦ πp ◦ g1 = q ◦ ξp ◦ f ≥ im(πp ◦ πq) ◦ f = 1 ◦ f = 1 ◦ g1.

Hence there is a unique g2 such that g1 = πq ◦g2 which gives f = πp◦g1 = (πp◦πq)◦g2.
Uniqueness of g2 with the property that f = (πp ◦ πq) ◦ g2 follows because πp ◦ πq is
monic. �

Proposition 3.5.23 ([214, Proposition 212III]). Let f : A→ B be a transformation
in a �-effect-theory with compatible filters and compressions.

a) There is a unique unital g such that f = g ◦ ξ1◦f .

b) There is a unique faithful g′ such that f = πim(f) ◦ g′.

c) There is a unique unital and faithful f : Ad1◦fe → Aim(f) such that f =
πim(f) ◦ f ◦ ξ1◦f .

Proof.

a) By the universal property of ξ1◦f there is a unique map g such that f = g ◦ ξ1◦f .
To show that g is unital note that 1 ◦ g ◦ ξ1◦f = 1 ◦ f = 1 ◦ ξ1◦f . As filters are
epic, we have 1 ◦ g = 1.

b) By the universal property of πim(f), there is a unique g with f = πim(f) ◦ g. We
claim that g is faithful. So suppose a ◦ g = 0 for some effect a. We need to show
that a = 0. Let ξim(f) be a filter for im(f) such that ξim(f) ◦ πim(f) = id. Then
0 = a ◦ g = a ◦ ξim(f) ◦ πim(f) ◦ g = a ◦ ξim(f) ◦ f and so a ◦ ξim(f) ≤ im(f)⊥.
Hence a = a ◦ ξim(f) ◦ πim(f) ≤ im(f)⊥ ◦ πim(f) = 0.

c) First write f = πim(f) ◦ g′ where g′ is faithful. Using 1 ◦ πim(f) = 1 we calculate
1 ◦ g′ = 1 ◦ πim(f) ◦ g′ = 1 ◦ f and hence there is a unique unital map g
with g′ = g ◦ ξ1◦f . As g′ is faithful we have im(g′) = 1, and so we calculate:
1 = im(g′) = im(g ◦ ξ1◦f ) ≤ im(g) so that also im(g) = 1 and hence g is faithful.
This shows the existence of a suitable map. Uniqueness follows because filters
are epic and compressions are monic. �
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3.6 Purity
As mentioned in the introduction of this chapter, the axioms of this chapter’s recon-
struction mostly concern the specific definition of purity from effectus theory. In order
to appreciate this definition, let us first take a broader look at the concept of purity
in quantum physics.

In quite a variety of topics in quantum information theory, a notion of purity
has proved fruitful [28, 66]. While there is consensus about which states should
be considered pure, when talking about pure maps, the situation is more muddled.
There is a variety of different definitions in play that each have their own benefits and
drawbacks. In this section we will review those different definitions, but first let us
consider some properties that would be desirable or expected of an intuitive definition
of purity.

First of all, what does it mean to say that a map is ‘pure’? In a way, saying that a
map is pure is saying that it is ‘fundamental’ in some way. This can mean multiple
things. It could mean that every other map can be made in some way using pure
maps, and thus that the pure maps are the basic building blocks of the theory. It
could also mean that the pure maps are the only transformations that are part of the
fundamental theory, other transformations merely reflecting our ignorance of these
‘true’ dynamics. For instance, in standard ‘pure’ quantum mechanics, the systems are
Hilbert spaces, while the only allowed transformations are unitaries. Since this is the
fundamental level of the physical theory, all these unitaries can be considered pure.
Transitioning to the more general framework of C*-algebras, we also have the liberty
to describe classical systems and interactions that do not seem to warrant being called
pure, such as the action of throwing away a system by the partial trace map.

We will take the view that a map is pure when it is somehow fundamental to the
theory. We will now argue that those maps should form a dagger-category.

Definition 3.6.1 ([187]). A dagger-category C is a category equipped with an
involutive endofunctor (·)† : C → Cop that is the identity on objects: A† = A. In
other words, there is an operation † that sends every map f : A → B to some map
f† : B → A such that (f†)† = f , id† = id and (f ◦ g)† = g† ◦ f†.

Saying that the pure maps should form a dagger category is in fact stating three
different things:

• The identity map is pure. Every physical theory should be able to describe the
act of not changing a system.

• The composition of pure maps is pure. If we describe a fundamental set of
transformations, then when two transformations could possibly happen after
one another, i.e. when they are composable, this combined transformation
should also be describable in this fundamental theory and hence be pure.

• The time-reverse of a pure map is pure. We consider the dagger action as
describing the reversal of the arrow of time. Saying that the pure maps have a
dagger is then akin to saying that for every fundamental operation, the reversed
operational is also fundamental.
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If we also wish to describe composite systems, then there is an obvious additional
requirement for pure maps that a composite of pure maps should again be pure. In
this case the pure maps form a monoidal dagger category3.

Now let us go over the definitions of purity found in the literature and see how they
compare. Probably the most well-known is that of atomicity and the related notion
of convex-extremality used extensively in generalised probabilistic theories [23, 38,
39]. A map f is atomic when any decomposition f = g1 + g2 implies gi = λif for
some λi ∈ [0, 1]. The maps f , g1 and g2 here are then required to be ‘sub-causal’. For
causal maps one can consider convex-extremality. A map f is convex extreme when
any decomposition f = λg1 + (1− λ)g2 for 0 < λ < 1 implies that g1 = g2 = f . If we
take atomicity to be our definition of pure, an immediate problem arises. Consider the
C*-algebra Mn(C)⊕Mn(C). The identity can then be written as id = id1 + id2, and
hence it is not atomic and thus not pure. Taking convex-extremality as our definition
of purity leads to a more subtle problem: the dagger of convex-extreme maps does
not have to be sub-unital.

Other definitions of purity are those given by leaks [185], orthogonal factoriza-
tions [58] or dilations [198]. Without going into the details, these definitions of purity
are in general not closed under a dagger operation. These definitions also require the
existence of composite systems in order to be stated. On a conceptual level there
is then the issue that the purity of a map using these definitions can only be estab-
lished by considering external systems so that purity does not seem to be an inherent
property of the system and its dynamics.

It should be noted that all these definitions of purity were specifically designed to
be applicable to finite-dimensional systems. When considering for instance infinite-
dimensional von Neumann algebras, it is no longer clear that these definitions serve
their intended purpose.

3.6.1 Pure effect theories
Let us give the definition of pure maps in effect theories.

Definition 3.6.2 ([214, Definition 201II]). A map f : A → B in an effect theory is
pure when f = π ◦ ξ where ξ is a filter and π is a compression.

To motivate this definition, let us see what the action of a pure map would be on a
pure state in the sense of quantum theory, i.e. a state of maximal information. Letting
ξa be a filter for an effect a, the (unnormalised) state ξa ◦ ω corresponds to the state
ω on which a measurement and post-selection of the effect a is applied. Post-selecting
to an effect increases the amount of information we have about ω and hence ξa ◦ ω
should remain a state of maximal information. In this sense, ξa preserves the property
of states being pure. Similarly, if πb is a compression for an effect b, then πb ◦ ω is
simply ω seen as a state on a bigger system, and hence this preserves the purity of
the state. Our definition of pure maps then consists of maps that send pure states
(i.e. states of maximal information) to pure states4.

3In a monoidal dagger category it is common to require that the dagger preserves the monoidal
structure. We will not need this additional requirement for now, but we will use it in Chapter 5.

4As further evidence to the naturalness of this definition of purity, Theorem 171VII of Ref. [214]
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In Chapter 4 we will see that contrary to the definitions of purity discussed before,
this notion will be well-behaved, even in the quite general setting of JBW-algebras.

It is not a priori clear that the pure maps of Definition 3.6.2 are closed under
composition. In particular, it is not clear whether a composition ‘in the wrong order’
ξ ◦ π is pure. In our definition of a pure effect theory below we have the assumption
that the pure maps form a (dagger-)category, and hence we simply assert the closure
of pure maps under composition.

In a general effect theory, filters and compressions are not required to interact in
a meaningful way. Let us therefore discuss a bit more how filters and compressions
of sharp effects should interact. Let πp : Ap → A be a compression for a sharp effect
p. Let ω : I → Ap be a state defined on the system Ap where p holds with certainty.
The state πp ◦ ω is then the same state on A where we have forgotten that p holds.
Now consider the time-reverse π†p of πp (which we will assume exists, since we take πp
to be a pure map). As the compression πp forgets that the effect p holds for ω, the
map π†p should ‘remember it’. In other words: it is a post-selection for p and hence
is a filter for p. Now consider π†p ◦ πp. This is a post-selection to p after we already
knew that the effect holds (since πp is an embedding from the space where p holds
with certainty). Hence we should have π†p ◦ πp = id. These considerations give rise to
the assumptions we will require. In the parlance of dagger-categories: compressions
for sharp effects should be isometries whose adjoint is a filter for the same effect.

Definition 3.6.3. A (monoidal) pure effect theory (PET) is a (monoidal) effect
theory satisfying the following properties.

(P1) All effects have filters and compressions.

(P2) The pure maps form a (monoidal) dagger-category.

(P3) All maps have images.

(P4) The negation of a sharp effect is sharp (if p is sharp, then p⊥ is sharp)

(P5) Compressions of sharp effects are adjoint to its filters (if πp is a compression
for sharp p, then π†p is a filter for p, and vice versa).

(P6) Compressions of sharp effects are isometries (π†p ◦ πp = id for sharp p).

Remark 3.6.4. The combination of P1, P3, and P4 makes a PET into a �-effect-
theory. By P5 and P6 for every compression πp we have a filter ξp (namely ξp =
π†p) such that ξp ◦ πp = id and hence filters and compressions are compatible as in
Definition 3.5.21. The properties we assume for a PET are a subset of what is called
a †-effectus in Ref. [214]. In the next chapter we will show that JBW-algebras satisfy
these stronger conditions and hence that JBW-algebras in particular form a PET.

Remark 3.6.5. Several of these properties are closely related to more familiar cat-
egorical definitions. It is shown in Ref. [214] that an effect theory has all compressions
if and only if it has all kernels (a compression of q is a kernel of q⊥). It has all

shows that a normal completely positive map between von Neumann algebras is pure if and only
if its Paschke dilation, i.e. its purification (cf. Section 1.1.3), is surjective.
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cokernels if and only if all maps have an image and every sharp effect has a filter (a
filter is the cokernel of a compression). The assumptions P5 and P6 can equivalently
be stated as “all kernels are dagger-kernels, and the dagger of a kernel is a cokernel”,
and hence the subcategory of pure maps of a PET is a dagger kernel category [113].

Now that we have the definition of a PET, we can state the main results of this
chapter: the reconstruction of quantum theory from assumptions on purity.

Theorem (3.7.30). Let E be an operational pure effect theory. Then there exists a
functor into the opposite category of Euclidean Jordan algebras and positive sub-unital
maps F : E → EJAop

psu such that [0, 1]F (A) ∼= Eff(A). Furthermore, this functor is
faithful if and only if E satisfies local tomography.

Theorem (3.8.8). Let E be a monoidal operational pure effect theory. Then the
above functor restricts either to the category of real C*-algebras or to the category of
complex C*-algebras.

In this last theorem we expect that F is faithful if and only if E satisfies tomography,
but showing this requires establishing that F is monoidal, which is currently an open
question. For more discussion regarding this we refer to Section 3.8.

3.6.2 Properties of pure maps
Let p be a sharp effect and let πp be a compression for it. By P5 the map π†p is a filter
for p and by P6 we have π†p ◦ πp = id.

Definition 3.6.6. Let p : A→ I be a sharp effect in a PET and let πp : Ap → A be
a compression of p. The assert map asrtp : A→ A of p is then asrtp := πp ◦ π†p.

Remark 3.6.7. The definition of the assert map does not depend on the choice of
compression. If π′p is also a compression for p then π′p = πp ◦Θ1 for some isomorphism
Θ1 by Proposition 3.5.8, and similarly since (π′p)† is a filter by P5 we have (π′p)† =
Θ2◦π†p for some other isomorphism Θ2. Now id = (π′p)†◦π′p = Θ2◦π†p◦πp◦Θ1 = Θ2◦Θ1

so that Θ2 = Θ−1
1 . As a result π′p ◦ (π′p)† = πp ◦Θ1 ◦Θ−1

1 ◦ π†p = πp ◦ π†p = asrtp.

Remark 3.6.8. Since ξ†p is also a compression for p we could have defined the assert
map equally well as asrtp = ξ†p ◦ ξp for any filter of p.

Example 3.6.9. Let B(H) be the set of bounded operators on a (complex) Hilbert
space and let A ∈ B(H) be an effect. Then the assert map asrtA : B(H) → B(H)
(in the opposite category of C∗-algebras with positive sub-unital maps) is given by
asrtA(B) =

√
AB
√
A. I.e. it is the sequential product map of A. The name ‘assert’

comes from the fact that it asserts the effect A to be true.

Proposition 3.6.10 ([214, Section 3.6]). Let p be a sharp effect and let f be any
composable map in a PET. The following are true:
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a) asrtp ◦ asrtp = asrtp.

b) im(asrtp) = p.

c) 1 ◦ asrtp = p.

d) im(f) ≤ p ⇐⇒ asrtp ◦ f = f .

e) 1 ◦ f ≤ p ⇐⇒ f ◦ asrtp = f .

Proof.

a) asrtp ◦ asrtp = πp ◦ π†p ◦ πp ◦ π†p = πp ◦ id ◦ π†p = asrtp.

b) Note that p ◦ asrtp = p ◦ πp ◦ π†p = 1 ◦ πp ◦ π†p = 1 ◦ asrtp so that p ≥ im(asrtp).
Conversely, suppose q ≤ im(asrtp)⊥. Then 0 = q ◦ asrtp = q ◦ πp ◦ π†p. Because
π†p is a filter, it is faithful by Proposition 3.5.14. As a result q ◦ πp = 0 so that
q ≤ im(πp)⊥ = p⊥. Taking q = im(asrtp)⊥ we then have p ≤ im(asrtp).

c) By Proposition 3.5.14, first c) and then a): 1 ◦ asrtp = 1 ◦ πp ◦ π†p = 1 ◦ π†p = p.

d) If asrtp ◦ f = f , then im(f) = im(asrtp ◦ f) ≤ im(asrtp) = p. Conversely,
if im(f) ≤ p, then p ◦ f = 1 ◦ f so that by the universal property of πp we
have f = πp ◦ f for some f . Now f = id ◦ f = π†p ◦ πp ◦ f = π†p ◦ f so that
f = πp ◦ f = πp ◦ π†p ◦ f = asrtp ◦ f .

e) Suppose f ◦ asrtp = f . Then 1 ◦ f = (1 ◦ f) ◦ asrtp ≤ 1 ◦ asrtp = p. Conversely,
if 1 ◦ f ≤ p, then by the universal property of π†p we have f = f ◦ π†p for some f .
Now f = f ◦id = f ◦π†p◦πp = f ◦πp so that f = f ◦π†p = f ◦πp◦π†p = f ◦asrtp. �

Recall that in an effect algebra the addition operation is a partial operation. This will
allow us to talk about orthogonality.

Definition 3.6.11. Let p, q ∈ Eff(A) be sharp effects. We call them orthogonal
when p and q are summable. That is, when p+ q is defined and therefore p+ q ≤ 1.
We call two arbitrary effects (not necessarily sharp) orthogonal when their ceilings are
orthogonal.

Note that for non-sharp effects, being summable is weaker than being orthogonal,
as for instance 1

2p is always summable with itself (assuming we have a scalar acting
like 1

2 ).

Proposition 3.6.12. Let p, q ∈ SEff(A) be sharp effects in a PET. Then p and q are
orthogonal if and only if q ◦ asrtp = 0.

Proof. We have im(asrtp) = p, so that for any q ≤ p⊥ = im(asrtp)⊥ we have q◦asrtp ≤
im(asrtp)⊥ ◦ asrtp = 0. If q ◦ asrtp = 0 then q ≤ im(asrtp)⊥ = p⊥. �

There is a lot more that can be done in this abstract situation of effect theories with
filters and compressions, some of which we will explore in Chapter 5. For more results
concerning effectus theory we refer the interested reader to Refs. [41, 42, 214]. We
will now switch to the more concrete setting of operational effect theories.
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3.7 From operational PETs to Jordan algebras
In this section we will study PETs in a more familiar convex setting by working with
operational PETs. The goal is to show that in this setting effect spaces correspond
to Euclidean Jordan algebras, and hence most of the structure of quantum theory is
recovered. On a surface level the proof is structured much the same way as in Chapter 2:
we first derive a diagonalisation theorem in Section 3.7.1 and then in Section 3.7.2 we
construct a self-dual inner product on the effect spaces. In combination with some
further technical arguments presented in Section 3.7.3, this will show that the systems
correspond to EJAs.

For the duration of this section we will assume that we have fixed some operational
PET, and that A is a system therein. Furthermore V will denote the order unit space
associated to the system: Eff(A) ∼= [0, 1]V . Sharpness, ceilings and floors in V are all
defined by the same notion on effects in A.

3.7.1 Diagonalisation
We will construct a diagonalisation in terms of sharp effects using properties of the
ceiling of effects. That is: we will show that for any v ∈ V we can find a collection
of eigenvalues λi ∈ R and a set of sharp effects pi ∈ V that are all orthogonal to each
other such that v =

∑
i λipi. The following proposition collects the needed properties

of the ceiling established in Section 3.6.2:

Proposition 3.7.1. Let a, b ∈ Eff(A) and f : B → A.

• If a ≤ b then dae ≤ dbe and bac ≤ bbc.

• Let λ 6= 0 be a scalar. Then dλ ◦ ae = dae.

• a ◦ f = 0 iff dae ◦ f = 0.

Proof. All the points are straight from Proposition 3.5.12 except for λ 6= 0 implying
that dλ ◦ ae = dae. This follows from the point in Proposition 3.5.12 that da ◦ fe =
ddae◦fe by letting f := a and a := λ and observing that in our current setting dλe = 1
when λ 6= 0. �

Recall that the norm on a order-unit space is given by ‖v‖ := inf{r > 0 ; −r1 ≤
v ≤ r1}. Let C := {v ∈ V ; v ≥ 0} be the positive cone of V and denote its interior
with respect to the order-unit-norm topology by C◦. We have v ∈ C◦ iff there is an
ε > 0 such that ε1 ≤ v. Denote the boundary of the cone by ∂C = C\C◦.

Lemma 3.7.2. Let v ∈ C. Then

a) ‖v‖1− v ∈ ∂C,

b) if ‖v‖ < 1, then 1− v = v⊥ ∈ C◦,

c) if v is sharp and ‖v‖ < 1, then v = 0,

d) if ‖v‖ < 1 and v ≤ p where p is sharp, then dp− ve = p,
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e) if ‖v‖ < 1 and dve ⊥ p where p is sharp, then bp+ vc = p.

Proof.

a) As v ≤ ‖v‖1, if ‖v‖1 − v 6∈ ∂C then v − ‖v‖1 ∈ C◦ so that there must be an
ε > 0 such that ε1 ≤ v−‖v‖1 which means that v− (‖v‖+ε)1 ≥ 0 contradicting
the defining property of the order-unit norm.

b) Of course 0 ≤ v ≤ ‖v‖1 and hence 0 ≤ 1 − ‖v‖1 ≤ 1 − v = v⊥. Since
1− ‖v‖1 = (1− ‖v‖)1 > 0 we conclude that v⊥ ∈ C◦.

c) Let v be sharp with ‖v‖ < 1. Then by the previous point v⊥ ∈ C◦ so that
ε1 ≤ v⊥ for some ε > 0. Then 1 = d1e = dε1e ≤ dv⊥e = v⊥ because v⊥ is sharp.
But then v⊥ = 1 so indeed v = 0.

d) Let v ≤ p with ‖v‖ < 1, and let q := dp− ve ≤ p. Then we can write p = q + r
where r := p−q is a sharp effect by Proposition 3.5.20.c). Now p−v ≤ dp−ve = q
so that r = p− q ≤ v. Taking the norm on both sides gives ‖r‖ ≤ ‖v‖ < 1 so
that by the previous point r = 0. So indeed p = q + 0 = dp− ve.

e) As dve ⊥ p we have dve + p ≤ 1 so that also v + p ≤ 1 is indeed an effect.
Furthermore as v ≤ dve ≤ p⊥ and ‖v‖ < 1 the previous point applies and thus
dp⊥ − ve = dp⊥e. We then calculate: bp+ vc = d(p+ v)⊥e⊥ = d1− p− ve⊥ =
dp⊥ − ve⊥ = dp⊥e⊥ = bpc as desired. �

We need to show that the order unit spaces we deal with are ‘finite-rank’ in a
suitable way. This turns out to follow from the next lemma.

Lemma 3.7.3. Let 0 ≤ v ≤ 1 in V . We have v ∈ C◦ ⇐⇒ dve = 1.

Proof. When v ∈ C◦ we have ε1 ≤ v and hence dve ≥ dε1e = 1. It remains to verify
the converse direction.

Let 0 ≤ v ≤ 1 and suppose dve = 1. We want to show that there exists an ε > 0
such that ε1 ≤ v. Define f : St1(A) → [0, 1] by f(ω) = v ◦ ω where St1(A) denotes
the set of unital states on A. By assumption St1(A) ⊂ V ∗A is closed in V ∗A. As it is
also bounded, and V ∗A is a finite-dimensional vector space we conclude that St1(A) is
compact. Therefore the image of f will be some compact subset of [0, 1]. In particular,
there is an ω ∈ St1(A) that achieves the minimum of f . Suppose that v ◦ω = 0. Then
dve ◦ ω = 1 ◦ ω = 0 by the last point of Proposition 3.7.1. This is a contradiction as
1 ◦ ω = 1, so we must have v ◦ ω =: ε > 0. But as ω is the minimum value we must
have v ◦ω ≥ ε = (ε1) ◦ω for all ω ∈ St1(A). Since the states order-separate the effects
we then get v ≥ ε1 which shows that v ∈ C◦. �

Remark 3.7.4. This lemma explicitly requires the state-space to be closed, and V to
be finite-dimensional. Many of the following results can be proved without using finite-
dimensionality or the closure of state-space if one simply assumes the consequence of
this lemma as an additional axiom.

Proposition 3.7.5. Let v ∈ [0, 1]V with ‖v‖ = 1. Then bvc 6= 0.
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Proof. By Lemma 3.7.2 ‖v‖1 − v 6∈ C◦ and hence by Lemma 3.7.3 d‖v‖1 − ve 6= 1.
Supposing now that ‖v‖ = 1 we immediately get bvc⊥ = dv⊥e = d1−ve = d‖v‖1−ve 6=
1 and hence bvc 6= 0. �

Lemma 3.7.6. Let {pi} be a finite set of non-zero orthogonal sharp effects in V .
Then they are linearly independent.

Proof. Reasoning towards contradiction, assume that there is a non-trivial linear
combination of the orthogonal sharp effects. Then without loss of generality p1 =∑
i>1 λipi. Since all the pi are orthogonal we note that pj ◦ asrtpi = 0 when i 6= j by

Proposition 3.6.12, so that p1 = p1 ◦ asrtp1 =
∑
i>1 λipi ◦ asrtp1 = 0, a contradiction.

�

We can now prove our diagonalisation theorem.

Proposition 3.7.7. Let v ∈ [0, 1]V . There is a k ∈ N and a strictly decreasing
sequence of scalars λ1 > . . . > λk > 0 such that v =

∑k
i=1 λipi where the pi are

non-zero orthogonal sharp effects.

Proof. If v = 0 the result is trivial, so assume that v 6= 0. Let v′ = ‖v‖−1
v so that

‖v′‖ = 1. Write v′ = bv′c + w for w = v′ − bv′c. By Proposition 3.7.5 bv′c 6= 0.
Note that bwc + bv′c ≤ v′ implying that bbwc + bv′cc = bwc + bv′c ≤ bv′c by
Proposition 3.5.20.c), and hence bwc = 0. But then ‖w‖ 6= 1 by Proposition 3.7.5.
Now since w = v′ − bv′c ≤ 1 − bv′c we can write dwe ≤ d1 − bv′ce = dbv′c⊥e =
bbv′cc⊥ = bv′c⊥ so that dwe ⊥ bv′c.

Now using v = ‖v‖v′ we see that we can write v = λ1p+w where p is a sharp effect,
λ1 = ‖v‖ and w is an effect orthogonal to p with ‖w‖ < ‖v‖. We can now repeat this
procedure for w. This has to end at some point for if it would not then we get an
infinite sequence of orthogonal sharp effects {pi}∞i=1 which by Lemma 3.7.6 can only
be the case when the space is infinite-dimensional. �

This diagonalisation is unique in the following sense:

Proposition 3.7.8. Let v =
∑k
i=1 λipi and v =

∑l
j=1 µjqj where λi > λj > 0 and

µi > µj > 0 for i < j and all the pi and qi are sharp and non-zero with all the pi being
orthogonal and all the qi being orthogonal. Then k = l, λi = µi and pi = qi for all i.

Proof. Note first that if v = 0 that then k = l = 0 and hence we are done. So
assume that v 6= 0. It is clear that ‖v‖ = λ1 = µ1. Consider v′ = λ−1

1 v. Now
bv′c = bp1 +

∑
i>1 λ

−1
1 λipic = p1 by Lemma 3.7.2.e). But similarly, using the other

decomposition we also get bv′c = q1, so that p1 = q1. Now we can consider v2 = v−λ1p1
and continue the procedure. �

We can diagonalise an arbitrary positive element a by first diagonalising the effect
‖a‖−1

a and then rescaling. Now for an arbitrary element a (not necessarily positive)
we have −n1 ≤ a ≤ n1 for some n, so that 0 ≤ a + n1 ≤ 2n1. This gives us a
diagonalisation a+n1 =

∑
i λipi, so that a =

∑
i λipi−n1 =

∑
i(λi−n)pi+n(1−

∑
i pi).

As a corollary:
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Proposition 3.7.9. Any vector v ∈ V can be written as v = v+−v− where v+, v− ≥ 0
are orthogonal.

We can get a more fine-grained diagonalisation than just the one in terms of sharp
effects.

Definition 3.7.10. We call a non-zero sharp effect p atomic when for all q with
0 ≤ q ≤ p we have q = λp. Or in other words when ↓ p ∼= [0, 1] where ↓ p denotes the
downset of p.

Proposition 3.7.11. Each non-zero sharp effect can be written as a sum of atomic
effects.

Proof. Analogous to the proof of Proposition 2.4.9. �

Corollary 3.7.12. Any v ∈ V can be written as v =
∑
i λipi where λi ∈ R and the

pi are atomic and orthogonal.

Proof. First diagonalise v in terms of sharp effects, and then write every sharp effect
as a sum of atomic effects. �

3.7.2 Duality
The goal of this section is to find a self-dual inner product on V . We do this by
establishing a duality between pure states and effects.

The following proposition establishes that our definition of purity coincides with
atomicity when considering states and effects. This correspondence does not hold for
arbitrary maps, as there are pure maps that aren’t atomic. Note that this is the only
result for which we need the assumption that scalar-like systems are isomorphic to
the trivial system in Definition 3.4.8.

Proposition 3.7.13. An effect q : A → I is pure if and only if its corresponding
effect q ∈ [0, 1]V is proportional to an atomic effect. A unital state is pure if and only
if its image is atomic.

Proof. When q = 0 this is trivial, so assume that q 6= 0.
Suppose q : A → I is pure. Then we have q = πs ◦ ξt for some filter ξt : A → B

and compression πs : B → I. Note that q = 1 ◦ q = 1 ◦ πs ◦ ξt = 1 ◦ ξt = t, so that
t = q. The image im(q) is a scalar and must be sharp. As q 6= 0 we must then have
im(q) = 1 so that 1 = im(πs ◦ ξt) ≤ im(πs) = s and hence s = 1. Compressions
for the unit effect are isomorphisms, and hence πs ◦ ξt = ξ′t is still a filter for t = q.
The filter has type ξ′t : A → I so that I ∼= Aq and hence by Proposition 3.5.15
[0, 1] ∼= Eff(I) ∼= Eff(Aq) ∼= ↓ q. As a result q is indeed proportional to an atomic
effect.

For the converse direction, suppose q is proportional to an atomic effect. We use
Proposition 3.5.23.a) to write an effect q as q = g◦ξq where g is unital and ξq : A→ Aq.
Our goal is to show that g is an isomorphism so that q is indeed pure. As g : Aq → I
is unital, we have g = idI ◦ g = 1I ◦ g = 1Aq and since ↓ q ∼= [0, 1] by assumption,
Proposition 3.5.15 gives us Eff(Aq) ∼=↓ q ∼= [0, 1] ∼= Eff(I) so that Aq is a scalar-like
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system. Hence by definition of an operational effect theory, there is an isomorphism
Θ : I → Aq. Isomorphisms are unital and hence g ◦Θ = 1Aq ◦Θ = 1I = idI , so that g
is the inverse of Θ, and hence is an isomorphism. We conclude that q is a composition
of a filter and an isomorphism, and hence is pure.

Using an analogous argument, when we have a pure state ω = πs ◦ ξt we must have
t = 1 so that ξ1 is an isomorphism and then im(ω) = im(πs) = s where s must be
proportional to an atomic effect because [0, 1] ∼= Eff(I) ∼= Eff({A|s}) ∼=↓ s. �

Proposition 3.7.14. Let q be an atomic effect. There exists a unique unital state
ωq such that im(ωq) = q. This state is pure and given by ωq := q†.

Proof. Since q is atomic, it is pure by Proposition 3.7.13 and hence ωq := q† exists
and is a pure state. From the proof of Proposition 3.7.13 we also see that q is a filter
for q and hence ωq = q† is a compression for q by P5. Hence im(ωq) = q. Furthermore,
since compressions are unital (Proposition 3.5.14), ωq is as well.

For uniqueness we note that any unital state ω can be written as πim(ω)◦ω where ω is
also a unital state and πim(ω) is a compression for im(ω). Here ω is a map to the object
Aim(ω) ∼= Aim(ω) which has Eff(Aim(ω)) ∼=↓ im(ω) by Proposition 3.5.15. If im(ω) = q
is atomic then the effect space will be the real numbers so that Aim(ω) is a scalar-like
system. Hence, using the same argumentation as in the proof of Proposition 3.7.13,
ω will be the unique unital state on this system. This means that any state with
im(ω) = q will be equal to πq. �

We now have a correspondence between pure states and pure effects. A pure state ω
has an atomic image q = im(ω) that is a pure effect. It is the unique pure effect such
that q ◦ ω = 1. In turn ω is the unique pure state for q such that q ◦ ω = 1. We want
this correspondence to satisfy the following property:

Definition 3.7.15. We will say an operational PET has symmetry of transition
probabilities [4] when for any two atomic effects p and q on the same system we
have q ◦ ωp = p ◦ ωq where ωp is the unique pure unital state with im(ωp) = p.

This is easy to show in the following case:

Proposition 3.7.16. Let p and q be atomic effects. We have p◦ωq = 0 ⇐⇒ q◦ωp =
0 ⇐⇒ p ⊥ q.

Proof. p ◦ ωq = 0 ⇐⇒ p ≤ im(ωq)⊥ = q⊥ ⇐⇒ p ⊥ q ⇐⇒ q ⊥ p ⇐⇒ q ≤
im(ωp)⊥ ⇐⇒ q ◦ ωp = 0. �

The general case is a bit harder to show, and we need the following lemma.
First, note that all scalars are pure maps as they are filters for themselves, and

hence the dagger is defined for scalars.

Lemma 3.7.17. Let s : I → I be a scalar, then s† = s.

Proof. A scalar s : I → I of course corresponds to some number s ∈ [0, 1], and
composition of scalars s ◦ t is then equal to their product st. We then have (st)† =
(s ◦ t)† = t† ◦ s† = s†t†, so that the dagger preserves multiplication. Note that for real
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numbers between 0 and 1 we have s ≤ t ⇐⇒ ∃r ∈ [0, 1] : s = rt. As a consequence
we get s ≤ t ⇐⇒ s = rt ⇐⇒ s† = r†t† ⇐⇒ s† ≤ t† so that the dagger is also an
order-isomorphism for the unit-interval. Now suppose that s ≤ s†, then by taking the
dagger on both sides we get s† ≤ s so that s = s†. This of course also holds when we
start with s† ≤ s. Since the unit interval is totally ordered, one of these cases must
be true and we are done. �

Proposition 3.7.18. An operational PET has symmetry of transition probabilities.

Proof. Let p and q be atomic effects. By Proposition 3.7.14 we have ωp = p† and
ωq = q†. Note that q◦ωp is a scalar and hence by the previous lemma q◦ωp = (q◦ωp)†.
But also (q ◦ ωp)† = ω†p ◦ q† = p ◦ ωq so that q ◦ ωp = p ◦ ωq as desired. �

Definition 3.7.19. Let v, w ∈ V be arbitrary vectors and write them as v =
∑
i λipi

and w =
∑
j µjqj , where the pi are orthogonal atoms and the same for the qj . Such a

decomposition can always be found by Corollary 3.7.12. Define the inner product
of v and w to be 〈v, w〉 :=

∑
i,j λiµj(qj ◦ ωpi).

Proposition 3.7.20. The inner product defined above is indeed an inner product:
well-defined, symmetric, bilinear and 〈v, v〉 ≥ 0 with 〈v, v〉 = 0 iff v = 0.

Proof. First note that with v and w as defined above,

〈v, w〉 =
∑
i,j

λiµj(qj ◦ ωpi) =
∑
i

λi(
∑
j

µjqj) ◦ ωpi =
∑
i

λi(w ◦ ωpi)

so that the inner product is independent of the representation of w in terms of atomic
effects and linear in the second argument. Second, due to symmetry of transition
probabilities qj ◦ωpi = pi ◦ωqj and hence 〈v, w〉 = 〈w, v〉 so that it is also independent
of the representation of v and linear in the first argument.

Lastly, we have 〈v, v〉 =
∑
i,j λiλjpj ◦ ωpi =

∑
i λ

2
i pi ◦ ωpi =

∑
i λ

2
i ≥ 0 due to

Proposition 3.7.16, and hence 〈·, ·〉 indeed forms an inner product. �

Proposition 3.7.21. The inner-product makes V self-dual, i.e. v ≥ 0 iff for all w ≥ 0
we have 〈v, w〉 ≥ 0.

Proof. If v ≥ 0 then we can write v =
∑
i λipi with the pi atomic and orthogonal and

λi ≥ 0 for all i. It then easily follows that 〈v, w〉 ≥ 0 if w is also positive. For the other
direction, suppose 〈v, w〉 ≥ 0 for all positive w, then in particular 〈v, pi〉 = λi ≥ 0, so
that v is indeed positive. �

Corollary 3.7.22. Let ω ∈ St1(A) be a unital state, then ω =
∑
i λiωpi with λi ≥ 0,∑

i λi = 1 and the ωpi being pure states.

Proof. The inner product defines a linear map f : V → V ∗ by f(v)(w) := 〈v, w〉.
This map is an injection, so that due to finite-dimensionality it is a bijection. In
particular, we can find for every ω ∈ V ∗ an element v ∈ V such that f(v) = ω and
hence ω(w) = 〈v, w〉. Since ω(w) ≥ 0 for all w ≥ 0 we must have v ≥ 0. By expanding
v in terms of atomic effects we then get the desired result. �

Corollary 3.7.23. A unital state on A is pure if and only if it is convex extremal in
St1(A).
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3.7.3 Structure of faces
At this point we could try to explicitly construct a Jordan product as in Section 2.6.
which would require results analogous to those of Section 2.4.3. Proving these results
in our current setting is however not straightforward, and hence we will take a different
route.

The combination of a self-dual inner product and assert maps brings us close to the
setting of Alfsen and Shultz’s work in Ref. [4]. In particular, by making the appropriate
translations we can use their results to prove the main theorem of this chapter: that
systems in an operational PET correspond to Euclidean Jordan algebras. Their proof,
Theorem 9.33 of Ref. [4], relies on a type of operators they also call compressions. Their
compressions will turn out to be our assert maps. To distinguish our compressions
from theirs, we will call their compressions AS-compressions.

Definition 3.7.24. Let P : A → A be a map in an effect theory. We call it an
AS-compression when P is idempotent and it is bicomplemented, i.e. when there
exists an idempotent map Q : A → A such that for all effects a and states ω the
following implications hold:

• a ◦ P = a ⇐⇒ a ◦Q = 0.

• a ◦Q = a ⇐⇒ a ◦ P = 0.

• P ◦ ω = ω ⇐⇒ Q ◦ ω = 0.

• Q ◦ ω = ω ⇐⇒ P ◦ ω = 0.

Proposition 3.7.25. In a PET where the effects separate the states (i.e. where
ω = ω′ when p ◦ ω = p ◦ ω′ for all effects p) the assert map asrtp of a sharp effect p is
an AS-compression with bicomplement asrtp⊥ .

Proof. In Proposition 3.6.10 it was already shown that assert maps of sharp effects are
idempotent so it remains to show that they are bicomplemented. The bicomplement
of asrtp will turn out to be asrtp⊥ .

We have a = a◦asrtp ⇐⇒ a ≤ p = (p⊥)⊥ ⇐⇒ a◦asrtp⊥ = 0 by an application of
Propositions 3.6.10 and 3.6.12. Obviously the same holds with p and p⊥ interchanged.

Let ω be a state. Suppose asrtp ◦ω = ω. Then a◦asrtp⊥ ◦ω = a◦asrtp⊥ ◦asrtp ◦ω ≤
p⊥ ◦ asrtp ◦ ω = 0 ◦ ω = 0 for all effects a. Because the effects separate the states
we can conclude that asrtp⊥ ◦ ω = 0. Conversely, suppose asrtp⊥ ◦ ω = 0. Then
0 = 1 ◦ asrtp⊥ ◦ ω = p⊥ ◦ ω so that 1 ◦ ω = (p+ p⊥) ◦ ω = p ◦ ω. Hence im(ω) ≤ p so
that by Proposition 3.6.10 asrtp ◦ ω = ω. The other direction we get by interchanging
p and p⊥. So asrtp and asrtp⊥ are indeed bicomplemented. �

The results of Ref. [4] require a few concepts from convex geometry, in particular
the notion of a face (Definition 1.3.8). Let us recall the definition of a face along with
several new properties.

Definition 3.7.26. Let W be a real vector space and let K ⊆W be a convex subset.
A face F of K is a convex subset such that λx+ (1− λ)y ∈ F with 0 < λ < 1 implies
that x, y ∈ F . Any extreme point p ∈ K forms a face {p}. A face F is called norm
exposed when there exists a bounded affine positive functional f : K → R+ such
that f(a) = 0 ⇐⇒ a ∈ F . A face F is called projective when there exists an
AS-compression P : W →W such that for all x ∈ K we have P (x) = x ⇐⇒ x ∈ F .
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Lemma 3.7.27. Let A be a system in an operational PET. Any norm-exposed face
of St1(A) is projective.

Proof. Let V be the vector space associated to A. Let F ⊆ St1(A) be a norm-exposed
face. That means that there is a positive affine functional f : St1(A) → R≥0 with
f(ω) = 0 ⇐⇒ ω ∈ F . As St1(A) is the state space of an order unit space V , it forms a
base of the base norm space V ∗ [5, Theorem 1.19]. As a result, its span is the entire
positive cone of V ∗ [5, Definition 1.10], and f extends uniquely to a positive linear map
f : V ∗ → R [5, Proposition 1.11]. In finite dimension we of course have V ∼= V ∗ so
that there must be a q ≥ 0 in V such that ∀ω ∈ St(A) : f(ω) = ω(q). We can rescale q
without changing the zero set, so we can take q to be an effect. By Proposition 3.5.12
ω(q) = 0 ⇐⇒ ω(dqe) = 0, so q can be replaced by a sharp effect without changing the
zero set. Now ω ∈ F ⇐⇒ ω(q) = 0 ⇐⇒ im(ω) ≤ q⊥ ⇐⇒ asrtq⊥ ◦ ω = ω. Since
assert maps of sharp effects are AS-compressions we see that F is indeed projective. �

Corollary 3.7.28. Let A be a system in an operational PET. Any AS-compression
is an assert map.

Proof. If we have a AS-compression P with complement Q then we can construct
f : St1(A)→ R+ by f(ω) = ‖Q(ω)‖ which is affine (this is a standard result for the
norm on base norm spaces in order separation with an order unit space [4]). Now
obviously f(v) = 0 ⇐⇒ Q(v) = 0 ⇐⇒ P (v) = v, so we see that the projective
face generated by P is also norm exposed. But then by the previous proposition it
is also the projective face of some assert map which necessarily must have the same
projective unit. Because the projective unit determines the compression uniquely we
see that P must be equal to this assert map. �

Lemma 3.7.29. In an operational PET, the AS-compression of a convex extremal
state is proportional to a convex extremal state.

Proof. By Corollary 3.7.23 convex extremal states are precisely the pure states. The
only AS-compressions are the assert maps of sharp effects, and assert maps are pure
maps. By P2 the composition of pure maps is again pure, so that an AS-compression
sends a convex extremal state to a pure state, which again by Corollary 3.7.23 must
be convex extremal. �

Theorem 3.7.30. Let E be an operational PET. Then there exists a functor
F : E→ EJAop

psu such that for any system A the effect space Eff(A) is isomorphic
to the unit interval of its corresponding EJA: Eff(A) ∼= [0, 1]F (A). Furthermore, this
functor is faithful if and only if E is locally tomographic.

Proof. By Theorem 3.4.10 we have a functor F : E → OUSop that is faithful when
E satisfies local tomography, and hence it suffices to prove that the order unit spaces
in the image are actually EJAs. We show this by establishing all the conditions of
Theorem 9.33 of [4]. This theorem states that a state-space is isomorphic to that of a
Jordan algebra when the following conditions are met:

• Every norm exposed face is projective (Lemma 3.7.27).

• The convex extremal points span the space (Corollary 3.7.22).
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• It satisfies symmetry of transition probabilities (Proposition 3.7.18).

• AS-compressions preserve convex extremal states (Lemma 3.7.29).

Hence, we can indeed conclude that our systems are Euclidean Jordan algebras. �

We have now shown that systems in an operational PET correspond to Euclidean
Jordan algebras. Conversely, in Chapter 4 we will show that the opposite category of
EJAs with positive sub-unital maps is an operational PET. Hence, we have charac-
terized operational PETs.

3.8 Monoidal Operational PETs
In this section we will see what additional restrictions are imposed on the systems by
adding a monoidal structure to the theory that respects the structure of pure maps.

The prototypical example of a monoidal operational PET is CStarop
cpsu, the opposite

category of complex finite-dimensional C∗-algebras with completely positive sub-unital
maps. Another example is RStarop

cpsu of real finite-dimensional C∗-algebras with
completely positive sub-unital maps. A real finite-dimensional C∗-algebra is a direct
sum of the real matrix algebras Mn(R). The aim of this section is to prove that these
are in fact the only two possibilities.

Remark 3.8.1. Many of the results in this section are very similar to those of
Section 2.8. In those cases we will omit the proof and give the appropriate reference.

In this section we will fix a monoidal operational PET E, and we will let V and W
denote the order unit spaces associated to a pair of objects in E. By the results of the
previous section, these are in fact EJAs. The monoidal structure of the PET lifts to a
bilinear map V ×W → V ⊗W where V ⊗W is another EJA corresponding to some
system of E. In particular, if we have v ≥ 0 in V and w ≥ 0 in W then v ⊗ w ≥ 0
in V ⊗W . Note that a priori V ⊗W is not necessarily related to the regular vector
space tensor product.

Proposition 3.8.2. In a monoidal operational PET the following are true.

a) A composite of pure maps is again pure.

b) A composite of normalised states is again a normalised state.

c) A composite of atomic effects is again an atomic effect.

d) For atomic effects p and q we have ωp ⊗ ωq = ωp⊗q.

e) If q1 ⊥ p1 and q2 ⊥ p2 are atomic orthogonal effects, then q1 ⊗ q2 ⊥ p1 ⊗ p2.

Proof.

a) By definition of a monoidal PET.

b) Given two normalized states ω1 and ω2 we see that 1 ◦ (ω1 ⊗ ω2) = (1 ⊗ 1) ◦
(ω1 ⊗ ω2) = (1 ◦ ω1)⊗ (1 ◦ ω2) = 1⊗ 1 = 1.
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c) Let p and q be atomic effects. By Proposition 3.7.13 this is equivalent to them
being sharp and pure. By the previous point we know that p ⊗ q is also pure
and hence p ⊗ q must be proportional to an atom: p ⊗ q = λr. We calculate
1 = (p ⊗ q) ◦ (ωp ⊗ ωq) = (λr) ◦ (ωp ⊗ ωq) ≤ (λ1) ◦ (ωp ⊗ ωq) = λ, and hence
λ = 1 and we are done.

d) We know that p⊗ q is atomic, and we know that ωp ⊗ ωq is a unital pure state
(since it is a composite of pure unital states). We of course have (p⊗ q) ◦ (ωp ⊗
ωq) = 1, but by Proposition 3.7.14, the state ωp⊗q is the unique state with this
property and hence ωp⊗q = ωp ⊗ ωq.

e) By Proposition 3.7.16, atomic effects p and q are orthogonal if and only if
q◦ωp = 0. So supposing that q1 ⊥ p1 and q2 ⊥ p2 we calculate (q1⊗q2)◦ωp1⊗p2 =
(q1 ⊗ q2) ◦ (ωp1 ⊗ ωp2) = (q1 ◦ ωp1)⊗ (q2 ◦ ωp2) = 0⊗ 0 = 0. �

Definition 3.8.3. The rank of an EJA V , denoted by rnk V , is equal to the maximal
size of any set of orthogonal atomic effects in V .

The rank of the n×n matrix algebra Mn(F)sa is equal to n. The rank of a spin factor
is always equal to 2. Note that the size of a set of of orthogonal atomic effects {pi} is
equal to the rank of the space if and only if

∑
i pi = 1.

Proposition 3.8.4. Rank is preserved by compositing: rnk V ⊗W = rnk V rnk W .
We also have dim V ⊗W ≥ dim V dim W .

Proof. Let {pi} be a maximal set of orthogonal atomic effects in V , and let {qj} be a
maximal set of orthogonal atomic effects in W . By maximality we must have

∑
i pi =

1V and
∑
j qj = 1W . By Proposition 3.8.2 the set {pi⊗ qj} also consists of orthogonal

atomic effects. Furthermore
∑
i,j pi ⊗ qj = (

∑
i pi)⊗ (

∑
j qj) = 1V ⊗ 1W = 1V⊗W so

that this set must also be maximal.
For the second part let {pi} be a basis of atomic effects of V and similarly let {qj}

be a basis of atomic effects in W . Suppose that dim V ⊗W < dim V dim W , then
{pi ⊗ qj} must be linearly dependent in V ⊗W . In the same way as in the proof of
Lemma 2.8.2 this can be shown to lead to a contradiction, and hence we must have
dim V ⊗W ≥ dim V dim W . �

Proposition 3.8.5. Let V and W be simple. Then their composite V ⊗W is also
simple.

Proof. We know that the composite V ⊗ W has rank (rnk V )(rnk W ), so if we
can show that V ⊗W must contain a simple factor of this rank than we are done.
Writing p& a := a ◦ asrtp for a sharp effect p ∈ V and any effect a ∈ V we can use
Proposition 2.7.11, Lemma 2.8.5 and finally the proof of Proposition 2.8.6 to prove
this result. �

Proposition 3.8.6. Let V be simple. Then V = Mn(F)sa with F = R or F = C.

Proof. This can be shown by a simple case distinction and dimension counting argu-
ment as in Proposition 2.8.7. We will work out one specific case, the other ones follow
similarly. Suppose V = Mn(H)sa for n ≥ 2. By Propositions 3.8.4 and 3.8.5 we then
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know that V ⊗ V must be a simple EJA with rank n2 and dim(V ⊗ V ) ≥ dim(V )2.
The simple EJA of rank n2 with the highest dimension is Mn2(H)sa. When n > 1
however, the dimension of this space is still lower than dim(Mn(H)sa)2, and hence
such an EJA does not exist.

Note that the spin factors S2 and S3 do allow the right sort of composites, but that
these are in fact isomorphic to respectively real and complex matrix algebras. �

Proposition 3.8.7. Let V and W both be simple. Then both V and W are real
matrix algebras, or both of them are complex matrix algebras.

Proof. By the previous proposition we know that they both must be real or complex,
so that the only thing we need to show is that it cannot be that V is complex while
W is real.

Let V = Mn(C)sa and W = Mm(R)sa. By dimension counting and the previous
proposition we know that V ⊗W = Mnm(C)sa. Let ω be a pure state on V . The
identity map on W is of course pure, so that ω ⊗ id : Mnm(C)sa → Mm(R)sa is also
a pure map. However it follows from Examples 3.5.2 and 3.5.4 that the compression
systems for any complex matrix algebra are again complex matrix algebras. Hence,
a pure map f : Mk(C)sa →W (which is a composition of a filter and a compression)
must have W ∼= Ml(C)sa for some l ∈ N. As a real and complex matrix algebra are
only isomorphic in the trivial case, the desired result follows. �

Theorem 3.8.8. Let E be an monoidal operational PET. Then there is a functor
F : E→ D where D = CStarop

cpsu or D = RStarop
cpsu. This functor preserves the effect

space of objects: Eff(A) ∼= [0, 1]F (A).

Proof. By Theorem 3.7.30 we have a functor into EJAop
psu, so it suffices to show that

this functor restricts in the correct manner.
Let A be a system in a monoidal operational PET. We know that Eff(A) is iso-

morphic to the unit interval of a Euclidean Jordan algebra. Let c be a minimal central
element of this EJA, that hence corresponds to a simple factor of the algebra. The
compression space associated to c is then a simple algebra, and hence by Proposi-
tion 3.8.6 it must be a real or complex matrix algebra. let d be another minimal
central element. Then its associated simple factor is also a real or complex matrix
algebra and furthermore this algebra is associated to some system in the PET. By
Proposition 3.8.7 we can then conclude that either both the simple factors associated
to c and d are real, or they are complex. We conclude that Eff(A) is indeed isomorphic
to the unit interval of a real or complex C∗-algebra. That all the systems of E must
be real or complex follows similarly. Hence the functor of Theorem 3.7.30 restricts to
the category of real or complex C∗-algebras. That all the maps must be completely
positive follows because positivity must be preserved even on composite systems. �

Remark 3.8.9. This theorem does not mention the faithfulness of this functor. If E
satisfies local tomography, then in the same way as in Theorem 3.7.30 we see that it is
faithful, but we expect that faithfulness already holds if E merely satisfies tomography.
To prove this we would need to show that the functor F is strongly monoidal, which
does not seem trivial. Analogously to Theorem 2.8.8 we also expect that if E satisfies
local tomography that the effect spaces of E must then be isomorphic to complex
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C∗-algebras, but this again requires knowing more about the interaction of the functor
with the monoidal structure.

Remark 3.8.10. The opposite category of von Neumann algebras with completely
positive normal sub-unital maps vNAop

cpsu is also a monoidal PET [212, 214], but
since we require all systems to be finite-dimensional, it is not an operational PET.
Finding suitable conditions under which we retrieve vNAop

cpsu (or the bigger category
of JBW-algebras and positive maps) is discussed in Chapter 5.





Chapter 4

The category of JBW-algebras
In the preceding two chapters we studied physical theories satisfying properties related
to sequential measurement and purity. We established that these properties forced
the systems in these physical theories to correspond to Euclidean Jordan algebras
(or C∗-algebras when composite systems are also required). In this chapter we will
consider the converse direction: we will show that Euclidean Jordan algebras satisfy
the assumptions outlined in Chapters 2 and 3.

In fact, we will consider a larger class of Jordan algebras known as JBW-algebras
that also include infinite-dimensional algebras. JBW-algebras are to EJAs what von
Neumann algebras are to finite-dimensional C∗-algebras.

We will first introduce the basic theory of Jordan algebras in Section 4.1. Then in
Section 4.2 we introduce JBW-algebras. Sections 4.3–4.5 establish that JBW-algebras
have compressions and filters as defined in Section 3.5. Section 4.6 shows that the
pure maps in a JBW-algebra form a dagger-category, proving that JBW-algebras
are an example of a PET (cf. Definition 3.6.3). In fact, we find that the pure maps
satisfy some stronger conditions that we will use as new axioms for a reconstruction in
Chapter 5. Finally, in Section 4.7 we establish that the set of effects of a JBW-algebra
has a sequential product satisfying the conditions outlined in Section 2.2.

As the theory of Jordan and JBW-algebras is intricate and technical, we will give
appropriate references where needed, instead of reproving known results. Our stand-
ard reference is the excellent book Jordan operator algebras by Hanche-Olsen and
Störmer [107]. Other books containing most of the material we need are Refs. [4,
156]. While we endeavored to make this chapter as accessible as possible, some ba-
sic familiarity with C∗-algebras or von Neumann algebras should help the reader’s
understanding.

The title of this chapter is a reference to the PhD thesis of Abraham Westerbaan,
The category of von Neumann algebras [212], as this chapter generalises many of his
results. Wherever possible we tried to follow his line of argument, although in quite
some cases the proofs become considerably harder in our setting.

4.1 Jordan algebras
Let us recall some of the basic definitions regarding Jordan algebras that we introduced
in Section 1.2.

Definition 4.1.1. A Jordan algebra (E, ∗, 1) over a field F is a vector space over
F equipped with a unital commutative bilinear operation ∗ : E×E → E that satisfies
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the Jordan identity:

(a ∗ b) ∗ (a ∗ a) = a ∗ (b ∗ (a ∗ a))

We will refer to this operation as the Jordan product of the algebra. A linear map
f : E → F between Jordan algebras is a (unital) Jordan homomorphism when
f(a ∗ b) = f(a) ∗ f(b) (and f(1) = 1).

Remark 4.1.2. The Jordan product does not have to be associative. The Jordan
identity can be seen as a weaker form of associativity that only applies to certain
combinations of the product.

Example 4.1.3. Let (A, ·, 1) be any associative unital algebra over a field F, i.e. a
vector space over F with · : A × A → A bilinear and satisfying a · (b · c) = (a · b) · c.
Assume F is of characteristic different than 2 so that 2 has an inverse in F. Then the
operation ∗ : A×A→ A defined by

a ∗ b := 1
2(a · b+ b · a)

makes (A, ∗, 1) into a Jordan algebra. We will refer to this operation as the special
Jordan product of the algebra. Any Jordan algebra that embeds into an associative
algebra equipped with this Jordan product is called special.

Assumption 4.1.4. For the remainder of this section we will assume that all Jordan
algebras are over some field that is not of characteristic 2. This is needed so that
−1 6= 1. The theory of Jordan algebras over a field of characteristic 2 is subtly different,
and out of scope for this thesis.

To proceed we need some basic algebraic properties of Jordan algebras, which are
most conveniently expressed with some additional notation.

Definition 4.1.5. Let E be a Jordan algebra.

• We write a0 := 1, a1 := a, a2 := a ∗ a, a3 := a ∗ a2, . . . . Note that since ∗
is not associative it’s not a priori clear whether equations like a4 = a2 ∗ a2 hold.

• We write J(a) ⊆ E for the Jordan algebra generated by a (which will turn out
to consist of all polynomials in a).

• Given a ∈ E we write Ta : E → E for the linear operator Ta(b) := a ∗ b. We
call these operators product maps.

• Given two linear maps S, T : E → E we write [S, T ] := ST − TS for the
commutator of S and T .

Note that because the Jordan product is bilinear, we have Ta+λb = Ta + λTb. This
allows us to derive the linearised Jordan equations:

Lemma 4.1.6 ([107, Section 2.4.2]). Given a Jordan algebra E, and a, b, c ∈ E, we
have
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a) [Ta, Ta2 ] = 0

b) [Tb, Ta2 ] = 2[Ta∗b, Ta]

c) [Ta, Tb∗c] + [Tb, Tc∗a] + [Tc, Ta∗b] = 0;
Proof.

a) The first equation, [Ta, Ta2 ] = 0, is just a reformulation of the Jordan identity:

TaTa2b = a ∗ (b ∗ a2) = (a ∗ b) ∗ a2 = Ta2Tab.

b) Take the equality [Td, Td2 ] = 0 and let d = a ± b: [Ta±b, T(a±b)2 ] = 0. After
expanding the terms using linearity we are left with

[Ta, Ta2 ]± [Tb, Tb2 ]± ([Tb, Ta2 ] + 2[Ta, Tab]) + ([Ta, Tb2 ] + 2[Tb, Tab]) = 0.

Subtracting the equation for d = a + b from the equation for d = a − b and
dividing the result by 2 (here we use that the field is not of characteristic 2) we
have the desired equation (as [Ta, Ta2 ] = [Tb, Tb2 ] = 0).

c) Take the equation of the previous point and replace a by a± c. Using the same
trick as before we arrive at the desired equation. �

Lemma 4.1.7 ([107, Section 2.4.4]). Given a Jordan algebra E and a, b, c ∈ E we
have

Ta∗(b∗c) = TaTb∗c + TbTc∗a + TcTa∗b − TbTaTc − TcTaTb. (4.1)
Proof. Apply an element d to both sides of the equation (4.1.6.c) and bring all the
negative terms to the right to get:

a((bc)d) + b((ac)d) + c((ab)d) = (bc)(ad) + (ac)(bd) + (ab)(cd).

Note that for clarity we are simply writing ‘ab’ instead of ‘a ∗ b’. Observe that the
right-hand side of this equation is invariant under an interchange of a and d so that
the left-hand side must be as well. This leads to the equality

a((bc)d) + b((ac)d) + c((ab)d) = d((bc)a) + b((dc)a) + c((db)a)
= ((bc)a)d+ b(a(cd)) + c(a(bd))

where we have used the commutativity of the product to move d to the end of all the
terms in the last equality. Translating this back into multiplication operators, using
that this equality holds for all d, and bringing some terms to the other side then gives
the desired equation. �

We will refer to equation (4.1) as the normalisation equation. Using this equation
we can reduce a product map of an arbitrary expression into a polynomial of product
maps containing at most two terms. For instance:
Proposition 4.1.8. Let E be a Jordan algebra and let a ∈ E. For any n ∈ N, Tan
can be written as a polynomial in Ta2 and Ta.
Proof. We prove by induction. It is obviously true for n = 1, 2. Suppose it is true
for all k ≤ n. Then by Eq. (4.1) Tan+1 = Ta∗(a∗an−1) = TaTan + TaTan + Tan−1Ta2 −
T 2
aTan−1 − Tan−1T 2

a . Expanding each of the Tan and Tan−1 as polynomials of Ta and
Ta2 finishes the proof. �
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4.1.1 Triple and quadratic product
Calculating with the Jordan product is not always straightforward. In many situations
it turns out to be easier to work with a related operation that can be defined on any
Jordan algebra.

Definition 4.1.9. Let E be a Jordan algebra, a, b, c ∈ E. We define its triple
product as

{a, b, c} := (a ∗ b) ∗ c+ (c ∗ b) ∗ a− (a ∗ c) ∗ b. (4.2)

This is linear in all three arguments, and in particular in b, so that we can define the
triple product map of a and c as Qa,cb = {a, b, c}, i.e. Qa,c := TaTc + TcTa − Ta∗c.
We define the quadratic product of a as Qa := Qa,a so that Qab = {a, b, a}. Note
that Qab = 2a ∗ (a ∗ b)− a2 ∗ b.

Example 4.1.10. Let (A, ·, 1) be an associative algebra and let ∗ denote the special
Jordan product. Then {a, b, c} = 1

2 (a · b · c+ c · b · a) and Qac = {a, c, a} = a · c · a

Remark 4.1.11. Recall that the sequential product in a C∗-algebra was defined for
effects as a& b =

√
ab
√
b. The form of the quadratic product in a special Jordan

algebra above hence shows that a& b = Q√ab in the special case of a C∗-algebra. We
will see in Section 4.7 that this operation is also a sequential product in an arbitrary
JBW-algebra.

It is easily verified that Qa1 = a2. The quadratic product satisfies several other
useful identities.

Proposition 4.1.12. Let E be a Jordan algebra, a ∈ E. Then Qa2 = Q2
a.

Proof. The equation Qa2 = 2L2
a2 − La2∗a2 can be normalised to L2

a2 + 4L4
a − 4La2L2

a

using equation (4.1) repeatedly. This is easily shown to be equal to Q2
a by usage of

Eq. (4.1.6.a). �

The next identity is known as the fundamental identity of quadratic Jordan
algebras (or just ‘fundamental identity’ for short).

Theorem 4.1.13. Let E be a Jordan algebra and a, b ∈ E. Then QQab = QaQbQa.

Although this equation might seem quite arbitrary, it is in fact of fundamental
importance to the theory of Jordan algebras. Note that this equation is evidently true
in a special Jordan algebra: QQabc = (Qab) · c · (Qab) = (a · b · a) · c · (a · b · a), while
QaQbQac = a · (b · (a · c · a) · b) · a.

There is unfortunately no easy proof of the fundamental identity in an arbitrary
Jordan algebra. Many textbooks [4, 45, 107, 156] prove the fundamental identity as a
consequence of MacDonald’s theorem. This theorem states that any polynomial
identity of Jordan products in 3 variables that is linear in at least one variable, is true
for any Jordan algebra if and only if it is true for any special Jordan algebra. For real
Jordan algebras methods from analysis can be used to prove it [73].

A more straightforward, though lengthy, algebraic proof using an automated pro-
gram to do the dozens of necessary rewrite steps is found in Ref. [216].
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4.1.2 Operator commutativity
In this section we will collect and prove some results regarding operator commutativity
in general Jordan algebras.

Definition 4.1.14. Let E be a Jordan algebra. We say a, b ∈ E operator commute
when their Jordan product maps Ta, Tb : E → E commute, or equivalently when
a ∗ (c ∗ b) = (a ∗ c) ∗ b for all c ∈ A. We write a | b to denote that a and b operator
commute. An element is central when it operator commutes with every element of
the algebra.

Definition 4.1.15. Let E be a Jordan algebra, and let S ⊆ E be some subset. We
write S′ for the commutator of S, defined as S′ := {a ∈ E ; ∀s ∈ S : a | s}.

The following shows that a Jordan algebra is always power associative.

Proposition 4.1.16. For any a ∈ E and n,m ∈ N, an and am operator commute
and an ∗ am = an+m, and hence an ∗ (b ∗ am) = (an ∗ b) ∗ am for all b ∈ E.

Proof. By Proposition 4.1.8 we can reduce both Tan and Tam to polynomials in Ta2

and Ta, which commute by Eq. (4.1.6.a). �

Corollary 4.1.17. For any a ∈ E, the Jordan algebra J(a) generated by a is associ-
ative.

For general Jordan algebras, it could be that a and b operator commute, while a2

does not operator commute with b (see for instance Ref. [107, Remark 2.5.2]). Using
the decomposition of Tan into Ta2 and Ta we do get the following.

Lemma 4.1.18. For any a, b ∈ E, b ∈ J(a)′ iff b | a, a2.

Slightly more involved is the following result that gives a sufficient condition for a
and b to generate an associative Jordan algebra.

Proposition 4.1.19. Let E be a Jordan algebra with a, b ∈ E and suppose a | b, b2
and b | a, a2. Then a and b generate an associative Jordan algebra of mutually operator
commuting elements.

Proof. By repeatedly applying Eq. (4.1) any Tp where p is a polynomial in a and
b can be reduced to a polynomial in Ta, Ta2 , Tb, Tb2 and Ta∗b. It hence remains to
show that a2 | b2, and that a ∗ b operator commutes with a, a2, b and b2. Eq. (4.1.6.b)
already gives a ∗ b | a, b. With the same equation, but now taking b := b2, we see
that b2 | a2 ⇐⇒ a ∗ b2 | a. Applying Eq. (4.1) to Ta∗b2 we see that it reduces to a
polynomial in Tb, Ta, Ta∗b and Tb2 and since Ta commutes with them all, it commutes
with Ta∗b2 , and hence a2 | b2.

Taking Eq. (4.1.6.c) with a := a2, b := a, c := b we get [Ta2 , Ta∗b] = −[Ta, Tb∗a2 ]−
[Tb, Ta3 ]. As b | a, a2 we also have b | a3, and hence this last term disappears. Normal-
ising Tb∗a2 we see that [Ta, Tb∗a2 ] = 0 and hence indeed [Ta2 , Ta∗b] = 0. Showing that
b2 | a ∗ b follows entirely analogously. �

The situation regarding operator commutativity will turn out to be more streamlined
in JBW-algebras, although proving that requires quite some setup. We revisit the
topic of operator commutativity in Sections 4.2.3 and 4.7.2.
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4.2 Jordan operator algebras
The previous section concerned itself with the abstract theory of general Jordan
algebras. For the remainder of this chapter we will work with a more concrete structure,
where the field is the real numbers and the Jordan algebra is equipped with a norm.
We recall a few definitions regarding normed spaces.

Definition 4.2.1. A (real or complex) Banach space (V, ‖·‖) is a (real or complex)
vector space V equipped with a norm ‖·‖ such that V is complete in the topology
induced by the norm. A linear map f : V →W between Banach spaces (V, ‖·‖V ) and
(W, ‖·‖W ) is an isometry when ‖f(v)‖W = ‖v‖V for all v ∈ V . We say V and W are
isometrically isomorphic when there is an isometry f : V →W that is a bijection.

Definition 4.2.2. Let (A, ∗, 1, ‖·‖) be a real Banach space (A, ‖·‖) that is also a
Jordan algebra (A, ∗, 1). The space A is a JB-algebra (Jordan-Banach) if the Jordan
product ∗ satisfies for all a, b ∈ A:

a) ‖a ∗ b‖ ≤ ‖a‖‖b‖.

b)
∥∥a2
∥∥ = ‖a‖2.

c)
∥∥a2
∥∥ ≤ ∥∥a2 + b2

∥∥.

Remark 4.2.3. In Ref. [107] JB-algebras are not required to have a unit. In this
thesis we will only deal with unital JB-algebras.

JB-algebras can be seen as a generalisation of Euclidean Jordan algebras that also
allows infinite-dimensional algebras. In fact, in finite dimension, JB-algebras are
precisely EJAs.

Proposition 4.2.4. A Euclidean Jordan algebra is a JB-algebra. Conversely, any
finite-dimensional JB-algebra is a Euclidean Jordan algebra.

Proof. EJAs are precisely formally real finite-dimensional Jordan algebras by Ref. [73,
Proposition VIII.4.2], and as shown in Ref. [107, Corollary 3.1.7], any finite-dimensional
formally real Jordan algebra is a JB-algebra. Conversely, by [107, Corollary 3.3.8],
any JB-algebra is formally real, and hence any finite-dimensional JB-algebra is an
EJA. �

Definition 4.2.2 establishes a JB-algebra as a real Jordan algebra with a suitably
interacting complete norm. We could have equivalently defined it as a complete
order unit space with a suitably interacting Jordan algebra structure, as the following
proposition makes clear.

Proposition 4.2.5 ([107, Proposition 3.1.6]). Let A be a JB-algebra. Then A is an
order unit space complete in the order-unit norm, and for all a ∈ A:

− 1 ≤ a ≤ 1 =⇒ 0 ≤ a2 ≤ 1. (4.3)

Conversely, any complete order unit space with a Jordan product satisfying Eq. (4.3)
is a JB-algebra.
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Remark 4.2.6. As a JB-algebra is an order unit space, it comes with a partial order ≤.
The positive elements a ≥ 0 in a JB-algebra precisely correspond with the squares:

a ≥ 0 ⇐⇒ ∃b : a = b2 := b ∗ b.

Example 4.2.7. Let A be a unital C∗-algebra. Then the set of self-adjoint elements
Asa forms a JB-algebra with the special Jordan product a ∗ b := 1

2 (ab+ ba) and the
regular C∗-norm. The positive elements of Asa (in the JB-algebra sense) are precisely
the positive elements of A (in the C∗-algebra sense).

Definition 4.2.8. Let A be a JB-algebra. We say A is a JC-algebra when there
exists a C∗-algebra A so that A is isometrically isomorphic to a norm-closed subset
of Asa.

The isometry φ : A→ Asa mapping a JC-algebra into its C∗-algebra is necessarily
a Jordan homomorphism [229]. When studying JC-algebras as a Jordan algebra we
can then hence without loss of generality assume it be a Jordan subalgebra of Asa.

Definition 4.2.9. Let f : A→ B be a linear map between JB-algebras. It is positive
when f(a) ≥ 0 if a ≥ 0. It is unital when f(1) = 1, and sub-unital when f(1) ≤ 1.
We denote by JBpsu the category of JB-algebras with positive sub-unital maps. The
states of A are positive unital maps f : A → R . We denote the set of states of A
by St(A).

Note that a Jordan homomorphism f between JB-algebras is always positive, since
for a positive a := b2 we have f(a) = f(b2) = f(b)2 ≥ 0. The Jordan-product maps
Ta : A → A are in general not positive. Fortunately, the quadratic maps are better
behaved.

Proposition 4.2.10 ([107, Proposition 3.3.6]). Let A be a JB-algebra and let a ∈ A
be an arbitrary element (not necessarily positive). Then Qa : A → A is a positive
map.

Proposition 4.2.11. JBop
psu is an effect theory.1

Proof. JB-algebras are order unit spaces and hence JBop
psu is a full subcategory of

OUSop that we already saw was an effect theory. �

The effects of a JB-algebra A in the effect theory JBop
psu are precisely the elements

of [0, 1]A. We will hence refer to elements a ∈ A satisfying 0 ≤ a ≤ 1 as effects.
Isomorphisms in effect theories are often useful, hence let us remove some subtlety

regarding different types of isomorphisms.

Proposition 4.2.12. A morphism Φ in JBop
psu has a two-sided inverse Φ−1 (and

hence is an isomorphism in the sense of an effect theory) if and only if Φ is a unital
Jordan-isomorphism.

1It is in fact also an effectus, which can be easily shown using the grounded biproduct construction
of an effectus; cf. Ref. [41, Section 7.1]. The same holds for the later categories of JB- and
JBW-algebras we define.
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Proof. If Φ is a unital Jordan-isomorphism, then both Φ and Φ−1 are positive and
sub-unital and hence lie in JBop

psu. Conversely, if Φ and Φ−1 lie in JBop
psu and are

each others inverses, then they are unital (Proposition 3.3.4) and since both Φ and
Φ−1 are monotone (being positive), Φ is an order isomorphism. Theorem 2.80 of
Ref. [4] shows that unital order-isomorphisms between JB-algebras are precisely Jordan
isomorphisms. �

4.2.1 JBW-algebras
This chapter deals with JBW-algebras, which are a class of JB-algebras that have more
structure. They relate to JB-algebras in a analogous manner to how von Neumann
algebras (W∗-algebras) related to C∗-algebras, hence the ‘W’ in ‘JBW’. The reason
we will resort to using JBW-algebras instead of JB-algebras is because their order
structure is richer. Before we continue let us therefore recall a few order-theoretic
concepts.

Definition 4.2.13. Let P be a partially ordered set (such as an order unit space).
We call a subset D ⊆ P is directed when for any two elements x1, x2 we can find a
third element x ∈ D such that x1 ≤ x and x2 ≤ x. A subset D ⊆ P is bounded when
it has an upper bound, i.e. when there is a p ∈ P such that x ≤ p for all x ∈ D. We
say P is (bounded) directed-complete when any non-empty (bounded) directed
set has a supremum.

Definition 4.2.14. Let P and Q be partially ordered sets. A monotone map f : P →
Q is called normal when it preserves suprema of bounded directed sets, i.e. when
f(
∨
D) =

∨
f(D) for any bounded directed set D ⊆ P which has a supremum

∨
D

in P .

Definition 4.2.15. Let A be a JB-algebra, and let S ⊆ St(A) be a subset of the
states of A. We say S is separating when ω(a) = ω(b) for all ω ∈ S implies that
a = b for any a, b ∈ A.

Definition 4.2.16. A JB-algebra A is a JBW-algebra when it is bounded directed-
complete and has a separating set of normal states. We denote by JBWpsu the
category of JBW-algebras with positive sub-unital maps, and by JBWnpsu for the
wide subcategory of normal positive sub-unital maps.

Proposition 4.2.17. Both JBWop
psu and JBWop

npsu are effect theories.

Proof. That JBWop
psu is an effect theory follows analogously to Proposition 4.2.11.

That JBWop
npsu is an effect theory follows because all positive sub-unital maps q̂ : R→ A

are necessarily normal, and hence the set of effects coincides with that of JBWop
psu. �

Proposition 4.2.18. Any Euclidean Jordan algebra is a JBW-algebra.

Proof. By Proposition 4.2.4 EJAs are precisely finite-dimensional JB-algebras. The-
orem 4.4.16 of Ref. [107] establishes that JBW-algebras are precisely those JB-algebras
A that have a predual, i.e. a space A0 such that A∗0 ∼= A. As an EJA A is finite-
dimensional we of course have A ∼= (A∗)∗ and hence A has a predual, making it a
JBW-algebra. �
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Example 4.2.19. Let A be a von Neumann algebra, i.e. a C∗-algebra that is
bounded directed-complete and has a separating set of normal states [127]. Then its
set of self-adjoint elements Asa is a JBW-algebra with the special Jordan product.2

Definition 4.2.20. LetA be a JBW-algebra, denote by V the vector space spanned by
its normal states. The weak topology of A is the σ(A, V ) topology, i.e. it is the weakest
topology that makes every map in V continuous. Concretely, a net (aα) converges
weakly to a if (ω(aα)) converges in C to ω(a) for every normal state ω. The strong
topology is the locally convex topology defined by the semi-norms a 7→

√
ω(a2) for all

normal states ω. Concretely, a net (aα) converges strongly to a if
√
ω((aα − a)2)→ 0

for all normal states ω.

Remark 4.2.21. We use the names of weak and strong topology on JBW-algebras
as in Ref. [107]. In Ref. [4] these are called respectively σ-weak and σ-strong. In the
literature on von Neumann algebras the corresponding topologies are called ultraweak
and ultrastrong [212].

Definition 4.2.22. A JBW-algebra A is a JW-algebra when it is Jordan-isomorphic
to an ultraweakly closed subset of the self-adjoint elements of a von Neumann algebra.

We collect below a few results regarding the weak and strong topology that we
will use throughout the chapter without further reference. Recall that for a ∈ A, Ta
denotes the Jordan product map Ta(b) = a ∗ b while Qa denotes the quadratic map
Qa(b) = 2a ∗ (a ∗ b)− a2 ∗ b.

Proposition 4.2.23. Let A be a JBW-algebra and let a ∈ A be an arbitrary element.

a) Norm convergence implies strong convergence, and strong convergence implies
weak convergence [107, Remark 4.1.3].

b) Let D ⊆ A be a bounded directed subset. Then the net (a)a∈D converges
strongly and weakly to

∨
D [107, Remark 4.1.3].

c) The operators Ta and Qa are weakly continuous [107, Corollary 4.1.6].

d) The operators Ta and Qa are strongly continuous [107, Lemma 4.1.8].

e) The Jordan product is jointly strongly continuous on bounded subsets [107,
Lemma 4.1.9].

f) A normal state is strongly and weakly continuous [107, Corollary 4.5.4].

g) A Jordan homomorphism φ : A→ B between JBW-algebras A and B is normal
if and only if it is weakly continuous [107, Remark 4.5.6].

For positive maps, normality and weak continuity coincide:

Proposition 4.2.24. Let f : A → B be a positive map between JBW-algebras A
and B. Then the following are equivalent:

2What we call a ‘von Neumann algebra’ is sometimes also called a ‘W∗-algebra’, whereas the term
‘von Neumann algebra’ is reserved for concrete algebras represented on a Hilbert space. We will
not make this distinction and refer to both by the term ‘von Neumann algebra’.
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a) f is weakly continuous.

b) f is weakly continuous on [0, 1]A.

c) f is normal.

d) ω ◦ f is normal for every normal state ω.

Proof. a) to b) and c) to d) are trivial. For b) to c) we need to show that f(
∨
D) =∨

f(D) for a bounded directed subset D ⊆ A. But note that since D is bounded,
we can rescale and translate it so that it lies inside [0, 1]A. As directed sets converge
weakly to their suprema, the desired result follows. For d) to a) we note that ω ◦ f
is normal if and only if it is weakly continuous. The rest of the proof is then simply
unpacking definitions. �

We can use this result to define pointwise weak limits of positive maps. Note that
we make no distinction in notation for limits: if (aα) converges strongly/weakly/in the
norm to a then we write a = limα aα for the strong/weak/norm limit. If the meaning
of ‘limα’ is unclear from context, we will specify exactly which limit is meant.

Proposition 4.2.25. Let fn : A→ B be a sequence of positive maps between JBW-
algebras A and B such that fn(a) converges weakly for all a ∈ A. Then the map f
defined as the pointwise weak limit f(a) := limn fn(a) is a positive map. Furthermore,
if the convergence is uniform on [0, 1]A and all the fn are normal, then f is normal as
well.

Proof. Since addition and scalar multiplication is weakly continuous, the map f is eas-
ily seen to be linear. Suppose a ∈ A is positive. We need to show that f(a) = limn fn(a)
is positive. But as each fn(a) is positive, we see that ω(f(a)) = limn ω(fn(a)) ≥ 0
for every normal (and hence weakly continuous) state ω. As the normal states order-
separate the elements, we indeed have f(a) ≥ 0.

Now suppose all the fn are normal and the convergence is uniform on [0, 1]A. By
Proposition 4.2.24, the fn are weakly continuous. But then f restricted to [0, 1]A is
the uniform limit of weakly continuous functions, and hence is weakly continuous on
[0, 1]A. Again by Proposition 4.2.24, f is normal. �

Definition 4.2.26 ([107, Definition 4.5.9]). Let A be a JBW-algebra and let B ⊆ A
be a Jordan subalgebra. We say B is a JBW-subalgebra if B is norm-closed and
monotone-closed (i.e. closed under suprema of bounded directed sets).

Clearly, a JBW-subalgebra is a JBW-algebra itself. By [107, Proposition 4.5.10] a
norm-closed Jordan subalgebra of a JBW-algebra is a JBW-subalgebra if and only if
it is weakly closed.

Definition 4.2.27. Let a ∈ A be an arbitrary element of a JBW-algebra A. We
denote by W (a) the weak closure of the Jordan algebra J(a).

Proposition 4.2.28 ([107, Remark 4.1.10]). Let A be a JBW-algebra and a ∈ A
arbitrary. Then W (a) is an associative JBW-algebra, and hence a JBW-subalgebra
of A.
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Proof. W (a) is the weak closure of the associative Jordan algebra J(a). That W (a)
is a Jordan algebra and associative then both follow from the weak continuity of
the Jordan product. As norm convergence implies weak convergence, W (a) is both
norm-closed and weakly closed and hence is a JBW-algebra. �

The following technical result will be of tremendous use.

Proposition 4.2.29 ([4, Corollary 2.56]). The unit ball of a JBW-algebra is weakly
compact.

Corollary 4.2.30. Any bounded sequence in a JBW-algebra converges weakly if and
only if it is weakly Cauchy. That is, if we have a sequence of elements a1, a2, . . . such
that there is some c ∈ R with ‖ak‖ ≤ c for all k, such that ω(aj−ak)→ 0 as j, k →∞
for all normal states ω, then a1, a2, . . . converges weakly to some a.

We will use this fact freely in the remainder of this chapter.

4.2.2 Idempotents and the Peirce decomposition
One of the benefits of using JBW-algebras over JB-algebras is that they have an
abundance of idempotents.

Definition 4.2.31. Let E be a Jordan algebra. We call an element p ∈ E idem-
potent when p ∗ p = p.

Proposition 4.2.32 ([107, Proposition 4.2.3]). Let A be a JBW-algebra. The linear
span of the idempotents of A lies norm-dense in A.

Note that if p is an idempotent that then 1− p is also an idempotent. We denote
this idempotent by p⊥. Furthermore Qp1 = p2 = p and hence Qpp⊥ = 0. Lastly, as
Qa2 = Q2

a for any a we have Q2
p = Qp.

Idempotents interact well with operator commutation.

Proposition 4.2.33 ([107, Lemma 2.5.5 and Lemma 5.2.5]). Let A be a Jordan
algebra, p ∈ A an idempotent, and a ∈ A arbitrary. Then the following are equivalent:

• a and p operator commute.

• Tpa = Qpa.

• a = (Qp +Qp⊥)a.

• a and p generate an associative subalgebra of A.

If furthermore A is a JBW-algebra, then the above are equivalent to p operator
commuting with all elements of W (a).

Lemma 4.2.34. Let p, a ∈ E be elements of a Jordan algebra with p idempotent.
Then Qpa = 0 if and only if p ∗ a = 0, and in that case p and a operator commute.

Proof. Qpa = 0 ⇐⇒ p ∗ a = 0 is Ref. [107, Remark 4.1.14]. Operator commutation
then follows by Proposition 4.2.33. �
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We can now state some useful calculation rules involving idempotents.

Proposition 4.2.35. Let A be a JB-algebra, and let p ∈ A be an idempotent, and
a ∈ A arbitrary.

a) Suppose 0 ≤ a ≤ p. Then 0 = Qp⊥a = Qap
⊥ = p⊥ ∗ a, Qpa = p ∗ a = a, and

Qap = a2.

b) Suppose p ≤ a ≤ 1. Then Qpa = p and Qap = p.

Proof.

a) Using the positivity of Qp⊥ we calculate 0 = p ∗ p⊥ = Qp⊥p ≥ Qp⊥a ≥ 0, and
thus Qp⊥a = 0. Then by the previous lemma p⊥ operator commutes with a
and p⊥ ∗ a = 0, so that p ∗ a = a and hence Qpa = a. Using the fundamental
identity we see that Qp⊥QaQp⊥ = QQ

p⊥a
= Q0 = 0. Hence, since p⊥ and

a operator commute, we calculate Qap⊥ = QaQp⊥Qp⊥1 = Qp⊥QaQp⊥1 = 0.
Finally, a2 = Qa1 = Qa(p+ p⊥) = Qap.

b) If p ≤ a ≤ 1 then 0 ≤ a⊥ ≤ p⊥ and hence by the previous point 0 = Qp⊥⊥a
⊥ =

Qp(1 − a) = Qp1 − Qpa = p − Qpa, so that indeed Qpa = p. As p and
a operator commute we furthermore calculate, again using the fundamental
identity, Qap = QaQpQp1 = QpQaQp1 = QQpa1 = Qp1 = p �

Another useful result regarding an idempotent p in a Jordan algebra E is that they
‘split-up’ the algebra into three parts corresponding to the eigenvalues of Tp, known
as its Peirce decomposition.

Proposition 4.2.36 ([107, Lemma 2.6.3]). Let E be a Jordan algebra and p ∈ E an
idempotent. Then E = E1 ⊕E 1

2
⊕E0 (where ‘⊕’ denotes direct sum of vector spaces,

not of Jordan algebras) such that for all a ∈ Ek we have p ∗ a = ka. Furthermore, E1
and E0 are Jordan subalgebras and E1 = Qp(E) while E0 = Qp⊥(E).

We will introduce some special notation for the ‘1-eigenspace’ of an idempotent:
Ep := Qp(E). For a JBW-algebra, this subalgebra is actually a JBW-subalgebra.

Proposition 4.2.37 ([107, Lemma 4.1.13]). Let p ∈ A be a non-zero idempotent in
a JBW-algebra A. Then Ap is a JBW-subalgebra of A. Furthermore, if a ∈ Ap and
b ∈ A with 0 ≤ b ≤ a, then b ∈ Ap.

4.2.3 Operator commutativity in JBW-algebras
We extend the results of Section 4.1.2 regarding operator commutativity to JBW-
algebras. Recall that we write S′ for the set of elements that operator commutate
with every element of S.

Lemma 4.2.38 ([120, Lemma 1]). Let E be a Jordan algebra, and let p ∈ E be
idempotent. Then {p}′ is a subalgebra of E.

Proposition 4.2.39. Let S ⊆ A be a Jordan subalgebra of the JBW-algebra A. Then
S′ is a JBW-subalgebra.
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Proof. Let aα ∈ S be a net that converges weakly to some a (not necessarily in S).
Suppose b ∈ S′. Then for any c ∈ A, TbTac = b ∗ (c ∗ a) = limα b ∗ (c ∗ aα) =
limα TbTaαc = limα TaαTbc = limα(b ∗ c) ∗ aα = (b ∗ c) ∗ a = TaTbc. So any b ∈ S′
also commutes with everything in the weak closure of S. Without loss of generality
we may hence assume that S is a JBW-subalgebra. Furthermore, in a similar way we
can show that the limit of any weakly convergent net bα ∈ S′ also commutes with all
elements of S so that S′ is weakly closed. It then remains to show that S′ is a Jordan
algebra.

As S is a JBW-subalgebra, Proposition 4.2.32 shows that the span of idempotents
lies (norm) dense in S and hence b ∈ S′ iff b | p for every idempotent p ∈ S. As a
result S′ =

⋂
p2=p∈S {p}′. But as each {p}′ is a Jordan algebra by Lemma 4.2.38, S′

is the intersection of Jordan algebras and hence is a Jordan algebra itself. �

Proposition 4.2.40. Let A be a JBW-algebra, and a, b ∈ A arbitrary. If b | a and
b | a2, then b2 | a and there is an associative subalgebra B consisting of mutually
operator commuting elements such that W (a),W (b) ⊆ B.

Proof. If b | a and b | a2, then b ∈ J(a)′ (Lemma 4.1.18). By weak continuity of
the Jordan product then also b ∈ W (a)′. By the previous proposition W (a)′ is a
Jordan algebra, and hence also b2 ∈ W (a)′, so that in particular b2 | a. Then by
Proposition 4.1.19, a and b generate an associative Jordan algebra S of mutually
operator commuting elements. Let B be weak closure of S. Then B has the desired
properties. �

In Section 4.7.2 we will prove a stronger version of this statement, namely that
a | b iff a and b generate an associative subalgebra. But whereas Proposition 4.2.40
is relatively straightforward to prove, the results of Section 4.7.2 require a lot more
knowledge regarding the global structure of JBW-algebras.

4.3 Floors, ceilings and compressions
Having covered some of the basic material of the theory of JBW-algebras we will now
work towards proving some new results. Our ultimate aim is to show that all the
structure surrounding pure maps discussed in Chapter 3 is present in JBW-algebras.
To start, in this section we will establish the existence of compressions and images,
which follows relatively straightforward using standard techniques.

Definition 4.3.1. Let A be a JBW-algebra and let a ∈ A be an effect. We define
the floor of a as bac :=

∧
n a

n. The ceiling of a is defined as dae := ba⊥c⊥.

Note first of all that bac (and hence dae) indeed exist, as for effects a, the sequence
an is decreasing, and hence has an infimum. Note furthermore that da⊥e⊥ = bac.

Proposition 4.3.2. Let a ∈ A be an effect in a JBW-algebra A. The floor and ceiling
are both idempotents. Furthermore, bac is the largest idempotent below a and dae is
the smallest idempotent above a.
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Proof. By the weak continuity of the Jordan product we get ak ∗ bac = Tak(∧nan) =
∧nTakan = ∧nan+k = ∧nan. Hence bac∗bac = bac∗∧nan = ∧nan∗bac = ∧nan = bac,
so that it is indeed a idempotent. The same of course holds for ba⊥c and since the
complement of an idempotent is again an idempotent we see that dae = ba⊥c⊥ is also
an idempotent.

Suppose p is a idempotent with p ≤ a. Then by Proposition 4.2.35 p ∗ a = p and p
and a operator commute. Hence p∗an = p∗(a∗an−1) = (p∗a)∗an−1 = p by induction.
Then by weak continuity of the Jordan product p∗bac = p∗∧nan = ∧np∗an = ∧np = p
so that p ≤ bac. So bac is indeed the largest idempotent below a.

Now if p ≥ a is an idempotent, then we note that p⊥ ≤ a⊥ and hence by the
previous paragraph p⊥ ≤ ba⊥c so that also p ≥ ba⊥c⊥ = dae. �

Remark 4.3.3. In the literature on von Neumann algebras and JBW-algebras, the
smallest idempotent above an element a is usually referred to as the range projec-
tion of the element and denoted as r(a). We use the name ceiling to link it to the
corresponding notion in Chapters 2 and 3.

Recall that the Cauchy-Schwarz inequality states that for any real-valued pre-inner-
product 〈·, ·〉, i.e. a bilinear map which has 〈a, a〉 ≥ 0 for all a, but does not necessarily
satisfy 〈a, a〉 = 0 =⇒ a = 0, we have |〈a, b〉|2 ≤ 〈a, a〉〈b, b〉. The following is then an
easy consequence, but essential in many of our proofs:

Lemma 4.3.4. Let ω : A→ R be a positive linear map. Then 〈a, b〉ω := ω(a∗b) defines
a pre-inner-product and hence satisfies the Cauchy-Schwarz inequality |〈a, b〉ω|2 ≤
〈a, a〉ω〈b, b〉ω, i.e. |ω(a ∗ b)|2 ≤ ω(a2)ω(b2).

Lemma 4.3.5. Let g : A→ B be a positive linear map between JBW-algebras such
that g(p) = g(1) for some idempotent p. Then g(Qpa) = g(a) for all a ∈ A.

Proof. Suppose the lemma holds for positive linear maps ω : A→ R. Then if we let
ω′ : B → R be any positive linear map, we know that ω := ω′ ◦ g : A → R satisfies
the property, and hence ω′ ◦ g(Qpa) = ω(Qpa) = ω(a) = ω′ ◦ g(a). Now since ω′ is
arbitrary, and the states of B separate the elements, we conclude that g(Qpa) = g(a).

It remains to show that the property holds for positive linear ω : A → R. Note
that if ω(p) = ω(1) that then ω(p⊥) = 0. Using the Cauchy-Schwarz inequality of the
previous lemma with a := p⊥ and b := a we calculate

|ω(p⊥ ∗ a)|2 = |〈p⊥, a〉ω|2 ≤ 〈p⊥, p⊥〉ω〈a, a〉ω = ω(p⊥)ω(a2) = 0.

As a result ω(p⊥ ∗ a) = 0 for all a ∈ A and hence ω(a) = ω(1 ∗ a) = ω((p+ p⊥) ∗ a) =
ω(p ∗ a). Unfolding the definition of Qp we then easily get ω(Qpa) = ω(a). �

Lemma 4.3.6. Let g : A→ B be a normal positive linear map between JBW-algebras
such that g(a) = g(1) for some effect a ∈ A. Then g(bac) = g(1).

Proof. We will show the result for normal states ω : A→ R. The general result then
follows as in the previous lemma by the separation of the elements by the normal
states.
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So let ω : A→ R be a normal state. We need to show that if ω(a) = ω(1) = 1 that
then ω(bac) = 1.

Recall that bac := ∧nan, and hence by the normality of ω we get ω(bac) = ∧nω(an),
so that it suffices to show that ω(an) = 1 for all n. Using the Cauchy-Schwarz
inequality of Lemma 4.3.4 with b := 1, we get |ω(a)|2 ≤ ω(a2)ω(12) = ω(a2). Since
by assumption ω(a) = ω(1) = 1 we have ω(a2) ≥ |ω(a)|2 = 1. By Eq. (4.3) a2 ≤ 1
and hence also ω(a2) ≤ 1, so that indeed ω(a2) = 1. Repeating this argument we get
ω(a2k) = 1 for all k, and hence also ω(an) = 1 for all n. �

Corollary 4.3.7. Let g : A → B be a normal positive linear map between JBW-
algebras, such that g(a) = 0 for some effect a. Then g(dae) = 0.

Proof. Suppose that g(a) = 0 so that g(a⊥) = g(1). Then g(ba⊥c) = g(1), so that
g(dae) = g(ba⊥c⊥) = 0. �

We can now show that the first special type of structure we defined for effect theories
is present in JBW-algebras: compressions. Because we must take the opposite category
of JBW-algebras to make an effect theory, we flip the direction of the arrows in the
proposition below.

Proposition 4.3.8. Let a be an effect of A. Define πa : A→ Abac to be πa(b) = Qbacb
restricted to the space Abac (cf. Proposition 4.2.37). Then πa is a compression for a,
i.e. πa(1) = πa(a) and for any map g : A→ B with g(1) = g(a) there is a unique map
g : Abac → B such that g = g ◦ πa. Furthermore, if g is normal, then g is also normal.
We will refer to πa as the standard compression for a.

Proof. First of all we have πa(1) = Qbac1 = bac = Qbaca = πa(a). Now suppose
g : A → B is a positive sub-unital map such that g(a) = g(1). We must show that
there is a unique g : Abac → B such that g ◦ πa = g.

Define g : Abac → B as the restriction of g to Abac. To prove that g ◦ πa = g, we
need to show that g(b) = g(Qbacb) for all b.

By Lemma 4.3.6 g(bac) = g(1) and hence by Lemma 4.3.5 g(Qbacb) = g(b), so that
g indeed satisfies the required condition.

For uniqueness of g suppose we have a h : Abac → B such that h ◦ πa = g = g ◦ πa.
Let b ∈ Abac be arbitrary. Then πa(b) = b, so that h(b) = h(πa(b)) = g(πa(b)) = g(b),
as desired.

If g is normal, then g, being a restriction of g, will also be normal. �

Remark 4.3.9. The property of being a compression in principle depends on which
effect theory we are considering, JBWop

psu or JBWop
npsu. But as the standard com-

pression is normal, and the unique map g appearing in the universal property is
normal whenever g is, the standard compression is a compression in both categories.
Furthermore, as all compressions for an effect are connected by an isomorphism, and
isomorphisms are always normal, compressions coincide in both categories.

Images also exist for maps between JBW-algebras, as long as we restrict ourselves
to normal maps.
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Proposition 4.3.10 ([107, Lemma 4.2.8]). The set of idempotents in a JBW-algebra
form a complete lattice. Hence, the supremum and infimum of any set of idempotents
exists and is a idempotent again.3

Proposition 4.3.11. Let f : A→ B be a normal positive map between JBW-algebras.
Then f has an image, i.e. a smallest effect p ∈ A such that f(p) = f(1), or equivalently,
f(p⊥) = 0. We denote the image of f by im(f).

Proof. Let im(f) :=
∧
{p ; f(p) = f(1), p2 = p}. Then by normality of f :

f(im(f)) = f

 ∧
f(p)=f(1)

p

 =
∧

f(p)=f(1)

f(p) =
∧

f(p)=f(1)

f(1) = f(1),

so im(f) satisfies the required equality. It is also by definition the smallest such element
among the idempotents. Suppose f(a) = f(1) for an effect a. By Lemma 4.3.6 then
f(bac) = f(1) and hence im(f) ≤ bac ≤ a, so that im(f) is also the smallest among
all effects. �

Remark 4.3.12. This proposition shows that images of normal maps are always
idempotents. Hence, the sharp effects of Definition 3.5.7 are idempotents in the setting
of Jordan algebras. Conversely for any idempotent p we have im(πp) = bpc = p so
that they are also sharp.

We now know that JBWop
npsu is an effect theory with compressions and images, and

hence we can start using some results from Chapter 3. Note that as the opposite
category forms an effect theory, we will have to change the order of composition in
the translation.

Lemma 4.3.13. Let f and g be composable normal positive sub-unital maps between
JBW-algebras. Then im(f ◦ g) ≤ im(g).

Proof. This is Lemma 3.5.10, but with flipped order of the maps. �

Lemma 4.3.14. Let f : A→ B be a normal positive sub-unital map between JBW-
algebras. Then for any effect a ∈ A: df(a)e = df(dae)e

Proof. This is Proposition 3.5.12.d). �

4.4 Spectral theorem
In this section we will recall a spectral theorem for JBW-algebras that will prove
invaluable in the remainder of this chapter. Before we state this spectral theorem
we will need to know more about associative JBW-algebras, i.e. algebras where the
Jordan product satisfies a ∗ (b ∗ c) = (a ∗ b) ∗ c for all a, b and c.

3There is a subtlety here that the supremum taken in the set of idempotents could a priori be
different from the supremum taken in the JBW-algebra itself. Fortunately, these two different
notions of suprema coincide.
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4.4.1 Basically disconnected spaces
We can relate associative JB(W)-algebras to topological spaces using Kadison’s rep-
resentation theorem.

Proposition 4.4.1. Let A be an associative JB-algebra. Then A ∼= C(X) where X
is a compact Hausdorff space.

Proof. A is a complete order unit space where the positive elements correspond to
the squares (as defined by the Jordan product). Hence using the associativity and
commutativity of the Jordan product, for any two positive elements a2, b2 ∈ A, their
product a2 ∗ b2 = a ∗ ((a ∗ b) ∗ b) = a ∗ (b ∗ (a ∗ b)) = (a ∗ b) ∗ (a ∗ b) is again a
square and hence positive. As a result we can use Kadison’s representation theorem
(Theorem 1.3.17) to conclude that A ∼= C(X) for some compact Hausdorff space
X. �

When A is an associative JBW-algebra, the compact Hausdorff space is of course
going to be of a more specific type.

Definition 4.4.2. Let X be a compact Hausdorff space. We call V ⊆ X a zero
set if a continuous function f : X → R exists such that V = f−1(0). Similarly we
call U ⊆ X a cozero set when U = f−1((0,∞)) for some continuous f . We call X
basically disconnected when the interior of all zero sets is closed or, equivalently,
when the closure of a cozero set is again open. We will call sets that are both open
and closed clopen.

We will now show that if C(X) is a JBW-algebra, then X is basically disconnected
(but note that the converse is false; cf Section 4.7.1). For the remainder of this section
let C(X) be a JBW-algebra.

Lemma 4.4.3. A p ∈ C(X) is idempotent iff it is the characteristic function of a
clopen set.

Proof. Let p : X → R be a continuous function such that p2 = p, i.e. ∀x ∈ X :
p(x)2 = p(x). This implies that p(x) = 0 or p(x) = 1. Then p = χS , the characteristic
function of some S ⊆ X. Let U ⊆ [0, 1] be any open subset of the unit interval. Since
p is continuous p−1(U) must be open. This set is either ∅, X, S,X\S depending on
whether U contains 1 or 0 or both. We conclude that both S and X\S must be open,
so that S is indeed clopen. �

Lemma 4.4.4. For an effect a : X → [0, 1] its ceiling is dae = χS where S =
a−1((0, 1]) (where A denotes the closure of a set A). Consequently, a−1((0, 1]) is
clopen for all effects a.

Proof. Fix an effect a : X → [0, 1]. Write im(a) = a−1(0,∞) = a−1((0, 1]) for the open
set where a is nonzero. The ceiling dae of the effect amust be the characteristic function
χS for some clopen S. As a ≤ χS we must have im(a) ⊆ S so that im(a) ⊆ S = S.
Let T = S/im(a). Note that as T is the difference of an open set and a closed one,
that T is open. Towards contradiction, assume it is non-empty and pick an x ∈ T .
As X/T and {x} are disjoint closed sets we can use to Urysohn’s lemma to find a
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continuous f : X → [0, 1] such that f(x) = 1 and f(X/T ) = {0}. Then by construction
Q√fa = fa = 0 and hence by Corollary 4.3.7 fχS = fdae = 0. But as (fχS)(x) = 1,
this is a contradiction. We conclude that T must have been empty and thus that
S = im(p) so that im(a) is clopen. �

Corollary 4.4.5. The interior of all zero sets, that is f−1(0) for some continuous
function f : X → R, is clopen. In other words: X is basically disconnected.

Proof. Let S = f−1(0) be the zero set of some continuous function. Without loss of
generality we may assume that f is an effect (as post-composing f with the absolute
value function and rescaling it preserves its zero set). As X\S = f−1((∞, 0)) we see
by the previous lemma that X\S = X\S◦ is clopen. Its complement S◦ is then clopen
as well. �

We have now seen that if A is an associative JBW-algebra, then A = C(X) where
X is a basically disconnected compact Hausdorff space. In fact, X satisfies a stronger
property that we explore in Section 4.7.1.

We need one more result regarding basically disconnected spaces.

Proposition 4.4.6. Let X be basically disconnected and let E = [0, 1]C(X). Then
any a ∈ E is the supremum and norm limit of an increasing sequence of elements of
E of the form

∑n
k=1 λipi where λi > 0 and the pi are orthogonal idempotents.

Proof. Let a : X → [0, 1] be an element of E. Write pkn for the characteristic function
of the clopen set a−1(( kn , 1]), so that we have the implication pkn(x) = 1 =⇒ a(x) ≥ k

n .
Of course pkn ≥ pk+1

n . Define qn :=
∑n
k=1

1
np

k
n. Then qn only takes values l

n for some
0 ≤ l ≤ n and we see that qn(x) = l

n ⇐⇒ pln(x) = 1 =⇒ a(x) ≥ l
n so that qn ≤ a.

In general qn and qm might not have an obvious order relation, but if we consider
qn and q2n then it is straightforward to check that the latter will always be larger.
The sequence (q2k) is therefore an increasing sequence that has a as an upper bound.
We will show that ‖a− q2n‖ ≤ 21−n so that this sequence indeed converges to a. As
it is an increasing sequence, a will then also be its supremum.

For every x ∈ X there exists a 0 ≤ l ≤ 2n such that l
2n ≤ a(x) < l+1

2n . We then
always have either q2n(x) = l−1

2n or q2n(x) = l
2n . In both cases a(x)− q2n(x) ≤ 2

2n =
21−n. Since this bound does not depend on x or l, we indeed have ‖a− q2n‖ ≤ 21−n.

Finally, we have to show that qn can be written as a linear combination of orthogonal
sharp effects. This is easily done by observing that qn =

∑n
k=1

1
np

k
n can equivalently

be written as qn =
∑n
k=1

k
n (pkn − pk+1

n ). �

4.4.2 Spectral theorem
Recall that for an element a of a JBW-algebra A we defined W (a) to be the JBW-
algebra generated by a and that W (a) is associative. By the results of the previous
section we can then associative a compact Hausdorff space Xa to each a such that
W (a) ∼= C(Xa). Note that this isomorphism is both an order-isomorphism (and hence
is normal) and an algebra isomorphism.

The element a itself then corresponds to some function â : Xa → R. For any
continuous function f : R → R we can then define a new element f(a) ∈ W (a)
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as the function f̂(a) : Xa → R given by f̂(a)(x) := f(â(x)). In particular, if a is
positive, then we can define a unique positive square root

√
a ∈W (a) as the function

√̂
a : Xa → R≥0 given by

√̂
a(x) :=

√
â(x).

Definition 4.4.7. Let a ∈ A be a positive element of a JBW-algebra. We define its
square root as the unique positive element

√
a in W (a) such that

√
a

2 = a.

For an effect 0 ≤ a ≤ 1 we now see that a2 = Q√aa ≤ Q√a1 = a. We will use the
fact that a2 ≤ a for effects without further reference in the rest of this chapter.

Recall that if an element b operator commutes with a and a2, then it operator
commutes with all ofW (a) (Proposition 4.2.40). In particular, b will operator commute
with f(a) for any continuous function f .

The floor of an element a was defined as bac = ∧nan and hence is an element of
W (a), as it is weakly closed. Similarly, dae ∈W (a). We saw in Lemma 4.4.4 that dae
is then the characteristic function of Xa\C where C = a−1({0}). It then immediately
follows that the ceiling of a and a2 coincide.

Lemma 4.4.8. Let a ∈ A be any element of a JBW-algebra. Then da2e = dae.

We so far only defined the ceiling for effects. For arbitrary positive a we can define
an analogous ceiling by dae := d a

‖a‖e. By the above argument, this definition coincides
with the regular one when a is an effect. For arbitrary a ∈ A (not necessarily positive)
we define dae := da2e, which by the previous lemma also coincides with the regular
definition for positive a.

4.4.3 Approximate pseudo-inverses
In this section we will see how to use the spectral theorem to define (pseudo-)inverses
to elements in a JBW-algebra.

Definition 4.4.9. Let a ∈ A be an element of a JBW-algebra. We say a is pseudo-
invertible when there exists a element b ∈ W (a) such that a ∗ b = dae. When
furthermore dae = 1 (and hence a ∗ b = 1), we say a is invertible.

When a is invertible, the element b with a ∗ b = 1 is unique. We denote this element
by a−1 and call this the inverse of a. If a is merely pseudo-invertible the element b
with a ∗ b = dae is not necessarily unique, but there is a unique one that additionally
satisfies dae ∗ b = b.

Lemma 4.4.10. Let a be pseudo-invertible. Then there is a unique b ∈ W (a) such
that a ∗ b = dae and dae ∗ b = b.

Proof. Let b be such that a ∗ b = dae. Let b′ = dae ∗ b. Then a ∗ b′ = a ∗ (b ∗
dae) = (a ∗ b) ∗ dae = dae2 = dae, so that b′ satisfies the required properties. For
uniqueness, suppose that b′′ also satisfies a ∗ b′′ = dae and dae ∗ b′′ = b′′. Then
b′′ = dae ∗ b′′ = (b′ ∗ a) ∗ b′′ = b′ ∗ (a ∗ b′′) = b′ ∗ dae = b′. �

We will denote the unique b with a ∗ b = dae and dae ∗ b = b by a−1 and call it the
pseudo-inverse of a. As we use the same notation for inverses and pseudo-inverses,
we will always specify which is meant.
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Let us demonstrate more clearly how (pseudo-)inverses are defined. For an example
of an invertible element, let f : Xa → R be a positive continuous function with
f(x) > ε for all x ∈ Xa for some fixed ε. Then f has an inverse f−1 defined pointwise
by f−1(x) := f(x)−1. A pseudo-invertible element that is not invertible can be
constructed in the following way. Let p1, p2, . . . , pn be a finite set of orthogonal
idempotents with

∑
k pk 6= 1, and let λ1, . . . , λn be strictly positive real numbers.

Define a =
∑n
k=1 λkpk. Its ceiling is then dae =

∑n
k=1 pk, and the unique pseudo-

inverse satisfying dae ∗ a−1 = a−1 is given by a−1 :=
∑n
k=1 λ

−1
k pk.

(Pseudo-)inverses are a powerful tool, but they do not exist for all elements of a
JBW-algebra. There does however exist a closely related structure originally described
in the context of von Neumann algebras [212].

Definition 4.4.11. Let a ∈ A be an element in a JBW-algebra. An approximate
pseudo-inverse for a is a sequence t1, t2, . . . in W (a) such that t1 ∗ a, t2 ∗ a, . . . is a
sequence of orthogonal idempotents and

∑
i ti ∗ a = dae (where we define this infinite

sum as the weak limit of the finite sums).

Remark 4.4.12. When p1, p2, . . . are orthogonal idempotents (like the ti ∗ a) above,
their weak (and strong) sum

∑
i pi exists and is equal to their supremum, cf. [107,

Remark 4.2.9].

Proposition 4.4.13 (cf. [212, Theorem 80IV]). Let A be a JBW-algebra, and let
a ∈ A be positive. Then a has an approximate pseudo-inverse.

Proof. We restrict our attention to W (a) and hence we may assume that the JBW-
algebra is a C(X) where X is a basically disconnected space. For an element a :
X → R let a+ : X → [0,∞) be the function a+(x) = a(x) when a(x) ≥ 0 and
a+(x) = 0. Similarly we define a−(x) = −a(x) when a(x) ≤ 0 and a−(x) = 0
otherwise. Note that a+ and a− are clearly continuous so that a+, a− ∈ C(X),
that a = a+ − a−, that a+, a− ≥ 0 and that Q√a+a− = a+ ∗ a− = 0. Hence, by
Lemma 4.3.14, also Q√a+da−e = 0. Repeating the argument we get da+e ∗ da−e = 0.
Note that furthermore a ∗ da+e = a+.

Now let a ≥ 0 and define an := a− 1
n for n ≥ 1. Then both an and a+

n are increasing
sequences that converge in norm to a. We also have

∨
nda+

n e = dae. Write pn := da+
n e

so that p1 ≤ p2 ≤ . . . converges weakly to dae. Define q0 := p1 and qn := pn+1 − pn
for n ≥ 1 so that all the qn are orthogonal and

∑k
i=0 qi = pk+1. Hence the weak limit∑

i qi exists and is equal to dae.
We calculate (a − 1

n ) ∗ pn = an ∗ da+
n e = a+

n ≥ 0 so that a ∗ pn ≥ 1
npn. Then we

easily verify that 1
n+1qn ≤ a ∗ qn ≤ 1

nqn and thus qn = da ∗ qne. Hence, a ∗ qn has a
pseudo-inverse 0 ≤ tn ≤ qn = da∗qne satisfying tn∗a = (tn∗qn)∗a = tn∗(a∗qn) = qn.
Finally, limk

∑k
i=0 tn ∗ a = limk

∑k
i=0 qn = dae as desired. �

4.5 Division and filters
In this section we will show that effects in JBW-algebras have filters. We will do this
by proving that JBW-algebras allow a kind of division operation on its elements.
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Before we do so, we will need to prove some additional properties of the triple
product. Recall that Qa,b := TaTb +TbTa−Ta∗b, and hence that Qa,b is linear in both
a and b and that Qa,b = Qb,a. Also recall that Qa := Qa,a.

Lemma 4.5.1. Let A be a Jordan algebra, and let a, b, c ∈ A be arbitrary. Then
QQab,Qac = QaQb,cQa.

Proof. Recall the fundamental equality: QQad = QaQdQa. Take d = b+c and expand
both sides using linearity to get QQab + QQac + 2QQab,Qac = QaQbQa + QaQcQa +
2QaQb,cQa. Cancelling the terms corresponding to the fundamental equality on both
sides and dividing by two then gives the desired expression. �

Lemma 4.5.2. Let A be a Jordan algebra, and let a, b, c ∈ A. Suppose a and b
operator commute with c. Then Qa,bc = Ta∗bc.

Proof. Qa,bc := a ∗ (b ∗ c) + b ∗ (a ∗ c) − (a ∗ b) ∗ c = TaTcb + TbTca − (a ∗ b) ∗ c =
TcTab+ TcTba− (a ∗ b) ∗ c = c ∗ (a ∗ b) + c ∗ (b ∗ a)− c ∗ (a ∗ b) = (a ∗ b) ∗ c = Ta∗bc �

Lemma 4.5.3. Let a, b ∈ A be arbitrary, and let c ∈ A be positive. Let ω : A→ R
be a positive linear map. Then |ω(Qa,bc)|2 ≤ ω(Qac) ω(Qbc).

Proof. It is easily verified that 〈a, b〉ω := ω(Qa,bc) defines a pre-inner-product on A
(this is where we need the positivity of c). The desired inequality is then simply the
Cauchy-Schwarz inequality. �

Lemma 4.5.4. Let a1, a2, . . . be a bounded sequence that strongly converges to a ∈ A.
Let b ∈ A be arbitrary. Then Qanb converges weakly to Qab and uniformly so for
0 ≤ b ≤ 1.

Proof. First, we will assume b is positive. It is easily verified using the linearity
of the triple product that Qab − Qanb = Qa−anb + 2Qa−an,anb. We will show that
each of these two terms on the right converge weakly to zero. The first term readily
follows because 0 ≤ Qa−anb ≤ ‖b‖(a − an)2. For the second term we observe, using
Lemma 4.5.3, that for any state ω

|ω(Qa−an,anb)|2 ≤ ω(Qa−anb)ω(Qanb).

As the sequence an is bounded, ω(Qanb) ≤ ‖b‖ω(a2
n) is also bounded and hence, since

ω(Qa−anb) ≤ ‖b‖ω((a−an)2) vanishes, we conclude that ω(Qa−an,anb) vanishes. Since
ω was arbitrary, Qa−an,anb indeed converges weakly to zero, so that we conclude that
Qanb converges weakly to Qab. Since the only dependence on b in the bounds was via
the quantity ‖b‖, the convergence is uniform for 0 ≤ b ≤ 1.

Now if b is arbitrary, we simply write b = b+ − b− where b+ and b− are positive,
and we use the weak continuity of addition to get the desired result. �

We can now start proving the existence of a division operation on JBW-algebras.

Proposition 4.5.5. Let a, b ∈ A be effects with a ≤ b2 and let t1, t2, . . . denote an
approximate pseudo-inverse for b. Then Q∑N

i=1 ti
a converges weakly to an effect c ∈ A

satisfying Qbc = a. This convergence is uniform in a. We denote this c by a/b2.
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Proof. Let t1, t2, . . . be an approximate pseudo-inverse for b. Recall from Proposi-
tion 4.4.13 that the ti are all orthogonal and lie in W (b) and hence operator commute
with b, b2 and

√
b.

Define sN :=
∑N
i=1 ti. Then all the sN also operator commute with b, b2 and

√
b.

Define aN := QsNa. We will show that aN weakly converges to an element c that
has the desired property. First we remark that aN ≥ 0 for all N . Using the operator
commutation of sN and

√
b we calculate

aN = QsNa ≤ QsN b2 = QsNQb1 = Q√bQsNQ
√
b1 = QQ√bsN 1 (4.5.2)= b2 ∗ sn ≤ dbe.

Hence, the sequence aN is bounded.
To show that aN converges weakly it then suffices to show that it is weakly Cauchy

(Corollary 4.2.30). Let M > N . Using linearity of the triple product we easily verify
that QsM − QsN = QsM−sN + 2QsM−sN ,sN , and hence aM − aN = QsMa − QsNa =
QsM−sNa + 2QsM−sN ,sNa. The first term is positive and is bounded by QsM−sN b

2

which indeed weakly vanishes as M and N become large. For the second term we note
that for any state ω:

|ω(QsM−sN ,sNa)|2
(4.5.3)
≤ ω(QsM−sNa)2ω(QsNa)2.

As QsNa = aN ≤ 1 is bounded, and ω(QsM−sNa) ≤ ω(QsM−sN b2) vanishes, we see
that ω(QsM−sN ,sNa) also vanishes as M and N become large. Since ω was arbitrary
we conclude that the second term weakly tends to zero, and hence aN forms a weak
Cauchy sequence, so that it weakly converges. As the bounds we found did not make
reference to the aN , this convergence is uniform in a.

Now let c denote the weak limit of the sequence aN . We claim that Qbc = a. Define
bN = sN ∗ b so that the bN are bounded and converge strongly to dbe. We see that
QbQsN = Q√bQsNQ

√
b = QQ√bsN = QbN using Lemma 4.5.2. Now using the weak

continuity of Qb:

Qbc = Qb lim
N
aN = lim

N
QbaN = lim

N
QbQsNa = lim

N
QbNa

4.5.4= Qdbea = a. �

Proposition 4.5.6. Let a, b, c be effects with a, c ≤ dbe. Then Qba = Qbc iff a = c.

Proof. Obviously if a = c then Qba = Qbc. For the other direction, let a, c ≤
dbe and suppose that Qba = Qbc. Let t1, t2, . . . be an approximate pseudo-inverse
for b. Analogously to the previous proposition, letting bN :=

∑N
i=1 ti ∗ b, we have

Q∑N
i=1 ti

Qba = QbNa and similarly Q∑N
i=1 ti

Qbc = QbN c. As bN strongly converges to
dbe, we calculate (using Lemma 4.5.4) a = Qdbea = limnQbNa = limnQbN c = Qdbec =
c (where we have used that Qdbea = a since a ≤ dbe). �

By the previous proposition, the element c satisfying Qbc = a for a pair a ≤ b2 is
unique, given that we pick c ≤ dbe. We can extend the definition of such elements to
the entire positive cone:

Proposition 4.5.7. Let a, b ∈ A be positive, satisfying a ≤ λb2 for some λ > 0. Then
there is a unique positive c ≤ λdbe satisfying Qbc = a.
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Proof. If a ≤ λb2, then a
λ‖b2‖ ≤

1
‖b2‖b

2 = (b/‖b‖)2, and these are both effects. So there
exists a unique effect c′ ≤ db/‖b‖e = dbe satisfying Q 1

‖b‖ b
c′ = 1

λ‖b2‖a. Multiplying
both sides by λ

∥∥b2∥∥ then gives Qbλc′ = a and hence setting c = λc′ gives the correct
positive element. Uniqueness easily follows by uniqueness of c′. �

Definition 4.5.8. Let a, b ∈ A be positive with a ≤ λb for some λ > 0. We denote
by a/b the unique positive c ∈ A with c ≤ λdbe that satisfies Q√bc = a.

Proposition 4.5.9. Let a ≤ λb and c ≤ λ′b. Then (a+c)/b = a/b+c/b. Furthermore,
for any µ > 0, (µa)/b = µ(a/b).

Proof. Note first that a+ c ≤ (λ+ λ′)b, and hence (a+ c)/b is indeed defined. The
defining property of (a+ c)/b is that Q√b((a+ c)/b) = a+ c. But we obviously also
have Q√b(a/b + c/b) = a + c, and hence by uniqueness: (a + c)/b = a/b + c/b. We
prove similarly that (µa)/b = µ(a/b). �

Lemma 4.5.10. Let b ≥ 0, and let a = a1−a2 with a1, a2 ≥ 0, such that ai ≤ λib for
some λi. Then there is a unique c = c1 − c2 with 0 ≤ ci ≤ λidbe such that Q√bc = a.
We write a/b for this unique element.

Proof. Let a = a1 − a2 satisfy the conditions as specified. Let ci = ai/b and set
c = c1 − c2. Then of course Q√bc = a. Uniqueness follows by the uniqueness and
linearity of the division. �

Proposition 4.5.11. Let b ∈ A be positive. Then Qb restricted to Adbe is injective.

Proof. Suppose Qba = Qbc for a, c ∈ Adbe. By the previous lemma, there are unique
a′, c′ ∈ Adbe such that Qba′ = Qba, Qbc′ = Qbc. Hence, by uniqueness, a = a′ = c′ =
c. �

Using division we can prove the existence of filters.

Proposition 4.5.12. Let a ∈ A be an effect. Define ξa : Adae → A to be the map
ξa(b) := Q√ab. Then ξa is a filter for a. I.e. f(1) ≤ a and for any map f : B → A with
f(1) ≤ a, there exists a unique map f : B → Adae satisfying f = ξa ◦ f . Furthermore,
if f is normal, then so is f . We will call the map ξa the standard filter for a.

Proof. Clearly ξa(1) = a. We need to show that this map is final with respect to
this property. To this end, assume f : B → A is any positive sub-unital linear map
with f(1) ≤ a. We need to find a unique f : B → Adae satisfying ξa ◦ f = f .

For any 0 ≤ b ≤ 1 we have f(b) ≤ f(1) ≤ a. Any element b ∈ B can be written
as b = b1 − b2 where 0 ≤ bi ≤ ‖bi‖1, so that f(bi) ≤ ‖bi‖a. Hence, by the previous
results we can define the map f : B → Adae by f(b) = f(b)/a. Again by the previous
propositions, this map is linear and positive and f(1) ≤ dae so that it is also sub-
unital. Furthermore (ξa ◦ f)(b) = Q√a(f(b)/a) = f(b), so that is satisfies the required
condition.

Uniqueness follows by injectivity of Qa restricted to Adae (Proposition 4.5.11).
Suppose f is normal. Then f is weakly continuous, and as the unit interval of

B is weakly compact, f restricted to [0, 1]B is uniformly weakly continuous. For
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0 ≤ b ≤ 1 we recall from Proposition 4.5.5 that f(b) = f(b)/a is defined as the weak
limit f(b) = limN Q∑N

i=1 ti
f(b), where t1, t2, . . . forms an approximate pseudo-inverse

for
√
a. Since each Q∑N

i=1 ti
is normal, and the weak limit is uniform in b and hence

by the uniform continuity of f also in f(b), we conclude using Proposition 4.2.24 that
f is weakly continuous and hence normal. �

Remark 4.5.13. As in Remark 4.3.9, the notion of filter could a priori be different
for the category of normal positive sub-unital maps versus all positive sub-unital maps.
But as the standard filter is normal, and the unique map f for the universal property
is normal when f is, filters in both categories coincide.

4.6 Diamond and dagger
The previous results can be combined to show that JBW-algebras form a �-effect-
theory (Definition 3.5.16).

Theorem 4.6.1. The category JBWop
npsu is a �-effect-theory.

Proof. By Proposition 4.3.8 every effect has a compression, while Proposition 4.5.12
shows that filters exist for every effect. The existence of images is shown in Proposi-
tion 4.3.11. Finally, an effect q is sharp if and only if it is idempotent, and hence q is
sharp iff q⊥ is sharp. �

Furthermore, it is easily seen that for the standard filter ξp and compression πp of
a sharp effect p that ξp ◦ πp = id, and hence filters and compressions are compatible
as in Definition 3.5.21. All the results of Section 3.5.3 are therefore applicable to
JBWop

npsu.
For instance, let us restate Proposition 3.5.23.c) in the language of JBW-algebras.

Recall that a map f is faithful when f(a) = 0 implies a = 0 for all effects a, or
equivalently when im(f) = 1.

Proposition 4.6.2. Let f : A → B be a normal positive sub-unital map between
JBW-algebras. Then there is a unique unital and faithful map f : Aim(f) → Adf(1)e
such that f = ξf(1) ◦ f ◦ πim(f).

Corollary 4.6.3. Let f : A → B be a pure map, i.e. f = ξ ◦ π for a compression π
and filter ξ. Then the unique map f above is an isomorphism. If f is faithful, then f
is a filter and if f is unital, then f is a compression.

Proof. As π(1) = 1 we have f(1) = ξ(1) and hence ξ = ξf(1) ◦Θ1 for an isomorphism
Θ1. Similarly, as im(ξ) = 1 we have im(f) = im(π) so that π = Θ2 ◦ πim(f). Putting
it together we have f = ξf(1) ◦ Θ1 ◦ Θ2 ◦ πim(f). The uniqueness of f then makes it
equal to the isomorphism Θ1 ◦Θ2.

If f is faithful, then πim(f) = π1 = id so that f = ξ ◦ f and hence it is a filter.
Similarly, if f(1) = 1 we have ξf(1) = ξ1 = id, making f a compression. �



4.6. Diamond and dagger 113

We will now work towards establishing the remaining properties required of a pure
effect theory. We will do this in several stages. First, we will establish that the pure
maps are closed under composition and hence form a category. To do this we need
to derive an analogue to polar decompositions as found in von Neumann algebras
(cf. Section 4.6.1). Then we will establish some new results regarding the �-structure
in Section 4.6.2. This will allow us to define a dagger structure on the category of
pure maps in Section 4.6.3 via an abstract argument found in Bas Westerbaan’s PhD
thesis [214, §215III].

Before we continue, we need to know more about the �-structure of the quadratic
maps. As the directions with regard to the �-structure are flipped, let us state explicitly
the definitions in a JBW-algebra for convenience.

Definition 4.6.4. Let f : A→ B be a normal positive map between JBW-algebras.
We define f�(p) := df(p)e for idempotents p ∈ A, and f�(q) := im(πq ◦f) = im(Qq ◦f)
for idempotents q ∈ B.

Adapting Proposition 3.5.19, we see that (f ◦ g)� = f� ◦ g� while (f ◦ g)� = g� ◦ f�
for maps f and g between JBW-algebras.

Lemma 4.6.5. Let A be a JBW-algebra and a ∈ A arbitrary. Let p, q ∈ A be
idempotents. Then Qap ≤ q⊥ ⇐⇒ Qaq ≤ p⊥.

Proof. Suppose Qap ≤ q⊥. Then QqQap = 0 and hence QaQqQap = QQaqp = 0.
Precomposing with Qp then gives 0 = QpQQaqQp1 = QQpQaq1 = 0 so that QpQaq = 0
and hence Qaq ≤ p⊥. Since the situation is symmetric in p and q the other direction
follows analogously. �

Proposition 4.6.6. Let A be a JBW-algebra and a ∈ A arbitrary. Then (Qa)� = Q�a.

Proof. By the previous lemma (Qa)� is left Galois adjoint to (Qa)� (Definition 3.5.18).
Since (Qa)� is also left adjoint to (Qa)� the result follows by uniqueness of these
adjoints. �

Corollary 4.6.7. Let A be a JBW-algebra with a ∈ A. Then im(Qa) = dae = dQa1e.

Proof. im(Qa) = (Qa)�(1) = Q�a(1) = dQa1e = da2e = dae. �

4.6.1 Polar decomposition
In this section we will generalise the notion of polar decompositions as present in von
Neumann algebras to the setting of JBW-algebras. The polar decomposition of
a ∈ A where A is a von Neumann algebra is the decomposition a = up where p =

√
a∗a

is positive and u is a partial isometry satisfying uu∗ = daa∗e and u∗u = da∗ae.
Of course, non-self-adjoint elements (including most partial isometries) do not exist

in a JBW-algebra. So in order to generalize the concept of a polar decomposition
to JBW-algebras we instead will consider the maps Φ,Φ∗ : Asa → Asa given by
Φ(b) := ubu∗ and Φ∗(b) := u∗bu that a decomposition induces, in particular for the
polar decomposition of a product of self-adjoint a and b.
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Definition 4.6.8. Let A be a JBW-algebra with a, b ∈ A. A polar pair for a and b
is a pair of maps Φ,Φ∗ : A→ A such that:

• QbQa = ΦQ√
Qab2

and QaQb = Q√
Qab2

Φ∗.

• Φ(1) = dQba2e and Φ∗(1) = dQab2e.

• Φ∗Φ = QdQab2e and ΦΦ∗ = QdQba2e.

Note that the ‘star’ in Φ∗ has no special significance, it is just to remind the reader
what the origin is of these maps. To motivate the definition, let us show the existence
of polar pairs in JW-algebras.

Proposition 4.6.9. Let A be a JW-algebra with a, b ∈ A. Then a and b have a polar
pair.

Proof. Let A denote the von Neumann algebra that A acts on. Let u ∈ A be the
partial isometry associated to the polar decomposition of ba, i.e. which satisfies ba =
u
√

(ba)∗ba = u
√
ab2a, uu∗ = d(ba)(ba)∗e = dba2be and u∗u = d(ba)∗(ba)e = dab2ae.

Then for any c ∈ A set Φ(c) = ucu∗ and Φ∗(c) = u∗cu. Note that ΦQ√
Qab2

c =

u
√
ab2a c

√
ab2au∗ = bac(ba)∗ = bacab = QbQac. The other required properties are

also easily checked. �

Now we will prove that polar pairs in fact exist for all JBW-algebras. Proving this
is much more involved.

Proposition 4.6.10. Let A be a JBW-algebra with a, b ∈ A. Then a and b have a
polar pair.

Proof. We would wish to take Φ = QbQaQ(Qab2)−1/2 and Φ∗ = Q(Qab2)−1/2QaQb, but
as Qab2 does not have to have a pseudo-inverse, we will instead build Φ and Φ∗ as
weak limits involving the approximate pseudo-inverse of Qab2.

Let t1, t2, . . . denote the elements of an approximate pseudo-inverse of Qab2. To
recall, tn ∗ (Qab2) = dtne and all the dtne are orthogonal with

∑
ndtne = dQab2e.

The tn belong to W (Qab2) and hence they operator commute with dQab2e, Qab2 and√
Qab2. The same holds for the

√
tn. As a result Q√tn(Qab2) =

√
tn

2 ∗ (Qab2) = dtne.
Define sn :=

∑n
i=1 ti. Then the sn are also in the bicommutant of Qab2 and we note

that dsne is an increasing sequence with supremum dQab2e, and hence is also strongly
convergent. As the tn are orthogonal we have √sn =

∑n
i=1
√
ti. Note that if n ≤ m

then √sn ∗
√
sm = sn. Furthermore, QsnQQab2 = Q√snQQab2Q

√
sn = QQ√sn (Qab2) =

Qdsne.
Define Φn = QbQaQ√sn and Φ∗n = Q√snQaQb. We of course have Φ∗n(1) =

Q√snQab
2 = dsne. The expression for Φn(1) does not simplify as easily, and hence

we will give it a new name. Set rn := Φn(1) = QbQasn.
For the remainder of this proof we will let n,m ∈ N>0 with n ≤ m. We calculate:

Φ∗nΦm = Q√snQQab2Q
√
sm = Q√snQ

√
smQQab2 = QsnQQab2 = Qdsne. (4.4)
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Similarly we also calculate:

ΦnΦ∗m = QbQaQ√snQ
√
smQaQb = QbQaQsnQaQb = QQbQasn = Qrn (4.5)

Before we proceed, we need to know more about the rn. First of all, they are
idempotent:

r2
n = Qrn1 = QbQaQsnQaQb1 = QbQaQ√snQ

√
sn(Qab2)

= QbQaQ√sndsne = QbQasn = rn.

Second, r1, r2, . . . forms an increasing sequence:

Qrnrm = QbQaQsnQaQbQbQasm = QbQaQsnQQab2sm = QbQaQdsnesm

= QbQasn = rn.

As a result r = ∨nrn exists, is an idempotent, and is also the strong limit of the
sequence r1, r2, . . ..

We wish to define, for any c ∈ A, Φ(c) and Φ∗(c) as the weak pointwise limits of
Φn(c) and Φ∗n(c). As we also want Φ and Φ∗ to be normal, these pointwise limits must
be uniform when restricted to the unit interval (see Proposition 4.2.25). For Φ∗ this
follows as in the proof of Proposition 4.5.12 (with f := QaQb and a := Qab

2). For Φ
we have to use a slightly more involved argument.

First, let c ∈ A be an effect. As Φn(c) ≤ Φn(1) = rn ≤ 1, it is a bounded sequence,
and hence for Φ(c) = limn Φn(c) to exist, it suffices to show that it is weakly Cauchy.
In other words, we need to show that Φm(c)−Φn(c) = QbQa(Q√sm−Q√sn)c vanishes
weakly as m and n become large. Our proof is analogous to that of Proposition 4.5.5.
Recall from that proof that for any d and e, Qd −Qe = Qd−e + 2Qd−e,e, and hence
we have

Φm(c)− Φn(c) = QbQaQ√sm−
√
snc+ 2QbQaQ√sm−√sn,√snc.

The first term is positive and bounded by QbQaQ√sm−
√
sn1 = QbQa(sm − sn) =

rm − rn and thus vanishes as the rn weakly go to r. For the second term we will
require another Cauchy-Schwarz inequality.

Let ω be any normal state. Define 〈d, e〉ω := ω(QbQaQd,e c). This is a pre-inner-
product (bilinearity and symmetry are clear and it is positive semi-definite because
c ≥ 0) and hence we get a Cauchy-Schwarz inequality:

|ω(QbQaQd,ec)|2 = |〈d, e〉ω|2 ≤ 〈d, d〉ω〈e, e〉ω = ω(QbQaQdc) ω(QbQaQec).

Applying this inequality with d := √sm −
√
sn and e := √sn gives the quantity

we want to see vanish on the left-hand side, while the right-hand side becomes
ω(QbQaQ√sm−√snc)ω(QbQaQ√snc). This right-hand side vanishes as the latter term
is bounded (0 ≤ ω(QbQaQ√snc) ≤ ω(QbQasn) = ω(rn) ≤ 1), while the first term is
positive and bounded by ω(rm − rn). We conclude that Φn(c) converges weakly, and
as our bounds did not involve c, it converges uniformly for all effects. The map is then
easily extended to all c ∈ A, and by Proposition 4.2.25 Φ is normal.
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From Eq. (4.4) we had Φ∗nΦm = Qdsne, and hence, using the weak continuity of
Φ∗n, for any c ∈ A: (Φ∗nΦ)(c) = limm Φ∗nΦm(c) = limmQdsnec = Qdsnec. Hence
(Φ∗Φ)(c) = limn Φ∗nΦ(c) = limnQdsnec = QdQab2ec, using Lemma 4.5.4 as dsne →
dQab2e strongly. So indeed Φ∗Φ = QdQab2e. By a similar argument, but using
Eq. (4.5), we get ΦΦ∗ = Qr. Additionally, as Φ∗n(1) = dsne and Φn(1) = rn we also
easily calculate Φ∗(1) = dQab2e and Φ(1) = r. We then need to show that r = dQba2e,
but before we do that we establish some of the other equalities first.

We have ΦnQ√Qab2 = QbQaQdsne and Q√
Qab2

Φ∗n = QdsneQaQb. Hence, taking
weak limits we get

ΦQ√
Qab2

= QbQaQdQab2e and Q√
Qab2

Φ∗ = QdQab2eQaQb = QaQb. (4.6)

For the first equality we would like to be able to drop the QdQab2e. To do this we note
that

im(QbQa) = (QbQa)�(1) = (Qa)�(Qb)�(1) = Q�aQ
�
b(1) = dQab2e

and so by Lemma 4.3.5 (QbQa)QdQab2e = QbQa.
Using Eqs. (4.6) we calculate:

QQba2 = QbQaQaQb = ΦQ√
Qab2

Q√
Qab2

Φ∗.

Hence, by plugging 1 into both sides and taking ceilings:

dQba2e = dΦQQab2Φ∗(1)e = dΦQQab2dQab2ee = dΦ(Qab2)2e ≤ dΦ(1)e = r.

It now remains to prove the other inequality r ≤ dQba2e. To do this note that
r = im(Qr) = im(ΦΦ∗) ≤ im(Φ∗) (these images exist since Φ and Φ∗ are normal, see
Proposition 4.3.11), so if we show im(Φ∗) = dQba2e we will be done.

Let s be an idempotent. Note first that if QaQbs = 0, then Φ∗n(s) = 0 for all n and
hence Φ∗(s) = 0. Conversely, if Φ∗(s) = 0, then Q√

Qab2
Φ∗(s) = QaQbs = 0. Hence:

im(Φ∗) ≤ s⊥ ⇐⇒ Φ∗(s) = 0
⇐⇒ QaQbs = 0
⇐⇒ Q�b(s) = dQbse ≤ im(Qa)⊥ = dae⊥

⇐⇒ (Qb)�(dae) ≤ s⊥.

Note that (Qb)�(dae) = Q�b(dae) = dQbdaee = dQba2e. Taking s = (im(Φ∗))⊥ we
get dQbae ≤ im(Φ∗), and taking s = dQbae⊥ we get im(Φ∗) ≤ dQbae. Hence, r ≤
im(Φ∗) = dQbae as desired. �

Corollary 4.6.11. Let A be a JBW-algebra with a, b ∈ A and let Φ and Φ∗ be a polar
pair of a and b. Then the restriction Φ : AdQab2e → AdQba2e is an order-isomorphism
with inverse Φ∗.

Proof. As Φ(1) = dQba2e it obviously restricts to a map Φ : AdQab2e → AdQba2e,
and similarly Φ∗ restricts to Φ∗ : AdQba2e → AdQab2e. As ΦΦ∗ = QdQba2e and
Φ∗Φ = QdQab2e, they are each others inverses when restricted to these spaces. �
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Lemma 4.6.12. Let Φ,Φ∗ be a polar pair for a and b. Then im(Φ) = Φ∗(1) and
im(Φ∗) = Φ(1).

Proof. As Φ∗Φ = QdQab2e we have Φ∗(1) = dQab2e = im(Φ∗Φ) ≤ im(Φ). For the
other direction note that Φ(dQab2e) = Φ(Φ∗(1)) = (ΦΦ∗)(1) = dQba2e = Φ(1), and
hence dQab2e ≥ im(Φ). That im(Φ∗) = Φ(1) follows similarly. �

Proposition 4.6.13. Let ξa : Adae → A, ξa = Q√a be the standard filter of an effect
a and πp : A→ Ep, πp = Qp be the standard compression of an idempotent effect p.
Then πp ◦ ξa = ξb ◦ Φ ◦ πq where b and q are some effects and Φ is an isomorphism.
In other words: πp ◦ ξa is pure (cf. Definition 3.6.2).

Proof. Let f = πp ◦ ξa = QpQ√a. Then f(1) = Qpa and im(f) = dQ√ape. Hence,
by Proposition 4.6.2 there is a unique unital and faithful map f : AdQ√ape → AdQpae

such that f = ξQpa ◦ f ◦ πdQ√ape. It remains to show that f is an isomorphism.
Let Φ,Φ∗ be a polar pair for

√
a and p. By Corollary 4.6.11, Φ∗ restricts to an

isomorphism Φ∗ : AdQ√ape → AdQpae. So in particular it is unital and faithful. If we
can then show that f = ξQpa ◦ Φ∗ ◦ πdQ√ape, then by the uniqueness of f we have
f = Φ∗ and we are done.

Expand the definitions to get ξQpa◦Φ∗◦πdQ√ape = Q√
Qpa

Φ∗QdQ√ape. As im(Φ∗) =
Φ(1) = dQ√ape we have by Lemma 4.3.5 Φ∗QdQ√ape = Φ∗. Furthermore, by the
definition of a polar pair Q√

Qpa
Φ∗ = QpQ√a, and hence indeed

ξQpa ◦ Φ∗ ◦ πdQ√ape = Q√
Qpa

Φ∗QdQ√ape = QpQ√a = f. �

Though not strictly a corollary, we can reuse the proof of the previous proposition,
for the following:

Corollary 4.6.14. Let A be a JBW-algebra and a ∈ A with −1 ≤ a ≤ 1. Then Qa
is pure.

Proof. It is clear that Q√a2 is a pure map as it is equal to πdae ◦ ξa2 . Let Φ and Φ∗ be
a polar pair of 1 and a. Then Qa = Q1Qa = ΦQ√a2 = Q√a2Φ∗. In the previous proof
let f := Qa. Then in the same way we can show that f = Φ∗ is an isomorphism. �

Theorem 4.6.15. Pure maps are closed under composition in JBWop
psu.

Proof. Given a pure map f = ξ ◦ π we can write ξ = ξq ◦Θ1 and π = Θ2 ◦ πp where
ξq is the standard filter for q, πp is the standard compression for p and the Θi are
isomorphisms. Hence any pure map can be written as f = ξq◦Θ◦πp where Θ = Θ1◦Θ2
is an isomorphism.

So for i = 1, 2 let fi = ξqi ◦ Θi ◦ πpi be pure maps. We need to show that f1 ◦ f2
can again be written in this form. By Proposition 4.6.13 πp1 ◦ ξq2 = ξa ◦Φ ◦ πb where
a and b are effects and Φ is an isomorphism. Note that ξ′ = ξq1 ◦ Θ1 is a filter and
π′ = Θ2 ◦ πp2 is a compression. Hence:

f1 ◦ f2 = ξ′ ◦ ξa ◦ Φ ◦ πb ◦ π′.



118 Chapter 4. The category of JBW-algebras

By Proposition 3.5.14 the composition of filters is again a filter and by Proposi-
tion 3.5.22 the composition of compressions is a compression. Hence, indeed f1 ◦ f2 =
ξ′′ ◦ Φ ◦ π′′ for some filter ξ′′ and compression π′′. �

4.6.2 Unique diamond-positivity
We now know that pure maps in JBW-algebras are closed under composition. However,
the definition of a pure effect theory required the pure maps to form a dagger category.
As constructing this dagger manually is tedious, we will take a round-about approach
to finding it, in the process establishing a new property that will turn out to be a
useful axiom in Chapter 5. This property is the uniqueness of �-positive maps.

Definition 4.6.16 ([214, Definition 206II]). We say a pure map f is �-self-adjoint
when f� = f�. It is �-positive when f = g ◦ g where g is �-self-adjoint.

We already saw that Qa is �-self-adjoint for arbitrary a (Proposition 4.6.6. When
a is positive then Qa = Q2√

a
and hence Qa is �-positive. These are in fact the only

�-positive maps.

Theorem 4.6.17. Let f : A → A be a �-positive map on a JBW-algebra A. Then
f = Q√

f(1).

An analogous statement was proven for completely positive normal sub-unital �-
positive maps between von Neumann algebras in Ref. [212]. Our proof follows along
the same lines, but some steps, particularly Lemma 4.6.19 will require more work to
prove.

Lemma 4.6.18. Let a, b, c ∈ A be arbitrary. Then QaQbQc1 = 0 if and only if
QcQbQa1 = 0.

Proof. Suppose QaQbQc1 = 0. Then also QcQbQaQaQbQc1 = 0, and hence by the
fundamental equality QQcQba21 = 0. As a result QcQba2 = QcQbQa1 = 0. The other
direction is shown similarly. �

Lemma 4.6.19. Let Θ : A → A be a unital Jordan homomorphism, a ∈ A an
effect with dae = 1, and p ∈ A an idempotent. Suppose that dQaΘ(p)e ≤ p and
dQaΘ(p⊥)e ≤ p⊥. Then p and a operator commute and Θ(p) = p.

Proof. We remark that the assumptions are symmetric in p and p⊥, and hence any
equation we prove involving p and p⊥ is also true with the roles of p and p⊥ inter-
changed.

Apply dQp⊥ ·e to both sides of p ≥ dQaΘ(p)e to get

0 = dQp⊥pe ≥ dQp⊥dQaΘ(p)ee 4.3.14= dQp⊥QaΘ(p)e.

Hence 0 = Qp⊥QaQΘ(p)1, as Θ(p)2 = Θ(p). By Lemma 4.6.18 we then also have
QΘ(p)QaQp⊥1 = 0 and since these are all positive maps, we have in factQΘ(p)QaQp⊥ =
0. By symmetry of p and p⊥, then also QΘ(p⊥)QaQp = 0.
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Note that id = Q1 = QΘ(p)+Θ(p⊥) = QΘ(p) + QΘ(p⊥) + 2QΘ(p),Θ(p⊥). We hence
calculate, using the linearised fundamental equality (Lemma 4.5.1):

QaQaQp⊥ = QaidQaQp⊥
= QaQΘ(p)QaQp⊥ +QaQΘ(p⊥)QaQp⊥ + 2QaQΘ(p),Θ(p⊥)QaQp⊥

= 0 +QaQΘ(p⊥)QaQp⊥ + 2QQaΘ(p),QaΘ(p⊥)Qp⊥ . (4.7)

We claim that the last term in this equation is also zero. To see this, note that as
0 ≤ QaΘ(p) ≤ dQaΘ(p)e ≤ p and 0 ≤ QaΘ(p⊥) ≤ p⊥, both QaΘ(p) and QaΘ(p⊥)
operator commute with both p and p⊥ so that QQaΘ(p),QaΘ(p⊥) commutes with Qp⊥
and hence:

QQaΘ(p),QaΘ(p⊥)Qp⊥ = QQaΘ(p),QaΘ(p⊥)Qp⊥Qp⊥ = Qp⊥QQaΘ(p),QaΘ(p⊥)Qp⊥

4.5.1= QQ
p⊥QaΘ(p),Q

p⊥QaΘ(p⊥) = Q0,Q
p⊥QaΘ(p⊥) = 0.

Hence, Eq. (4.7) reduces to QaQaQp⊥ = QaQΘ(p⊥)QaQp⊥ . As dae = 1, Qa is injective
(Proposition 4.5.11), and hence QaQp⊥ = QΘ(p⊥)QaQp⊥ . By symmetry in p and p⊥,
we then also have:

QaQp = QΘ(p)QaQp (4.8)

We will now use a similar argument with the goal of showing that QΘ(p)Qa =
QΘ(p)QaQp, which together with Eq. (4.8) would give QΘ(p)Qa = QaQp.

So let us expand Q1 again, but now using p and p⊥:

QaQΘ(p)Qa = idQaQΘ(p)Qa = Qp⊥QaQΘ(p)Qa +QpQaQΘ(p)Qa + 2Qp,p⊥QaQΘ(p)Qa

= 0 +QpQaQΘ(p)Qa + 2Qp,p⊥QaQΘ(p)Qa.

Now again, since QaΘ(p) operator commutes with p and p⊥, so that
√
QaΘ(p) also

operator commutes with p and p⊥, we calculate:

Qp,p⊥QaQΘ(p)Qa = Qp,p⊥QQaΘ(p) = Q√
QaΘ(p)Qp,p⊥Q

√
QaΘ(p)

= QQ√
QaΘ(p)p,Q

√
QaΘ(p)p

⊥
4.2.35= QQ√

QaΘ(p)p,0 = 0.

Here the second to last equality uses Proposition 4.2.35 with
√
QaΘ(p) ≤ p.

As a result, we have QaQΘ(p)Qa = QpQaQΘ(p)Qa = QpQQaΘ(p) = QQaΘ(p)Qp =
QaQΘ(p)QaQp. By again canceling the firstQa we are left withQΘ(p)Qa = QΘ(p)QaQp.
But this right-hand side agrees with that of (4.8), and hence:

QΘ(p)Qa = QaQp. (4.9)

We assumed that dae = 1 and hence also da2e = 1. Now:

p ≥ dQaΘ(p)e = dQaQΘ(p)1e = dQaQΘ(p)da2ee 4.3.14= dQaQΘ(p)Qa1e
(4.9)= dQaQaQp1e = dQa2pe
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Doing the analogous argument with p⊥ we see that we arrive at the inequalities:

dQa2pe ≤ p dQa2p⊥e ≤ p⊥

We can now repeat our proof from the start, but with a2 instead of a, and id instead
of Θ. The analogous version of Equation (4.9) is then QpQa2 = Qa2Qp, and hence p
operator commutes with a2. By Proposition 4.2.33, p then operator commutes with
everything in W (a2), including

√
a2 = a. Using this operator commutation, we can

rewrite (4.9) to QΘ(p)Qa = QpQa. Then QQaΘ(p) = QaQΘ(p)Qa = QaQpQa = QQap,
and hence (QaΘ(p))2 = QQaΘ(p)1 = QQap1 = (Qap)2. As QaΘ(p) and Qap are both
positive, we must then have Qap = QaΘ(p). By the injectivity of Qa we indeed get
p = Θ(p) as desired. �

Corollary 4.6.20. Let a ∈ A be an effect with dae = 1, and let Θ : A → A be
a unital Jordan homomorphism such that dQaΘ(p)e ≤ p for all idempotents p ∈ A.
Then a is central and Θ = id.
Proposition 4.6.21 (cf. [212, Proposition 104VII]). Let a, b ∈ A be effects with
dae = dbe = 1, and suppose there is a normal unital Jordan homomorphism Θ : A→ A
such that dQape = dQbΘ(p)e for all idempotents p ∈ A. Then Θ = id.
Proof. Let p be any idempotent that operator commutes with a, so that Qpa2 =
QpQa1 = QaQp1 = Qap. We then calculate:

p = dQp1e = dQpda2ee = dQpa2e = dQape = dQbΘ(p)e

As p⊥ also operator commutes with a we also have p⊥ = dQbΘ(p⊥)e and hence
Lemma 4.6.19 applies and we see that Θ(p) = p and that p operator commutes with
b. As linear combinations of idempotents lie norm-dense in W (a), b also operator
commutes with a and a2 and Θ(a) = a.

By Proposition 4.2.40, a and b span an associative JBW-algebra, and hence, analog-
ous to the proof of Proposition 4.4.13, we can find a series of orthogonal idempotents
p1, p2, . . . that operator commute with both a and b and satisfy

∑
k pk = dae = 1 such

that pk ∗a and pk ∗b are pseudo-invertible for all k. Let sn =
∑n
k=1 pn, then the sn are

idempotents that operator commute with a and strongly converge to 1. Furthermore,
sn ∗ a and sn ∗ b are pseudo-invertible for all n.

As the sn operator commutes with a we have Θ(sn) = sn so that Θ restricts to
a map Θ : Asn → Asn . Suppose that Θ is equal to the identity on each of these
restrictions. As the sequence sn strongly converges to 1, by Lemma 4.5.4 we have for
any c ∈ A: Θ(c) = Θ(Q1c) = Θ(limnQsnc) = limn Θ(Qsnc) = limnQsnc = Q1c = c
(since Θ is assumed to be normal, it is weakly continuous), so that indeed Θ = id. It
thus suffices to show that Θ is the identity on each Asn . Because sn ∗ a and sn ∗ b are
pseudo-invertible in A, a and b are invertible when restricted to Asn . Without loss of
generality we may therefore assume now that a and b are invertible.

Because a and b span an algebra of mutually operator commuting elements, b
also operator commutes with a−1 and hence Qa−1Qb = Qa−1∗b. Now, let p be any
idempotent. We compute:

dQa−1∗bΘ(p)e = dQa−1QbΘ(p)e = dQa−1dQbΘ(p)ee
= dQa−1dQapee = dQa−1Qape = dpe = p
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Hence, by the previous corollary, Θ = id (and a−1 ∗ b is central). �

Proposition 4.6.22 (cf. [212, Proposition 104IX]). Let f : A → A be a faithful
�-positive map. Then f = Q√a where a := f(1).

Proof. Since f is faithful and pure, it is a filter (Corollary 4.6.3), and hence it is of the
form f = Q√aΘ for some isomorphism Θ : A→ A. It remains to show that Θ = id.

Because f is faithful, 1 = im(f), and because it is �-self-adjoint: d
√
ae = df(1)e =

f�(1) = f�(1) = im(f) = 1. Hence, to show that Θ = id, it suffices by the previous
proposition to show that there is some effect b with dbe = 1 and f�(p) := dQ√aΘ(p)e =
dQbpe for all idempotents p.

By definition of �-positivity, there exists a �-self-adjoint map g : A → A with
f = g ◦ g. Since 1 = im(f) = f�(1) = g�(g�(1)) ≤ g�(1) = im(g) we must have
im(g) = 1. Since g is then faithful and pure, it is also a filter. As ξ := Q√

g(1) is also
a filter of g(1), there is an isomorphism Φ : A → A with g = ξ ◦ Φ. We calculate
ξ� ◦Φ� = g� = g� = Φ� ◦ ξ� = (Φ�)−1ξ�. Bringing (Φ�)−1 to the other side then gives
Φ�◦ξ�◦Φ� = ξ�. As a result f� = (g◦g)� = ξ�◦Φ�◦ξ�◦Φ� = ξ�◦ξ� = (ξ◦ξ)�. For an
arbitrary idempotent p we then see that dQ√aΘ(p)e = f�(p) = (ξ ◦ ξ)�(p) = dQξ(1)pe.
By the previous proposition then indeed Θ = id, and hence f = Q√a. �

Lemma 4.6.23. Let p ∈ A be an idempotent. Then its standard compression and
standard filter are �-adjoint: ξ�p = (πp)�.

Proof. Let q ∈ Ap be an idempotent. Then q ≤ p and hence Qpq = q and πq ◦πp = πq.
Hence ξ�p(q) = dQpqe = q and (πp)�(q) = im(πq ◦ πp) = im(πq) = q. �

Proof of Theorem 4.6.17. We need to show that each �-positive map g satisfies g =
Q√

g(1).
First, let f be a �-self-adjoint map. Then in particular im(f) = df(1)e. Using the

universal properties of compressions and filters, we factor f as f = ξim(f) ◦ f ◦ πim(f)
where f : Aim(f) → Aim(f). Note that by definition ξim(f) is just the inclusion map
into A. We also see that f = πim(f) ◦ f ◦ ξim(f) (since πim(f) ◦ ξim(f) = id) so that f is
a composition of pure maps and hence also pure by Theorem 4.6.15.

We see that f(1) = πim(f)(f(im(f))) = f(im(f)) = f(1) and furthermore

f
� = (πim(f) ◦ f ◦ ξim(f))� = π�im(f) ◦ f

� ◦ ξ�im(f)
(4.6.23)= (ξim(f))� ◦ f� ◦ (πim(f))� = f�.

Note that im(f2) = f�(f�(1)) = f�(im(f)) = f�(1) = f�(1) = im(f). For a �-self-
adjoint f we then get f2 = πim(f)◦f ◦ξim(f)◦πim(f)◦f ◦ξim(f) = πim(f)◦f2◦ξim(f) = f2.

Now let g = f ◦ f be �-positive. Then g = f2 = f
2 is also �-positive. Since g is

faithful, we have g = Q√a where a = g(1) = g(1) by Proposition 4.6.22. Since im(g) =
dg(1)e = dae we can then calculate g = ξim(g) ◦Q√p ◦ πim(g) = Q√pQdpe = Q√p. �
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4.6.3 A dagger on pure maps
Finally, let us see how these results help us define a dagger † on pure maps. Any pure
map can be written as a composition of a standard filter, a standard compression, and
an isomorphism, and hence a dagger is completely determined by its action on these
types of maps. Our goal will be to make �-self-adjoint maps also †-self-adjoint.

We will map isomorphisms Θ to their inverse: Θ† = Θ−1. Recall that for compres-
sions πa = πbac and hence it suffices to define the action of the dagger on standard
compressions for idempotents. We will set π†p = ξp for idempotents p. This determines
the action of the dagger on filters of idempotents: ξ†p = πp. The only type of map left
then is a filter for a non-idempotent. To define a dagger for this map we first split it
up into two parts: ξa = Q√aξdae. As Q√a is �-self-adjoint we will define Q†√

a
= Q√a,

and hence we arrive at ξ†a = πdaeQ√a.
Although this in principle defines a dagger, we still need to check that it actually

results in a dagger structure. Specifically, that (f†)† = f and (f ◦ g)† = g† ◦ f†. Since
proving this is quite lengthy, we will refer to a result from Bas Westerbaan’s PhD
thesis [214]. Before we state that result we recall some further definitions.

Definition 4.6.24 (cf. [214, Definition 211II]). A �-effect-theory is an &-effect-
theory when pure maps are closed under composition and when for each effect a ∈
Eff(A) there is a unique �-positive map asrta : A→ A such that 1 ◦ asrta = a. This
map is called the assert map of a. We write a& b := b ◦ asrta and a2 = a& a.

Proposition 4.6.25. The category JBWop
npsu is an &-effect-theory.

Proof. Closure of pure maps under composition is Theorem 4.6.15, while uniqueness
of �-positive maps is Theorem 4.6.17. �

Recall that a map f in a dagger-category is †-positive when f = g† ◦ g for some
map g.

Definition 4.6.26 (cf. [214, Definition 215I]). An &-effect-theory is a †-effect-
theory when

• the pure maps form a dagger-category such that asrt†a = asrta for all effects a
and f† is �-adjoint to f for all pure maps f ;

• for every †-positive map f , there is a unique †-positive g with g ◦ g = f ;

• �-positive maps are †-positive.

Theorem 4.6.27 ([214, Theorem 215III]). A &-effect theory is a †-effect-theory if
and only if

• for every effect a there is a unique effect b with a = b2;

• for all effects a and b we have asrt2
a& b = asrta ◦ asrt2

b ◦ asrta;

• a filter for a sharp effect ξ is a sharp map: dp ◦ ξe = p ◦ ξ for all sharp p.
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Remark 4.6.28. The proof of Theorem 4.6.27 as stated in Theorem 215III of
Ref. [214] assumes the structure of an effectus, not just an effect theory. The proof
however does not require any of the special structure present in an effectus beyond
that which is already present in an effect theory, and hence continues to apply in our
setting. Alternatively, it is not too hard to show that JBWop

npsu is actually an effectus
itself, so that we are still warranted in using it.

Theorem 4.6.29. The category JBWop
npsu is a †-effect-theory.

Proof. We already know that JBWop
npsu is a &-effect-theory so it remains to show

that the three conditions of Theorem 4.6.27 hold.
First note that asrta = Q√a and hence a& b = Q√ab so that b2 = b& b = Q√bb =

b ∗ b. Hence the first point of Theorem 4.6.27 follows because every effect in a JBW-
algebra has a unique positive square root.

Unfolding the definition of the assert map, we see that the second point reduces to
proving Q2√

Q√ab
= Q√aQ

2√
b
Q√a, but this is just the fundamental identity.

Finally, the third point follows because the standard filter ξp : Ap → A of a sharp
(i.e. idempotent) effect p is simply an embedding satisfying ξp(q) = q. �

Proposition 4.6.30. The category JBWop
npsu is a PET (cf. Definition 3.6.3).

Proof. We already have P1, P3 and P4. That the pure maps form a dagger-category
(P2) follows from Theorem 4.6.29. By Ref. [214, Proposition 216VII] we have ξ†p = πp
for any sharp p in a †-effectus, and hence P5 holds. Finally, we have πp◦π†p = πp◦ξp = id
so that P6 holds. �

Remark 4.6.31. As discussed in Ref. [214, Section 3.8.3], any †-effectus is a pointed
homological category [89]. Hence, results about exact sequences such as the well-known
Snake Lemma hold in JBWop

npsu. As far as the author is aware, this structure has not
been considered before for JBW-algebras. We leave its implications for future work.

4.7 Sequential products
In the previous section we found the structures of Chapter 3 which are present in
JBW-algebras. Now we set our sights on the structure of sequential measurement
studied in Chapter 2. We will establish that the unit interval of a JBW-algebra has
a sequential product given by a& b := Q√ab that satisfies all the assumptions of
Definition 2.2.3. Before we are able to do so however, we need to establish some more
results regarding operator commutation in JBW-algebras and for that we will need
to know more about the global structure of a JBW-algebra.

4.7.1 Structure theorem
Recall that special Jordan algebras are those that embed into an associative algebra.
The counterpart to those algebras are the exceptional Jordan algebras.

Definition 4.7.1. Let A be a JB-algebra. We call A purely exceptional when
any Jordan homomorphism φ : A→ Asa onto a C∗-algebra A is necessarily zero.
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Theorem 4.7.2 ([107, Theorem 7.2.7]). Let A be a JBW-algebra. Then there is a
unique decomposition A = Asp ⊕Aex where Asp is a JW-algebra and Aex is a purely
exceptional JBW-algebra.

We saw in Section 4.4 that if C(X) is a JBW-algebra, that X is basically discon-
nected. In fact, X actually satisfies a stronger property:

Definition 4.7.3. A compact Hausdorff space X is extremally disconnected when
the closure of any open set is again open (and hence clopen). If C(X) is additionally
separated by normal states, then X is called hyperstonean.

The space X is hyperstonean if and only if C(X) is an associative JBW-algebra.
Since the self-adjoint part of a commutative von Neumann algebra is also isomorphic
to C(X) with X hyperstonean, there is a correspondence between commutative von
Neumann algebras and associative JBW-algebras.

Example 4.7.4 ([190]). Let X be a hyperstonean space and let E = M3(O)sa denote
the exceptional Albert algebra of self-adjoint octonion matrices. Denote by C(X,E)
the set of continuous functions f : X → E. Then C(X,E) is a purely exceptional
JBW-algebra with the Jordan product given pointwise by (f ∗ g)(x) = f(x) ∗ g(x).

The above example is actually the only type of purely exceptional JBW-algebra, as
the following result by Shultz shows.

Theorem 4.7.5 ([190]). Let A be a purely exceptional JBW-algebra. Then there
exists a hyperstonean space X, such that A ∼= C(X,M3(O)).

Since any JBW-algebra splits up into a direct sum of a JW-algebra and an algebra
of the form C(X,M3(O)sa), many questions regarding JBW-algebras can be settled
by studying von Neumann algebras and Euclidean Jordan algebras (of which M3(O)sa
is an example). This is not the most elegant way to prove something, but for some
results we do not know of any other way to prove them, such as for some results in
the next section.

4.7.2 Operator commutation revisited
Recall that an element a in a C∗-algebra is called normal when aa∗ = a∗a (not to
be confused with the definition of ‘normal’ as a suprema preserving map, which will
not play a role in this section). The following classic result regarding normal elements
will be used several times throughout this section.

Theorem 4.7.6 (Fuglede-Putnam-Rosenblum). Let m,n, a ∈ A be elements of a
C∗-algebra, with m and n normal and ma = an. Then m∗a = an∗.

Proposition 4.7.7. Let A ⊆ A be a JW-algebra acting on the von Neumann algebra
A. Elements of A operator commute if and only if they commute as elements of A:
TaTb = TbTa ⇐⇒ ab = ba.

Proof. This result is proven for JC-algebras in [105, Lemma 5.1] using representation
theory. We present here a more algebraic proof based on Gudder’s proof of a similar
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result for operators on Hilbert spaces [99]. Obviously, when ab = ba, we have TaTb =
TbTa. So let us prove the converse direction. For a, b, c ∈ A we easily calculate:

(TaTb − TbTa)c = 1
4((ab− ba)c− c(ab− ba)) (4.10)

Hence, when a and b operator commute we have (ab− ba)c = c(ab− ba) for all c ∈ A.
In particular, by taking c = a and c = b we get

2aba = ba2 + a2b and 2bab = ab2 + b2a.

Now multiply the first equation by b on the right and the second with a on the left:

2abab = ba2b+ a2b2 2abab = a2b2 + ab2a

As the left-hand sides now agree, we can combine the equations to get ba2b = ab2a.
This equation shows that ab is normal: (ab)(ab)∗ = ab2a = ba2b = (ab)∗(ab), and
hence by the Fuglede-Putnam-Rosenblum theorem, since (ab)a = a(ba) we also have
ba2 = (ab)∗a = a(ba)∗ = a2b and so b and a2 commute.

Recall that we had the equation 2aba = ba2 +a2b. Using the operator commutation
we get aba = a2b. Apply the approximate pseudoinverse of a on aba = a2b to get
daeba = ab. As b commutes with a2, it commutes with da2e = dae, and hence
ab = daeba = bdaea = ba, and we are done. �

Proposition 4.7.8. Let A ⊆ A be a JW-algebra acting on the von Neumann al-
gebra A. Let a, b ∈ A with at least one of a and b positive. Then the following are
equivalent.

a) QaQb = QbQa.

b) Qab
2 = Qba

2.

c) a and b operator commute.

Proof. a) to b) is trivial. For c) to a) we note that a and b operator commute if ab = ba
in A, and hence also a and a2 operator commute with b and b2. The result then follows
by the definition of Qa and Qb in terms of Ta, Ta2 , Tb and Tb2 . It remains to prove b)
to c). Suppose Qab2 = Qba

2. Written in terms of the associative product of A this
becomes ab2a = ba2b. Hence, the product ab is normal. Without loss of generality,
assume that a is positive. Since (ab)a = a(ba), by the Fuglede-Putnam-Rosenblum
theorem: ba2 = (ab)∗a = a(ba)∗ = a2b, so that b and a2 commute. By positivity of a,√
a2 = a. Since

√
a2 lies in the bicommutant of a2 we then see that b also commutes

with a in A and hence they operator commute in A. �

Remark 4.7.9. Of course a) implies b) and c) implies a) regardless of positivity of
the elements a and b, but for the other implications, the requirement that at least
one of a and b is positive is necessary. Take for instance any non-commuting a and b
satisfying a2 = b2 = 1 such as a = |+〉 〈+| − |−〉 〈−| and b = |0〉 〈0| − |1〉 〈1|. Then b)
holds, but a) and c) do not. Keeping b the same, but letting a = |0〉 〈1|+ |1〉 〈0| we
get a) but not c).
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For our next results we will need the following powerful theorem.

Theorem 4.7.10 (Shirshov-Cohn theorem for JBW-algebras). A JBW-algebra gen-
erated by two elements (and possibly the unit) is a JW-algebra.

Proof. Theorem 7.2.5 of Ref. [107] proves the analogous result for JB-algebras, but
the proof directly translates to JBW-algebras. �

Proposition 4.7.11. Let A be a JBW-algebra, and suppose a, b ∈ A either operator
commute or that at least one is positive and they satisfy Qab

2 = Qba
2. Then the

JBW-algebra spanned by a and b (and possibly the unit) is associative.

Proof. Let B denote the JBW-algebra spanned by a and b. By the Shirshov-Cohn
theorem, B is a JW-algebra. Let B denote the von Neumann algebra B acts on.

If a and b operator commute in A, then they of course also operator commute in
B and hence by Proposition 4.7.7 ab = ba in B. Similarly, but by Proposition 4.7.8,
if one of a and b is positive and they satisfy Qab

2 = Qba
2, they operator commute

(inside of B), and hence also ab = ba in B.
In both cases we then also have a2b = ba2 and hence a2 operator commutes with b

when restricted to B. By Proposition 4.2.40, there is an associative JBW-subalgebra
B′ of B containing both a and b. But as B is already the smallest JBW-algebra
generated by a and b we necessarily have B′ = B. �

Corollary 4.7.12. Let a, b ∈ A be positive elements in a JBW-algebra. If Qab2 =
Qba

2, then Qab
2 = a2 ∗ b2.

Proof. By the previous proposition, a and b span an associative algebra, and the
statement is true for associative Jordan algebras. �

Proposition 4.7.13. Let E be a Euclidean Jordan algebra with a, b ∈ E where at
least one of a and b is positive. Then the following are equivalent.

a) QaQb = QbQa.

b) Qab
2 = Qba

2.

c) b and b2 operator commute with a and a2.

Proof. a) to b) and c) to a) are trivial, hence it suffices to prove b) to c). Nevertheless,
it will be useful to first prove b) to a).

So assume that Qab2 = Qba
2. Since E is a Euclidean Jordan algebra, it is a real

Hilbert space, and hence the space of bounded operators on E, B(E), is a (real)
C∗-algebra. Recall that Qa for any a ∈ E is a self-adjoint operator and hence, if a is
positive, Qa = Q2√

a
is a positive operator in the Hilbert space sense, i.e. positive in

B(E). By the fundamental equality we have QaQ2
bQa = QQab2 = QQba2 = QbQ

2
aQb

so that QaQb is normal as an element of B(E). Hence, analogously to the proof of
Proposition 4.7.8, we can use the Fuglede-Putnam-Rosenblum theorem to conclude
that QaQb = QbQa which proves b) to a).

To prove b) to c) we will use the identity Ta = Qa+1 −Qa − id that holds for any
element a in a Jordan algebra. Remark that since Qab2 = Qba

2, Proposition 4.7.11
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shows that a, b and 1 span an associative JBW-algebra B, which in this case is an EJA.
Then a+1 also lies in B, and hence Qa+1b

2 = (a+1)2 ∗b2 = Qb(a+1)2. Using b) to a)
we then see that Qa+1Qb = QbQa+1. As also QaQb = QbQa and Ta = Qa+1−Qa− id
we then necessarily have TaQb = QbTa. Similarly we can show TaQb+1 = Qb+1Ta and
hence TaTb = TbTa. As a2 is also part of the same associative JBW-algebra, we can
repeat the argument with a2 instead of a to see that Ta2Tb = TbTa2 . Similarly, we can
take b2 instead of b. �

Lemma 4.7.14. Let A be a purely exceptional JBW-algebra with a, b ∈ A where at
least one of a and b is positive. Then the following are equivalent.

a) QaQb = QbQa.

b) Qab
2 = Qba

2.

c) b and b2 operator commute with a and a2.

Proof. a) to b) and c) to a) are trivial, so only b) to c) remains. Hence, suppose that
Qab

2 = Qba
2.

Since A is a purely exceptional, A ∼= C(X,E) where X is a hyperstonean space, and
E = M3(O)sa is the exceptional Albert algebra and hence an EJA. Let f, g : X → E
denote the functions corresponding to a and b. Then for every x ∈ X, Qf(x)g(x)2 =
(Qfg2)(x) = (Qgf2)(x) = Qg(x)f(x)2. As these are elements of an EJA, we use
the previous proposition to see that Tg(x) and Tg(x)2 operator commute with Tf(x)
and Tf(x)2 for all x ∈ X. We wish to conclude from this that Tg and Tg2 operator
commute with Tf and Tf2 . So let h : X → E be any other function, then we should
have for every x ∈ X, (TfTgh)(x) = (TgTfh)(x) (and similarly for f2 and g2), but as
(TfTgh)(x) = Tf(x)Tg(x)h(x) this directly follows. �

Proposition 4.7.15. Let A be a JBW-algebra with a, b ∈ A where at least one of a
and b is positive. Then the following are equivalent.

a) QaQb = QbQa.

b) Qab
2 = Qba

2.

c) b and b2 operator commute with a and a2.

Proof. Write A = A1 ⊕A2 where A1 is a JW-algebra, and A2 is a purely exceptional
JBW-algebra. If Qab2 = Qba

2, then this equation also holds with a and b restricted to
A1 or A2. By Proposition 4.7.8 and Lemma 4.7.14 the desired result then follows. �

Theorem 4.7.16. Let A be a JBW-algebra and a, b ∈ A arbitrary. Then the following
are equivalent.

a) a and b operator commute.

b) a and b generate an associative JBW-algebra.

c) a and b generate an associative JBW-algebra of mutually operator commuting
elements.
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d) a and a2 operator commute with b and b2.

If at least one of a and b is positive then these statements are furthermore equivalent
to Qab2 = Qba

2.

Proof. a) to b) follows by Proposition 4.7.11. c) to d) follows because a2 and b2 are
part of the associative algebra of mutually operator commuting elements. d) to a) is
of course trivial. It remains to show b) to c).

So suppose a and b generate an associative JBW-algebra B. Let c, d ∈ B be positive.
By associativity Qcd

2 = c2 ∗ d2 = Qdc
2, and hence by Proposition 4.7.15 c and d

operator commute. As the positive elements span B, we are done.
Now suppose one of a and b is positive. If they span an associative algebra, then

of course Qab
2 = a2 ∗ b2 = Qba

2. For the converse direction we again refer to
Proposition 4.7.15. �

4.7.3 The sequential product
We can now finally show the main result of this section: that the unit interval of a
JBW-algebra has a sequential product as in Definition 2.2.3. At the same time we
will also establish two extra properties that are required in a normal sequential effect
algebra (see Definition 5.2.1).

Lemma 4.7.17 ([4, Lemma 1.26]). Let a and b be positive elements in a JB-algebra.
Then Qab = 0 iff Qba = 0, and in that case a ∗ b = 0.

Theorem 4.7.18. Let A be a JBW-algebra. Define the operation a& b := Q√ab.
Then & satisfies all the axioms of Definition 2.2.3:

a) a& (b+ c) = a& b+ a& c.

b) The map a 7→ a& b is continuous in the norm.

c) 1 & a = a.

d) If a& b = 0, then also b& a = 0.

e) If a& b = b& a, then a& (b& c) = (a& b) & c.

f) If a& b = b& a, then a& b⊥ = b⊥& a, and if also a& c = c& a, then a& (b+c) =
(b+ c) & a.

Furthermore, it also satisfies some additional properties:

g) for any directed set of effects S we have a&
∨
S =

∨
b∈S a& b and if a& b = b& a

for all b ∈ S then a&
∨
S =

∨
S& a.

h) If a& b = b& a and a& c = c& a, then a& (b& c) = (b& c) & a.

Proof. Points a), b) and c) are trivial.
For d), if a& b = 0 = Q√ab, then Qb

√
a = 0 by Lemma 4.7.17. Hence also

Qba
2 ≤ Qba ≤ Qb

√
a = 0. Applying Lemma 4.7.17 again gives Qab = 0, so that
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also Qab
2 = 0. But then Qab

2 = 0 = Qba
2, so by Proposition 4.7.15, a operator

commutes with b and b2. By Proposition 4.2.40, there is then an associative JBW-
subalgebra B of mutually operator commuting elements containing both a and b. This
algebra necessarily also contains

√
b, and hence

√
b and a operator commute. But

then b& a = Q√b
√
a

2 = a ∗ b = 0 by Corollary 4.7.12 and Lemma 4.7.17.
Note that if a& b = b& a, then by definition Q√a

√
b
2 = Q√b

√
a

2, so that by
Proposition 4.7.15, Q√aQ√b = Q√bQ

√
a, and by Corollary 4.7.12 a& b = Q√a

√
b
2 =

√
a

2 ∗
√
b
2 = a ∗ b. Furthermore, by the same argument as in the previous paragraph,

Qa1/4 commutes with Q√b, and hence a1/4 and
√
b generate an associative JBW-

algebra by Proposition 4.7.11.
For point e) suppose that a& b = b& a. As the JBW-algebra spanned by a1/4 and√
b is associative we easily verify that Qa1/4

√
b =

√
Q√ab and then calculate:

a& (b& c) = Q√aQ
√
bc = Qa1/4Q√bQa1/4c = QQ

a1/4
√
bc = Q√Q√abc = (a& b) & c.

For point f) suppose that a& b = b& a. As
√
a and

√
b span an associative JBW-

algebra containing 1, we must have a& b⊥ = Q√ab
⊥ = a ∗ b⊥ = Q√

b⊥
a = b⊥& a.

Suppose now that also a& c = c& a. Then a operator commutes with b and c and
hence with b+ c. By Theorem 4.7.16, a and b+ c then generate an associative algebra,
and hence (b+ c) & a = Q√b+ca = (b+ c) ∗ a = Q√a(b+ c) = a& (b+ c) as desired.

For g) the first point follows from the normality ofQ√a. For the second point suppose
that a& b = b& a for all b ∈ S. Then a operator commutes with b for all b in S, and
since the Jordan product is weakly continuous, a also operator commutes with

∨
S.

Then a and
∨
S generate an associative algebra and thus indeed a&

∨
S =

∨
S& a.

Finally, for h) assume that a& b = b& a and a& c = c& a, then [Q√a, Q√b] = 0
and [Q√a, Q√c] = 0, so that also

QQ√bcQ
√
a = Q√bQ

2√
cQ
√
bQ
√
a = Q√aQ

√
bQ

2√
cQ
√
b = Q√aQQ√bc.

Hence [Q√Q√bc, Q
√
a] = 0 so that indeed a& (b& c) = (b& c) & a. �

We conclude that any JBW-algebra is a sequential effect space as defined in Defini-
tion 2.2.3. Hence, together with Theorem 2.6.12 we see that a finite-dimensional order
unit space is a sequential effect space if and only if it is a Euclidean Jordan algebra.





Chapter 5

Reconstructing infinite-dimensional
quantum theory
In Chapters 2 and 3 we found two ways to recover quantum theory using a set of
natural assumptions, related to respectively sequential measurement and pure maps.

The process of recovering quantum theory crucially relied on two background as-
sumptions. The first was that we were assuming that probabilities take the form of
real numbers; an assumption we started to challenge in Chapter 3 but ultimately had
to use to complete the reconstruction. The second was that once we had this convex
structure of the real numbers, we required our effect spaces to be finite-dimensional.
In Chapter 4 we found that all our assumptions regarding sequential measurement
and purity hold in the infinite-dimensional setting of JBW-algebras, so it stands to
reason that we should be able to use these assumptions when we drop the requirement
of finite-dimensionality.

In this chapter we will combine and augment the requirements regarding sequen-
tial measurement and purity of Chapter 2 and 3 in order to get a reconstruction of
quantum theory that includes infinite-dimensional systems without a priori assuming
our probabilities are real numbers. Unlike in those previous chapters, we can no longer
claim that the set of assumptions we require are all physically reasonable. Instead,
we view the results of this chapter as a first step towards finding reasonable assump-
tions from which infinite-dimensional quantum theory can be recovered. We expect
subsequent approaches to succeed with a more elegant or smaller set of assumptions.

We also remark that the reconstruction in this chapter is not completely ‘finished’:
we will show that our assumptions force every effect space Eff(A) to be represented
by a JW-algebra VA such that Eff(A) ∼= [0, 1]VA . Recall that a JW-algebra is a JBW-
algebra that embeds into the self-adjoint part of a von Neumann algebra Asa, and
hence our effect spaces satisfy Eff(A) ↪−→ [0, 1]A. In a full reconstruction we would
expect our effect spaces to be equal to the entire set of effects: Eff(A) ∼= [0, 1]A. We
leave a derivation of this requirement to future work.

The primary additional tool we require for the reconstruction is one that already
proved useful in the study of JBW-algebras: the existence of suprema of directed sets.
Recall that a subset D of a partially ordered set is directed when for any a, b ∈ D there
exists c ∈ D such that a, b ≤ c, and that a partially ordered set is directed complete
when any directed subset has a supremum (cf. Definition 4.2.13). In this chapter we
will primarily interested in the countable ‘version’ of directed completeness:

Definition 5.0.1. Let P be a partially ordered set. It is ω-complete if suprema of
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countable directed sets exist, or equivalently if any increasing sequence a1 ≤ a2 ≤ . . .
in P has a supremum.

Definition 5.0.2. An ω-effect-theory is an effect theory where every effect space
is ω-complete.

This chapter is divided into three parts. First, we study the scalars Eff(I) of an ω-
effect theory in Section 5.1. We will see that the structure of the real numbers naturally
appears in these scalars. Second, in Section 5.2 we study convex normal sequential
effect algebras and find suitable conditions under which these are JB-algebras. Third,
we combine these two ingredients with some further assumptions to get the structure of
a JB-algebra in Section 5.3, and we add a tensor product to restrict these furthermore
to JW-algebras in Section 5.4.

5.1 Effect monoids
The effect space Eff(I) of the trivial object I, like for any other system in an effect
theory, is an effect algebra. But additionally, since a, b ∈ Eff(I) are morphisms
a, b : I → I, they can be composed using the regular composition a ◦ b : I → I. This
gives a total multiplication operation that makes Eff(I) into an effect monoid.

Definition 5.1.1 ([118]). An effect monoid is an effect algebra (M,>, 0,⊥ , · ) with
an additional (total) binary operation · , such that the following conditions hold for
all a, b, c ∈M .

• Unit: a · 1 = a = 1 · a.

• Distributivity: if b ⊥ c, then a · b ⊥ a · c, b · a ⊥ c · a,

a · (b> c) = (a · b) > (a · c), and (b> c) · a = (b · a) > (c · a).

Or, in other words, the operation · is bi-additive.

• Associativity: a · (b · c) = (a · b) · c.

We call an effect monoid M commutative if a · b = b · a for all a, b ∈M ; an element
p of M idempotent whenever p2 := p · p = p; elements a, b of M orthogonal when
a · b = b · a = 0; and we denote the set of idempotents of M by P (M).

Remark 5.1.2. The category of effect algebras is symmetric monoidal [119]. The
monoids in the category of effect algebras resulting from this tensor product are
precisely the effect monoids, hence the name.

Example 5.1.3. A Boolean algebra (B, 0, 1,∧,∨, ( )⊥), is an effect algebra with the
partial addition defined by x ⊥ y ⇐⇒ x∧ y = 0 and in that case x> y = x∨ y. The
complement is just the standard Boolean orthocomplement, ( )⊥. It is a commutative
effect monoid with multiplication defined by x · y = x ∧ y.

Example 5.1.4. LetX be a compact Hausdorff space. Then its unit interval [0, 1]C(X)
is a commutative effect monoid with pointwise addition and multiplication.
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There exist non-commutative effect monoids, see for instance Refs. [41, Ex. 4.3.9]
and [213, Cor. 51].

In this section we will be primarily interested in effect monoids that form the set of
scalars of an ω-effect-theory, and hence whose underlying effect algebra is ω-complete.
Examples of ω-complete effect monoids are ω-complete Boolean algebras, and the unit
intervals of C(X) where X is a basically disconnected compact Hausdorff space.

The main result of this section is that these are in a sense the only possibilities for
an ω-complete effect monoid. Before we can state this result formally, we need some
more definitions.

Definition 5.1.5. Let M and N be effect monoids. A morphism from M to N is
an effect algebra morphism f : M → N that additionally preserves multiplication:
f(a · b) = f(a) · f(b) for all a, b ∈ M . A morphism is an embedding when it is
also order reflecting: if f(a) ≤ f(b) then a ≤ b. Observe that an embedding is
automatically injective, and that any isomorphism (i.e. a bijective morphism whose
inverse is a morphism too) is an embedding. Conversely, any surjective embedding is
an isomorphism. We say M and N are isomorphic and write M ∼= N when there
exists a surjective embedding (and hence an isomorphism) from M to N .

Example 5.1.6. Given two effect algebras/monoids E1 and E2 we define their direct
sum E1 ⊕ E2 as the Cartesian product with pointwise operations. This is again an
effect algebra/monoid.

We can now state the main result of this section:

Theorem 5.1.7. Let M be an ω-complete effect monoid. Then M embeds into
M1 ⊕M2, where M1 is an ω-complete Boolean algebra, and M2 = [0, 1]C(X), where
X is a basically disconnected compact Hausdorff space.

Intuitively, this theorem shows that an ω-complete effect monoid splits up into a
‘sharp’ part that is a Boolean algebra, and a ‘convex’ part described by a compact
Hausdorff space. In the setting where there are no zero-divisors (i.e. when a · b = 0
implies a = 0 or b = 0) this picture further simplifies.

Theorem 5.1.8. Let M be an ω-complete effect monoid with no non-trivial zero
divisors. Then either M = {0}, M = {0, 1} or M ∼= [0, 1].

Hence, in an ω-effect-theory where the scalars have no non-trivial zero divisors, the
scalars are either trivial ({0}), sharp ({0, 1}) or regular probabilities ([0, 1]).

We can also frame this result through a different lens.

Definition 5.1.9. We say an effect monoid M is reducible when M ∼= M1⊕M2 for
some effect monoids M1 6= {0} and M2 6= {0}. If no such decomposition exists we say
M is irreducible.

Theorem 5.1.10. Let M be an irreducible ω-complete effect monoid. Then M = {0},
M = {0, 1} or M = [0, 1].

The rest of this section is dedicated to proving Theorems 5.1.7–5.1.10. This is rather
technical and lengthy and will have no further bearing on the rest of this chapter. A
reader not interested in the details can continue to Section 5.2.



134 Chapter 5. Reconstructing infinite-dimensional quantum theory

5.1.1 Basic results
We do not assume any commutativity of the product in an effect monoid. Nevertheless,
some commutativity comes for free.

Lemma 5.1.11. For any a ∈M in an effect monoid M , we have a · a⊥ = a⊥ · a.

Proof. a2 > (a⊥ · a) = (a > a⊥) · a = 1 · a = a = a · 1 = a · (a > a⊥) = a2 > (a · a⊥).
Cancelling a2 on both sides gives the desired equality. �

Lemma 5.1.12. An element p ∈M is an idempotent if and only if p · p⊥ = 0.

Proof. p = p · 1 = p · (p> p⊥) = p2 > p · p⊥. Hence p = p2 if and only if p · p⊥ = 0. �

Lemma 5.1.13. For a, p ∈M with p2 = p, we have

p · a = a ⇐⇒ a · p = a ⇐⇒ a ≤ p.

Proof. Assume a ≤ p. Then a ·p⊥ ≤ p ·p⊥ = 0, so that a ·p⊥ = 0. Similarly p⊥ ·a = 0.
Hence a = a · 1 = a · (p> p⊥) = a · p> a · p⊥ = a · p. Similarly p · a = a.

Now assume p · a = a. Then immediately a = p · a ≤ p · 1 = p. The final implication
(that a · p = a =⇒ a ≤ p) is proven similarly. �

Definition 5.1.14. Let M be an effect monoid and let p ∈M be some idempotent.
The subset pM := {p · a; a ∈ M} is called the left corner by p and is an effect
monoid with (p · a)⊥ := p · a⊥ and all other operations inherited from M .

Lemma 5.1.15. Let M be an effect monoid with idempotent p ∈M . Then p ·a = a ·p
for any a ∈M .

Proof. Clearly p ·a ≤ p ·1 = p and so by Lemma 5.1.13 p ·a ·p = a ·p. Similarly a ·p ≤ p
and so p · a · p = p · a. Thus p · a = p · a · p = a · p, as desired. �

Corollary 5.1.16. Let M be an effect monoid with idempotent p ∈M . The map a 7→
(p · a, p⊥ · a) is an isomorphism M ∼= pM ⊕ p⊥M .

The following two lemmas are simple observations that will be used several times.

Lemma 5.1.17. Let a ≤ b be elements of an effect algebra E. If b> b′ ≤ a> a′ for
some a′ ≤ b′ from E, then a = b (and a′ = b′).

Proof. Since a ≤ a′ and b ≤ b′, we have a> a′ ≤ b> b′, and so a> a′ = b> b′. Then
0 = (b> b′)	 (a> a′) = (b	 a) > (b′	 a′), yielding b	 a = 0 and b′	 a′ = 0, so b = a
and b′ = a′. �

Lemma 5.1.18. Let p be an idempotent from an effect monoid M , and let a, b ≤ p
be elements below p. If a> b exists, then a> b ≤ p.

Proof. Since a ≤ p, we have a·p⊥ = 0, and similarly, b·p⊥ = 0. But then (a>b)·p⊥ = 0,
and hence (a> b) · p = a> b. By Lemma 5.1.13 we then have a> b ≤ p. �
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We defined directed set to mean upwards directed. Using the fact that a 7→ a⊥ is
an order anti-isomorphism, an ω-complete effect algebra also has all countable infima
of downwards directed (or ‘filtered’) sets.

Recall that given an element a of an ordered group G a subset S of G has a
supremum

∨
S in G if and only if

∨
s∈S a+ s exists, which follows immediately from

the observation that a+ ( ): G→ G is an order isomorphism. For effect algebras the
situation is a bit more complicated, and we only have the implications mentioned in
the lemma below. We will see in Corollary 5.1.34 that the situation is simpler for
ω-complete effect monoids.

Lemma 5.1.19. Let x be an element and S a non-empty subset of an effect algebra E.
If S ⊆ [0, x⊥]E , then∨

S exists =⇒ x>
∨
S =

∨
x> S, and∧

x> S exists =⇒ x>
∧
S =

∧
x> S.

Here “=” means also that the sums, suprema and infima on either side exist. Similarly,
if S ⊆ [x, 1]E , then∧

s∈S
s	 x exists =⇒

(∨
S
)
	 x =

∨
s∈S

s	 x, and∧
S exists =⇒

(∧
S
)
	 x =

∧
s∈S

s	 x.

Moreover, if S ⊆ [0, x]E , then∨
S exists =⇒ x	

∨
S =

∧
x	 S, and∨

x	 S exists =⇒ x	
∧
S =

∨
x	 S.

Proof. Note that a 7→ x > a gives an order isomorphism [0, x⊥]E → [x, 1]E with
inverse a 7→ a 	 x. Hence x > ( ) preserves and reflects all infima and suprema
restricted to [0, x⊥]E and [x, 1]E . Given elements a ≤ b from E, and a subset S of the
interval [a, b]E , it is clear that any supremum (infimum) of S in E will be the supremum
(infimum) of S in [a, b]E too (using here that S is non-empty). The converse does
not always hold, but when S has a supremum in [a, 1]E , then this is the supremum
in E too (and when S has an infimum in [0, b]E , then this is the infimum in E too).
These considerations yield the first four equations. For the latter two we just add the
observation that x	 ( ) gives an order anti-isomorphism [0, x]E → [0, x]E . �

We can now prove a few basic yet useful facts of ω-complete effect monoids. These
lemmas deal with elements that are summable with themselves: elements a such
that a ⊥ a which means that a > a is defined. For n ∈ N we will use the notation
na = a > . . . > a for the n-fold sum of a with itself (when it is defined). We study
these self-summable elements to be able to define a “ 1

2” in some effect monoids later
on.
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Lemma 5.1.20. For any a ∈M in an effect monoid M , the element a·a⊥ is summable
with itself.

Proof. Since 1 = 1 · 1 = (a > a⊥) · (a > a⊥) = a · a > a · a⊥ > a⊥ · a > a⊥ · a⊥, and
a · a⊥ = a⊥ · a by Lemma 5.1.11, we see that a · a⊥ > a · a⊥ indeed exists. �

Lemma 5.1.21. Let a be an element of an ω-complete effect monoid M .

a) If na exists for all n, then a = 0.

b) If a2 = 0, then a = 0.

c) If a ⊥ a, then
∧
n a

n = 0.

Proof. For point a), we have a >
∨
n na =

∨
n a > na =

∨
n(n + 1)a =

∨
n na, and

so a = 0.
For point b), since a2 = 0 we have a = a·1 = a·(a>a⊥) = a·a⊥, and hence (because

of Lemma 5.1.20) a is summable with itself. But furthermore (a> a)2 = 4a2 = 0, and
so (a > a)2 = 0. Continuing in this fashion, we see that 2na exists for every n ∈ N
and (2na)2 = 0. Hence, for any m ∈ N the sum ma exists so that by the previous
point a = 0.

For point c), write b :=
∧
n a

n. As (2a)n = 2nan and b ≤ an we see that 2nb is
defined. But this is true for all n, and so again by the point a), b = 0. �

5.1.2 Floors, ceilings and division
In this section we will see that any ω-complete effect monoid has floors and ceilings,
i.e. respectively the largest idempotent below an element and the smallest idempotent
above an element. We will also construct a ‘division’: for a ≤ b we will find an element
a/b such that (a/b)·b = a. Although the same structure can be found in JBW-algebras
(cf. Sections 4.3, 4.5), the proofs will be quite different.

Using ceilings and division we will show that multiplication in a ω-complete effect
monoid is always normal, i.e. that b ·

∨
S =

∨
b · S for non-empty S for which

∨
S

exists. This technical result will be frequently used in the remainder of the proof of
the characterisation theorem.

Definition 5.1.22. Let (xi)i∈I be a (potentially infinite) family of elements from an
effect algebra E. We say that the sum >i∈I xi exists if for every finite subset S ⊆ I
the sum >i∈S xi exists and the supremum

∨
finite S⊆I >i∈S xi exists as well. In that

case we write >i∈I xi :=
∨

finite S⊆I >i∈S xi.

Lemma 5.1.23. Given a ∈M for an effect monoid M , we have

(aN )⊥ = a⊥ > a⊥ · a > a⊥ · a2 > · · · > a⊥ · aN−1

for every natural number N .
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Proof. We simply compute:

1 = a⊥ > a

= a⊥ > (a⊥ > a) · a = a⊥ > a⊥ · a > a2

= a⊥ > a⊥ · a > (a⊥ > a) · a2 = a⊥ > a⊥ · a > a⊥ · a2 > a3

...

=
(N−1

>
n=0

a⊥ · an
)

> aN �

Corollary 5.1.24. The sum >∞
n=0 a

⊥ · an exists for any element a in an ω-complete
effect monoid M .

Definition 5.1.25. Given an element a of an ω-complete effect monoid M

dae :=
∞

>
n=0

a · (a⊥)n and bac :=
∞∧
n=0

an

are called the ceiling of a and the floor of a, respectively.

We list some basic properties of dae and bac in Proposition 5.1.30, after we have
made the observations necessary to establish them.

Lemma 5.1.26. Let M be an ω-complete effect monoid and let a ∈M be arbitrary.
Then

∧
n a
⊥ · an = 0.

Proof. Define b :=
∧
n a
⊥ ·an. Since a and a⊥ commute by Lemma 5.1.11, we compute

1 = 1n = (a⊥ > a)n =
n

>
k=0

(
n

k

)(
(a⊥)k · an−k

)
,

where
(
n
k

)
represents a binomial coefficient. We in particular see that the sum

(
n
1
)
(a⊥ ·

an−1) = n(a⊥ · an−1) exists. Because b ≤ a⊥ · an−1, the n-fold sum nb exists too for
all n and hence b = 0 by Lemma 5.1.21. �

Lemma 5.1.27. We have bac = bac · a = a · bac for any element a of an ω-complete
effect monoid M .

Proof. Using Lemmas 5.1.11 and 5.1.26 we compute bac · a⊥ = (
∧
n a

n) · a⊥ ≤
∧
n a

n ·
a⊥ =

∧
n a
⊥ · an = 0, and so bac · a = bac. The other identity has a similar proof. �

Lemma 5.1.28. Given elements a, b1, b2, . . . of an ω-complete effect monoid M such
that >n bn exists, and a · bn = 0 for all n ∈ N, we have a ·>n bn = 0.

Proof. Writing sN = >N
n=1 bn, we have s1 ≤ s2 ≤ · · · and a · sn = 0 for all n.

Since sn = (a> a⊥) · sn = a · sn > a⊥ · sn = a⊥ · sn for all n ∈ N, we have∨
n sn =

∨
n a
⊥ · sn ≤ a⊥ ·

∨
n sn ≤

∨
n sn,

which implies that a⊥ ·
∨
n sn =

∨
n sn, and thus a ·>n bn = a ·

∨
n sn = 0. �
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Proposition 5.1.29. Let a and b be elements of an ω-complete effect monoid M .
Then a · b = 0 =⇒ a · dbe = 0.

Proof. If a · b = 0, then also a · b · (b⊥)n = 0 for all n. Hence by Lemma 5.1.28
a · dbe = a ·>∞

n=1 b · (b⊥)n = 0. �

Proposition 5.1.30. Let a be an element of an ω-complete effect monoid M .

a) The floor bac of a is an idempotent with bac ≤ a. In fact, bac is the greatest
idempotent below a.

b) The ceiling dae of a is the least idempotent above a.

c) We have dae⊥ = ba⊥c and bac⊥ = da⊥e.

Proof. Point c) follows from Lemma 5.1.23. Concerning point a): Since bac · a⊥ = 0
(by Lemma 5.1.27) we have bac · da⊥e = 0 by Proposition 5.1.29, and so bac · bac⊥ = 0
because bac⊥ = da⊥e by point c). Hence bac is an idempotent. Also, since bac =

∧
n a

n,
we clearly have bac ≤ a. Now, if s is an idempotent in M with s ≤ a, then s = sn ≤ an,
and so s ≤

∧
n a

n = bac. So that bac is indeed the greatest idempotent below a.
Point b) now follows easily from a), since d · e is the dual of b · c under the order
anti-isomorphism ( · )⊥. �

Lemma 5.1.31. da>be = dae∨dbe for all summable elements a and b of an ω-complete
effect monoid M (that is, da> be is the supremum of dae and dbe).

Proof. Since da> be ≥ a> b ≥ a, we have da> be ≥ dae, and similarly, da> be ≥ dbe.
Let u be an upper bound of dae and dbe; we claim that da > be ≤ u. Since dae ≤ u
and dbe ≤ u, we have a ≤ dae ≤ buc and b ≤ dbe ≤ buc, and so a > b ≤ buc by
Lemma 5.1.18. Hence da> be ≤ buc ≤ u. �

Any ω-complete effect monoid is a lattice effect algebra [183]:

Theorem 5.1.32. Let a, b ∈M be elements of an ω-complete effect monoid M . Then
a and b have an infimum a ∧ b given by

a ∧ b =
∞

>
n=1

an · bn where
[
a1 = a an+1 = an · b⊥n
b1 = b bn+1 = a⊥n · bn

Consequently, a and b also have a supremum given by a ∨ b = (a⊥ ∧ b⊥)⊥.

Proof. First we need to show that the sum >N
n=1 an · bn exists for every N . In fact,

we’ll show that a	>N
n=1 an ·bn = aN+1 for all N , by induction. Indeed, for N = 1 we

have a	 a · b = a · b⊥ = a2, and if a	>N
n=1 an · bn = aN+1 for some N , then aN+2 =

aN+1 ·b⊥N+1 = aN+1	aN+1 ·bN+1 = (a	>N
n=1 an ·bn)	aN+1 ·bN+1 = a	>N+1

n=1 an ·bn.
Hence, >∞

n=1 an · bn exists and moreover

a =
∞∧
m=1

am >
∞

>
n=1

an · bn.
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By a similar reasoning, we get

b =
∞∧
m=1

bm >
∞

>
n=1

an · bn.

Already writing a∧b := >∞
n=1 an ·bn, we know at this point that a∧b ≤ a and a∧b ≤ b.

It remains to show that a∧ b defined above is the greatest lower bound of a and b. So
let ` ∈M with ` ≤ a and ` ≤ b be given; we must show that ` ≤ a ∧ b.

First, we observe that
(∧

n an
)
·
(∧

m bm
)

= 0. Indeed, we have
(∧

n an
)
·
(∧

m bm
)
≤∧

n an · bn, and
∧
n an · bn = 0 because >∞

n=1 an · bn exists (see Lemma 5.1.21). By
Proposition 5.1.29 it follows that

(∧
n an

)
·d
∧
m bme = 0. Hence, writing p = d

∧
m bme,

we have p ·
∧
n an =

(∧
n an

)
· p = 0 using Lemma 5.1.15. Observing that

∧
n bn ≤ p

and using Lemma 5.1.13 we also have p⊥ ·
∧
n bn = 0. We then calculate p · a =

p ·
(∧

n an > a ∧ b
)

= p · (a ∧ b) and similarly p⊥ · b = p⊥ · (a ∧ b).
Returning to the problem of whether ` ≤ a ∧ b, we have

` = p · ` > p⊥ · ` ≤ p · a > p⊥ · b = p · (a ∧ b) > p⊥ · (a ∧ b) = a ∧ b.

As l was arbitrary, a ∧ b is indeed the infimum of a and b. �

The presence of finite infima and suprema in ω-complete effect monoids prevents
certain subtleties around the existence of arbitrary suprema and infima.

Corollary 5.1.33. Let a ≤ b be elements of an ω-complete effect monoid M , and let
S be a non-empty subset of [a, b]M .

Then S has a supremum (infimum) in M if and only if S has a supremum (infimum)
in [a, b]M , and these suprema (infima) coincide.

Proof. It is clear that if S has a supremum in M , then this is also the supremum
in [a, b]M . For the converse, suppose that S has a supremum

∨
S in [a, b]M , and let u

be an upper bound for S in M ; in order to show that
∨
S is the supremum of S in M

too, we must prove that
∨
S ≤ u. Note that b ∧ u is an upper bound for S. Indeed,

given s ∈ S ⊆ [a, b]M we have s ≤ b and s ≤ u so that s ≤ b∧ u. Moreover, one easily
sees that b ∧ u ∈ [a, b]M using the fact that S is non-empty. Hence b ∧ u is an upper
bound of S in [a, b]M , and so

∨
S ≤ b ∧ u ≤ u, making

∨
S the supremum of S in M .

An analogous proof works for proving infima of S are preserved. �

Corollary 5.1.34. Given an element a and a non-empty subset S of an ω-complete
effect monoid M such that a> s exists for all s ∈ S,

• the supremum
∨
S exists iff

∨
a>S exists, and in that case a>

∨
S =

∨
a>S;

• the infimum
∧
S exists iff

∧
a> S exists, and in that case a>

∧
S =

∧
a> S.

Proof. The map a > ( ) : [0, a⊥]M → [a, 1]M , being an order isomorphism, preserves
and reflects suprema and infima. Now apply Corollary 5.1.33. �

Now that we know more about the existence of suprema and infima, we set our
sights on proving that multiplication interacts with suprema and infima as desired,
namely that it preserves them. To do this we introduce a partial division operation.
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Definition 5.1.35. Given elements a ≤ b of an ω-complete effect monoid, set

a/b :=
∞

>
n=0

a · (b⊥)n.

Note that the sum exists, because >N
n=0 a · (b⊥)n ≤>∞

n=0 b · (b⊥)n = dbe for all N .

Lemma 5.1.36. Let b be an element of an ω-complete effect monoid M .

a) b/b = dbe.

b) (a1 > a2)/b = a1/b > a2/b for all summable a1, a2 ∈M with a1 > a2 ≤ b.

c) (a · b)/b = a · dbe for all a ∈M .

d) (a/b) · b = a for all a ∈M with a ≤ b.

e) {a · b ; a ∈M} = Mb = [0, b]M = {a ∈M ; a ≤ b}.

f) The maps a 7→ a · b : Mdbe → Mb and a 7→ b · a : dbeM → bM are order
isomorphisms.

Proof. Points a) and b) are easy, and left to the reader. Concerning c), first note that

(a · b)/b =
∞

>
n=0

a · b · (b⊥)n ≤ a ·
∞

>
n=0

b · (b⊥)n = a · dbe.

Thus (a · b)/b ≤ a · dbe. Since similarly (a⊥ · b)/b ≤ a⊥ · dbe, we get, using a) and b):

dbe = b/b = (a · b)/b > (a⊥ · b)/b ≤ a · dbe > a⊥ · dbe = dbe.

Hence, (a · b)/b = a · dbe byLemma 5.1.17). For point d), note that given a, b ∈ M
with a ≤ b we have a = a · dbe (by Lemma 5.1.13, since a ≤ b ≤ dbe,) and so

a = a · dbe = (a · b)/b by point c)

=
∞

>
n=0

a · b · (b⊥)n

=
∞

>
n=0

a · (b⊥)n · b by Lemma 5.1.11

≤
( ∞
>
n=0

a · (b⊥)n
)
· b = (a/b) · b.

Since similarly b	 a ≤ ((b	 a)/b) · b, we get

b = a> (b	 a) ≤ (a/b) · b > ((b	 a)/b) · b = (b/b) · b = dbe · b = b,

which forces a = (a/b) · b. For point e), note that Mb, bM ⊆ [0, b]M since b · a, a · b ≤ b
for all a ∈M , and [0, b]M ⊆Mb, because a = (a/b) · b for any a ∈ [0, b]M by point d).
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Finally, concerning point f): the maps a 7→ a · b : Mdbe →Mb and a 7→ a/b : Mb→
Mdbe are clearly order preserving, and each other’s inverse by points c) and d), and thus
order isomorphisms. The proof that a 7→ b · a : Mdbe → bM is an order isomorphism
follows along entirely similar lines, but involves b\a defined by b\a := >n(b⊥)n · a
and uses the fact that bM = [0, b]M = Mb. �

Finally, we can prove that multiplication is indeed normal:

Theorem 5.1.37. Let b and b′ be elements of an ω-complete effect monoid M , and
let S ⊆M be any (potentially uncountable or non-directed) non-empty subset.

• If
∨
S exists, then so does

∨
s∈S b · s · b′, and b · (

∨
S) · b′ =

∨
s∈S b · s · b′.

• If
∧
S exists, then so does

∧
s∈S b · s · b′, and b · (

∧
S) · b′ =

∧
s∈S b · s · b′.

Proof. Suppose that
∨
S exists. We will prove that b ·

∨
S =

∨
s∈S b · s, and leave

the remainder to the reader. Note that b · ( ) : [0, dbe]M → [0, b]M , being an order
isomorphism by Lemma 5.1.36.f), preserves suprema and infima. The set S need,
however, not be part of [0, dbe]M , so we consider instead of b the element b′ :=
b > dbe⊥, for which db′e = dbe ∨ dbe⊥ = 1 by Lemma 5.1.31. We then get an order
isomorphism b′ · ( ) : M → [0, b′]M , which preserves suprema, so that b′ ·

∨
S is the

supremum of b′ · S in [0, b′]M , and hence in M , by Corollary 5.1.33. Then

(b> dbe⊥) ·
∨
S =

∨
s∈S

(b> dbe⊥) · s

≤
∨
s∈S

b · s >
∨
s′∈S
dbe⊥ · s′

≤ b ·
∨
S > dbe⊥ ·

∨
S

= (b> dbe⊥) ·
∨
S

forces
∨
s∈S b · s = b ·

∨
S by Lemma 5.1.17. �

5.1.3 Boolean algebras, halves and convexity
We are ready to study the two important types of idempotents in an effect monoid:
those that are Boolean and those that are halvable.

Definition 5.1.38. We say that an element a of an effect monoid M is Boolean
when each b ≤ a is idempotent. We say an effect monoid is Boolean when 1 is Boolean.

Proposition 5.1.39. The set of idempotents P (M) of an effect monoid M is a
Boolean algebra. Thus an effect monoid is Boolean iff it is a Boolean algebra.

Proof. First we will show that in fact p·q = p∧q for p, q ∈ P (M), where the infimum ∧
is taken in M . Using Lemma 5.1.15, we see (p · q)2 = p · q · p · q = p · p · q · q = p · q and
so p · q is an idempotent. Let r ≤ p, q. Then r · p = r and r · q = r so that r · p · q = r,
and hence r ≤ p·q by Lemma 5.1.13, which shows p·q = p∧q. As the complement is an
order anti-isomorphism, we find p∨q = (p⊥∧q⊥)⊥ and hence P (M) is an ortholattice.
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It remains to show that it satisfies distributivity: p ∧ (q ∨ r) = (p ∧ q) ∨ (p ∧ r). By
uniqueness of complements, it is easily shown that p ∨ q = p> (p⊥ · q) = q > (p · q⊥).
The remainder is a straightforward exercise in writing out the expressions p ∧ (q ∨ r)
and (p ∧ q) ∨ (p ∧ r) and noting that they are equal. �

Proposition 5.1.40. The set of idempotents P (M) of an ω-complete effect monoid M
is an ω-complete Boolean algebra.

Proof. Let A ⊆ P (M) be a countable subset. Pick an enumeration of its elements
p1, p2, . . .. Let qn be iteratively defined as q1 = p1 and qn = qn−1 ∨ pn. Then the
qn form an increasing sequence and hence it has a supremum q. We claim that q
is also the supremum of A. Of course q ≥ qn ≥ pn and hence q is an upper bound.
Suppose that r ≥ pn for all n. Then r ≥ q1, and hence by induction if r ≥ qn then
r ≥ qn ∨ pn = qn+1. Hence also r ≥ q. �

Proposition 5.1.41. Let M be an ω-complete Boolean effect monoid. Then M is
an ω-complete Boolean algebra.

Proof. By Propositions 5.1.39 and 5.1.40 P (M) is an ω-complete Boolean algebra.
But by assumption every element of M is an idempotent, and hence M = P (M). �

The counterpart to the Boolean effect monoids, are the halvable effect monoids

Definition 5.1.42. We say that an element a of an effect algebra E is halvable
when a = b> b for some b ∈ E. We say an effect algebra is halvable when 1 is halvable.

A halvable effect monoid actually has much more structure then might be apparent:
it is a convex effect algebra. Recall from Definition 3.4.4 that a convex effect algebra
has an action of the real unit interval λ 7→ λ · a satisfying certain axioms. In a convex
effect monoid we will usually write the convex action without any symbol in order
to distinguish it from the multiplication coming from the monoid structure. So if
λ ∈ [0, 1] is a real number and a, b ∈ M is a convex effect monoid, then we write
λ(a · b). Note that a priori it is not clear whether λ(a · b) = (λa) · b = a · (λb).

Proposition 5.1.43. Let M be a halvable ω-complete effect monoid. Then M is
convex.

Proof. Pick any a ∈M with a> a = 1. Let q = m
2n be a dyadic rational number with

0 ≤ m ≤ 2n. We define a corresponding element q ∈ M by q = man, which is easily
seen to be independent of the choice of m and n. This yield an action (q, s) 7→ q · s
that satisfies all axioms of Definition 3.4.4 restricted to dyadic rationals.

Assume λ ∈ (0, 1]. Pick a strictly increasing sequence 0 ≤ q1 < q2 < . . . of dyadic
rationals with sup qi = λ.

We will define λ ∈ M by
∨
i qi, but first we have to show that it is independent

of the choice of the sequence and that it coincides with the definition just given for
dyadic rationals. So assume 0 ≤ p1 < p2 < . . . is any other sequence of dyadic
rationals with sup pi = λ. For any pi we can find a qj with pi ≤ qj , so pi ≤ qj ,
hence

∨
i pi ≤

∨
j qj . As the situation is symmetric between the sequences, we also

have
∨
j qj ≤

∨
i pi and so

∨
j qj =

∨
i pi. Hence λ is independent of the choice of
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sequence. Next, assume λ = q is a non-zero dyadic rational. Pick m with 2−m ≤ q.
Then qn = q − 2−(m+n) is a sequence of dyadic rationals with sup qn = q. We
have

∨
n q − 2−(m+n) = q 	

∧
n 2−(m+n) = q 	

∧
n a

m+n = q, (where in the last step
we used Lemma 5.1.21) so both definitions of q coincide. As a result we are indeed
justified to define λ =

∨
i qi. We can then define an action by (λ, s) 7→ λ · s. As both

addition and multiplication preserve suprema by Theorem 5.1.37, it is straightforward
to show that this action indeed satisfies all the axioms of a convex action. �

5.1.4 Embedding theorems
In this section we will show that ω-complete effect monoids always embed into a direct
sum of a Boolean algebra and a convex effect monoid.

Some of the results in our section require us to prove the existence of certain maximal
elements. Recall that for a partially ordered set P an element a ∈ P is maximal
when for any b ∈ P with a ≤ b we have a = b. To find such maximal elements we
use (either explicitly or implicitly) the well-known Zorn’s lemma, a statement that is
equivalent to the Axiom of Choice.

Theorem 5.1.44 (Zorn’s Lemma). Let P be any partially ordered set. A subset
D ⊆ P is called a chain when it is totally ordered. If all chains in P have a supremum,
then P has at least one maximal element.

Lemma 5.1.45. Let M be an ω-complete effect monoid, and let a be a halvable
element. Then the ceiling dae is halvable as well.

Proof. Write a = b> b. We compute

dae ≡ >n a · (a⊥)n = >n(b> b) · (a⊥)n =
(
>n b · (a⊥)n

)
>
(
>n b · (a⊥)n

)
,

and hence dae is indeed halvable. �

Proposition 5.1.46. Each ω-complete effect monoid M has a subset E ⊆M

• that is a maximal collection of non-zero orthogonal idempotents, and

• where each element of E is either halvable or Boolean.

Proof. Let H be a maximal collection of non-zero orthogonal halvable idempotents
of M , and let E be a maximal collection of non-zero orthogonal idempotents of M that
extends H. (Such sets E and H exist by Zorn’s Lemma). By definition, E is a maximal
collection of non-zero orthogonal idempotents of M , so the only thing to prove is that
each p ∈ E\H is Boolean. Hence, let a be an element of M below some p ∈ E\H;
we must show that a is an idempotent. Note that 2(a⊥ · a) = a⊥ · a> a⊥ · a (which
exists by e.g. Lemma 5.1.20) is halvable, and 2(a⊥ · a) ≤ p, because 2(a⊥ · a) · p =
2(a⊥ · a · p) = 2(a⊥ · a). Then the idempotent d2a · a⊥e ≤ p, which is halvable by
Lemma 5.1.45, is orthogonal to all h ∈ H (since it is below p) and must therefore
be zero (since it would contradict the maximality of H otherwise). We then have
a⊥ · a = 0 since a⊥ · a ≤ d2a⊥ · ae = 0, and so a is an idempotent by Lemma 5.1.12.
So p is indeed Boolean. �
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Note that the only idempotent that is both Boolean and halvable is zero, and hence
each element in the above set is either Boolean or halvable.
Proposition 5.1.47. Given a maximal orthogonal collection of non-zero idempotents E
of an ω-complete effect monoid M , the map

a 7→ (a · p)p : M −→
⊕
p∈E

pM

is an embedding of effect monoids.
Proof. The map obviously maps 1 to 1, and preserves addition. Hence it also preserves
the complement and the order. By Lemma 5.1.15 we have (a ·p) ·(b ·p) = (a ·b) ·(p ·p) =
(a · b) ·p, and so the map also preserves the multiplication. It remains to show that the
map is order reflecting. Note that if we had >E = 1, then for any a by Theorem 5.1.37
a = a · 1 = a ·>p∈E p = >p∈E a · p, and hence if a · p ≤ b · p for all p ∈ E we have
a = >p∈E a · p ≤>p∈E b · p = b, which proves that it is indeed order reflecting.

So let us prove that >E = 1. Suppose u is an upper bound for E. We must
show that u = 1. Note that buc is an upper bound for E too, since E contains only
idempotents. It follows that the idempotent buc⊥ = du⊥e is orthogonal to all p ∈ E,
which is impossible (by maximality of E) unless du⊥e = 0. Hence u⊥ ≤ du⊥e = 0, so
that indeed u = 1. �

Theorem 5.1.48. Let M be an ω-complete effect monoid. Then there exist ω-
complete effect monoids M1 and M2 where M1 is convex, and M2 is an ω-complete
Boolean algebra such that M embeds into M1 ⊕M2.
Proof. Let E = H ∪ B be a maximal collection of non-zero orthogonal idempotents
of Proposition 5.1.46 such that the idempotents p ∈ H are halvable, while the q ∈ B
are Boolean.

Let M1 ≡
⊕

p∈H pM and M2 ≡
⊕

q∈B qM . It is easy to see that M1 is then again
halvable and M2 is Boolean. By Propositions 5.1.43 and 5.1.41 M1 is convex while
M2 is an ω-complete Boolean algebra. By the previous proposition M embeds into⊕

p∈E pM
∼= M1 ⊕M2. �

One might be tempted to think that the above result could be strengthened to an
isomorphism. The following example shows that this is not the case:
Example 5.1.49. Let X1 and X2 be uncountably infinite sets, and let A be the set
of all pairs of functions

A := {(f1 : X1 → [0, 1], f2 : X2 → {0, 1})}.

Let S0, S1 ⊆ A be subsets where both functions are unequal to 0 respectively 1 only
at a countable number of spots:

S0 := {(f1, f2) ; both {x1 ∈ X1 ; f1(x1) 6= 0} and {x2 ∈ X2 ; f2(x2) 6= 0} countable}
S1 := {(f1, f2) ; both {x1 ∈ X1 ; f1(x2) 6= 1} and {x2 ∈ X2 ; f2(x2) 6= 1} countable}

Finally, define M = S0 ∪ S1. It is then straightforward to check that M is an ω-
complete effect monoid. It is easy to see that M has no maximal halvable idempotent,
and hence for any M1 halvable and M2 Boolean, necessarily M 6= M1 ⊕M2.
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Though the embedding is not an isomorphism for ω-complete effect monoids, if the
effect monoid was directed complete, then we would have an isomorphism. We direct
the interested reader to Ref. [210].

5.1.5 Convexity and order unit spaces
Recall from Proposition 3.4.5 that every convex effect algebra is the unit inter-
val of an ordered vector space. We wish to use Kadison’s representation theorem
(Theorem 1.3.17) to conclude that any ω-complete convex effect monoid is of the
form [0, 1]C(X) for some compact Hausdorff space. This will require some setup.

Lemma 5.1.50. Let V be an ordered vector space with order unit 1. Its unit interval
is ω-complete if and only if V is bounded ω-directed-complete; that is if every
bounded increasing sequence in V has a supremum.

Proof. Since any subset of the unit interval is obviously bounded, any bounded ω-
directed-complete vector space has an ω-complete unit interval. For the other direction,
assume S ⊆ V is some countable directed subset with upper bound b ∈ V . Pick any a ∈
S and define S′ = {v ∈ S; a ≤ v}. It is then sufficient to show that S′ has a supremum.
Pick any n ∈ N, n 6= 0 with−n·1 ≤ a, b ≤ n·1. Then clearly { 1

n (s−a); s ∈ S′} ⊆ [0, 1]V
has a supremum and hence so does S′ as v 7→ nv + a is an order isomorphism. �

Lemma 5.1.51. A bounded ω-directed-complete ordered vector space with order unit
is Archimedean, and hence is an order unit space.

Proof. Assume V is bounded ω-directed-complete. Let v ∈ V be given with v ≤ 1
n1

for all n ∈ N. As a 7→ −a is an order anti-isomorphism, all bounded directed subsets
of V have an infimum too, so v ≤

∧
n

1
n1 = 0 as desired. �

Definition 5.1.52. Let M be a convex effect monoid. We say its multiplication is
homogeneous when for any a, b ∈M and λ ∈ [0, 1] we have λ(a·b) = (λa)·b = a·(λb).

Proposition 5.1.53. Let M be an ω-complete convex effect monoid. Then the
multiplication is homogeneous.

Proof. We will only show λ(a · b) = a · (λb). The other equality follows similarly.
Clearly n(a · ( 1

nb)) = a · b = n 1
n (a · b) and so a · ( 1

nb) = 1
n (a · b). Hence m(a · ( 1

nb)) =
a · (mn b) = m

n (a · b) for any m ≤ n. We have now shown the desired equality for
rational λ. To prove the general case, let a, b ∈ M and λ ∈ [0, 1] be given. Pick
a sequence 0 ≤ q1 < q2 < . . . of rationals with

∨
n qn = λ. Let V be the ordered

vector space with M ∼= [0, 1]V (as a convex effect algebra), which exists due to
Proposition 3.4.5, and is an order unit space due to Lemma 5.1.51. Note that the
multiplication of M is only defined on [0, 1]V . For a ∈ [0, 1]V we have a ≤ ‖a‖1 and
so ‖a · b‖ ≤ ‖a‖‖b‖ for any b ∈ [0, 1]V . Hence

‖λ(a · b)− a · (λb)‖ = ‖(λ− qi)(a · b) + a · (qib)− a · (λb)‖
= ‖(λ− qi)(a · b)− a · ((λ− qi)b)‖
≤ (λ− qi)‖a · b‖+ (λ− qi)‖a‖‖b‖.
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The right-hand side vanishes as i → ∞. Thus ‖λ(a · b)− a · (λb)‖ = 0. Since V is
Archimedean by Lemma 5.1.51, ‖·‖ is a proper norm so that then λ(a · b)− a · (λb) =
0. �

Proposition 5.1.54 ([213, Theorem 46]). Let M be a convex effect monoid with
homogeneous multiplication, and let V be the OUS such that M ∼= [0, 1]V . Then the
multiplication of M extends to a bilinear, unital, associative and positivity preserving
multiplication on V .

Proposition 5.1.55 ([228, Lemma 1.2]). Let V be a bounded ω-directed-complete
OUS. Then V is complete in its norm.

Theorem 5.1.56. Let M be a convex ω-complete effect monoid. Then M ∼= [0, 1]C(X)
for some basically disconnected Hausdorff space X.

Proof. By Proposition 3.4.5 there is an OUS V such that M ∼= [0, 1]V as a convex
effect algebra. V is bounded ω-directed-complete by Lemma 5.1.50 and thus complete
by Proposition 5.1.55 and Archimedean by Lemma 5.1.51. The multiplication on M is
homogeneous by Proposition 5.1.53 and so it extends to a bilinear, unital, associative
and positive product on V by Proposition 5.1.54. Then by Theorem 1.3.17 there exists
a compact Hausdorff space X such that V ∼= C(X). As C(X) is bounded ω-directed-
complete iff X is basically disconnected, the result follows. �

5.1.6 Characterisation of ω-directed-complete effect monoids
Finally, we can establish the results we set out to prove.

Theorem (5.1.7). Let M be an ω-complete effect monoid. Then there exists a
basically disconnected compact Hausdorff space X, and an ω-complete Boolean algebra
B such that M embeds into [0, 1]C(X) ⊕B.

Proof. By Theorem 5.1.48 there exist ω-complete effect monoids M1 and M2 such
that M embeds into M1 ⊕M2, where M1 is convex and M2 is an ω-complete Boolean
algebra. By Theorem 5.1.56 M1 = [0, 1]C(X) for a basically disconnected compact
Hausdorff space X. �

Theorem (5.1.8). Let M be an ω-complete effect monoid with no non-trivial zero
divisors. Then either M = {0}, M = {0, 1} or M ∼= [0, 1].

Proof. Assume thatM 6= {0, 1} andM 6= {0}. We remark first that for any idempotent
p ∈M we have p · p⊥ = 0, and hence by the lack of non-trivial zero divisors we must
have p = 0 or p = 1. Since M 6= {0, 1}, there is an s ∈ M such that s 6= 0, 1, and
hence we must have s · s⊥ 6= 0. By Lemma 5.1.20 we then have an element 2(s · s⊥)
that is halvable. Hence by Lemma 5.1.45 d2s · s⊥e is also halvable. As this ceiling is
an idempotent it must be equal to 1 or to 0. If it were zero then 2s ·s⊥ ≤ d2s ·s⊥e = 0,
which contradicts s · s⊥ 6= 0. So 1 = d2s · s⊥e is halvable. By Proposition 5.1.43,
M is then convex. Hence, by Theorem 5.1.56 M = [0, 1]C(X) for some basically
disconnected X. We will show that X has a single element, which will complete the
proof.
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As idempotents of [0, 1]C(X) correspond to clopens of X, there are only two clopens
in X, namely X and ∅. Reasoning towards contradiction, assume there are x, y ∈ X
with x 6= y. By Urysohn’s lemma we can find f ∈ C(X) with 0 ≤ f ≤ 1, f(x) = 0
and f(y) = 1. Ux = f−1([0, 1

3 )) and Uy = f−1(( 2
3 , 1]) are two open sets with disjoint

closure. Using Urysohn’s lemma again, we can find g ∈ C(X) with g(Ux) = {0}
and g(Uy) = {1}. As X is basically disconnected, we know supp g is clopen. We
cannot have supp g = ∅ as y ∈ Uy ⊆ supp g. Hence supp g = X. But then x ∈ Ux ⊆
X − supp g = ∅, a contradiction. Hence X has only one point and so M ∼= [0, 1]. �

Theorem (5.1.10). LetM be an irreducible ω-complete effect monoid. Then M = {0},
M = {0, 1} or M = [0, 1].

Proof. By the previous theorem it suffices to show that M has no non-trivial zero
divisors. By Corollary 5.1.16, any idempotent p ∈ M with p 6= 0, 1 would make M
reducible. Hence, the only idempotents in M are 0 and 1. Now suppose a · b = 0.
By Proposition 5.1.29 then a · dbe = 0. If dbe = 1, this implies a = 0. Otherwise
necessarily dbe = 0 so that b ≤ dbe = 0. Hence, M has no non-trivial zero divisors. �

5.2 Convex normal sequential effect algebras
The axioms of the sequential product in Definition 2.2.3 were based on that of a
sequential effect algebra (SEA), introduced by Gudder and Greechie [95]. For this
chapter we will be interested in ω-SEAs, that additionally have countable suprema
that interact well with the sequential product.

Definition 5.2.1. A sequential effect algebra (SEA) [95] (E,>, 0, ( )⊥, & ) is
an effect algebra with an additional (total) binary operation & , called the sequen-
tial product, satisfying the axioms listed below. We say a and b are compatible,
writing a | b, whenever a& b = b& a.

1. a& (b> c) = a& b> a& c.

2. 1 & a = a.

3. a& b = 0 =⇒ b& a = 0.

4. If a | b, then a | b⊥ and a& (b& c) = (a& b) & c for all c.

5. If c | a and c | b then also c | a& b and if furthermore a ⊥ b, then c | a> b.

A SEA E is a ω-SEA provided E is ω-complete and

6. For any increasing sequence s1 ≤ s2 ≤ . . . we have a&
∨
n sn =

∨
n(a& sn) and

if a | sn for all n, then a |
∨
n sn.

We say E is commutative whenever a | b for all a, b ∈ E. We say a, b ∈ E are
orthogonal, provided a& b = 0. An element p ∈ E is idempotent when p2 :=
p& p = p or equivalently, when p& p⊥ = 0.
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Remark 5.2.2. The definition of a sequential effect algebra is very similar to that
of Definition 2.2.3, but then specified for effect algebras. The differences are that it
does not include the axiom of continuity S2, and that it has the new axiom stating
that a | (b& c) when a | b, c. The axiom of ‘normality’, i.e. that is preserves suprema,
will take over the role of continuity in the results of this section.

We will be primarily interested in SEAs E that are also convex effect algebras
(cf. Definition 3.4.4). Recall from Proposition 3.4.5 that we can then find an ordered
vector space V such that E ∼= [0, 1]V . If furthermore E is ω-complete (such as when
E is an ω-SEA), then V is an order unit space (cf. Lemma 5.1.51).

Example 5.2.3. The unit interval of a JBW-algebra is a directed-complete convex
effect algebra. The operation a& b := Q√ab makes this unit interval a convex ω-SEA
(cf. Theorem 4.7.18).

The following two propositions contain similar results to those found in Section 2.3.

Proposition 5.2.4. Let E be a SEA and let a, b, c ∈ E.

• a& 0 = 0 & a = 0 and a& 1 = 1 & a = a.

• a& b ≤ a.

• If a ≤ b then c& a ≤ c& b.

Proof. See Proposition 2.3.1. �

Proposition 5.2.5. Let E be a convex ω-SEA. Let a, b ∈ E and let λ ∈ [0, 1]. Then:

a) a& (λb) = λ(a& b).

b) (λa) & b = a& (λb) = λ(a& b) and if a | b then a |λb.

Proof.

a) See Proposition 2.3.2 a) and b).

b) Clearly 1
na |

1
na so that by summing terms together 1

na | a. In the same way we
also see that qa | a and qa⊥ | a⊥ for any rational 0 ≤ q ≤ 1. Then also qa⊥ | a and
hence a | (qa+ qa⊥) = q1 so that (q1) & a = a& (q1) = q(a& 1) = qa. Now let
λ ∈ [0, 1] be a real number and let qi be an increasing set of rational numbers that
converges to λ, then it is straightforward to show that ∨iqi1 = λ1 and because
a | qi1 we indeed have a | ∨iqi1 = λ1. As a result (λa) & b = (a& (λ1)) & b =
a& ((λ1) & b) = a& (λb) = λ(a& b).
Now if a | b then we get a& (λb) = λ(a& b) = λ(b& a) = (λb) & a so that indeed
a |λb. �

Let V be the order unit space associated to a convex ω-SEA E via E ∼= [0, 1]V . Let
v ∈ V be arbitrary and write v = λ1b1−λ2b2 where λ1, λ2 ∈ R≥0 and b1, b2 ∈ E. Then
we define a& v := λ1a& b1−λ2a& b2. This is well-defined because a& (λb) = λ(a& b)
shows that the product is linear in the second argument.
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Similarly, because (λa) & b = λ(a& b), we can also define the sequential product for
any v > 0 in the associated OUS of E by v&w := ‖v‖(‖v‖−1

v) &w. We will therefore
use the sequential product for all elements in the positive cone of the order unit space
associated to a convex ω-SEA without further reference to this fact.

Analogous to the definition in Jordan algebras, we define the commutant and
bicommutant of a set of elements (cf. Definition 4.1.14).

Definition 5.2.6. Let S ⊆ E be a subset of elements of a SEA E. We define the
commutant of S to be S′ := {a ∈ E ; ∀s ∈ S : s | a}, the set of elements in E that
are compatible with every element in S. Similarly the bicommutant S′′ := (S′)′ of
S is the set of elements in E that are compatible with every element in S′.

Lemma 5.2.7. Let S ⊆ E be a subset of elements of a SEA E. Then S′ is an effect
sub-algebra. If E is an ω-SEA, then so is S′ and if E is a convex ω-SEA then so is S′.

Proof. If we have a, b ∈ S′ such that a> b is defined in E then for all s ∈ S we have
a | s and b | s so that (a>b) | s and (a& b) | s as well which means that S′ is closed under
addition and multiplication. It is similarly also closed under taking the complement.
Obviously 1 and 0 commute with every element so that 0, 1 ∈ S′ so that S′ is indeed
a sub-SEA.

Suppose now that E is a ω-SEA and let a1 ≤ a2 ≤ . . . be an increasing sequence
in S′. This has a supremum

∨
n an in E. Since for all s ∈ S we have s | an we also

have s |
∨
n an by an axiom of ω-SEAs. Since s was arbitrary we have

∨
n an ∈ S′ and

since S′ ⊆ E,
∨
n an is also the supremum inside S′. Hence S′ is an ω-complete effect

algebra, and since the sequential product is inherited from E it is also an ω-SEA.
Finally, suppose E is a convex ω-SEA. By Proposition 5.2.5 when a | b we also have

λa | b and hence we see that S′ is closed under scalar multiplication and is thus also
convex. �

Lemma 5.2.8. Let S ⊆ E be a set of mutually compatible elements in a SEA E.
Then S′′ is a commutative sequential effect sub-algebra of E. If E is a convex ω-SEA,
then S′′ is a convex ω-SEA as well.

Proof. By the previous lemma we already know that S′′ is a (convex ω-)SEA, so
the only thing left to prove is that it is commutative. Since S consists of mutually
compatible elements we see that S ⊆ S′ and hence all elements of S′′ are compatible
with all elements of S so that S′′ ⊆ S′. As the elements of S′′ by definition are
compatible with everything in S we see that everything in S′′ must be mutually
compatible. �

Lemma 5.2.9. Let E be a commutative convex ω-SEA. Then there exists a basically
disconnected compact Hausdorff space X such that E is isomorphic as a sequential
effect algebra to the unit interval of C(X).

Proof. E is isomorphic to the unit interval of some bounded ω-directed-complete order
unit space V . By Proposition 5.1.55 V is complete in its norm. The sequential product
is linear in its second argument, but since it is assumed to be commutative it is also
linear in its first argument. It obviously preserves positivity. Hence Theorem 1.3.17
applies, and we see that there must be some compact Hausdorff space X such that
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V ∼= C(X). As V is bounded ω-directed-complete, X must be basically disconnected
(cf. Section 4.4.1). �

Definition 5.2.10. Let a ∈ E be an element of a (convex ω-)SEA. We denote the
commutative sub-algebra generated by a by C(a) := {a}′′.

When a | b we get a⊥ | b, an | b and also (λan + µam) | b for scalars λ, µ ∈ [0, 1].
Consequently, C(a) contains (among other effects) all polynomials in a and a⊥ that
are contained in E.

Proposition 5.2.11. Let E be a convex ω-SEA and let a ∈ E. Then a can be
written as the supremum and norm limit of an increasing sequence of effects of the
form

∑
i λipi where λi > 0 and the pi are orthogonal idempotent effects that are

compatible with a. Furthermore, there is a unique effect
√
a that satisfies

√
a

2 = a.

Proof. C(a) is a commutative convex ω-SEA by Lemma 5.2.8. By Lemma 5.2.9
we then see that C(a) is isomorphic to the unit interval of some C(X) where X is
basically disconnected. The claims then follows by Proposition 4.4.6 and the remarks
in Section 4.4. �

Corollary 5.2.12. Let E be a convex ω-SEA and let V be its associated order unit
space. Let v ∈ V be an arbitrary element, then v can be written as the norm limit of
elements of the form

∑
i λipi where λi ∈ R and pi ∈ E are orthogonal idempotents.

Proof. If v ≥ 0 we can rescale it such that ‖v‖ ≤ 1 and use the previous theorem.
Otherwise we know that v + ‖v‖1 ≥ 0 so that we get v + ‖v‖1 = lim an which we
rewrite to v = lim(an − ‖v‖1). Each an is of the form an =

∑
i λn,ipn,i so we can

write an − ‖v‖1 =
∑
i(λn,i − ‖v‖)pn,i − ‖v‖(1−

∑
i pn,i). �

It will be useful for future reference to have a name for elements of the form
∑
i λipi.

Definition 5.2.13. Let a be an effect in a convex ω-SEA E. We call a simple when
a =

∑n
i=1 λipi for some n ∈ N with all 0 < λi ≤ 1 and pi 6= 0 idempotent and

orthogonal. We denote the subset of simple effects of E by E0 := {a ∈ E ; a simple}
and similarly we denote by V0 ⊆ V the order unit space spanned by E0.

Proposition 5.2.11 shows that the set of simple effects E0 is dense in E (with respect
to the topology induced by the norm) and similarly that V0 is dense in V .

Let us end this section by noting that the order unit space of a convex ω-SEA is
also homogeneous, as was the case in finite dimension (cf. Proposition 2.3.12).

Proposition 5.2.14. Let V be the order unit space associated to a convex ω-SEA
E. Then V is homogeneous, i.e. for every a, b ∈ V in the interior of the positive cone
there is an order isomorphism Φ : V → V such that Φ(a) = b.

Proof. As a ∈ V lies in the interior of the positive cone there is an ε ∈ R>0 such
that a ≥ ε1. Hence, considering the commutative algebra C(a) that corresponds to
the space of continuous functions of some space X we see that a corresponds to a
function a : X → R with a(x) ≥ ε for all x ∈ X. Hence, we can define the function
a−1 : X → R by a−1(x) = a(x)−1. This a−1 is then also a positive element of V
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and we have a& a−1 = a−1 & a = 1. Hence, the multiplication operator La : V → V
defined by La(b) = a& b has an inverse L−1

a = La−1 . As both La and La−1 are positive,
this means that La is an order isomorphism.

Now for any b ∈ V in the interior of the positive cone Lb is also an order isomorphism,
and setting Φ := Lb ◦ La−1 gives us an order isomorphism satisfying Φ(a) = b. �

5.2.1 From sequential effect algebras to JB-algebras
In this section we will introduce two additional properties that force a convex ω-SEA
to have a Jordan algebra structure. Analogously to the previous chapters, we call a
map ω : E → [0, 1] for a convex SEA E a state when ω is linear and ω(1) = 1.

Definition 5.2.15. We say the sequential product of a convex ω-SEA E is com-
pressible when for all idempotent effects p ∈ E the following implication holds for
all states ω : E → [0, 1]: if ω(p) = 1, then ω(p& a) = ω(a) for all a ∈ E.

What this property says is that if an effect p already holds with certainty on a state
ω, then measuring p does not effect the probabilities of other effects holding in the state
ω. This property holds for the sequential product on JBW-algebras by Lemma 4.3.5.
Later we will see that this property is related to the SEA having compressions, hence
the name. Furthermore, the multiplication maps Lp(a) = p& a are AS-compressions
(cf. Definition 3.7.24) iff the sequential product is compressible (all the conditions
in Definition 3.7.24 always hold for a pair Lp and Lp⊥ except for the implication
ω ◦ Lp⊥ = 0 =⇒ ω ◦ Lp = ω, which is equivalent to it being compressible).

The second property is a weaker version of the fundamental identity of quadratic
Jordan algebras.

Definition 5.2.16. We say the sequential product of a SEA E is quadratic when
for any two idempotents p, q ∈ E we have q& (p& q) = (q& p)2.

For the remainder of the section we will let E be a convex ω-SEA with a compressive
and quadratic sequential product and let V be its associated order unit space.

Remark 5.2.17. As far as the author is aware, there is no known example of a convex
sequential effect algebra that is not compressible, nor one that is not quadratic. Hence,
it might be that these properties hold for all convex SEAs.

Lemma 5.2.18. Let a, b ∈ E with a | b. Then a2 − b2 = (a+ b) & (a− b).

Proof. We simply calculate (a+ b) & (a− b) = (a+ b) & a− (a+ b) & b = a& (a+ b)−
b& (a+ b) = a& a+ a& b− b& a− b& b = a& a− b& b. �

Lemma 5.2.19. For p, q ∈ E idempotent, (q& p)2 − (q& p⊥)2 = q& p− q& p⊥.

Proof. As q& p ≤ q we have q& p | q and as q& p⊥ = q − q& p we then also have
q& p | q& p⊥. Using the previous lemma with a := q& p and b := q& p⊥ we get
(q& p)2 − (q& p⊥)2 = (q& p + q& p⊥) & (q& p − q& p⊥) = q& (q& (p − p⊥)) =
q& p− q& p⊥ �

Lemma 5.2.20. Let q ∈ E be idempotent, and let ω : V → R be a state. Then if
ω(q) = 0 we have ω(p& q) = ω(p⊥& q) for any idempotent p ∈ E.
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Proof. Suppose ω(q) = 0. Then of course ω(q⊥) = 1. Hence, by the compressive
property it is sufficient to show that q⊥& (p& q) = q⊥& (p⊥& q), since then

ω(p& q) = ω(q⊥& (p& q)) = ω(q⊥& (p⊥& q)) = ω(p⊥& q).

From the previous lemma we have

(q⊥& p)2 − (q⊥& p⊥)2 = q⊥& p− q⊥& p⊥.

Bringing the negative terms to the other side and using the quadratic property to
write (q⊥& p)2 = q⊥& (p& q⊥) (and similarly with p replaced with p⊥) we get

q⊥& (p& q⊥) + q⊥& p⊥ = q⊥& (p⊥& q⊥) + q⊥& p.

Now subtract q⊥& (p& q⊥) + q⊥& (p⊥& q⊥) from both sides of this equality to get

q⊥& p⊥ − q⊥& (p⊥& q⊥) = q⊥& p− q⊥& (p& q⊥).

By linearity this can easily be rewritten to q⊥& (p& q) = q⊥& (p⊥& q) as desired. �

Lemma 5.2.21. Let a ∈ V +, and let ω : V → R be a state. Then if ω(a) = 0 we
have ω(p& a) = ω(p⊥& a) for any idempotent p ∈ E.

Proof. We first show the result for simple a. So suppose a =
∑
i λiqi. Since ω(a) = 0

we of course also have ω(qi) = 0 and hence by the previous lemma ω(p& qi) =
ω(p⊥& qi). Then by linearity ω(p& a) =

∑
i λiω(p& qi) =

∑
i λiω(p⊥& qi) = ω(p⊥& a).

Now suppose a ≥ 0 is arbitrary and satisfies ω(a) = 0. By Proposition 5.2.11 we
have a = limn an where the an ≤ a are positive, simple and converge in the norm to a.
Hence 0 ≤ ω(an) ≤ ω(a) = 0 and thus ω(p& an) = ω(p⊥& an). Write f : V → R for
the norm-continuous map f(v) := ω(p& v − p⊥& v) so that f(an) = 0. By continuity
then also f(a) = 0, which gives the desired result. �

Definition 5.2.22. Let W be an order unit space, and let δ : W →W be a bounded
linear map. We call δ an order derivation when etδ :=

∑∞
n=0

(tδ)n
n! is an order

isomorphism for all t ∈ R.

Proposition 5.2.23 ([5, Proposition 1.108]). Let W be a complete order unit space,
and let δ : W → W be a bounded linear map. Then δ is an order derivation if
and only if for all a ∈ W+ and states ω : W → R the following implication holds:
ω(a) = 0 =⇒ ω(δ(a)) = 0.

Proposition 5.2.24. Let p ∈ E be idempotent. Then the map Dp : V → V given
by Dp(v) = p& v − p⊥& v is an order derivation.

Proof. Immediate consequence of Lemma 5.2.21 and the previous proposition. �

We introduce some additional notation. For any a ∈ V + we write La : V → V for
the map La(v) = a& v. For any state ω : V → R and positive map f : V → V we write
f∗ω for the state given by f∗ω(v) = ω(f(v)). Finally, for linear maps f, g : V → V
we write [f, g] : V → V for their commutator [f, g] = f ◦ g − g ◦ f .
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Proposition 5.2.25 ([5, Proposition 1.114]). Let W be a complete order unit space
with order derivations δ1, δ2 : W →W . Then [δ1, δ2] is also an order derivation.

Definition 5.2.26. Let p ∈ E be idempotent. Define Tp : V → V by

Tp := 1
2(id +Dp) = 1

2(id + Lp − Lp⊥).

Proposition 5.2.27 ([4, Theorem 9.48]). Let p, q ∈ E be idempotent. Then Tpq =
Tqp.

Proof. We reformulate the proof of Ref. [4, Theorem 9.48] for completeness sake.
Because Tp1 = p and Tq1 = q we see that the statement is equivalent to [Tp, Tq]1 = 0.

This again is easily seen to be equivalent to [Dp, Dq]1 = 0, since id commutes with all
maps.

By Proposition 5.2.25 [Dp, Dq] is an order derivation, hence et[Dp,Dq ]1 must be a
positive operator for all t ∈ R. Supposing that [Dp, Dq]21 = 0, then we would have
for all t ∈ R: 0 ≤ et[Dp,Dq ]1 = 1 + t[Dp, Dq]1 as the higher order terms disappear.
But obviously this can only hold for all t iff [Dp, Dq]1 = 0, which is the desired result.
Hence, it suffices for us to prove that [Dp, Dq]21 = 0.

Define Ep := D2
p = Lp + Lp⊥ , and similarly Eq := D2

q . We then easily calculate:

[Dp, Dq]21 = DpDqDpDq1 +DqDpDqDp1−DpD
2
qDp1−DqD

2
pDp1

= DpDqDpDq1 +DqDpDqDp1−DpEqDp1−DqEpDp1
= DpDqDpDq1 +DqDpDqDp1−DpEqDpEq1−DqEpDpEp1
= Dp(DqDpDq − EqDpEq)1 +Dq(DpDqDp − EpDpEp)1

where going to the third line we used Ep1 = 1 and Eq1 = 1. It hence suffices to prove
that DqDpDq = EqDpEq (by symmetry between p and q, the second one then also
follows).

We note that for any a ∈ V + and state ω we have L∗q⊥ω(Lqa) = ω(Lq⊥Lqa) = 0.
Hence by applying Lemma 5.2.21 with a := Lqa and ω := L∗q⊥ω we getL∗q⊥ω(DpLqa) =
0. But seeing as a and ω are arbitrary, this implies Lq⊥DpLq = 0. Similarly we also
get LqDpLq⊥ = 0. By expanding the definition of Dq we then see that DqDpDq =
LqDpLq +Lq⊥DpLq⊥ and similarly by expanding Eq = Lq +Lq⊥ we have EqDpEq =
LqDpLq + Lq⊥DpLq⊥ so that indeed DqDpDq = EqDpEq as desired. �

Lemma 5.2.28. Let a =
∑n
i=1 λipi =

∑m
j=1 µjqj be two decompositions of a simple

element a ∈ V . Then the maps
∑n
i λiTpi and

∑m
j µjTqj coincide.

Proof. Let r ∈ E be idempotent. Then
∑n
i λiTpir =

∑n
i λiTrpi = Tr(

∑n
i λipi) =

Tra = Tr(
∑m
j µjqj) =

∑m
j µjTqjr. Since the linear span of the idempotents r lie

dense in V , the two maps must indeed coincide. �

This lemma ensures that the following is well-defined.

Definition 5.2.29. Let a ∈ V0 be simple with a decomposition a =
∑n
i λipi. Then

we define Ta :=
∑n
i λiTpi . We write a ∗ b := Tab.
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Proposition 5.2.30. The operation ∗ is a Jordan product on V0. Furthermore,
a ∗ a = a2, so that if −1 ≤ a ≤ 1, then 0 ≤ a ∗ a ≤ 1.

Proof. Let a, b ∈ V0 be simple with decompositions a =
∑
i λipi and b =

∑
j µjqj .

Then a ∗ b := Tab =
∑
i,j λiµjTpiqj =

∑
i,j λiµjTqjpi = b ∗ a by Proposition 5.2.27.

Since the operation ∗ is obviously linear in the second argument, it is then also linear
in the first argument.

To show that a∗a = a2 =
∑
i λ

2
i pi we remark that Tpipj = δijpi, from which it easily

follows. Note furthermore that because pi | pj for all i and j that TpiTpj = TpjTpi .
Recall that the Jordan identity can be cast as [Ta∗a, Ta] = 0. This easily follows from
the commutation of the Tpi and Tpj . �

Theorem 5.2.31. Let E be a convex ω-SEA and suppose its sequential product is
comprehensive and quadratic. Then it is the unit interval of a bounded ω-directed-
complete JB-algebra.

Proof. Recall that a norm-complete order unit space V is a JB-algebra iff it has a
Jordan product ∗ where for any a ∈ V with −1 ≤ a ≤ 1 we have 0 ≤ a ∗ a ≤ 1
(Proposition 4.2.5). By the previous proposition, the space of simple elements V0 has
a Jordan product satisfying this condition. Since the simple elements lie dense in V ,
we can extend the product by continuity to the whole space. For the details we refer
to [4, Theorem 9.43]. �

Remark 5.2.32. It is unclear whether the theorem above continues to hold when the
assumptions of the sequential product being comprehensive and quadratic are dropped.
However it is not possible to drop the requirement of ω-completeness: Example 2.2.8
is a convex SEA that is not ω-complete. As its only idempotents are 0 and 1, it is
trivially comprehensive and quadratic, but it is obviously not equal to the unit interval
of a Jordan algebra.

The property of being quadratic does not seem like a very natural condition. It
turns out that in a more restricted setting we can ‘trade it in’ for a more natural set
of conditions.

Definition 5.2.33. Let E be a SEA. We say it is atomic when beneath every sharp
effect there is an atomic effect.

Definition 5.2.34. Let E be a convex ω-SEA and let V be its associated order unit
space. We say E has finite bits when for every pair of atoms p, q ∈ E their order
ideal (cf. Definition 2.4.21) Vp,q is finite-dimensional.

Theorem 5.2.35. Let E be an atomic convex ω-SEA with finite bits and a norm-
continuous sequential product. Then E is the unit interval of an atomic bounded
ω-directed-complete JB-algebra.

Proof. Because the sequential product is norm-continuous the results of Section 2.4.2
continue to hold for E. In particular, for an atom p and an arbitrary effect a, the effect
a& p is proportional to an atom (Proposition 2.4.13). As a result, the lattice of sharp
effects ofE has the finite covering property (Section 2.4.3), so that (via Corollary 2.4.20
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and Lemma 2.4.22) the order ideal Vp,q of any pair of atoms p, q ∈ E is strictly convex.
As Vp,q is also a convex ω-SEA, it is homogeneous (Proposition 5.2.14). By the
assumption of finite bits it is then a homogeneous strictly convex finite-dimensional
space, and hence by Proposition 1.3.9 it is order-isomorphic to a spin-factor. Hence,
following the results of Section 2.4.4 we see that E satisfies symmetry of transition
probabilities.

Let Ef denote the SEA generated by finite linear combinations of the atoms of E
and let Vf be its associated OUS. By symmetry of transition probabilities we can
define a self-dual inner product on Vf . Then in much the same way as in Section 2.6
we can show Vf is a Jordan algebra. Now letting V0 denote the norm-closure of Vf we
can extend the Jordan product by continuity so that V0 becomes a JB-algebra (for
the details see Ref. [4, Prop. 9.30]). It then remains to extend this Jordan product to
the entire space V . This process is described in Theorem 9.38 of [4]. �

Remark 5.2.36. The requirement of ‘finite bits’ is needed because it is unknown
whether the characterisation of Proposition 1.3.9 continues to hold in infinite dimension.
If it does hold, then this requirement is not needed. Alternatively, we can replace
this requirement by the assumption that all order ideals Vp,q are order-isomorphic to
(possibly infinite-dimensional) spin-factors. This is similar to the Hilbert ball property
of [4, Definition 9.9]. With this assumption, the requirement that the sequential
product be norm-continuous is also no longer necessary.

5.3 From effect theories to Jordan algebras
We will now see how we can combine the results from Section 5.1 and 5.2 to reconstruct
infinite-dimensional quantum theory.

First, we remark that if we want to represent any non-classical effects in an ω-effect
theory that we need to use real numbers.

Definition 5.3.1. Let E be an effect theory. We say its scalars are trivial when
Eff(I) = {0} or Eff(I) = {0, 1}. We say its scalars are reducible when Eff(I) =
M1⊕M2 for some non-zero effect monoids M1 and M2. If the scalars are not reducible
we say the scalars are irreducible.

Theorem 5.3.2. Let E be an ω-effect theory where the scalars are irreducible and
where the states separate the effects (i.e. a ◦ω = b ◦ω for all ω ∈ St(A) implies a = b).
Then exactly one of the following is true:

1. The only scalar is 0 = 1, and for every system A, Eff(A) = {0}.

2. There are exactly two scalars 0 and 1, and for every system A there is a Boolean
algebra BA and an effect algebra morphism φA : Eff(A)→ BA that is injective.

3. The scalars are the real unit interval, and for every system A, Eff(A) = [0, 1]VA
for some complete bounded ω-directed-complete order unit space VA.

Proof. The scalars M = Eff(I) of an effect theory form an effect monoid, and hence
in an ω-effect theory they form an ω-complete effect monoid. Since the scalars are
irreducible, by Theorem 5.1.10 we must have M = {0}, M = {0, 1} or M = [0, 1].
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Suppose M = {0}. Let A be any system and let p ∈ Eff(A) be an effect. We have
p = 1 · p = 0 · p = 0, since 0 = 1 in M .

Suppose M = {0, 1}. Let A be any system. Let BA := P (St(A)), the powerset of
states of A. Define φA : Eff(A) → BA by φA(a) := {ω ∈ St(A) ; a ◦ ω = 1}. Then
it is straightforward to verify that φA is an effect algebra morphism. It is injective
because the states separate the effects.

Finally, if M = [0, 1], then for any system A, its effect space Eff(A) is a convex
effect algebra. By the results of Section 5.1.5 it is then isomorphic to the unit interval
of a bounded ω-directed-complete (and hence norm-complete) order unit space. �

Hence, we see that if the scalars in an ω-effect-theory are trivial, that then all
effect spaces embed into Boolean algebras. Hence, for the purpose of presenting non-
classical theories, these are not interesting. The theorem furthermore shows that the
only possible set of non-trivial irreducible scalars is the real unit interval [0, 1] and
that this automatically leads to a representation of effects as elements of a complete
order unit space.

Now let us define the type of effect theory we will use to reconstruct infinite-
dimensional quantum theory. We combine the assumptions of a pure effect theory
(Definition 3.6.3), sequential effect space (Definition 2.2.3), together with some of the
new structure we found was present in JBW-algebras (Theorem 4.6.17). Recall that a
map f : A→ A in a dagger-category is †-positive when there exists a map g : A→ B
such that f = g† ◦ g.

Definition 5.3.3. A (monoidal) sequential ω-effect theory is a (monoidal) ω-effect
theory additionally satisfying the following conditions.

1. Every effect has a filter and a compression.

2. Every pure map has an image.

3. The pure maps form a (monoidal) dagger category. In the monoidal setting the
maps satisfy in particular (f ⊗ g)† = f† ⊗ g†.

4. Every pure map f is �-adjoint to f†.

5. For every effect a ∈ Eff(A) there is a unique †-positive map asrta : A → A
satisfying 1 ◦ asrta = a called the assert map of a.

6. For every system A, the operation & : Eff(A) × Eff(A) → Eff(A) given by
a&b := b ◦ asrta is a normal sequential product, making Eff(A) into an ω-SEA.

Remark 5.3.4. Points 1–3 correspond to P1–P3 in a PET. Point 4 takes over the
role of P5 and P6. Point 6 is a variation on the axioms of the sequential product in
Definition 2.2.3. Point 5 is a new assumption. We remark that the uniqueness condition
can be framed as the implication 1◦f† ◦f = 1◦g† ◦g =⇒ f† ◦f = g† ◦g for any pure
f and g. In this sense it is a weaker version of the CPM axiom [53] for an environment
structure (i.e. choice of pure maps) which states that 1 ◦ f† ◦ f = 1 ◦ g† ◦ g =⇒ f = g.

Denote by ω-JB-algpsu the full subcategory of JB-algpsu consisting of the bounded
ω-directed-complete JB-algebras. Our goal of this section will be to prove the following
theorem.
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Theorem 5.3.5. Let E be a sequential ω-effect theory with non-trivial irreducible
scalars. Then there is a functor F : E→ ω-JB-algop

psu satisfying F (Eff(A)) ∼= [0, 1]F (A).
This functor is faithful if and only if E satisfies local tomography.

For the remainder of the section, we will let E be a sequential ω-effect theory with
non-trivial irreducible scalars, and we let A denote an arbitrary system in E. By
Theorem 5.3.2, the scalars of E are equal to the real unit interval [0, 1], and we can
associate an ω-complete order unit space VA to A such that Eff(A) ∼= [0, 1]VA . It then
remains to show that these order unit spaces are JB-algebras. By assumption, Eff(A)
is a convex ω-SEA, and hence by Theorem 5.2.31 it suffices to show that the sequential
product given by the assert maps is comprehensive and quadratic.

For any effect a we will write a2 := a& a := a ◦ asrta.

Lemma 5.3.6. For all effects a ∈ Eff(A) we have asrt2
a = asrta2 .

Proof. By definition asrta is †-positive, and hence so is asrt2
a. We have 1 ◦ asrt2

a = a ◦
asrta = a2 = 1◦asrta2 so that by the uniqueness of †-positive maps: asrt2

a = asrta2 . �

Lemma 5.3.7. For any effect a ∈ Eff(A) there is a unique
√
a ∈ Eff(A) with

√
a

2 = a.

Proof. By assumption, Eff(A) is an ω-SEA. As it is also convex, we can use the
spectral theorem of Proposition 5.2.11 to conclude that for every a ∈ Eff(A) there is
a unique effect

√
a ∈ Eff(A) satisfying

√
a

2 :=
√
a&
√
a :=

√
a ◦ asrt√a = a. �

Lemma 5.3.8. The assert maps asrta are �-positive, i.e. there exists a �-self-adjoint
map f such that asrta = f ◦ f .

Proof. By assumption any pure map f is �-adjoint to f†. Assert maps are †-positive
and so in particular are †-self-adjoint, so that they are also �-self-adjoint. The desired
result now follows because asrta = asrt2√

a
. �

Proposition 5.3.9. An effect p ∈ Eff(A) is sharp in the sense of an effect theory if
and only if p2 = p. As a result, p is sharp iff p⊥ is sharp.

Proof. If p2 = p then by definition we have p ◦ asrtp = 1 ◦ asrtp and hence p ≥
im(asrtp) = (asrtp)�(1) = (asrtp)�(1) = d1 ◦ asrtpe = dpe ≥ p so that p = dpe, and
hence p is sharp.

Conversely, if p = dpe, then p = im(asrtp) so that p2 = p ◦ asrtp = 1 ◦ asrtp = p. �

Corollary 5.3.10. A sequential ω-effect-theory is a �-effect-theory (Definition 3.5.16).

The next lemma shows that the assert maps of sharp effects are of the same form
as in Section 3.6.2.

Lemma 5.3.11 ([214, §211VII]). For any compression πp of a sharp effect p there
exists a filter ξp of p such that ξp ◦ πp = id and πp ◦ ξp = asrtp.

Proof. Let p be a sharp effect. As asrtp is pure we have asrtp = π ◦ ξ for some
compression π and filter ξ. Now, π ◦ ξ = asrtp = asrtp ◦ asrtp = π ◦ ξ ◦ π ◦ ξ so that
ξ ◦ π = id (cf. Proposition 3.5.14). We see that 1 ◦ ξ = 1 ◦ π ◦ ξ = 1 ◦ asrtp = p
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so that ξ is a filter for p. Furthermore p = im(asrtp) = im(π ◦ ξ) ≤ im(π) and
im(π) = im(π ◦ ξ ◦ π) = im(asrtp ◦ π) ≤ im(asrtp) = p so that im(π) = p and hence π
is a compression for p.

Now let π′ be a another compression for p. Then π′ = π ◦Θ for some isomorphism
Θ. Define ξ′ := Θ−1 ◦ ξ. Then π′ ◦ ξ′ = π ◦ ξ = asrtp and ξ′ ◦ π′ = id. �

The above lemma implies that E has compatible filters and compressions as defined
in Definition 3.5.21.

Proposition 5.3.12 ([214, §216VII]). Let p be a sharp effect. Then π†p = ξp, where πp
and ξp form a pair of a compression and a filter of p with ξp◦πp = id and πp◦ξp = asrtp.

Proof. By assumption πp is �-adjoint to π†p. Hence d1 ◦ π†pe = (π†p)�(1) = (πp)�(1) =
im(πp) = p. Similarly we calculate im(ξ†p) = p. By the universal property of filters
respectively compressions there are then unique maps h and g such that π†p = h◦ξp and
ξ†p = πp◦g. Using ξp◦πp = id twice we calculate id = id† = π†p◦ξ†p = h◦ξp◦πp◦g = h◦g.
As a result 1 = 1◦id = 1◦h◦g ≤ 1◦g so that g is unital, and hence 1◦ξ†p = 1◦πp◦g = 1.

By uniqueness of †-positive maps we have ξ†p ◦ ξp = asrt1◦ξ†p◦ξp = asrt1◦ξp = asrtp =
πp ◦ ξp. Because ξp is epic we conclude that indeed ξ†p = πp. �

Corollary 5.3.13. Let Θ be an isomorphism. Then Θ† = Θ−1.

Proof. Θ is a filter for 1, which is sharp, and Θ−1 is a compression for 1. As Θ−1 ◦Θ =
id and Θ◦Θ−1 = id = asrt1, they satisfy the conditions of the previous proposition. �

Lemma 5.3.14 ([214, §212III]). Every pure map f factors as f = πim(f) ◦Θ◦ ξd1◦fe ◦
asrt1◦f where Θ is an isomorphism.

Proof. Combining Proposition 3.5.23 and Corollary 4.6.3 we see that f = πim(f) ◦Θ ◦
ξ1◦f . It hence remains to show that ξd1◦fe ◦ asrt1◦f is a filter for 1 ◦ f .

Write a = 1◦f . Note first of all that 1◦(ξdae◦asrta) = dae◦asrta = 1◦asrtdae◦asrta =
1 ◦ asrta = a so that it remains to show that ξdae ◦ asrta is a filter. We see that
im(ξdae ◦ asrta) = (ξdae)�((asrta)�(1)) = (ξdae)�(dae) = im(ξdae ◦ πdae) = im(id) = 1.
Being a composition of pure maps, ξdae ◦ asrta is a pure map itself, and hence is equal
to π ◦ ξ for some compression π and filter ξ. Now we calculate 1 = im(ξdae ◦ asrta) =
im(π ◦ ξ) ≤ im(π) so that im(π) = 1 and hence π is an isomorphism. We conclude
that ξdae ◦ asrta is a filter. �

Proposition 5.3.15 ([214, §216XIII]). Let a and b be arbitrary effects on the same
system. Then asrt2

a&b = asrta ◦ asrt2
b ◦ asrta.

Proof. Note that 1 ◦ asrtb ◦ asrta = a& b and

im(asrtb ◦ asrta) = (asrtb)�(dae) = (asrtb)�(dae) = db& daee 3.5.12.d)= db& ae.

Using Lemma 5.3.14 we then get asrtb ◦ asrta = πdb◦ae ◦Θ ◦ ξda& be ◦ asrta& b for some
isomorphism Θ. Applying the dagger to both sides and using Proposition 5.3.12 and
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Corollary 5.3.13 gives us:

asrta ◦ asrtb = (asrtb ◦ asrta)† = asrta& b ◦ ξ†da& be ◦Θ† ◦ π†db◦ae
= asrta& b ◦ πda& be ◦Θ−1 ◦ ξdb◦ae.

We calculate:

asrta ◦ asrt2
b ◦ asrta

= asrta& b ◦ πda& be ◦Θ−1 ◦ ξdb◦ae ◦ πdb◦ae ◦Θ ◦ ξda& be ◦ asrta& b

= asrta& b ◦ πda& be ◦ ξda& be ◦ asrta& b Lem. 5.3.11
= asrta& b ◦ asrtda& be ◦ asrta& b

= asrta& b ◦ asrta& b = asrt(a& b)2 . Prop. 3.6.10.e)

And hence we are done. �

Now we can conclude that the sequential product in Eff(A) is quadratic (cf. Defini-
tion 5.2.16).

Corollary 5.3.16. Let p and q be sharp effects. Then (p&q)2 = p&(q&p).

Proof. Just plug 1 into the expression of the previous proposition and use asrt2
q = asrtq

for sharp q. �

Proof of Theorem 5.3.5. E is an ω-effect-theory with irreducible scalars, and hence
the scalars are equal to {0}, {0, 1} or [0, 1]. Since we further assume that the scalars
are non-trivial we then necessarily have Eff(I) = [0, 1]. Following Theorem 3.4.10 we
see that there is then a functor F : E → OUSop with Eff(A) ∼= [0, 1]F (A) which is
faithful if and only if E satisfies local tomography. It remains to show that these order
unit spaces are actually bounded ω-directed-complete JB-algebras.

For every system A we know that Eff(A) ∼= [0, 1]VA has a normal sequential product.
This sequential product is quadratic by Corollary 5.3.16. Furthermore, for any state
ω, if p ◦ω = 1, then im(ω) ≤ p and hence asrtp ◦ω = ω by Proposition 3.6.10.d). As a
result, (p& a)◦ω := a◦asrtp ◦ω = a◦ω, so that the sequential product is compressible
(Definition 5.2.15). Hence by Theorem 5.2.31, the desired result follows. �

It is currently not clear whether the converse also holds. Namely, whether the cat-
egory ω-JB-algop

psu is a sequential ω-effect-theory. We have however seen in Chapter 4
that the category of JBW-algebras does indeed satisfy all the assumptions. Let us
therefore strengthen some of the conditions used in a sequential ω-effect-theory in
order to get a more natural correspondence.

Definition 5.3.17. Let E be a (monoidal) sequential ω-effect theory. We say it is
complete when it satisfies the following additional requirements.

1. Every effect space is directed-complete.

2. Every map is normal.

3. The states separate the effects.
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Theorem 5.3.18. Let E be a complete sequential ω-effect theory with non-trivial
irreducible scalars. Then there is a functor F : E → JBW-algop

npsu satisfying
F (Eff(A)) ∼= [0, 1]F (A). This functor is faithful if and only if E satisfies local tomo-
graphy.

Proof. By Theorem 5.3.5 we already know that there exists an appropriate functor F
mapping each system A of E to a JB-algebra F (A). It remains to show that these JB-
algebras are in fact JBW-algebras. But by assumption [0, 1]F (A) is directed-complete
and hence F (A) is bounded directed-complete. Furthermore, we assume that every
map is normal, and that the states separate the effects. Hence, there is a separating
set of normal states. So F (A) is indeed a JBW-algebra. �

Remark 5.3.19. The assumptions we make in Definitions 5.3.3 and 5.3.17 are not
minimal. We have framed the definitions in this manner so that each point corresponds
to one conceptual assumption. For instance, the first three axioms of an ω-SEA from
Definition 5.2.1 are satisfied in any effect theory satisfying the first five axioms of
Definition 5.3.3, while the existence of images of pure maps (point 2 of Definition 5.3.3)
already follows from the other assumptions in a complete sequential ω-effect-theory.

5.4 From effect theories to von Neumann algebras
Recall that in Section 3.7 we used axioms from effectus theory to derive the structure
of a Jordan algebra, and that we then added a tensor product in Section 3.8 to restrict
the Jordan algebras to just C∗-algebras. Analogously, in the previous section we used
axioms from effectus theory to see that our systems had to be JBW-algebras, while
in this section we will see what further restrictions the addition of a tensor product
implies. The main result of this section will be that the existence of such a tensor
product forces all JBW-algebras in the effect theory to be JW-algebras, and hence all
the systems have an underlying von Neumann algebra.

For the remainder of this section we let E be a complete monoidal sequential ω-
effect-theory with non-trivial irreducible scalars. Hence, Theorem 5.3.18 applies and
to all systems A and B of E we can associate JBW-algebras VA and VB such that
Eff(A) ∼= [0, 1]VA and Eff(B) ∼= [0, 1]VB . Furthermore, since E is assumed to be
monoidal, we have a system A⊗B with a corresponding JBW-algebra VA⊗B . Recall
that by the definition of a monoidal effect theory (Definition 3.3.3) we have 1⊗ 1 = 1
and (a> b)⊗ c = (a⊗ c) > (b⊗ c). By linearity, the tensor products of effects extends
to a bilinear map VA×VB → VA⊗B that we will denote with a tensor product symbol
‘⊗’ as well.

Proposition 5.4.1. Let a ∈ Eff(A) and b ∈ Eff(B). Then asrta⊗b = asrta ⊗ asrtb.

Proof. Note 1◦(asrta⊗asrtb) = (1⊗1)◦(asrta⊗asrtb) = (1◦asrta)⊗(1◦asrtb) = a⊗b,
so by uniqueness of †-positive maps, it remains to show that asrta⊗ asrtb is †-positive.
But this follows because (asrt√p ⊗ asrt√q)2 = asrt2√

p ⊗ asrt2√
q = asrtp ⊗ asrtq. �

Corollary 5.4.2. Let a ∈ Eff(a) and 1 ∈ Eff(B). Then asrta⊗1 = asrta ⊗ id.

Corollary 5.4.3. Let a ∈ Eff(A) and b ∈ Eff(B). Then a2 ⊗ b2 = (a⊗ b)2.
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Proof. a2⊗ b2 = (a ◦ asrta)⊗ (b ◦ asrtb) = (a⊗ b) ◦ (asrta⊗ asrtb) = (a⊗ b) ◦ asrta⊗b =
(a⊗ b)2. �

Corollary 5.4.4. Let p ∈ Eff(A) and q ∈ Eff(B) be sharp effects. Then p ⊗ q is
sharp.

By Theorem 4.6.17, the quadratic map Q√a for a positive a is the unique �-positive
map satisfying Q√a(1) = a. Since asrta is also �-positive with 1 ◦ asrta = a we
must then have asrta = Q√a. Denote by ∗ the Jordan product on VA and write
Ta(b) = a ∗ b for the Jordan product map of a (and similarly for VB). Ta is not a
positive map and hence cannot be part of the effect theory. However, recall that if
p is sharp (i.e. idempotent) that then Tp = 1

2 (id + Qp − Qp⊥) and hence that it is
a linear combination of maps that do lie in the effect theory. Note that additionally
Qp = asrtp2 = asrtp.

Proposition 5.4.5. Let a ∈ VA be arbitrary and 1 ∈ VB, then Ta⊗1 = Ta ⊗ id.
Similarly, for 1 ∈ VA and b ∈ VB we have T1⊗b = id⊗ Tb.

Proof. We only show the first equation, as the second follows analogously. We prove
the result for a = p sharp. By the norm-continuity and linearity of the Jordan product
in the first argument, this is sufficient as the sharp elements span a dense set.

Note first that (p⊗ 1)⊥ = p⊥& 1. We then calculate:

Tp⊗1 = 1
2(id⊗ id + asrtp⊗1 − asrt(p⊗1)⊥) = 1

2(id⊗ id + asrtp ⊗ id− asrtp⊥ ⊗ id)

= (1
2(id + asrtp − asrtp⊥))⊗ id = Tp ⊗ id. �

Corollary 5.4.6. For all a ∈ VA and b ∈ VB , a⊗ 1 and 1⊗ b operator commute.

Corollary 5.4.7. The maps a 7→ a⊗ 1 and b 7→ 1⊗ b are Jordan homomorphisms.

Proposition 5.4.8. The maps a 7→ a⊗ 1 and b 7→ 1⊗ b are injective.

Proof. We only show the first, as the second is analogous. Suppose a ⊗ 1 = a′ ⊗ 1.
Let ω be any state on the first system, and ω′ any state on the second system. Then
ω(a) = ω(a)ω′(1) = (ω ⊗ ω′)(a⊗ 1) = (ω ⊗ ω′)(a′ ⊗ 1) = ω(a′). Since states separate
the effects, we then necessarily have a = a′. �

Corollary 5.4.9. The maps a 7→ a⊗ 1 and b 7→ 1⊗ b are normal.

Proof. Since the maps are injective unital Jordan homomorphisms, the restriction to
their domain is an order-isomorphism, and hence the maps must be normal. �

Proposition 5.4.10. Let a ∈ VA and b ∈ VB be arbitrary. Then Qa⊗b = Qa ⊗Qb.

Proof. First suppose a ∈ [0, 1]VA and b ∈ [0, 1]VA . Then Qa = asrta2 and Qb = asrtb2 ,
so that by Proposition 5.4.1 Qa⊗b = asrt(a⊗b)2 = asrt2

a⊗b = (asrta⊗asrtb)2 = asrta2⊗
asrtb2 = Qa ⊗ Qb. Now for an arbitrary positive a of course Qa = Q‖a‖a/‖a‖ =
‖a‖2Qa/‖a‖, and hence the desired result also follows when a ≥ 0 and b ≥ 0.
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Now suppose a = a1 + a2 where a1, a2 ≥ 0. Then Qa = Qa1 + Qa2 + 2Qa1,a2 .
We expand Qa⊗b in two different ways. First we see that Qa⊗b = Qa1⊗b+a2⊗b =
Qa1⊗b + Qa2⊗b + 2Qa1⊗b,a2⊗b = Qa1 ⊗ Qb + Qa2 ⊗ Qb + 2Qa1⊗b,a2⊗b. Secondly,
Qa⊗b = Qa ⊗Qb = Qa1 ⊗Qb +Qa2 ⊗Qb + 2Qa1,a2 ⊗Qb. Comparing terms in both
of these decompositions of Qa⊗b we see that necessarily Qa1⊗b,a2⊗b = Qa1,a2 ⊗Qb.

We can use this equation, and do a similar trick, but starting with Qa1⊗b,a2⊗b where
b = b1 + b2 to give us the equation 2Qa1,a2 ⊗Qb1,b2 = Qa1⊗b1,a2⊗b2 +Qa1⊗b2,a2⊗b1 .

Finally, suppose a and b are arbitrary. Write a = a+ − a− and b = b+ − b− where
a+, a−, b+, b− ≥ 0. Now if we expand both the expression Q(a+−a−)⊗(b+−b−) and
Qa+−a− ⊗Qb+−b− as much as possible using linearity and apply the previous rewrite
rules, it is easily verified that these two expression are indeed equal. �

In order to proceed we need to use the concept of universal von Neumann algebras.

Theorem 5.4.11 ([107, Theorem 7.1.9]). Let V be a JBW-algebra. Then there exists
an (up to isomorphism) unique von Neumann algebra W ∗(V ) and a normal Jordan
homomorphism ψ : V →W ∗(V )sa such that ψ(V ) generates W ∗(V ) as a von Neumann
algebra and if B is a von Neumann algebra with a normal Jordan homomorphism
φ : V → Bsa, then there is a normal *-homomorphism φ̂ : W ∗(V ) → B such that
φ̂ ◦ ψ = φ.

Corollary 5.4.12. A JBW-algebra V is a JW-algebra if and only if ψ : V →W ∗(V )
is injective.

Proof. If ψ is injective, then V is of course a JW-algebra. Conversely, if V is a JW-
algebra, then there must be an injective normal Jordan homomorphism φ : V → Bsa
for some von Neumann algebra B, and hence by the universal property of W ∗(V ),
φ̂ ◦ ψ = φ, which shows that ψ must be injective. �

Definition 5.4.13. Let V be a JBW-algebra. We call s ∈ V a symmetry when
s2 = 1. Two idempotents p, q ∈ V are exchangeable by a symmetry if there exists
a symmetry s such that Qsp = q.

Lemma 5.4.14 ([4, Lemma 4.4]). Let V be a JBW-algebra where the identity is the
sum of at least 4 idempotents that are mutually exchangeable by a symmetry. Then
V is a JW-algebra.

Lemma 5.4.15. Let V 6= {0} be a purely exceptional JBW-algebra. Then the identity
of V is the sum of 3 orthogonal non-zero idempotents exchangeable by a symmetry.

Proof. By Theorem 4.7.5 we can write V = C(X,E) where E = M3(O)sa for some
hyperstonean space X. As X is a type I3 JBW-factor there exist orthogonal non-
zero idempotents q1, q2, q3 ∈ E mutually exchangeable by a symmetry such that
q1 + q2 + q3 = 1E [107, Theorem 2.8.3]. Let sij ∈ E for i, j ∈ {1, 2, 3} be symmetries
so that Qsijqi = qj . Define then fi : X → E as the constant function fi(x) = qi, and
similarly gij : X → E by gij(x) = sij . Then indeed for every x ∈ X : (Qgijfi)(x) =
Qsijqi = qj = fj(x). �
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Lemma 5.4.16. Let p1, q1 ∈ VA be idempotents exchangeable by a symmetry s1 ∈ VA,
and let p2, q2 ∈ VB be idempotents exchangeable by a symmetry s2 ∈ VB . Then p1⊗p2
and q1 ⊗ q2 are idempotents exchangeable by s1 ⊗ s2.

Proof. That p1 ⊗ p2 and q1 ⊗ q2 are idempotents follows by Corollary 5.4.4. That
s1 ⊗ s2 is a symmetry follows by Proposition 5.4.10, because (s1 ⊗ s2)2 = Qs1⊗s21 =
(Qs1 ⊗Qs2)(1⊗ 1) = s2

1⊗ s2
2 = 1⊗ 1 = 1. By the same proposition: Qs1⊗s2(p1⊗ p2) =

(Qs1 ⊗Qs2)(p1 ⊗ p2) = (Qs1p1)⊗ (Qs2p2) = q1 ⊗ q2. �

Proposition 5.4.17. VA is a JW-algebra.

Proof. Since VA is a JBW-algebra we can write VA = V1 ⊕ V2 where V1 is a JW-
algebra and V2 is purely exceptional (Theorem 4.7.2). We need to show that V2 = {0}.
Towards contradiction, suppose that V2 6= {0}.

Let p ∈ VA be the central idempotent corresponding to V2. Then the compression
system C corresponding to p has an associated JBW-algebra isomorphic to V2. Let
q1, q2, q3 be a set of idempotents in C exchangeable by symmetries sij for i, j ∈ {1, 2, 3},
which exists by Lemma 5.4.15. Consider the system C⊗C. By Lemma 5.4.16 sik⊗sjl
is a symmetry for all i, k, j, l ∈ {1, 2, 3}. This set of symmetries makes all nine
idempotents {qi⊗ qj ; i, j ∈ {1, 2, 3}} in C⊗C mutually exchangeable by a symmetry.

Hence, by Lemma 5.4.14, VC⊗C must be a JW-algebra. So then VC⊗C embeds
into W ∗(VC⊗C) via an injective Jordan homomorphism (Corollary 5.4.12). But we
also have an injective Jordan homomorphism from V2 to VC⊗C given by a 7→ a ⊗ 1
(Corollary 5.4.7 and Proposition 5.4.8). Hence, V2 embeds into W ∗(VB⊗B). This
contradicts the fact that V2 is purely exceptional, so that we indeed must have had
V2 = {0}. �

Let us denote by JW-algnpsu the full subcategory of JBW-algnpsu consisting of
the JW-algebras. The above proposition shows that we indeed have the following.

Theorem 5.4.18. Let E be a complete monoidal sequential ω-effect theory with
non-trivial irreducible scalars. Then there is a functor F : E → JW-algop

npsu satis-
fying F (Eff(A)) ∼= [0, 1]F (A). This functor is faithful if and only if E satisfies local
tomography.

Remark 5.4.19. Not all JW-algebras can exist as systems in E. Indeed, adapting
the results of Section 3.8 we can show that there can be no quaternionic systems and
that there cannot be both real and complex systems. The situation is however less
clear for infinite-dimensional systems. We leave as a topic for future work what precise
restrictions our assumptions imply on the allowed infinite-dimensional systems. It
is also interesting to see what additional requirements are necessary to force all the
JW-algebras in E to be of the form Bsa for some von Neumann algebra B, which would
be the analogous infinite-dimensional version of Theorems 2.8.8 and 3.8.8. Finally,
note that the notion of ‘local tomography’ in this theorem is that of Definition 3.4.3,
and hence without knowing more about the functor, in particular whether it is strong
monoidal, it is not a priori clear that this corresponds to the standard notion of local
tomography.
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Chapter 6

Calculating with diagrams
This introductory chapter is organised as follows. In Section 6.1 we give a brief intro-
duction into the circuit model of quantum computing, recalling the most commonly
used quantum gates and stating some important well-known results.

Then in Section 6.2 we introduce ZX-diagrams and show how to represent quantum
circuits using them. Section 6.3 recalls the graphical rewrite rules associated to the ZX-
diagrams, collectively known as the ZX-calculus. We derive some simple consequences
of these rules in Section 6.4.

A concept that is tremendously useful for reasoning about ZX-diagrams is the phase
gadget that we will introduce in Section 6.5. Section 6.6 defines a class of ZX-diagrams
that are closer-aligned to simple graphs that we call graph-like. We use this relation
to graphs to define the graph operations of local complementation and pivoting on
ZX-diagrams in Section 6.7. We demonstrate a first use of these rewrite rules in
Section 6.8 by finding a diagrammatic proof of the Gottesman-Knill theorem.

6.1 Quantum computation and quantum circuits
Before we proceed to the introduction of the ZX-calculus it will be helpful to establish
the basic notions and definitions used in the circuit model of quantum computation.

In this thesis we will solely work with quantum computation based on qubits. A
qubit is not any particular quantum system, but rather any physical quantum system
that has two distinct orthogonal states. So a qubit could for instance be an ion in
an ion trap, with the two states of the qubit corresponding to different hyperfine
energy levels [17], or a photon with the two states corresponding to different types of
polarization [206]. It can even be a more complicated arrangement of matter, such
as Cooper pairs of electrons in superconducting circuits [201], or a large collection
of physical qubit systems that together form one logical qubit in a quantum error
correcting code [79].

We abstract away from these physical complications and simply represent a qubit
by the 2-dimensional complex vector space C2. The possible states of a qubit then
correspond to normalised vectors (up to global phase) of C2. We will write such states
in Dirac notation as |ψ〉. We use 〈ψ| to denote the Hermitian adjoint of the state
|ψ〉. We denote the inner product of two states |ψ〉 and |φ〉 by 〈φ|ψ〉. With a slight
abuse of notation we then write |ψ〉〈ψ| for the linear map that projects onto the state
|ψ〉, i.e. |ψ〉〈ψ| (|φ〉) = 〈ψ|φ〉 |ψ〉.

We refer to the states corresponding to the standard basis of C2 as computational
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basis states and denote them by |0〉 and |1〉. As these states form a basis for C2,
we can write any other qubit state as a linear combination. I.e. for any state |ψ〉
there exist complex numbers a and b such that |ψ〉 = a |0〉+ b |1〉. A different basis of
quantum states that we will often use is the Hadamard basis (sometimes also called
the Fourier basis). This consists of states |+〉 and |−〉 defined as |+〉 := 1√

2 (|0〉+ |1〉)
and |−〉 := 1√

2 (|0〉 − |1〉). Writing these states in regular vector notation we have:

|0〉 =
(

1
0

)
|1〉 =

(
0
1

)
|+〉 = 1√

2

(
1
1

)
|−〉 = 1√

2

(
1
−1

)
Because quantum states are normalised vectors, the numbers a and b must satisfy

|a|2 + |b|2 = 1. Additionally, quantum states that differ only by a global phase eiθ
represent the same physical state. These two observations allow us to reduce the 4
real parameters present in a and b to just two: |ψ〉 = cosα |0〉 + eiβ sinα |1〉. This
parametrisation allows us to present all the qubit states on the surface of a sphere,
known as the Bloch sphere. On this sphere, |0〉 and |1〉 lie on respectively the north
and south pole. The states |+〉 and |−〉 lie on opposing ends of the equator:

|0〉

|1〉

|+〉|−〉

A single qubit is of course not very useful. The power of quantum computing comes
from how small systems combine into a composite system. A collection of n qubits
corresponds to the vector space C2 ⊗ C2 ⊗ · · · ⊗ C2 ∼= C2n , and hence the dimension
of the space grows exponentially with the number of qubits. This is an important
reason for why quantum computation is more powerful than classical computation1.
When we have a collection of qubits that are all in a computational basis state |xi〉
for xi ∈ {0, 1}, we write the state of the full system as |x0x1 · · ·xn〉 as a shorthand
for the tensor product |x0〉 ⊗ |x1〉 ⊗ · · · ⊗ |xn〉.

The evolution through time of a physical quantum system depends on the energy
present in the system and is governed by the Schrödinger equation. This evolution
acts on a state |ψ〉 ∈ C2 by a unitary matrix. Carefully manipulating the environment
of the system allows us to control the evolution of a quantum system. As a result
we can construct ever more intricate quantum states and actually compute with the
system. Different designs of quantum computers have different sets of evolutions that
are possible to implement, and this gives rise to different gate sets: a collection of
unitaries, usually acting on a small number of qubits, that can be implemented on (a
subset of) the qubits of the computer.

1It is an open problem whether quantum computation is indeed more powerful than classical
computation in the standard computational models, i.e. whether BQP 6=P. However, in certain
other settings, such as Grover’s oracle problem [93], or for circuits of limited depth [30], there is
a clear proven advantage for quantum computation.
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For a single qubit, all the unitary matrices correspond to rotations around the Bloch
sphere. In particular, the rotations corresponding to half-turns around the principal
axes of the Bloch sphere are the Pauli matrices:

X =
(

0 1
1 0

)
Y =

(
0 −i
i 0

)
Z =

(
1 0
0 −1

)
(6.1)

A rotation of an angle θ around the Z axis is then given by RZ(θ) = exp
(
− 1

2 iθZ
)

(indeed, up to global phase RZ(π) = Z). Similar expressions give RX(θ) and RY (θ).
We will refer to these gates as phase gates. Any rotation around a sphere can be
decomposed as a series of 3 rotations around orthogonal axes, known as its Euler
decomposition. Hence, for any single qubit unitary U we can find angles α, β, γ
such that (up to global phase) U = RZ(α)RX(β)RZ(γ). Note that the Pauli X matrix
interchanges the computational basis states: X|0〉 = |1〉 and X|1〉 = |0〉. In the context
of computation it is therefore also sometimes referred to as the NOT gate. In addition
to the Pauli matrices above, there are a couple other single qubit unitary gates that
are widely used in the literature on quantum computation and carry special names.
A rotation of π/2 around the Z-axis is known as an S gate, while a rotation of π/4
is called a T gate:

S =
(

1 0
0 i

)
T =

√
S =

(
1 0
0 eiπ/4

)
(6.2)

As these are unitary matrices, their inverse is equal to the Hermitian adjoint. We will
denote this by the dagger symbol †. Hence T† is the inverse of T. Finally, there is
the Hadamard gate H. The Hadamard gate interchanges the computational basis
with the Hadamard basis: H |0〉 = |+〉, H |1〉 = |−〉. As a matrix:

H = 1√
2

(
1 1
1 −1

)
(6.3)

For two qubits, there is a much wider variety of unitaries available. In particular, for
any two single qubit unitaries U1 and U2 we can define their tensor product U1 ⊗ U2,
and this itself is a unitary that acts on two qubits. These products however do not let
the qubits interact. There are two specific gates that do act in an irreducible manner
on two qubits that will be important to us: the controlled Z and the controlled
NOT gate (the latter is sometimes also called the controlled X gate). We shorten
these names to just CZ and CNOT. These gates act on two qubits at once, and they
apply a Z, respectively an X, gate on the second qubit if the first is in the |1〉 state.
If instead the first qubit is in the |0〉 state, nothing happens. The first qubit hence
controls whether a gate gets applied. The matrices of these gates are the following:

CZ =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 -1

 CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 (6.4)

The most widely used model of quantum computation is the circuit model. In this
model we take our input quantum state, apply a sequence of quantum gates to it, and
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finally measure (some of) the qubits to get some classical outcomes. The information
about which gates to apply is usually presented as a quantum circuit. For instance:

S

X

T

+

+

T†

X

H H

RZ(π/3)
(6.5)

Here each horizontal line corresponds to a qubit (so this circuit contains 3 qubits).
Each box corresponds to a gate that is applied to the qubit of the line that the box
is on. Time flows from left to right, and hence the order of the boxes determines in
which order the gates are applied to the qubits. The black dot connected to the white
dot with a ‘+’ represents a CNOT gate, where the black dot denotes the control qubit,
and the white dot denotes the target qubit. The horizontal distance between each gate
is immaterial, as the circuit only gives information about the order of application.

To achieve the full power of the circuit model one also needs ancillae and classical
control. An ancilla is simply a qubit that is always prepared in the same state (usually
|0〉 or |+〉, or sometimes the |T 〉 := T |+〉magic state). It is hence not a free input of
the circuit. When implementing a quantum computation one could choose to measure
some of the qubits earlier than others. By using classical control we can let later
parts of the circuit depend on these earlier measurement outcomes. In this thesis,
unless otherwise specified, we will take ‘circuit’ to mean unitary circuit, i.e. a circuit
which does not contain ancillae or classical control and hence is fully defined by the
gates that are in the circuit.

Even though the dimension of the space of unitaries increases rapidly with the
number of qubits, the set of single qubit gates together with either the CNOT or CZ
gate is a universal gate set [171]. This means that for any number of qubits n and
a unitary U acting on n qubits we can find a quantum circuit implementing U such
that all gates in the circuit are either single-qubit gates or CNOT/CZ gates. Hence,
by applying gates in the correct sequence in a quantum circuit we can construct any
desired unitary, and thus any desired computation.

In some settings it will be useful or necessary to consider different gate sets. One
of these gate sets that is particularly important is the set Clifford unitaries. This
is the group of unitaries that can be constructed out of quantum circuits consisting
of Hadamard, S and CNOT gates. As S2 = Z, HZH = X and XZ = Y (up to global
phase), this set contains all the Pauli matrices. It also contains the CZ gate as
(I ⊗H)CNOT(I ⊗H) = CZ. We will hence refer to all these gates as Clifford gates.
Any quantum state that can be produced by applying a Clifford circuit to |0 · · · 0〉 is
called a Clifford state. Note that Clifford circuits/states are sometimes also called
stabiliser circuits/states. This name comes from the fact that the unitaries that map
the group generated by the Pauli matrices to itself (up to global phase) are precisely
the Clifford unitaries, and hence the Cliffords form the stabiliser of the Pauli group
in the group of all unitaries. This definition leads to a generalisation known as the
Clifford hierarchy that we consider in more detail in Section 7.5. The Clifford unitaries
are significant, because many well-known quantum protocols, such as teleportation,
dense-coding, and quantum key distribution, can be performed using just Clifford
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unitaries. They are furthermore crucial in constructing quantum error correcting
codes, and they display many inherently quantum features, such as entanglement and
contextuality.

Even though Clifford circuits can perform many interesting tasks, they do not allow
any computation that exceeds the speed of classical computers. The Gottesman-
Knill theorem states that any computation consisting just of Clifford operations
can be efficiently simulated on a classical computer [2]. Hence, in order to achieve
speedups with a quantum computer, we will need to use additional quantum gates.

Interestingly, allowing just a single additional type of gate is sufficient to reproduce
the full power of a quantum computer. If we supplement the Clifford gates with
the T gate, we have a gate set that is approximately universal. This means that
while we cannot exactly implement all unitaries, we can approximate any unitary to
arbitrary precision (with just a relatively small overhead with respect to the universal
gate set discussed above) [64]. We will refer to this gate set as Clifford+T. In the
sense of computational complexity, computation with the Clifford+T gate set is just
as powerful as computing with a universal gate set.

6.2 ZX-diagrams
The ZX-calculus is a diagrammatic language introduced by Coecke and Duncan in
2008 [48, 49] that allows graphical manipulation of diagrams representing linear maps
between qubits. These ZX-diagrams can be seen as a generalisation of quantum circuit
notation. Whereas a circuit consists of straight lines representing qubits and boxes
representing quantum gates, a ZX-diagram consists of wires and spiders. Wires
entering the diagram from the left are inputs; wires exiting to the right are outputs.

Spiders are a special type of linear map which can have any number of inputs and
outputs. Spiders come in two varieties, Z-spiders depicted as white dots,

α... ... := |0 · · · 0〉〈0 · · · 0|+ eiα |1 · · · 1〉〈1 · · · 1| ,

and X-spiders depicted as grey dots,

α... ... := |+ · · ·+〉〈+ · · ·+|+ eiα |− · · · −〉〈− · · · −| .

A special case is when spiders have a single input and output, in which case they
form Z-phase and X-phase gates (up to a global phase):

α = |0〉〈0|+ eiα |1〉〈1| = RZ(α), (6.6)
α = |+〉〈+|+ eiα |−〉〈−| = RX(α).

One can simply multiply out the matrices to verify that these diagrams are indeed
equal to the definition given in the previous section. In particular, we have:

S = π
2 T = π

4
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Another special case is when α = 0, in which case we omit the label:

... ... := |0 · · · 0〉〈0 · · · 0|+ |1 · · · 1〉〈1 · · · 1|

... ... := |+ · · ·+〉〈+ · · ·+|+ |− · · · −〉〈− · · · −|

In particular, when these phaseless spiders have a single input and output they
are equal to the identity matrix:

= =

Phaseless spiders can be thought of as a generalisation of the GHZ state to a linear
map [91]. Indeed the Z-spider with 0 inputs and 3 outputs is the usual GHZ state
(up to normalisation):

= |000〉+ |111〉

Furthermore, the |0〉 and |+〉 states are just one-legged spiders:

= |0〉+ |1〉 ≈ |+〉 = |+〉+ |−〉 ≈ |0〉 (6.7)

Following Ref. [51], we use the symbol ‘≈’ to denote that the two sides are equal up
to some non-zero complex number (in this case a factor of

√
2).

Given two ZX-diagrams we can compose them either by joining the outputs of the
first to the inputs of the second giving the regular composition of linear maps, or by
stacking the two diagrams to form the tensor product of the linear maps.

For instance, composing the states of Eqs. (6.7) with respectively a Z = RZ(π) or
X = RX(π) gate we get the |−〉 and |1〉 states:

=π π = |0〉+ eiπ |1〉 ≈ |−〉

π π= = |+〉+ eiπ |−〉 ≈ |1〉

ZX-diagrams without any inputs or outputs are called scalars. They are linear
maps that are just complex numbers. In particular, we have:

α = √2= 2

= 1√
2

α π = √2eiαπ = 0
α = 1 + eiα

(6.8)

Interchanging the colours in these scalars preserves the scalar value.
Whenever useful, we will write a number instead of the scalar ZX-diagram that is

equal to that number. For instance, we can write the CNOT gate as follows:

CNOT :=
√

2
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We can write this vertical wire without ambiguity as it is easily verified by multiplying
out the matrices that:

=

More generally, diagrams of spiders are less rigid than circuits. Much like diagram-
matic depictions of tensor networks (e.g. Ref. [177]), any two diagrams of spiders with
the same connectivity and ordering of inputs and outputs describe the same linear
map (a property we will refer to as ‘only connectivity matters’ in the next section).

We can represent arbitrary Z- and X-phase rotations using Eq. (6.6), and since we
can also represent a CNOT gate, we have a universal set of gates in the ZX-calculus. In
particular, we can represent the Hadamard gate. As it is a single-qubit unitary, we can
decompose it using its Euler angles. This gives a representation of the Hadamard gate
in terms of Z- and X-spiders. The Hadamard gate will prove essential for reasoning
with ZX-diagrams, so we introduce some special notation for it:

:= -π2 -π2 -π2eiπ/4 = 1√
2

(
1 1
1 −1

)
(6.9)

Using the composition rules of ZX-diagrams we can now represent arbitrary quantum
circuits. For instance, the circuit (6.5) becomes:

π

π
2

π
4

-π4

π

π
3

We will refer to the symbol in Eq. (6.9) as a Hadamard box. A Hadamard box of
course only has one input and one output, and in this sense it is more like an edge than
like a vertex. To make this role as an edge clearer we introduce additional notation
for spiders connected via a Hadamard box:

:=... ... ... ... (6.10)

We will refer to such an edge as a Hadamard edge. We can of course freely switch
between the Hadamard edge notation and the Hadamard box notation, and we can
always expand a Hadamard box into spiders using e.g. Eq. (6.9).

Sometimes we will need to explicitly distinguish between a diagram itself and the
linear map it represents.

Definition 6.2.1. The interpretation of a ZX-diagram D is the linear map that
such a diagram represents and is written as JDK. We say two ZX-diagrams D1 and
D2 are equivalent when JD1K = z JD2K for some non-zero complex number z.

For more details regarding the interpretation of a ZX diagram see for instance [122].
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6.3 The ZX-calculus
The power of using ZX-diagrams to represent linear maps comes from the set of rewrite
rules associated to it, collectively known as the ZX-calculus. The ZX-calculus has a
couple of variations. We will use only the most basic set of rewrite rules.

The first two rewrite rules are the spider fusion rules, which say connected spiders
of the same colour fuse together, and their phases add:

β... ...

α ......

=... ... ...α+β

β... ...

α ......

=... ... ...α+β

As the phases on the spiders correspond to angles, we take this addition modulo 2π.
Note that these rules, like the others we will introduce, are sound, meaning that the
two sides of the equation represent the same linear map.

As a straightforward application of these rules, we see that Z- and X-phase gates
commute through spiders of the same colour:

α ......

β

α+ β ......= α ......=
β

The following two rules show that Pauli Z and X gates can be pushed through spiders
of the opposite colour, changing the sign of the phase on the spider and introducing a
global phase:

απ ... = -α
π

...

π

π

eiα απ ... = -α
π

...

π

π

eiα

(6.11)
The Hadamard box has some particularly elegant rewrite rules. The first rule for it
expresses that it is self-inverse:

=

For the second rule we recall that the Hadamard gate interchanges the computational
and Hadamard bases. As a result, the Hadamard box acts as a ‘colour-changer’ for
spiders:

α ... = α ...

Using this rule we can get a simple expression for the CZ gate from the CNOT gate
in the ZX-calculus:

CZ = (I⊗H) CNOT (I⊗H) = = =√
2

√
2

√
2 (6.12)
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β... ...

α ...... =... ... ...α+β
(f)

(-1)aα=
aπ

aπ

aπ α ... ...

aπ

(π)

aπ

α =
aπ

(c)
aπ

α ...= α...

(h)

(i)
=

=
(hh)

(x)
=

eiα

eiaα√
2

√
2

Figure 6.1: The rules of the ZX-calculus: spider-(f)usion, (h)adamard,
(π)-commutation, (i)dentity, (hh)-cancellation, e(x)change and (c)opy.
These rules hold for all α, β ∈ [0, 2π) and a ∈ {0, 1}. Due to (h) and (hh)
they also hold with the colours interchanged.

The final rewrite rules are based on a special property that the pair of the com-
putational and Hadamard bases of the qubit have: strong complementarity [51,
Section 9.3]. This is captured by the following two rules:

= =1√
2

1√
2

We will refer to these two rules respectively as the exchange rule and the copy rule.
Combining the copy rule with Eqs. (6.11) and (6.8) yields a more general version,

for any a ∈ {0, 1} and α ∈ [0, 2π):

aπ

aπ

aπ =α eiaα√
2

We present all the rewrite rules discussed so far in Figure 6.1.
Besides these concrete rewrite rules we also use the ‘meta-rule’ that only con-

nectivity matters (OCM). This says that two diagrams are equal when one can be
continuously transformed into the other by moving spiders around. In particular, the
orientation of the wires is irrelevant so that we can apply the yanking equations
whenever it proves useful:

= = (6.13)

Related to this are the symmetry equations of the spiders:
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α = α

...

... ...

...

...
α

...

...

...
= =

...
α

...
=

...
α

...

α = α

...

... ...

...

...
α

...

...

...
= =

...
α

...
=

...
α

...

For each of the equalities here we of course mean that both sides have the same number
of inputs and the same number of outputs.

Remark 6.3.1. As a result of OCM, the orientation of the inputs and outputs in the
rules of Figure 6.1 is irrelevant, as we can pre-compose and post-compose each rule
with ‘cups and caps’ to change inputs to outputs and vice versa. For instance, for the
‘reverse’ of the copy rule:

aπ

aπ

aπ =α eiaα√
2

aπ α =
(c)

aπ

aπ

eiaα√
2

=
OCM OCM

Additionally, each rule also holds with the ‘colours interchanged’, i.e. where we change
every occurrence in the rewrite rule of a Z spider with an X spider and vice versa.
This is because we can compose the rewrite rules with Hadamard gates both on the
inputs and outputs, then use (h) to ‘push’ the input Hadamard gate to the outputs,
and finally cancel the paired Hadamards with (hh).

Remark 6.3.2. The rule-set of Figure 6.1 is not minimal: we could remove or simplify
some of the rules without losing any expressiveness. For instance, we only need (c) for
a = 0, as the one with a = 1 can be derived from the other rules. This presentation
was chosen for expressiveness. We refer to Ref. [16] for a more minimal set of equivalent
rules, and to Ref. [51, Definition 9.108] for a small set of rules that ignore the scalars.

Finally, next to these diagrammatic rewrite rules we introduce a ‘meta-rule’ that
says that scalars can always be combined:

z1

z2
= z1z2 (6.14)

Here, the right-hand side denotes the product of the complex numbers z1 and z2.

Remark 6.3.3. As noted before, for some equations the exact scalar value is not
important and we write ‘≈’ to denote both sides are only equal up to a non-zero scalar.
In particular, in Chapters 7–9, we will not need the exact value of the scalar at all, and
hence we simply write ‘=’ to denote equality up to non-zero scalar by, leaving scalars
wholly implicit. The reason we present our rewrite rules here in a scalar-accurate way
is because some of them (such as the rules of Section 6.7) have never been described
before with accurate scalar values and because the scalars are important when using
the ZX-calculus for circuit simulation; cf. Sections 6.8 and 10.5.
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An important property for a set of rewrite rules is completeness. A set of rules
is complete when they suffice to prove any equality that is true. In the setting of
ZX-diagrams completeness means that two diagrams representing the same linear map
can always be transformed into one another using the rewrite rules.

The set of rules we present in Figure 6.1 is not complete: there exist diagrams that
represent the same linear map, but there is no way we can prove equality of these
diagrams using just these rewrite rules [178]. In Section 9.4 we will see that when
restricted to the Clifford fragment, i.e. where all spiders have a phase that is a multiple
of π

2 , the rules of Figure 6.1 are complete. Note that there do exist extended sets of
rules that are complete for arbitrary ZX-diagrams [122, 170].

Remark 6.3.4. As we are using the ZX-calculus as a calculational tool in this thesis,
we are intentionally vague about what the actual underlying mathematical object is
that defines a ZX-diagram and the set of rewrite rules. Formally, ZX-diagrams are
morphisms in a PROP: a symmetric monoidal category which has as objects the
natural numbers (corresponding to the number of qubits the diagram acts on). This
category is freely generated by the spiders, monoidal structure, and compact closed
structure (i.e. the yanking equations of Eq. (6.13)). Closing the rewrite rules under
tensor product, composition, and compact closed structure we can quotient the PROP
by the rewrite rules so that two diagrams are identified when a series of rewrite rules
maps one into the other. We refer the interested reader to Ref. [37] for more details.

6.4 Some simple derivations
In this section we will use the basic rules of the ZX-calculus presented in Figure 6.1
to do some simple derivations.

The following lemma relates two ways to represent the Pauli Y eigenstates: as a
π/2 rotation over the Z-axis or a −π/2 rotation over the X-axis.

Lemma 6.4.1. The following holds in the ZX-calculus:

π
2 = -π2eiπ/4 (6.15)

Proof.

π
2 = π

2
π
2= -π2 -π2 -π2 = -π2

= -π2 = -π2

(h) (6.9) (f)

(c) (f)

eiπ/4 eiπ/4

1√
2e
iπ/4

eiπ/4

-π2

-π2 (6.8)
-π2eiπ/4 = �

Like with any other equation we derive, the same also holds with the colours of the
spiders interchanged.

As an application of this rule, we can find a representation of the Hadamard gate
into spiders that does not contain a global phase, which will make later derivations
more elegant:
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Lemma 6.4.2. The following are also valid Euler angles decompositions of the Hadam-
ard gate:

= -π2 -π2 -π2eiπ/4 = -π2 -π2 -π2eiπ/4

= π
2

π
2

π
2e-iπ/4 = π

2
π
2

π
2e−iπ/4

(6.16)

Furthermore, the ZX-calculus proves the following representation:

= π
2

-π2
π
2 (6.17)

Proof. The first equation is just Eq. (6.9), and the equality after that is the colour-
swapped version. The first on the second line is proven by unfusing a π phase and
pushing it through:

= -π2 -π2 -π2eiπ/4

π
2

π
2

π
2e−iπ/4

(f)
= π

2 -π2 -π2eiπ/4 π

(π)
=

π
2

π
2 -π2

eiπ/4
π

e−iπ/2

(f)
=

The second is again just a colour-swapped version. Now for the final equation (6.17) we
take the bottom right equation of Eq. (6.16), unfuse the grey π/2 and apply Eq. (6.15)
(with the colours swapped). �

These different forms for the Hadamard box reveal an additional symmetry present
in our rewrite rules: every equation also holds with the sign of all the angles flipped.
This was already clear for the rules of Figure 6.1, but now we see it also holds for the
expansion of the Hadamard gate into spiders. The operation of flipping all the angles
corresponds to taking the complex conjugate of the linear map.

The following rule will be essential for many of our arguments. It will allow us to
get rid of multiple parallel edges between different spiders.

Lemma 6.4.3. The following holds in the ZX-calculus:

= 1
2 (6.18)

Proof. To prove this, we take advantage of the freedom to deform the diagram:

==

=

=

= =

(i) (f)

(x) (c)
1√
2

1
2

1
2(f)

(i)
�

This rule can also be cast in terms of Hadamard edges:

Lemma 6.4.4. The following holds in the ZX-calculus:

α β... ... = α β... ...1
2 (6.19)
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Proof.

α β... ... = α ...β...
(h)

=
(f)

α... ...β

(6.18)
= α... ...β =

(f)
α... ...β

(h)

1
2

1
2 �

Another useful simplification is the ability to get rid of self-loops.

Lemma 6.4.5. The following equations holds in the ZX-calculus:

α

...
=

...
α α

...
=

...
α+ π

1√
2 (6.20)

Proof. The first one follows by applying (i) from right to left and then using (f). For
the last one we do:

α

...

π
2

α

...

π
2(6.17)

=
...
α+ π=

...
α+ π

(6.18)
=

(f)
1
2

=
...
α+ π

1√
2

-π2 -π2 -π2

(6.8)

�

Finally, let us prove generalisations of the rules (x) and (c) to spiders of arbitrary
arity.

Lemma 6.4.6. The following holds in the ZX-calculus:

. . .
. . .= (

1√
2

)n−1

. . .

n

= (√
2
)(n−1)(m−1)

m

. . .

. . .

. . .

n

m

n n

Here the right-hand side of the first equation is a complete bipartite graph.

Proof. The second equation with n = 1 is proved by (i) and for n = 2 is proved using
(c). The other cases are easily proven by induction by unfusing the ‘left-over’ spiders
with (f) and then applying (c).

For the first equation we note that the m = 0 case is covered by the left equation.
Since m = 1 is trivial, the first non-trivial case for the left equation is m = 2. Keep
m fixed to this value and prove by induction on n with the base case n = 2 being (x).
Now that we have the equation for all n with m = 2, we can do induction on m. �

In the remainder of this thesis we will refer to these generalisations of (x) and (c)
in the same way as to the standard (x) and (c).
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6.5 Phase gadgets
A concept that will be central in all the following chapters is the notion of a phase
gadget. A phase gadget is simply an arity-1 spider with a phase α, connected to
another spider that has no phase, which, depending on the context, we will present in
different ways:

...α...α = ...α=

The first of these forms will come into play in Chapter 7, the second in Chapter 9 and
the third in Chapter 8. Note that we have already seen an example of the first type
in the form of the Hadamard box in Eq. (6.17).

The ubiquity of phase gadgets comes from the simplicity of the linear map they
implement. For example:

α

...

≈ U where U |x1, ..., xn〉 = eiα(x1⊕...⊕xn) |x1, ..., xn〉 . (6.21)

Recall that we use the dotted lines in ZX-diagrams to represent Hadamard-edges
(cf. Eq. (6.10)). The operation ⊕ denotes the XOR of the Boolean variables xi. Hence,
this diagram implements a diagonal unitary that applies a phase eiα iff the parity of
the input qubits is odd.

It can be shown that the above diagram is equal to a ladder of CNOT gates, followed
by a single phase gate, followed by the reverse ladder of CNOT gates. For example,
on 4 qubits:

α

=

α

≈

α

(6.22)

This correspondence is easily proven for 2 qubits:

α
= α

α

= ≈
α

= α

= α

(f) (f)

(x) (i)
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Here the last application of (i) removed the 2-ary X-spiders (recall from Figure 6.1 that
all the rules also hold with the colours interchanged). The higher arity decompositions
follow by induction. Note that while the presentation of a phase gadget is symmetric
in the qubits, the circuit form of Eq. (6.22) is not. Hence, this circuit form obscures
some of the structure that is present in a phase gadget.

The form of the unitary in Eq. (6.21) implies that two phase gadgets with exactly
the same connectivity should be able to fuse together. This is readily shown in the
ZX-calculus:

α

β

α1

αn

...

...

...

=
(f)

α

β
α1

αn

...

...

...

=
(h)

α

β
α1

αn

...

...

...

≈
(x)

α

β
α1

αn

...

...

...

=

(f)
(h)

α1

αn

...

...

...
α+ β

(6.23)

This fact lies at the heart of the circuit optimisation strategy we will use in Chapter 9.
Arbitrary diagonal unitaries, i.e. unitaries which are characterised by a f : {0, 1}n →

R via U |x1, ..., xn〉 = eif(x1,...,xn) |x1, ..., xn〉 can always be expressed as a combination
of phase gadgets. For example, for f(x1, x2, x3, x4) = π

4x1⊕x4 + π
8x1⊕x2− π

4x1⊕x3
we get:

U ≈

π
8

π
4

-π4 (6.24)

The angles appearing in the phase gadgets for a function f correspond to its semi-
Boolean Fourier expansion (see the appendix of Ref. [9] for more details). This Fourier
expansion allows us to write any f : {0, 1}n → R as

f(~x) = α+
∑
~y

α~y(x1y1 ⊕ . . .⊕ xnyn), (6.25)

where ~x, ~y ∈ {0, 1}n and α, α~y ∈ R. In the context of diagonal unitaries, α yields a
global phase (which we can ignore), and each α~y corresponds to a phase gadget. The
Fourier expansion of the semi-Boolean function corresponding to a diagonal unitary
is called a phase polynomial. In terms of ZX-diagrams, a phase polynomial is
a unitary consisting of phase gadgets as in Eq. (6.24). Phase polynomials play an
important role in the optimisation of quantum circuits, cf. Section 9.1.

As an example of the utility of phase polynomials, let us consider the case of the
CCZ gate. This is a 3-qubit gate that applies a Z gate on the third qubit if the first
two are in the |1〉 state. We can write down its action on the computational basis
states as CCZ|x1x2x3〉 = eiπx1·x2·x3 |x1x2x3〉. In other words: it is a diagonal gate
that applies a eiπ = −1 phase iff x1 = x2 = x3 = 1. For values x, y ∈ {0, 1} it is easily
verified that 2x · y = x+ y− 2(x⊕ y). Applying this several times to πx1 · (x2 · x3) we
see that it is equal to π

4 (x1 + x2 + x3 − x1 ⊕ x2 − x1 ⊕ x3 − x2 ⊕ x3 + x1 ⊕ x2 ⊕ x3).
This is the phase polynomial of the CCZ gate. We can use this expansion to write
the CCZ gate as a collection phase gadgets as in Eq. (6.24). Expanding the phase
gadgets to a circuit using Eq. (6.22), reveals a Clifford+T circuit that implements the
CCZ gate.
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6.6 Graph-like diagrams
In this section we introduce a special class of ZX-diagrams that are almost fully
described as simple graphs.

Definition 6.6.1. A graph (V,E) consists of a set of vertices V and edges E.
Each edge e ∈ E is a set with two elements e = {u, v} where u, v ∈ V are vertices.
When {u, v} ∈ E we say that u and v are connected and are neighbours. We write
u ∼ v to denote that u and v are connected and N(v) for the set of neighbours of v.

Remark 6.6.2. Note that our definition does not allow for directed edges, as we
define an edge to be a set, not a tuple. Furthermore, since we explicitly require the
set to contain 2 elements, it does not allow for self-loops. Finally, as E is a set of
edges, there is at most one edge between a pair of vertices. As a result there are no
parallel edges. A graph with these restrictions is also called a simple graph.

Definition 6.6.3. A ZX-diagram is graph-like when:

1. All spiders are Z-spiders.

2. Z-spiders are only connected via Hadamard edges.

3. There are no parallel Hadamard edges or self-loops.

4. Every input and output wire is connected to a Z-spider and every Z-spider is
connected to at most one input wire and at most one output wire.

Lemma 6.6.4. Every ZX-diagram is equal to a graph-like ZX-diagram.

Proof. Starting with an arbitrary ZX-diagram, we apply (h) to turn all X-spiders
into Z-spiders surrounded by Hadamard gates. We then remove excess Hadamards
via (hh). Any non-Hadamard edge is removed by fusing the adjacent spiders with
(f). Self-loops are removed by applying Eq. (6.20) while parallel Hadamard edges are
removed by Eq. (6.19).

At this point, the first 3 conditions are satisfied. To satisfy condition 4, we must
deal with two special cases: (a) inputs/outputs not connected to any Z-spider, and
(b) multiple inputs/outputs connected to the same Z-spider. For case (a), there are
only two possibilities left: either an input and an output are directly connected (i.e.
a ‘bare wire’), or they are connected to a Hadamard gate. These situations can both
be removed by right-to-left applications of (i) and (hh) as follows:

= = ...... = ......

For case (b), we can again use (i) and (hh) to introduce ‘dummy’ spiders until each
input/output is connected to a single spider:

==α ... α ... α... α...

Once this is done, the resulting ZX-diagram satisfies conditions 1-4. �
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α

γ

→

I 3

I 3

I 3

∈ O

∈ O

∈ O

I 3 ∈ O

=
γ

α

=
γ

α

(f) (i)

α

γ

=
(h)

=
(hh)

α

γ

Figure 6.2: A circuit, which is transformed into an equivalent graph-like ZX-diagram,
and its underlying open graph.

A useful feature of a graph-like ZX-diagram is that much of its structure is captured
by its underlying open graph.

Definition 6.6.5. An open graph is a triple (G, I,O) where G = (V,E) is a graph,
and I ⊆ V is a set of inputs and O ⊆ V a set of outputs. For a graph-like ZX-
diagram D, the underlying open graph G(D) is the open graph whose vertices are
the spiders of D, whose edges correspond to Hadamard edges, and whose sets I and
O are the subsets of spiders which have respectively input and output wires.

Indeed a graph-like ZX-diagram can be seen as an open graph with an assignment
of angles to each of its vertices. Note that the sets I and O do not have to be disjoint.
See Figure 6.2 for an example of a ZX-diagram transformed into a graph-like diagram.

It will be useful to introduce some further notation when dealing with (open) graphs.

Definition 6.6.6. Let (G, I,O) be an open graph. We write I := V \I and O := V \O
for respectively the non-inputs and non-outputs . Vertices that are neither inputs
nor outputs are called internal vertices.

Graph-like diagrams are a generalisation of graph states [112], a well-studied class
of quantum states. These states turn out to have a straightforward representation as
ZX-diagrams.

Definition 6.6.7. A graph state is a graph-like ZX-diagram that has no inputs, no
internal vertices and no non-zero phases.

Because a graph state has no internal vertices and no inputs, every spider must be
connected to exactly one output. As no non-zero phases are allowed, a graph state is
then completely specified by the underlying graph, and conversely any graph defines
a graph state. For a given graph G we write |G〉 for its corresponding graph state.

Being a graph state is quite restrictive, so we will often use a more relaxed notion:

Definition 6.6.8. A graph state with local Cliffords (GS-LC) is a ZX-diagram
that consists of a graph state composed with single qubit Clifford unitaries.
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Recall that a Clifford unitary is any unitary that can be constructed from a quantum
circuit consisting of S, H and CNOT gates. Local Cliffords on the other hand are
constructed only by using S and H gates. In the ZX-calculus a local Clifford unitary can
always be represented by a sequence of arity 2 spiders with phases that are multiples
of π/2.

Example 6.6.9. On the left a graph state and on the right the same graph state
composed with some local Cliffords to produce a diagram in GS-LC form.

-π2

π π
2

The importance of graph states with local Cliffords comes from the following result:

Theorem 6.6.10 ([168]). Any Clifford state is equal to some GS-LC state.

We will actually reprove this result using the ZX-calculus in Section 9.4. The main
tool for doing so is an operation on graphs that is described in the next section.

6.7 Local complementation and pivoting
Local complementation is a graph transformation introduced by Kotzig [137].

Definition 6.7.1. Let G be a graph and let u be a vertex of G. The local comple-
mentation of G about u, written as G ? u, is a graph which has the same vertices
and edges as G, except that all the neighbours v, w of u are connected in G ? u if and
only if they are not connected in G.

Example 6.7.2. An example of local complementations about the vertices a and b
in the graph G.

G

a b

dc

G ? a

a b

dc

(G ? a) ? b
a b

dc

Interestingly, if we have a graph state |G〉, we can get a graph state |G ? u〉 just by
applying some local Cliffords on the original graph state. This was originally shown in
Ref. [168]. It was subsequently proved in the ZX-calculus in Ref. [69]. We will follow
an adaptation of this proof provided in Ref. [51].

Definition 6.7.3. We define Kn to be the fully connected ZX-diagram on n
qubits, defined recursively as:

:=
Kn

K0 :=

n+ 1
n

...

...
...

...

Kn+1 (6.26)
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When we fuse all the spiders in the Kn we see that they indeed give totally-connected
graphs of Hadamard edges:

· · ·

Using this definition of Kn we can state the equality that will allow us to do local
complementations:

Lemma 6.7.4 ([51, Lemma 9.128]). The following holds in the ZX-calculus for all
n ∈ N:

=
π
2

π
2

-π2

Kn

...

... ...

( 1√
2 )n(n−1)/2 (6.27)

Before we prove this, see Example 6.7.5 for a demonstration of how this is related
to doing local complementations. The crucial point is that the introduction of a fully
connected graph by Eq. (6.27) makes a parallel edge if there was already an edge
present, which is then subsequently removed by Eq. (6.19).

Example 6.7.5. Let us take the graph G from Example 6.7.2, but now seen as the
graph state |G〉.

a

b

dc

(f)
=

π
2

π
2

π
2

-π2

π
2-π2 -π2 -π2

≈
(6.27) π

2-π2 -π2 -π2

a a

(f)
=

π
2-π2 -π2 -π2

a

≈
(6.19) π

2-π2 -π2 -π2

ac d

b

We indeed end up with |G ? a〉 (up to local Cliffords).

For the proof of Lemma 6.7.4 we will need the following base case.

Lemma 6.7.6 ([51, Lemma 9.127]). The following holds in the ZX-calculus:

=
π
2

π
2

-π2

1√
2 (6.28)

Proof.
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π
2

π
2

(f)
=

π
2-π2

π
2

(h)
=

-π2

(6.17)
=

-π2
π
2

π
2

=

π
2

-π2

π
2

(x)
= 1√

2
1√
2

-π2

π
2

π
2

(h)
= 1√

2

(f)

�

Proof of Lemma 6.7.4. Note that for n = 0 and n = 1 this equation becomes:

-π2(c)

-π2

(h)
=

π
2

=

The previous lemma shows n = 2. We now proceed by induction. For our induction
hypothesis, assume (6.27) holds for some fixed n ≥ 2, which we indicate as (ih) below.
Then, for n+ 1 we calculate:

(f)
=

π
2

π
2

-π2

...π
2

π
2

π
2

-π2

π
2...

(h)
=

-π2

π
2

π
2 ... π

2

(f)
=

π
2

-π2

π
2...

(6.28)
=

-π2

π
2...π

2

π
2 ... π

2

π
2

-π2

-π2

π
2

(h)
=

√
2

√
2
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(ih)
=

Kn

...

...

(h)
=

...

...
Kn

...

...

(x)
=

Kn

√
2

√
2

√
2n(n−1)/2 √

2n(n−1)/2 √
2n(n−1)/2

√
2

√
2n−1

(h)
= ...

Kn

...

...

...

...

Kn ...
Kn+1

...
(6.26)

=

√
2(n+1)n/2

(f)
=

√
2(n+1)n/2 √

2(n+1)n/2

�

Related to local complementation is the operation of pivoting.

Definition 6.7.7. Let G be a graph, and let u and v be a pair of connected vertices
in G. The pivot of G along uv, written as G∧uv, is the graph G∧uv := G?u?v ?u.

Although it is not obvious from the definition, because we haveG?u?v?u = G?v?u?v,
we do not care about the order of u and v when doing a pivot along the edge uv.

On a graph, pivoting consists in exchanging u and v, and complementing the edges
between three particular subsets of the vertices: the common neighbourhood of u and
v (i.e. NG(u)∩NG(v)), the exclusive neighbourhood of u (i.e. NG(u) \ (NG(v)∪{v})),
and exclusive neighbourhood of v (i.e. NG(v) \ (NG(u) ∪ {u})):

G
A

B C

vu

G ∧ uv
A

B C

v u

For a more concrete illustration of pivoting see Example 6.7.8.

Example 6.7.8. In the graph G below, {a, b} is in the neighbourhood of u alone, {d}
is in the neighbourhood of v alone, and {c} is in the the neighbourhood of both. To
perform the pivot along uv, we complement the edges connecting {a, b} to {d}, {d}
to {c} and {a, b} to {c}. We then swap u and v.

G

u v

d

b
c

a
e

G ∧ uv

v u

d

b c

a
e
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As a pivot is just three local complementations, a pivot can also be done on graph
states using local Cliffords. It will however be useful to prove this fact more directly.

Lemma 6.7.9. The following holds in the ZX-calculus:

......

...

...

u v

n3

=

...

u v
π π

... ...

...

n1
n2 √

2n1n2+n1n3+n2n3

(6.29)

I.e. we can connect every vertex in the group of n1 to those in n2 and n3 (and similarly
for n2), at the cost of introducing a swap and a Hadamard on the outputs of u and v,
and a π phase on each of the vertices in n3.

Proof. First, we apply a colour change on v:

......

...

...

u v

n3

=

n1
n2

......

...

...

u v

n3

n1
n2

(h)

Now, comes the crucial step: we apply (x) on u and v:

......

...

...

n3

n1
n2

=

......

...

...

n3

n1
n2

=
(h)

√
2(n1+n3)(n2+n3) √

2(n1+n3)(n2+n3)

(x)

This has resulted in many connected Z spiders which need to be fused again. For the
spiders in the group of n3 this will lead to self-loops and parallel edges that we deal
with in the final step:
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......

...

...

n3

n1
n2

=
(f)

√
2(n1+n3)(n2+n3)

......

...

...

n3

n1
n2

=
(6.19)

√
2(n1+n3)(n2+n3)

(6.20)

( 1
2 )n3(n3−1)/2( 1√

2 )n3

π π

In this last step we removed n3 self-loops, giving the term ( 1√
2 )n3 , and we removed

a parallel edge between every pair of vertices in n3, meaning we have n3(n3 − 1)/2
parallel edges each giving a scalar of 1

2 . It is easily checked that the final scalar
multiplies out to the stated value in the lemma. �

6.8 Graph-theoretic simplification

The local complementation and pivoting rules of the previous section have no obvious
directionality to them: it is not a priori clear in which order, left-to-right or right-to-
left, the rules should be applied in order to make a diagram simpler. In this section we
will introduce variations on these rules that do have an obvious directionality. Versions
of these rules will be used in Chapter 8 to simplify measurement patterns, but as an
immediate consequence we will show here how they can be used to prove a version of
the Gottesman-Knill theorem.

Our first rule uses local complementation. If the vertex we do the complementation
about has a phase of π/2 or −π/2, and no output wire, then doing a complementation
allows us to remove this vertex:

Lemma 6.8.1.

±π2
α1 αn

...... ... = ...
α1∓ π

2

...
αn∓ π

2

α2

...
αn−1

...
α2∓ π

2

...
αn−1∓ π

2

...

...

e±iπ/4
√

2
(n−1)(n−2)

2

(6.30)

Proof. We pull out all of the phases via (f) then apply the local complementation
rule (6.27):
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±π2

α1 αn

...... ...
=

α2

...
αn−1

...

α1 αn...
... ...

α2

...
αn−1

...

±π2

(f)
= α1

αn

...... ...

α2

...
αn−1

...

±π2

(6.27)

π
2

-π2 -π2

-π2 -π2

√
2
n(n−1)

2

Using Eq. (6.15), the topmost spider in the right-hand side above becomes an X-spider,
with phase ∓π/2, which combines with the phase below it into an aπ phase, where
a = 0 if we started with π/2 and a = 1 if we had started with −π/2. The resulting
X-spider copies and fuses with the neighbours:

...
α1∓ π

2

...
αn∓ π

2

α2∓ π
2

...
αn−1∓ π

2

...

...= α1− π
2 αn− π

2
...... ...

α2− π
2

...
αn−1− π

2

...

(f)

aπ

= α1− π
2 αn− π

2
...... ...

α2− π
2

...
αn−1− π

2

...

(c)

aπ aπ aπ aπ

=

(h)(6.15)
(f)

...

√
2
n(n−1)

2 ei±π/4
√

2
n(n−1)

2 ei±π/4 ( 1√
2 )n−1 e±iπ/4

√
2

(n−1)(n−2)
2

�

The second rule uses pivoting. If we have a connected pair of vertices that each has
a 0 or π phase, then doing a pivot about this pair allows us to remove them.

Lemma 6.8.2.

jπ
α1

=
αn

βl

β1

γ1

γm

kπ

...

...

... αn + kπ

βn + (j + k + 1)π

...

β1 + (j + k + 1)π

γ1 + jπα1 + kπ

......

γn + jπ

...

...

...

...

...

...

...

... ...

...

...

...
√

2(n−1)m

√
2(l−1)m

(−1)jk
√

2(n−1)(l−1)

(6.31)

Proof. We pull out all of the phases via (f) and apply the pivot rule (6.29):
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α1

αn

βl

β1 γ1

γm

...

...

...

...

...

...

... ...

...

(f)

jπ kπ

α1

αn

βl

β1

γ1

γm

...

...

...

...

...

...

...

...

...

=
(6.29)

π

π

jπ kπ

jπ
α1

=
αn

βl

β1

γ1

γm

kπ

...

...

...

...

...
...

...
...

...

√
2nl+ml+nm

We then apply the colour-change rule to turn the Z-spiders with phases jπ and kπ
into X-spiders. They can then be copied, colour-changed again and fused with their
neighbours:

=

α1

αn

βl

β1

γ1

γm

...

...

...

...

...

...

...
...

...

=

(h)

π

π

jπkπ

(c)

jπjπjπkπ kπkπ

(h)
(f)

...

√
2nl+ml+nm

( 1√
2 )m+l( 1√

2 )n+l
kπ jπ

αn + kπ

βn + (j + k + 1)π
...

β1 + (j + k + 1)π

γ1 + jπα1 + kπ

......

γn + jπ

...

... ...

...

...

...

√
2(n−1)m√

2(l−1)m

(−1)jk
√

2(n−1)(l−1)

Note that the dangling scalar diagram appears because we copy twice and the vertices
are connected. Using Eq. (6.8) we see it is equal to (−1)jk

√
2. It is straightforward

to verify that the scalars multiply out as described. �

In the next chapters we will often refer to ‘applying’ these rules (or similar ones) to
certain vertices. By that we mean that the designated vertex (vertices) plays the role
of the π/2 vertex (the 0/π vertices) in Eq. (6.30) (resp. (6.31) and that we apply the
rewrite rule from left to right.

Let us now demonstrate an immediate use-case for these rules.
Recall that the Gottesman-Knill theorem states that any quantum computation

involving only Clifford operations can be efficiently simulated on a classical computer.
We will show how this result can be rederived using the simplification rules above.

Specifically, we will show that given a Clifford circuit C on n qubits, we can efficiently
find the amplitude 〈0 · · · 0|C |0 · · · 0〉. We do this by writing that amplitude as a ZX-
diagram, and then progressively simplifying this diagram until we can easily read of
the scalar value. As the circuit is Clifford, the ZX-diagram will only contain phases
that are multiples of π/2, which allows us to use these previous rules to maximal
effect.
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Theorem 6.8.3 (Gottesman-Knill). Let C be a Clifford circuit on n qubits consisting
of k gates in the gate set {CNOT,H,S}. Then the amplitude 〈0 · · · 0|C |0 · · · 0〉 can
be exactly calculated classically using O(k3) elementary graph operations.

Proof. Write the scalar ZX-diagram corresponding to 〈0 · · · 0|C |0 · · · 0〉. Transform
it into a graph-like diagram by applying Lemma 6.6.4. As there are no inputs and
outputs, every spider is only connected to other spiders and always via a Hadamard
edge. Keep applying Eq. (6.30) as long as there are spiders with a ±π/2 phase to
remove. The resulting diagram then must only have spiders with a 0 or π phase left.
Isolated spiders can be easily written as scalars. If a spider is connected to another
spider then we can remove the pair by applying Eq. (6.31). Doing such a pivot only
changes phases by multiples of π and hence does not introduce new spiders with phase
±π/2. We conclude that the entire diagram can be reduced to a scalar, which gives
the desired amplitude.

For the time complexity, we note that constructing the ZX-diagram and writing
it as a graph-like diagram takes time linear in the number of gates in the circuit,
with the resulting graph having O(k) vertices. Each local complementation or pivot
could potentially change the connectivity of the entire graph and hence requires O(k2)
elementary graph operations. As each pivot and local complementation removes a
vertex we require at most O(k) of these operations, and hence we see that we need at
most O(k3) elementary graph operations. �

Remark 6.8.4. The complexity O(k3) is pessimistic. Most graph operations will
only involve a small part of the graph. This can be readily seen because a local
complementation toggles the connectivity, and hence a highly connected subgraphs
becomes sparse in the next step. Other versions of this result (such as Ref. [2]) usually
require linear time in the number of gates, and time O(n3) in the number of qubits.
The reason we get a bound in terms of the number of gates is because we don’t specify
a strategy for doing the local complementations. We conjecture that if one does the
rewrites in a more or less ‘chronological’ order, that one gets the known time bounds.

Remark 6.8.5. We have actually not shown the full power of the Gottesman-Knill
theorem: we have established that we can find single amplitudes, but we have not
shown how to calculate marginal probabilities. For Clifford circuits this problem is
easily addressed by using the CPM construction, also known as doubling the ZX-
diagram. See for instance Ref. [51, Chapter 6]

Using the ZX-calculus for circuit simulation can also be done for non-Clifford circuits.
This is explored in more detail in Section 10.5.



Chapter 7

A simple model of computation
This chapter and the next deal with measurement-based quantum computation
(MBQC). Unlike the circuit model of quantum computation, MBQC has no classical
counterpart. There are a variety of different models of MBQC that work in different
ways, but they all share some common aspects. They all start with some specific
intricate resource state. The program that one wishes to execute consists of doing
measurements on this state. Crucially, later choices of measurements may depend
on previous measurement outcomes, a concept known as feed-forward. So while a
computation in the circuit model is done by a series of unitary quantum gates, in
MBQC it is done by implementing a specific series of outcome-dependent measurements
on some resource state.

The most widely studied model of MBQC is called the one-way model [181]. In this
model the resource state is a graph state (cf. Definition 6.6.7), and all the measurements
are single qubit measurements restricted to specific planes of measurements. The one-
way model is the topic of study of Chapter 8. Because the resource state is a Clifford
graph state, the power of universal quantum computation in the one-way model comes
from doing measurements in a non-Clifford basis. In fact, any computation involving
Pauli measurements can be done in a single time-step [182].

It is natural to ask if we can invert this problem: is it possible to obtain universal
computation by means of a non-Clifford resource state and just Pauli measurements?
There are several ways to achieve this. For example, one could consider resource states
which are prepared just like graph states, but with certain qubits prepared in a |T 〉
magic state rather than the usual |+〉 state [61]. One can also consider hypergraph
states [80], a generalisation of graph states produced by multi-qubit n-controlled-Z
operations, represented graphically as hyper-edges. These were shown to admit a
universal model of computation using Pauli measurements and feed-forward [197].
A different approach was taken in [161], where a resource state was created that
allowed non-deterministic approximately universal computation using just X, Y and
Z measurements.

In this chapter, we introduce a new family of generalisations of graph states which
admit universal deterministic computation using only Pauli X and Z measurements
and feed-forward. We call these parity-phase graph states, or P-graph states. Edges
in P-graph states represent an application of the following parity-phase gate, for
some fixed angle α:

P (α) = exp
(
−iα2Z ⊗ Z

)
We refer to this as a parity-phase gate because it introduces a relative phase of α
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between its even-parity eigenstates |00〉 , |11〉 and its odd parity eigenstates |01〉 , |10〉.
We introduced such gates as phase gadgets in Section 6.5.

These parity-phase gates are a popular primitive two-qubit entangling gate in certain
hardware implementations of qubits, such as with ion trap qubits (via Mølmer Sørensen
interactions [17, 81]), or with transmon-based superconducting qubits [201]. At the
end of Section 7.4, we comment briefly on near-future prospects of implementing this
scheme using the latter.

When α = π
2 , we obtain resource states which are equivalent to graph states up to

local Clifford operations. However, if α = π
4 , we can construct resources which are

approximately universal for quantum computation using only single-qubit Pauli X and
Z measurements and feed-forward. We call this the PPM model, for parity-phase
with Pauli measurements.

A key feature which distinguishes P-graph states from standard graph states is that
the entangling operation P (α), which is a CZ gate in the case of graph states, satisfies
P (α)P (α) 6= id (except in the degenerate case where α = π). Hence it is possible, and
even desirable, to consider resource states described by graphs with multiple, parallel
edges between nodes. For example:

(7.1)

These parallel edges correspond to multiple applications of the entangling gate P (α)
to the adjacent qubits. For example, a doubled edge above indicates the application
of P (α)2 = P (2α). In the graph theory literature, graphs such as (7.1) are sometimes
referred to as undirected multigraphs.

In the PPM model, doubled edges play a special role. Since P (π4 )2 = P (π2 ) is equi-
valent, up to local Clifford operations, to a controlled-Z gate, subgraphs of a P-graph
state containing only doubled edges behave in much the same way as traditional graph
states. However, P-graph states additionally yield the ability to selectively inject π/4
phases into computations via nodes connected by single edges. One way to conceptu-
alize this fact is to consider the two-qubit gates P (π/4) as introducing ‘virtual’ magic
states between pairs of qubits. The phase data carried by this ‘virtual’ magic state
can either be destroyed or injected on to one of the neighbouring qubits, depending
on the measurement choices, using a method similar to that of for instance Ref. [31].

Notably, this dichotomy gives a clean separation of the efficiently simulable parts
of the computation and the rest. In deriving a universal scheme for computation with
P-graph states, we will note that feed-forward is only required in the vicinity of single
edges. So, much like the case in the one-way model, the entire ‘Clifford part of the
computation’ can be done in a single time step.

In order to prove the correctness of our measurement patterns, we will use the ZX-
calculus to reason about P-graphs. We will demonstrate the possibility of deterministic
computation by ‘pushing’ Pauli errors forward from measurements to qubits in future,
which can be corrected. However, unlike previous work, we rely on the extra flexibility
of ZX-diagrams to represent non-Clifford correlations between qubits and develop
techniques for ‘pushing’ errors through these edges using the ZX-calculus. As we shall
see, the diagrams keep track of the extra (Clifford) errors introduced by propagating
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errors forward, and it enables us to derive a technique for performing Pauli and Clifford
corrections purely by means of single-qubit measurement choices in the bases {X,Z}.
This yields a measurement-based model which is very flexible. To give some evidence
of this flexibility, we show in Section 7.5 how to generalise to P-graph states where
a single edge denotes an application of P ( π

2n−1 ). This enables us to incorporate a
familiar ‘trick’ (see e.g. [88, Section III]) into the model to deterministically implement
any diagonal gate of the n-th level of the Clifford hierarchy.

To give a proof of universality, we introduce ‘hairy brickwork states’, which are
inspired by the brickwork states introduced in Ref. [33] for universal computation in
the one-way model.

Alternatives to the one-way model have been considered, notably in a broad range of
models by Gross et al. [92], which include a variation on graph states called weighted
graph states, whose two-qubit interactions are equivalent to P (α) for values of α
different from π/2, up to local unitaries. However, our approach is different in two
important ways. First, we use only very limited measurements, and second, our scheme
is deterministic using feed-forward, eliminating the need for the ‘trial-until-success’
strategies used by Ref. [92]. In fact, our model was the first to offer an approximately
universal model of MBQC using only Pauli X and Z measurements. A modification
of the one-way model that allows for an additional operation to directly inject phases
on qubits was considered in Ref. [61] where they showed this gives an approximately
universal model requiring only Pauli X and Y measurements.

In Ref. [161] a model based on hypergraph states is constructed that only needs
Pauli measurements to become universal, but its structure is more complex than ours
and the protocols used are not deterministic. In later work, namely Refs. [197] and [80]
they do have a deterministic model using hypergraph states and Pauli measurements.
However, our protocol remains interesting for several reasons. First, parity-phase
interactions are typically more primitive, in that they have simpler realisations within
the gate sets of current hardware proposals. Second, the universal gate set we produce
in our model is Clifford+T (or more generally, Clifford + arbitrary diagonal Clifford-
hierarchy gates), as opposed to CCZ+Hadamard. While the latter is also universal, it
requires extra overhead for encoding computations in a higher-dimensional space [189].
Third, and perhaps most importantly, we introduce a drastically different methodology
to existing approaches. This yields a rather flexible family of models that enable us to
explore a variety of multi-qubit interactions and graph topologies. Indeed it is a topic
of active research to extend these techniques to hypergraph-based models, where the
role of the ZX-calculus is played by the ZH-calculus [14] (cf. Section 10.4).

This chapter is structured as follows. In the next section we describe the PPM
model. We give a description of this model in the ZX-calculus in Section 7.2. Then we
describe the implementation of several gates in the PPM model in Section 7.3. This
leads to a proof of universality of our model in Section 7.4. Then in Section 7.5 we
discuss how our model can be generalised to allow gates from any level of the Clifford
hierarchy. We conclude with some remarks in Section 7.6.
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7.1 The PPM Model
In this section we will give a full description of the PPM model. In Section 7.2 we
will see how we can cast all the components of the model in the language of the
ZX-calculus.

A P-graph state is described by an undirected multigraph. In practice, we only
consider graphs that have just single and double edges:

A single edge describes the application of an P (π/4) gate, whereas a double edge
describes the application of an P (π/2) = P (π/4)2 gate.

A measurement pattern is a P-graph state where each node is labelled by a
measurement expression of the form “b← φ(a1, . . . , an)” where b is a fresh variable
called the output value and φ is a classical function from boolean variables a1, . . . , an
to a single boolean value. In this case, we say for each ai that b depends on ai. A
pattern is well-founded if there are no cyclic dependencies between variables, such
as in the following pattern:

b← 0

e← bc⊕ d f ← a

a← 1

c← 0 d← 0

These expressions do not have any explicit time-ordering, but there are restrictions
on the order in which measurements can be made, due to dependencies on prior
outcomes. For instance, in the pattern above the qubit labelled a ← 1 needs to be
measured before the qubit labelled f ← a, as the variable a is introduced by the
measuring of this first qubit. As a matter of convention, we will typically draw earlier
measurements below later ones, i.e. ‘time’ flows upward.

Computations are performed as follows:

1. A qubit is initialised in the |+〉 state for each vertex in a P-graph state.

2. For every edge in the graph, P (π4 ) is applied to the two qubits at its source and
target. In particular, P (π2 ) = P (π4 )2 is applied to every pair of qubits connected
by a double edge.

3. For a qubit labelled “b← φ(a1, . . . , an)”, where the values a1, . . . , an are known,
measure in the X-basis if φ(a1, . . . , an) = 0 and the Z-basis otherwise. In either
case, store the measurement result, either a 0 or a 1, in b.

4. Optionally, perform some classical post-processing on the measurement results,
in order to interpret the outcomes correctly.
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Note that, as with the one-way model, the two-qubit gates P (α) applied in step 2 all
commute. The order of application is therefore irrelevant, and the undirected graph
structure is indeed sufficient to describe the model.

To show that this model is universal, we will compose smaller patterns into larger
ones. In order to do this, we give a notion of pattern fragment analogous to the
notion given for the one-way model. A pattern fragment is just like a measurement
pattern, with the exception that we additionally identify two (not necessarily disjoint)
subsets of vertices I,O ⊆ V which respectively correspond to inputs and outputs.
Inputs correspond to qubits that can be in an arbitrary state, rather than the fixed state
|+〉. Outputs correspond to qubits which remain unmeasured after the application of
the pattern-fragment.

Each vertex in I is labelled with an input error expression of the form: “(z, x)←
�” for fresh variables z and x, which capture whether a Z or X error is being fed
forward into this vertex. Unless the input vertex is also an output, the vertex will
also be labelled with a measurement expression. Measurement choice functions φ in
the fragment are allowed to depend on the input errors as well as other measurement
outcomes present in the fragment.

Each vertex in the output set O is labelled by an output error expression of
the form: “�← (ζ, ξ)” consisting of a pair of classical functions ζ, ξ which again can
depend on the input errors and the results of measurements in the pattern fragment.
These functions specify which z, respectively x, error is being fed forward. Vertices
in O are not measured so they do not contain a measurement expression.

Example 7.1.1. Consider the following pattern fragment:

(z, x)← � ; a← 0

�← (ζ, ξ) e← b⊕ x

b← 1

d← 0c← 0

The bottom left qubit is an input, and the top left qubit is an output. Note that the
measurement plane of e depends on the input x error.

We say a pattern fragment implements a gate G if, for any input state of the form:
XxZz |ψ〉, performing the pattern fragment yields XξZζG |ψ〉, i.e. when regardless of
the possible X and/or Z error that exists on the input state |ψ〉 the pattern fragment
always transforms |ψ〉 to G |ψ〉, with the exception of some possible known error XξZζ .
This notion of implementing a gate extends in the natural way to gates with multiple
input and output qubits:

(Xx1Zz1 ⊗ . . .⊗XxnZzn) |ψ〉 7→ (Xξ1Zζ1 ⊗ . . .⊗XξmZζm)G |ψ〉

Composing pattern fragments then results in the composition of their associated
gates, hence it suffices for the sake of universality to show we can implement a universal
set of quantum gates via pattern fragments.
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7.2 PPM in the ZX-calculus
In order to express the PPM model in the ZX-calculus, we give graphical presentations
for the parity-phase gate and for Pauli measurements. As discussed in Remark 6.3.3
we will ignore global phases and global scalars in the ZX-diagrams, and we will use
‘=’ to denote equality up to non-zero scalar (instead of writing ‘≈’).

It’s not too hard to see that P (α) = exp
(
−iα2Z ⊗ Z

)
is (up to a global phase) of

the form of the unitary in Eq. (6.21). We then easily verify that:

P (α) = α (7.2)

Pauli Z and X measurements non-deterministically introduce projections onto their
respective eigenstates, namely {〈0| , 〈1|} for Z-measurements and {〈+| , 〈−|} for X-
measurements. Hence, we can represent Pauli measurements in the ZX-calculus by:

Z-measure :=
{

aπ
}
a∈{0,1}

X-measure :=
{

aπ
}
a∈{0,1}

(7.3)

Remark 7.2.1. Note that we represent a Z measurement with an X-spider, and vice
versa. This is because spiders copy states of the opposite colour.

There are two main ways in which we will use the P (α) gate. First, the appearance
of the ‘virtual qubit’, i.e. the state being input between the two wires in equation (7.2)
suggests that we should be able to use it as a ‘magic state’ that is waiting to be applied
to one of its neighbouring (actual) qubits to introduce a phase. More specifically, if we
prepare the second qubit in the |+〉 state and then measure it in the Z basis, we obtain
a Z-phase gate RZ(±α), with the sign depending on the measurement outcome:

α

aπ

=
α aπ

=
(-1)aα

(-1)aα==
aπ

α

(f)
(i)
(f) (π) (f)

(7.4)

Second, if we take α = π
2 we can rewrite the expression of P (π2 ) in the ZX-calculus

a bit further:

-π2=π
2 = -π2 ==P (π2 )

-π2

π
2

-π2
π
2

π
2

π
2

(6.15) (f) (6.16)
(7.5)

Hence, this gate is equivalent, up to single-qubit Clifford unitaries, to a CZ gate.
Since P (α)P (β) = P (α+β) we get P (π2 ) = P (π4 )2, so that the gate P (π4 ) is a

√
CZ

gate, up to local unitaries.
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From this point, we will typically suppress explicit references to the spider-fusion rule
(f), and assume that spiders of the same colour are (un)fused as necessary. Similarly,
we will suppress references to (i) and (hh) and simply remove 2-legged spiders and
pairs of H gates as they appear.

We can now define the translation from P-graph states and patterns to ZX-diagrams,
which is similar in spirit to the one given in Ref. [70] for graph states. Qubits become
white dots with a single output and single/double edges become edges decorated by
the appropriate phases as follows:

C D

B A

7→

D

C

B

A

π
4

π
2

π
2

π
4

π
2

A

C

=
B

D

π
2

It will be convenient to deform the right-hand side to match the topology of the
associated P-graph state, in which case we can drop the qubit labels:

7→
π
4

π
2

π
2

Note that all of the wires with a free end correspond to outputs, so there is no need
to draw them exiting to the right of the diagram.

To compute the result of a measurement pattern, we post-compose with the ap-
propriate effects, {〈0| , 〈1|} for Z-measurements and {〈+| , 〈−|} for X-measurements,
using equation (7.3). This enables us to write patterns (without feed-forward) as a
single ZX-diagram:

7→
π
4

π
2

dπ

bπ

cπ

aπ

π
2

c← 0 d← 0

b← 0 a← 1

We could also represent the feed-forward within the diagram (e.g. by conditionally
applying Hadamard gates to outputs), but for our purposes it will be simpler just to
do some simple case-distinctions.

Finally, pattern fragments can be expressed by not measuring outputs, and adding
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a new input wire for each input:

7→
π
4

π
2

cπ

bπ aπ

π
2

�← (ζ, ξ) c← 0

(z, x)← � ; b← 0 a← 1
(7.6)

In order to implement a gate G, we should show that the right-hand side above,
pre-composed with possible Pauli errors, implements G followed by some possible
Pauli errors. We can represent the possible Pauli errors as follows:

zπ X-error :=
{ }

x∈{0,1}
xπ

}
z∈{0,1}

Z-error :=
{

(7.7)

Giving a deterministic implementation of a gate G hence amounts to proving that
there exist boolean functions ζ, ξ such that the following equation holds, for all values
of the boolean variables a, b, c, x, z:

π
4

π
2

cπ

bπ aπ

π
2

xπ

zπ

= ξπζπG

Remark 7.2.2. Note that the colours play opposite roles in equations (7.3) and (7.7).

7.3 Measurement patterns for a universal set of
gates

In this section, we will introduce several pattern fragments, and show that they
deterministically implement certain quantum gates. We will start with a simple
example, which uses one double-edge to implement an X(π/2) = HSH gate. Following
that, we find a different P-graph shape that can be used to selectively implement a CZ
or S⊗S. We end the section with a P-graph that, depending on the measurements we
do on it, can implement T , H, or S gates. These patterns will be used in Section 7.4
to establish universality of the PPM model.

The pattern for an HSH gate is:

7→ π
2 ζπ ξπ

(z, x)← � ; a← 0

�← (ζ, ξ)

where
{
ζ = z ⊕ a
ξ = z ⊕ a⊕ x⊕ 1
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The bottom qubit is the input of the expression. We always measure it in the X
basis (a ← 0) which gives us a measurement result a. We record the incoming Z
and X error in the variables z and x. The resulting Z error at the end is now z ⊕ a,
and the X error is z ⊕ a ⊕ x ⊕ 1. We can show the correctness of this fragment by
performing translation (7.6) and reducing using the ZX-calculus:

zπ

xπ

aπ

π
2

=
(z ⊕ a)π

xπ

= =

π
2

(z ⊕ a⊕ x⊕ 1)π

(z ⊕ a)π

π
2 -π2

(z ⊕ a)π

xπ xπ

=
-π2

(z ⊕ a)π

=

xπ

(z ⊕ a)π

-π2

(z ⊕ a)π
(∗∗)(6.15)

Here equation (∗∗) is the standard Clifford commutation law of S†X ≈ XZS†, but
with the bases interchanged. This commutation follows from (π) and the fact that,
for a ∈ {0, 1}, we have (−1)a π2 = π

2 + aπ (mod 2π):

π
2

aπ (-1)a π2

aπ

=
(π)

π
2

aπ

=
aπ

π
2 + aπ

aπ

= (7.8)

As the derivation of some of the other single qubit gate fragments, particularly that
of the T gate, is quite tedious, let us first look at the following 2-qubit pattern that
implements a CZ-gate:

a← 1b← 0

(z1, x1)← �

�← (ζ2, ξ2)

�← (ζ1, ξ1)

(z2, x2)← �

where


ξi = xi

ζ1 = z1 ⊕ x2 ⊕ a⊕ b⊕ 1
ζ2 = z2 ⊕ x1 ⊕ a⊕ b⊕ 1

Note that the top and bottom qubits act as both inputs and outputs, so they are not
measured. We measure a in the Z-basis, and b in the X-basis. Writing the resulting
diagram out in the ZX-calculus (ignoring incoming Pauli errors for the moment) we
get:

aπ
π
2

π
2

π
2

=

(-1)a π2

bπ

-π2

-π2

-π2

(-1)a⊕b π2=
-π2

bπ

π
2

aπ

π
2

π
2

bπ

=

(6.15)

(π)
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=
-π2

-π2

-π2

(a⊕ b⊕ 1)π

(a⊕ b⊕ 1)π

=

(a⊕ b⊕ 1)π

(a⊕ b⊕ 1)π

(a⊕ b⊕ 1)π

=

(a⊕ b⊕ 1)π

(7.8) (6.9) (h)

Pauli errors propagate through a CZ in the following way:

zπxπ zπxπ

= xπ

xπ

=

zπ

xπ

xπ

zπ

=

xπ
(π) (h)

and analogously for errors on the other input. Putting the above derivation together
with this error propagation gives the pattern fragment as specified above.

This pattern fragment implementing a CZ gate has the additional property that if
we measure b in the Z basis instead of the X basis, it disconnects. It does not matter
in which basis we measure a, so let us just choose the X basis for it. This pattern
fragment is:

a← 0

�← (x2 ⊕ z2 ⊕ b, x2)

�← (x1 ⊕ z1 ⊕ b, x1)(z1, x1)← �

(z2, x2)← �

b← 1

This pattern implements an S ⊗ S gate:

π
2

π
2

π
2

=
bπ aπ

= =

π
2

π
2

aπ

π
2

bπ

bπ

bπ

bπ

π
2

bπ

π
2

π
2 bπ

π
2 bπ

(c) (π)(∗)

Here at (∗) we dropped the dangling scalar diagram. We hence see that the choice of
measurement basis for b ‘switches’ the CZ-gate on or off.

We still need to find an implementation of some single-qubit gates. For this we
introduce a more versatile P-graph, shaped like an ‘E’, which can implement a variety
of single-qubit gates. The first pattern fragment in the E-shape implements a RZ(π/4)
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gate, i.e. a T gate:

(z, x)← � ; a← 0

�← (ζ, ξ) e← b⊕ x

b← 1

d← 0c← 0 where


ξ = c⊕ d⊕ x⊕ 1
ζ = a⊕ c⊕ d⊕ e⊕ z

⊕(b⊕ x)(c⊕ d⊕ x⊕ 1)

For our analysis of this pattern, we will take the input errors to be z = x = 0 for
brevity. If there are errors present, we can perform a very similar analysis.

Note that the basis in which the qubit e is measured depends on the incoming
X error and one of the measurement results in the pattern fragment itself. Let us
translate first the P-graph into the ZX-calculus:

π
2

π

π
2

π
4

π
2

=

π
2

π
4

π
2

π
2

π
2

π
2

(7.5)

Before we incorporate the other measurements, we write down the diagram that results
from measuring a, c and d in the X-basis and b in the Z-basis, as these do not depend
on any function:

π
2

(c⊕ 1)π

(-1)a π2
π
4

π
2

bπ

=

π
2

(-1)b π4

π
2

(c⊕ d⊕ 1)π
=

(-1)b π4

π
2

(a⊕ c⊕ d)π

(c⊕ d⊕ 1)π

aπ

π
2

dπ

π
2

π

π
2

π
4

π
2

bπ

π
2

dπ
=

cπ

aπ

π
2

(c⊕ 1)π

(-1)a π2 (-1)b π4

π
2

π
2

dπ

(c)

(π)
dπ

=
(h)

π
2

π
2

(-1)b π4

π
2

(c⊕ d⊕ 1)π

aπ

=

π
2

(c⊕ d⊕ 1)π(7.8) (π)

The goal of this pattern is to introduce a π/4 phase. We see that now we either have
π/4 or −π/4 depending on b (but additionally this value also depends on the incoming
X-error that we ignoring for now). Now, if we measure e in the X-basis, it gets cut off
the main structure, while if we measure it in the Z-basis it introduces an extra π/2
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phase. So, if we got π/4 (which is the case in the previous diagram when b = 0), we
measure e in the X-basis:

π
4

π
2

(a⊕ c⊕ d)π

(c⊕ d⊕ 1)π

eπ

=

(a⊕ c⊕ d⊕ e)π

π
4

(c⊕ d⊕ 1)π=

π
4

π
2

(a⊕ c⊕ d)π

(c⊕ d⊕ 1)π

eπ eπ

(c)
(7.9)

and otherwise we measure e in the Z-basis:

=
-π4

π
2

(a⊕ c⊕ d)π

(c⊕ d⊕ 1)π

eπ

(c⊕ d⊕ 1)π

-π4

(a⊕ c⊕ d)π

(-1)e π2

(a⊕ c⊕ d⊕ e)π

(c⊕ d⊕ 1)π

=

-π4

π
2

=
π
4

(c⊕ d⊕ 1)π

(a⊕ e⊕ 1)π

(π) (7.8) (c⊕ d⊕ 1)π (π)

We see that in both cases we indeed implement a π/4 Z-rotation with some Pauli X
and Z error depending on the measurement outcomes. In the presence of a starting
Pauli X and Z errors, the same procedure can be done and it will result in the error
functions as stated in the pattern fragment. Note that classical control determines
the sign of our rotation: if we decide to measure e in the opposite basis (so in the Z
basis when b = 0 and the X basis when b = 1), we implement a T † gate.

Using the same P-graph, but with a different set of measurements on the ‘hairs’ of
the fragment we can implement some different operators. For instance, the following
pattern fragment gives a Hadamard gate:

(z, x)← � ; a← 0

�← (ζ, ξ) e← 0

b← 0

d← 1c← 0 where
{
ξ = a⊕ b⊕ c⊕ d⊕ 1⊕ z
ζ = c⊕ d⊕ e⊕ 1⊕ x

Since there is no feed-forward, we can verify this in a single derivation (and for brevity
we will again ignore incoming Z and X errors):
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π
2

π
4

π
2

π
2

π
2

aπ

cπ

eπ

bπ

dπ

eπ

-π2

(a⊕ b)π

-π2

-π2

(c⊕ d⊕ 1)π
=

(a⊕ b⊕ c⊕ d⊕ 1)π

(c⊕ d⊕ e⊕ 1)π

π
2

π
4

π
2

π
2

cπ

aπ

π
2

eπ

bπ

dπ=

π
2

π
4

π
2

π
2

cπ

aπ

dπ

π
2

eπ

bπ

=
(c)

bπ

eπ

π
2

π
2

cπ

(a⊕ b)π

eπ

(-1)d π2=
(π)

-π2

-π2

cπ

(a⊕ b)π

eπ

(-1)d π2=
(6.15)

=
(7.8)
=

(h)

eπ

-π2

(a⊕ b)π

-π2

-π2

(c⊕ d⊕ 1)π

(c⊕ d⊕ 1)π
(6.16)

=

eπ

(a⊕ b)π

(c⊕ d⊕ 1)π

(c⊕ d⊕ 1)π

In a similar way we can also produce an S-gate by measuring qubit e in the Z basis
and the rest in the X basis.

7.4 Proof of universality
In the previous section, we have constructed a single P-graph that can implement a T
gate and an H gate depending on the chosen measurements. Combining these, we can
approximate any single-qubit unitary. We also presented a fragment that implements
a CZ gate, and together with the H gate this allows us to make a CNOT, and hence
we have an approximately universal set of gates.

It only remains to combine the fragments of these gates into a configuration that
allows us to combine them arbitrarily. We will construct a fragment that is a combin-
ation of the simple blocks described in the previous section which fits neatly into a
2D square lattice. See Figure 7.1.

The ‘bricks’ depicted in Figure 7.1.a) do not fit together in a square lattice, since
there is no useful tiling we can produce without some qubits overlapping. We can
solve this problem by considering a slightly larger brick, where the E-shape on the
right is offset downward and extra double-edges are added to i1, i2 and o2, giving rise
to the pattern in b). We then reposition some of the qubits on the outside in c) to
make it more compact. We can picture the paths from i1 to o1 and i2 to o2 as two
qubits passing through a circuit. The E-shapes on the left and the right can be used
to apply S, T, or H gates depending on the choice of pattern. Similarly, the shape
connecting the two qubits can be used to apply CZ or S⊗S to both qubits. The extra
edges will always introduce HSH gates. By selecting which gates we actually want to
execute, this single block can implement 3 · 3 · 2 different two-qubit unitaries. The
asymmetry present in the brick allows us to efficiently tile them; see the left side of
Figure 7.2.

We see that all locations in a square grid are used. Qubits whose measurements



206 Chapter 7. A simple model of computation

i1 i2

o1 o2

(a)
i1 i2

o1 o2

(b)
i1 i2

o1 o2

(c)

Figure 7.1: Variations on compositions of the ‘E’-shaped blocks and the CZ block.
Figure a) shows a simple combination, in b) this is slightly expanded to
make it asymmetric, and then in c) we reorganize the block so that it tiles
better. The i’s denote inputs and o’s denote outputs.

Figure 7.2: On the left, a P-graph produced by tiling the brick of Figure 7.1c. On the
right, a pattern with the ‘hairs’ shaved away.

could potentially depend on prior outcomes are shown in white. Of those, only the
corrections forming part of the T pattern described rely on feed-forward. Hence all of
the other qubits can be measured simultaneously at the beginning of the computation.

This state can be viewed as consisting of lanes which carry the computation forward,
attached to which are ‘hairs’ which introduce extra phases. ‘Shaving off’ all of the
hairs reveals a state that has a somewhat similar structure to the brickwork state from
Ref. [33]; see the right side of Figure 7.2.

Taking a more abstract viewpoint the pattern is of the following form:

U U

UU

U U U

U

· · · · · ·

Such a pattern can implement any Clifford+T circuit. Hence, similar to Ref. [33], we
obtain a model allowing for universal quantum computation.

While our primitive computational ‘brick’ does not seem to be particularly canonical,
the fact that it is missing some edges from a square lattice could have advantages
when thinking about space-limited architectures. For instance, after dropping the
extra ‘dummy’ qubits i1 and o1 of Figure 7.1c and a bit of folding, the resulting
16-qubit pattern fits into the 17-qubit ‘ninja star’ design of the superconducting chip
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proposed in [201], which is designed primarily for implementing a 17-qubit surface
code:

A proof of concept for this computational model is hence potentially close at hand.
Looking at the way the ‘E’-shape implements the T-gate we also see that the middle
‘hair’ is actually not necessary. Removing this qubit allows us to fit a universal brick
inside the superconducting chip of Ref. [175].

7.5 Climbing the Clifford hierarchy
The construction of a deterministic feed-forward strategy in the previous sections
relied on the fact that a sign error in a T gate, i.e. a π/4 rotation, can be corrected
by applying a π/2 rotation, and then correcting a sign error in a π/2 rotation by
selectively applying a π rotation. Since such a π rotation can be commuted past all
other gates, the resulting error can be handled at the end of the computation in a
classical manner.

We will now show that this works not only for π/4, but for all angles π/2n where
2 ≤ n ∈ N. While the P-graphs of the previous sections had a single edge represent a
P (π4 ) gate, we will now let a single edge represent P ( π2n ). If we have k edges between
two vertices then this represents a P ( π2n )k = P (kπ2n ) gate. Now consider the following
fragment:

(z, x)← � ; a← 0

�← (ζ, ξ) e← b⊕ x

b← 1

c← 0
..

2n−1

2n−1

..

Here the 2n−1 refers to the number of wires between the vertices. I.e. there is a
P (π/2) gate between the qubits there. Let us simplify the corresponding diagram in
the ZX-calculus. We will not yet apply the measurement of the qubit e.

π
2

(c⊕ 1)π

(-1)a π2
π

2n

π
2n−1

bπ

=

(-1)b π2n

π
2n−1

aπ

π
2

(c⊕ 1)π =

(-1)b π2n

π
2n−1

(a⊕ c)π

(c⊕ 1)π
π
2

π
2n

π
2n−1

bπ

=

aπ

cππ
2

π
2

(7.5)
(h)
(π)

(7.8)

(π)

If b = 0, then we have the rotation we want, so we can measure the remaining qubit
e in the X basis, and we see that we are left with a π/2n rotation with some Pauli
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error. If b = 1, however, we will measure e in the Z-basis, and we calculate:

=

- π2n

π
2n−1

(a⊕ c)π

(c⊕ 1)π

eπ

π
2n

π
2n−1

(a⊕ c)π

(c⊕ e⊕ 1)π

- π
2n−1

=

π
2n

(-1)c⊕e⊕1 π
2n−1

(a⊕ c)π

(c⊕ 1)π

- π
2n−1

=

π
2n

-(c⊕ e⊕ 1) π
2n−2

(a⊕ c)π

(c⊕ 1)π

eπ

(π) (π)

If c ⊕ e = 1, then this is the desired computation. Otherwise, we are left with an
unwanted −π/2n−2 rotation. Since this undesired rotation is heralded by the outcome
of a measurement, we can however decide to do a π/2n−2 in its future to cancel out this
rotation using exactly the same procedure. Trying to do this extra π/2n−2 rotation
could then introduce an unwanted π/2n−3 rotation. After n − 2 repetitions of this
protocol we are therefore left with a π error that can safely be incorporated into the
classical feed-forward.

The relevant concept to understand this kind of iteration of rotations is that of the
Clifford hierarchy. The first level of this hierarchy C1 is defined to be the set of tensor
products of the identity and the Pauli unitaries. The higher levels are then iteratively
defined to be the multi-qubit unitaries that send the Pauli unitaries to a lower level
of the hierarchy: Cn := {U | ∀V ∈ C1. UV U† ∈ Cn−1}. It turns out that the Clifford
unitaries are precisely C2. While C1 and C2 are closed under composition, the higher
levels no longer form groups. In fact, not much is known about the general structure
of the higher sets in the Clifford hierarchy. What we do know however is that the
diagonal unitaries in Cn always form a group, and that for n ≥ 2 each of these diagonal
elements can be constructed using Clifford operations and the π/2n−1 Z rotation [57].
Using the above description of a deterministic implementation of a π/2n−1 rotation
we have therefore found a deterministic measurement-based model that can implement
any diagonal n-th level Clifford operation using just Pauli measurements.

7.6 Summary and outlook
We introduced a family of resource states that led to deterministic approximately
universal quantum computation using measurements in just two bases. Furthermore,
depending on the chosen parameters, diagonal gates of arbitrarily high levels of the
Clifford hierarchy can be implemented.

This model highlights a link between the form of the parity-phase gate of equa-
tion (7.2) and quantum computing with magic states. It may be useful to consider
if the representation of Ising-type interactions (i.e. parity-phase gates) as ‘virtual’
magic states can be exploited for magic state distillation. For instance, on ion trap
architectures, it is possible to introduce O(n2) parity-phase gates in a single time step
using an n-qubit interaction [194]. It would certainly be interesting so see whether
this curious property can be used in the construction of fault-tolerant protocols.

The interactions needed to make the resource states described in this chapter are
available ‘natively’ in both ion trap and superconducting quantum computing hardware
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which means proofs of concept could be implemented in a short time frame. However,
given long turnaround times for quantum measurements and feed-forward, it remains
unclear if such a measurement-based scheme would yield benefits over the circuit model
on such architectures. On the other hand, measurement-based schemes have already
had some success in quantum optics [205], where deterministic application of multi-
qubit gates remains a significant challenge. While the scheme we described relied on
resource states with a very specific structure, its likely that this could be relaxed using
techniques similar to those employed in producing perfect cluster states from imperfect
lattices [163]. Furthermore, the use of multiple kinds of edges between qubits creates
a possibility for more successful outcomes for non-deterministic entangling operations.
That is, known errors giving rise to non-maximal entanglement between pairs of qubits
could still yield good resource states for universal deterministic computation. This
could, for example, be exploited in models of universal quantum computation using
linear optical devices and non-deterministic fusion gates [85].

Finally, we note that the usage of the ZX-calculus for describing MBQC allows
one to resort to tools such as Quantomatic [134] or the library PyZX described in
Chapter 9 for verifying correctness of the calculations.





Chapter 8

Simplification of measurement
patterns
In the previous chapter we described a concrete model of quantum computing based
on a specific resource state that resulted in a deterministic method of computation.
In this chapter we will take a more abstract viewpoint and consider an entire class of
computational resource states. Specifically, we will consider a condition, the existence
of gflow, that ensures a deterministic computation is possible. We study how this
property is preserved under changes, specifically simplifications, of the underlying
resource state.

Throughout this chapter we will solely work with the one-way model [181]. Unlike
many other works studying the one-way model we will not restrict our measurements
to a single plane, and instead we will allow measurements in all three of the principle
axes of the Bloch sphere. This complicates some of the definitions, but ultimately
simplifies our analysis, and will prove crucial for the results of Chapter 9.

This chapter contains two main results. The first regards the ability to remove
qubits measured in a Clifford angle from a measurement pattern. It was already
known that such qubits can be removed from a graph state [112], however we show
that this can be done in such a way that the existence of gflow is preserved. Hence, we
find that the number of qubits in a measurement pattern with gflow can be reduced
to be proportional to the number of non-Clifford measurements, while still preserving
deterministic realisability of the pattern. The removal of Clifford vertices will form
the basis of the circuit optimisation algorithm described in Section 9.2.

The second result is an efficient algorithm to extract a quantum circuit from a
measurement pattern with gflow. It was already known how to extract a circuit
from a pattern with measurements in a single plane (either involving ancillae and
classical control [34, 192] or without [162]. Our algorithm in contrast can work with
measurements in three planes, and results in a unitary circuit that is ancilla-free and
measurement-free. By being able to work with measurements in three planes, we can
use this algorithm to extract circuits from ZX-diagrams that contain phase gadgets
(as these correspond in a natural way to YZ-plane measurements).

The chapter is structured as follows. In Section 8.1 we introduce the one-way
model. Then in Section 8.2 we recall the concept of gflow and the different types
of determinism of a measurement pattern. In Section 8.3 we see how any quantum
circuit can be converted into a deterministic measurement pattern.

In Section 8.4 we see that graph operations like local complementation preserve the
existence of gflow on a graph. We use these results in Sections 8.5–8.7 to simplify
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operator Ni Eij 〈+XY,αi |i 〈+XZ,αi |i 〈+YZ,αi |i

diagram α απ
2 α

Table 8.1: Translation from a measurement pattern to a ZX-diagram.

measurement patterns, particularly showing how to remove all qubits measured in a
Clifford angle from the pattern.

Finally, in Section 8.8 we tackle the converse problem of Section 8.3: transforming
a measurement pattern into a circuit. We find an efficient algorithm that converts
any measurement pattern with gflow into an equivalent unitary circuit.

8.1 The one-way model
In this section we will describe the one-way model and its representation in the ZX-
calculus. We will adopt the notation of the measurement calculus from Ref. [62].

The one-way model is in many ways similar to the PPM model of the previous
chapter. The one-way model starts with the preparation of a specific graph state
(cf. Definition 6.6.7). The qubits in this graph state are then measured in some
sequence, with the type of measurement possibly depending on previous measurement
outcomes.

Instead of allowing arbitrary single-qubit measurements, measurements are usually
restricted to three planes of measurement labelled XY, XZ, and YZ. For each plane,
the state denoted + is taken to be the desired outcome of the measurement and the
state denoted − is the undesired outcome, which will need to be adaptively corrected.
The allowed measurements are thus:

|+XY,α〉 = 1√
2
(
|0〉+ eiα |1〉

)
|−XY,α〉 = 1√

2
(
|0〉 − eiα |1〉

)
|+XZ,α〉 = cos

(α
2

)
|0〉+ sin

(α
2

)
|1〉 |−XZ,α〉 = cos

(α
2

)
|0〉 − sin

(α
2

)
|1〉

|+YZ,α〉 = cos
(α

2

)
|0〉+ i sin

(α
2

)
|1〉 |−YZ,α〉 = cos

(α
2

)
|0〉 − i sin

(α
2

)
|1〉

Here 0 ≤ α ≤ 2π. We present the positive outcomes of these measurement in the
ZX-calculus in Table 8.1.

Like in the PPM-model of the previous chapter, we describe a computation in the
one-way model using a measurement pattern:

Definition 8.1.1 ([62]). A measurement pattern consists of an n-qubit register
V with distinguished sets I,O ⊆ V of input and output qubits and a sequence of
commands consisting of the following operations:
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• Preparations Ni, which initialise a qubit i /∈ I in the state |+〉.

• Entangling operators Eij , which apply a CZ-gate to qubits i and j.

• Measurements Mλ,α
i , which probabilistically project a qubit i /∈ O onto the or-

thonormal basis {|+λ,α〉 , |−λ,α〉}, where λ ∈ {XY,XZ,YZ} is the measurement
plane and α is the measurement angle. The projector |+λ,α〉 〈+λ,α| corresponds
to outcome 0 and |−λ,α〉 〈−λ,α| corresponds to outcome 1.

• Corrections [Xi]s, which depend on a measurement outcome (or some Boolean
function of measurement outcomes) s ∈ {0, 1} and act as the Pauli-X operator
on qubit i if s is 1 and as the identity otherwise,

• Corrections [Zj ]t, which depend on a measurement outcome (or a linear com-
bination of measurement outcomes) t ∈ {0, 1} and act as the Pauli-Z operators
on qubit j if t is 1 and as the identity otherwise.

Not every measurement pattern is actually physically possible. For this to be the
case, the pattern needs to be runnable.

Definition 8.1.2 ([62]). A measurement pattern is runnable if the following condi-
tions hold.

• No correction depends on an outcome not yet measured.

• All non-input qubits are prepared.

• All non-output qubits are measured.

• A command C acts on a qubit i only if i has not already been measured, and
one of (1)-(3) holds:

(1) i is an input,

(2) i has been prepared and C is not a preparation,

(3) i has not been prepared, i is not an input, and C is a preparation.

Runnable measurement patterns can be standardised [62], so that all preparations
Ni appear first, then all the edges Eij , then the measurements Mλ,α

i and finally the
corrections. The edges Eij used in a pattern characterize the labelled open graph of
the entangled resource state:

Definition 8.1.3 (cf. [35, p.5]). A labelled open graph is a tuple Γ = (G, I,O, λ)
where (G, I,O) is an open graph (cf. Definition 6.6.5), and λ : O → {XY,YZ,XZ}
assigns a measurement plane to each non-output qubit.1

1We adopt the notation of this from Ref. [35] where their corresponding notion is called an ‘open
graph state’. While they explicitly consider this to be a particular type of quantum state, our
notion of a labelled open graph is just a type of graph.
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A standardised measurement pattern is completely characterised by its labelled
open graph together with an order of the measurements, measurement angles, and the
necessary corrections.

In general, a single measurement pattern could implement many different linear
maps depending on the specific outcomes of the measurements. In this chapter we
will be primarily interested in patterns that implement the same linear map regardless
of measurement outcome, i.e. those that are deterministic. For such a pattern we can
read of the linear map it implements from the pattern itself:

Definition 8.1.4. Suppose Γ = (G, I,O, λ) is a labelled open graph corresponding to
a runnable measurement pattern. Let α : O → [0, 2π) be a set of measurement angles.
The linear map associated to (Γ, α), written as MΓ,α, is defined as follows:

MΓ,α :=

∏
i∈O

〈
+λ(i),αi

∣∣
i

EGNI .

Here EG :=
∏
i∼j Eij and NI :=

∏
i∈I Ni.

Remark 8.1.5. Note that the projections
〈
+λ(i),αi

∣∣
i

on different qubits i commute
with each other. Similarly, the controlled-Z operations Eij commute even if they
involve some of the same qubits. Finally, all the state preparations Ni on different
qubits commute. Thus, MΓ,α is fully determined by Γ and α, and our definition is
well-defined.

Additionally, for such a measurement pattern we can also read of the ZX-diagram
that represents the same linear map:

Definition 8.1.6. Suppose Γ = (G, I,O, λ) is a labelled open graph and α : O →
[0, 2π) is a set of measurement angles. Then its associated ZX-diagram DΓ,α is
defined by translating the expression for MΓ,α from Definition 8.1.4 according to
Table 8.1, composing the elements in the obvious way, and then merging any sets
of adjacent phase-free Z-spiders that are not measurement effects (i.e. fuse all the
Z-spiders which come from the translation of a preparation or entangling command).

Example 8.1.7. The measurement pattern defined by the qubit register V = {1, 2, 3, 4}
with I = {1, 2} and O = {1, 4}, and the associated linear map〈

+XY,π2

∣∣
2

〈
+YZ,π4

∣∣
3E14E23E24E34N3N4

is represented by the following ZX-diagram:

π
2

π
4

2

3

1

4
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π
4

π
2

π
4

π
2

π
2

π π
2

Figure 8.1: On the left, a graph state. In the middle, a diagram in MBQC form with
the same underlying graph. On the right, an MBQC+LC form diagram
with the same underlying labelled open graph.

Remark 8.1.8. As can be seen in this example, qubits measured in the YZ-plane
are phase gadgets (cf. Section 6.5). The ZX-diagram associated to a measurement
pattern that only has XY-plane measurements is closely related to the graph-like
diagrams of Section 6.6. Indeed, if we fuse the spiders of the measurement effects to
their corresponding vertices, the ZX-diagram is graph-like.

The interpretation of the ZX-diagram associated to a measurement pattern is equal
to its associated linear map.

Lemma 8.1.9. Suppose Γ = (G, I,O, λ) is a labelled open graph and α : O → [0, 2π)
is a set of measurement angles. Let MΓ,α be the linear map specified in Definition 8.1.4
and let DΓ,α be the ZX-diagram constructed according to Definition 8.1.6. Then
JDΓ,αK = MΓ,α.

Proof. For each operator M in Table 8.1 and its corresponding diagram DM , it is
straightforward to check that JDM K = M (up to non-zero scalar). The result thus
follows by the compositional properties of the interpretation J·K and the fact that the
rewriting of ZX-diagrams preserves semantics. �

We can also read of a measurement pattern from certain ZX-diagrams.

Definition 8.1.10. A ZX-diagram is in MBQC form if it consists of a ‘graph state’
(cf. Definition 6.6.7) in which each vertex of the graph may also be connected to:

• an input (in addition to its output), and

• a measurement effect (in one of the three measurement planes) instead of the
output.

Definition 8.1.11. Given a ZX-diagram D in MBQC form, its underlying graph
G(D) is the graph corresponding to the graph state part of D.

See Figure 8.1 for an example of a graph state diagram and a diagram in MBQC
form.

Lemma 8.1.12. Let Γ = (G, I,O, λ) be a labelled open graph and let α : O → [0, 2π)
be a set of measurement angles. Then the ZX-diagram DΓ,α constructed according to
Definition 8.1.6 is in MBQC form.
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Proof. Consider performing the translation described in Definition 8.1.6 in two steps.
The first step involves translating the preparation and entangling commands of the
pattern MΓ,α according to Table 8.1 and then merging any sets of adjacent green
spiders. This yields a graph state diagram with some additional inputs. (The under-
lying graph is G). The second step is the translation of the measurement projections
of MΓ,α. This yields measurement effects on some of the outputs of the graph state
diagram. Thus, the resulting ZX-diagram is in MBQC form by Definition 8.1.10. �

The converse of this lemma also holds.

Lemma 8.1.13. Suppose D is a ZX-diagram in MBQC form. Then there exists a
labelled open graph Γ = (G, I,O, λ) and a set of measurement angles α : O → [0, 2π)
such that JDK = MΓ,α.

Proof. Let G = G(D) be the underlying graph of D. Let I ⊆ V be the set of vertices
directly connected to input wires in D and O ⊆ V the set of vertices that are directly
connected to an output wire in D. Fix λ : O → {XY,XZ,YZ} by using Table 8.1 in
reverse to determine the measurement plane from the effect in the ZX-diagram. Let
Γ := (G, I,O, λ). Finally, define α : O → [0, 2π) to be the phase of the measurement
effect connected to each non-output vertex in the ZX-diagram. Then D = DΓ,α and
thus the desired result follows from Lemma 8.1.9. �

Remark 8.1.14. We defined G(D) to be a graph. Depending on context we will
take it to be an open graph, with the inputs and outputs corresponding to the input
and output vertices of D, or a labelled open graph, where the labels are given by the
measurement effects present in D.

Remark 8.1.15. Given a fixed enumeration of the graph vertices the correspondence
between an MBQC form diagram and tuples (Γ, α), where Γ is a labelled open graph
and α is a set of measurement angles, is one-to-one.

It will turn out to be useful to consider a ‘relaxed’ version of the MBQC form for
ZX-diagram.

Definition 8.1.16. We say a ZX-diagram is in MBQC+LC form when it is in
MBQC form (cf. Definition 8.1.10) up to arbitrary single-qubit Clifford unitaries on
the input and output wires (LC stands for ‘local Clifford’). When considering the
underlying graph of a ZX-diagram in MBQC+LC form, we ignore these single qubit
Clifford unitaries.

Note that an MBQC form diagram is an MBQC+LC form diagram with trivial
single-qubit unitaries on its inputs and outputs. An example diagram in MBQC+LC
form is given in Figure 8.1.

The extra freedom of allowing local Cliffords on inputs and outputs makes it easier
to do rewrites that stay in the ‘class’ of MBQC+LC form diagrams. In particular,
we will show that a variant of the local complementation and pivoting rewrites of
Section 6.7 transforms a MBQC+LC form diagrams into another MBQC+LC form
diagram.
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8.2 Determinism and gflow
Given a specific labelled open graph it will not always be possible to define a meas-
urement pattern on it that implements a deterministic computation. In order to
understand what structure is necessary in order to guarantee determinism, the no-
tion of flow (also called causal flow) on open graphs was introduced by Danos and
Kashefi [60] as a sufficient condition on open graphs to distinguish those graphs which
are capable of running a deterministic MBQC pattern. Causal flow is however not a
necessary condition. That is, there are graphs that implement a deterministic pattern
even though they do not have causal flow [35, 70]. Hence, a generalised flow was
defined by Browne et al. [35] in order to obtain a necessary condition. Before we give
the (rather technical) definition of gflow, let us state the results that motivate its
existence.

Definition 8.2.1 ([35, p.5]). The linear map implemented by a measurement pattern
for a specific set of measurement outcomes is called a branch of the pattern. A
pattern is deterministic if all branches are equal up to a scalar. A pattern is
strongly deterministic if all branches are equal up to a global phase. It is uniformly
deterministic if it is deterministic for any choice of measurement angles. Finally, the
pattern is stepwise deterministic if any intermediate pattern resulting from doing
some measurements and their corresponding corrections is again deterministic.

Theorem 8.2.2 ([35, Theorem 2]). Let Γ = (G, I,O, λ) be a labelled open graph with
a gflow. Then for any choice of measurement angles α : O → [0, 2π] there exists a
measurement pattern P which is runnable as well as uniformly, strongly and stepwise
deterministic that realises the linear map MΓ,α (cf. Definition 8.1.4). Conversely, if a
pattern is stepwise, uniformly and strongly deterministic, then the underlying labelled
open graph has a gflow.

Theorem 8.2.2 shows that the existence of a gflow on a labelled open graph is
sufficient and necessary for a particularly nice kind of determinism. As the name
would suggest, gflow is a generalisation of causal flow:

Definition 8.2.3 ([60]). Given an open graph (G, I,O), a causal flow (f,≺) on G
consists of a function f : O → I and a partial order ≺ on the set V satisfying the
following properties:

1. f(v) ∼ v

2. v ≺ f(v)

3. if u ∼ f(v) then v ≺ u

Recall that we write v ∼ u when u and v are adjacent in the graph.
The reason this definition talks about open graphs instead of labelled open graphs

is because causal flow is only defined for measurement patterns where all qubits are
measured in the XY plane, and hence we do not need the labelling.

The partial order in the causal flow tells us in which order the qubits should be
measured (first the qubits at the bottom of the partial order, proceeding in the obvious
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way). When the wrong outcome is observed at a qubit v, a correction must be applied
at the qubit f(v). The conditions of causal flow then simply state that f(v) must be
a neighbour of v that lies in v’s future and that any other qubit connected to f(v)
must also lie in v’s future, so that the correction applied at f(v) only affects v and
qubits which have not yet been measured.

The notion of gflow differs from causal flow in two ways. Firstly, f(u) is taken to be
a set of vertices instead of a single vertex, so that corrections can be applied to more
than one vertex. As a result of this change, the third condition of causal flow is now
too strong: requiring that no element of f(u) is adjacent to any vertex ‘in the past’ of
u would be too restrictive. When corrections are applied to an entire set of vertices,
these corrections only affect qubits that are in the odd neighbourhood of those vertices.
This motivates the second change in the definition of gflow, which is a parity condition:
all vertices in the neighbourhood of f(u) that lie in the past of u are required to be
in the even neighbourhood of f(u). As a result, either the effects of corrections do
not propagate into the past or, if they do, an even number of corrections propagate
so that it cancels out.

Definition 8.2.4 ([35, p.7]). Let G = (V,E) be a graph and A ⊆ V any set of vertices.
The odd neighbourhood of A in G is OddG (A) = {u ∈ V : |N(u) ∩A| ≡ 1 mod 2},
i.e. the set of vertices that have an odd number of neighbours in A. If the graph G is
clear from context, we simply write Odd (A).

We can now state the definition of gflow. We write P (A) for the powerset of A.

Definition 8.2.5 ([35, Definition 3]). A labelled open graph (G, I,O, λ) has gener-
alised flow (gflow for short) if there exists a map g : O → P

(
I
)

and a partial order
≺ over V such that for all v ∈ O:

(g1) If w ∈ g(v) and v 6= w, then v ≺ w.

(g2) If w ∈ Odd (g(v)) and v 6= w, then v ≺ w.

(g3) If λ(v) = XY, then v /∈ g(v) and v ∈ Odd (g(v)).

(g4) If λ(v) = XZ, then v ∈ g(v) and v ∈ Odd (g(v)).

(g5) If λ(v) = YZ, then v ∈ g(v) and v /∈ Odd (g(v)).

For a vertex v, we will refer to g(v) as its correction set.

Remark 8.2.6. If all qubits are measured in the XY plane and every g(u) is a
singleton, then these conditions above become equivalent to those of a causal flow,
and hence a causal flow is also a gflow with g(v) := {f(v)}. Note that most of the
literature that uses gflow focuses on patterns containing only XY-plane measurements,
and hence the definition of gflow is usually only given as conditions (g1)–(g3).2

In the case where all qubits are measured in the XY plane (which allows us to ignore
conditions (g4) and (g5)) we can give a game-like interpretation of gflow:

2The original definition of gflow of Ref. [35] states (g2) in a different inequivalent way that turns
out not to have the desirable properties. See Ref. [15] for an extended discussion on this.
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Example 8.2.7. Consider the following game. Suppose we have an open graph G
whose vertices are labelled with 0’s and 1’s, where a 1 indicates the presence of an
error. Define an operation flipv, which flips all of the bits on the neighbours of a given
vertex v. Our goal is to propagate all of the errors present in G to the outputs using
only applications of the operation flipv. For example:

I 3

I 3 ∈ O

0

0 01

v

∈ O
1

w flipv−−−→
I 3

I 3 ∈ O

1

0 10

v

∈ O
1

w flipw−−−→
I 3

I 3 ∈ O

0

0 10

v

∈ O
1

w

For some open graphs and configurations of errors, this task might be impossible. For
example, there is no solution for the following graph:

I 3

I 3
∈ O

0
0 0

1

However, we can always succeed if we are given the following data: an ordering ≺ of
vertices which give a direction of ‘time’ going from inputs to outputs, and, for each
vertex, a correction set g(v) of vertices in the future of v (w.r.t. ≺) such that applying
flipw for all w ∈ g(v) flips the bit on v without affecting any other bits, except for
those lying in the future of v. By repeatedly finding the minimal vertex v (w.r.t.
≺) with an error and applying flipw to all w ∈ g(v), the procedure will eventually
propagate all of the 1’s to the outputs of G.

Remark 8.2.8. Finding a gflow on a given labelled open graph can be done efficiently.
See Theorem 8.8.3.

Gflow is a property that applies to labelled open graphs. For convenience we also
define it for ZX-diagrams.

Definition 8.2.9. We say a ZX-diagram in MQBC(+LC) form has gflow (g,≺) if
its underlying labelled open graph Γ has gflow (g,≺).

Remark 8.2.10. A measurement pattern specifies a labelled open graph, a set of
measurement angles and a set of corrections. However, if the pattern is deterministic
and the labelled open graph has gflow, then the corrections can be inferred from the
gflow itself. Hence, we are warranted in conflating a measurement pattern with gflow
with its labelled open graph and its measurement angles. This allows us to describe
without ambiguity a measurement pattern with gflow as a MBQC form diagram where
the underlying labelled open graph has gflow.

8.3 From circuits to measurement patterns
Using the ZX-calculus we can transform any quantum circuit into a measurement
pattern. This follows easily from the observation that any graph-like ZX-diagram
(cf. Definition 6.6.3) can be transformed into a ZX-diagram in MBQC form by unfusing
all the phases into measurement effects of type XY. E.g using the graph-like diagram
from Figure 6.2:
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γ

α

=

α

γ

Note that we do not measure output qubits, and hence we cannot have phases on
spiders connected to outputs. In the example above we therefore add some identity
spiders onto the second qubit in order to disconnect the γ from the output. This
example is straightforwardly generalised:

Lemma 8.3.1. Any ZX-diagram can be efficiently transformed into an equivalent
ZX-diagram in MBQC form.

Proof. First transform the ZX-diagram into a graph-like ZX-diagram using Lemma 6.6.4.
Then disconnect every spider connected to an output which has a non-zero phase from
the output by introducing identity spiders:

γ =..
.

γ..
.

Finally, unfuse every phase onto its own spider to make an XY measurement effect.
The resulting diagram is in MBQC form. �

Slightly more non-trivially, if we started with a quantum circuit, the resulting
MBQC form diagram has a causal flow, and hence is deterministically implementable.

Lemma 8.3.2. Let D′ be a ZX-diagram in MBQC form resulting from applying
Lemma 8.3.1 to a circuit D. Then the underlying open graph G(D′) has a causal flow.

Proof. With every spider v of the circuit D we associate a number qv specifying on
which ‘qubit-line’ it appears. We also associate a ‘row-number’ rv ≥ 0 specifying how
‘deep’ in the circuit it appears. Suppose now that v ∼ w in D. If they are on the
same qubit, so qv = qw, then necessarily rv 6= rw. Conversely, if they are on different
qubits, qv 6= qw, then they must be part of a CZ or CNOT gate, and hence rv = rw.

In the diagram resulting from Lemma 6.6.4, every spider arises from fusing together
adjacent spiders on the same qubit line from the original diagram. For a spider v in
D′ we can thus associate two numbers sv, and tv, where sv is the lowest row-number
of a spider fused into v, and tv is the highest. Spider fusion from D only happens
for spiders on the same qubit-line, and hence v also inherits a qv from all the spiders
that got fused into it. Any two spiders v and w in D′ with qv = qw must have been
produced by fusing together adjacent spiders on the same qubit-line, and hence we
must have tv < sw or tw < sv, depending on which of the spiders is most to the left. If
instead v ∼ w and qv 6= qw, then their connection must have arisen from some CNOT
or CZ gate in D, and hence the intervals [sv, tv] and [sw, tw] must have overlap, so
that necessarily sw ≤ tv and sv ≤ tw.
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Now we let O be the set of spiders connected to an output, and I the set of spiders
connected to an input in D′. For all v ∈ O we let f(v) be the unique spider connected
to v on the right on the same qubit-line. We define a partial order as follows: v ≺ w
if and only if v = w or tv < tw. It is straightforward to check that this is indeed a
partial order.

By construction f(v) ∼ v and the property v ≺ f(v), follows from tv < sf(v)
discussed above, so let us look at the third property of causal flow.

Suppose w ∼ f(v). We need to show that v ≺ w. If v = w this is trivial so suppose
v 6= w. First suppose that qw = qf(v) (which is also equal to qv). f(v) has a maximum
of two neighbours on the same qubit-line, and since one of them is v, this can only be
if w = f(f(v)) and hence v ≺ f(v) ≺ w, and we are done. So suppose that qw 6= qf(v).
By the discussion above, we must then have sw ≤ tf(v) and sf(v) ≤ tw. Since we also
have tv < sf(v) we get tv < sf(v) ≤ tw so that indeed v ≺ w. �

8.4 Graph operations on labelled open graphs
The property of having a gflow is important for labelled open graphs as it guarantees
the possibility of doing deterministic computations on it. We might however want to
change the labelled open graph somehow in order to accommodate other needs. In
this section we will study some ways in which a labelled open graph with gflow can be
changed so that the resulting labelled open graph still has a gflow. In particular, we
will see that we can do a local complementation (cf. Section 6.7) on the underlying
graph while preserving the existence of a gflow.

Throughout this section, we will rely extensively on the symmetric difference of
sets: A∆B := (A ∪B) \ (A ∩B). Note that ∆ is associative and commutative, so it
extends to an n-ary operation in the obvious way. For I := 1, . . . , n we have:

∆
i∈I

Ai := A1 ∆A2 ∆ . . .∆An

In particular, we have a ∈∆
i∈I

Ai if and only if a appears in an odd number of sets Ai.

By convention, we assume ∆
...

binds as far to the right as possible, i.e.(
∆
i∈I

Ai ∆B

)
:=
(
∆
i∈I

(Ai ∆B)
)

The following lemma shows how the odd neighbourhood of a set evolves under local
complementation:

Lemma 8.4.1. Given a graph G = (V,E), A ⊆ V and u ∈ V ,

OddG?u (A) =
{

OddG (A) ∆ (NG(u) ∩A) if u /∈ OddG (A)
OddG (A) ∆ (NG(u) \A) if u ∈ OddG (A)

Proof. First notice that OddG (.) is linear:

∀A,B : OddG (A∆B) = OddG (A) ∆ OddG (B) .
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Moreover ∀v,OddG ({v}) = NG(v), the neighbourhood of v in G. As a consequence
we see that for all subsets A that OddG (A) = ∆

v∈A
NG(v).

Local complementation acts as follows on the neighbourhood of an arbitrary vertex v:

NG?u(v) =
{
NG(v) ∆NG(u) ∆ {v} if v ∈ NG(u)
NG(v) otherwise

As a consequence,

OddG?u (A) = ∆
v∈A

NG?u(v)

=
(

∆
v∈A∩NG(u)

NG(v) ∆NG(u) ∆ {v}
)

∆
(

∆
v∈A\NG(u)

NG(v)
)

=
(

∆
v∈A

NG(v)
)

∆
(

∆
v∈A∩NG(u)

NG(u)
)

∆
(

∆
v∈A∩NG(u)

{v}
)

= OddG (A) ∆
(

∆
v∈A∩NG(u)

NG(u)
)

∆ (A ∩NG(u))

Notice that |A ∩ NG(u)| ≡ 1 mod 2 iff u ∈ OddG (A). Hence, if u /∈ OddG (A),
OddG?u (A) = OddG (A)∆(A∩NG(u)). Otherwise, if u ∈ OddG (A), then OddG?u (A) =
OddG (A) ∆NG(u) ∆ (A ∩NG(u)) = OddG (A) ∆ (NG(u) \A). �

We can now state the main lemma of this section that shows that a labelled open
graph (G,λ) with a gflow is transformed by local complementation into a labelled
open graph (G? u, λ′) that also has a gflow. Note that the proof is rather long due to
the need to do several case distinctions.
Lemma 8.4.2. Let (g,≺) be a gflow for (G, I,O, λ) and let u ∈ O. Then (g′,≺) is a
gflow for (G ? u, I,O, λ′), where

λ′(u) :=


XZ if λ(u) = XY
XY if λ(u) = XZ
YZ if λ(u) = YZ

and for all v ∈ O \ {u}

λ′(v) :=


YZ if v ∈ NG(u) and λ(v) = XZ
XZ if v ∈ NG(u) and λ(v) = YZ
λ(v) otherwise.

and the correction sets g′ are

g′(u) :=
{
g(u) ∆ {u} if λ(u) ∈ {XY,XZ}
g(u) if λ(u) = YZ

and for all v ∈ O \ {u},

g′(v) :=
{
g(v) if u /∈ OddG (g(v))
g(v) ∆ g′(u) ∆ {u} if u ∈ OddG (g(v)) .
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Proof. We divide the proof in three parts, first proving that g(u) satisfies (g1)–(g5),
then proving that g(v) for v 6= u satisfies (g1) and (g2), and finally g(v) for v 6= u
satisfies (g3)–(g5). Each of these parts is further subdivided based on the value of
λ(u) and λ(v).
Part 1: Note that condition (g1) is trivially still satisfied by g′(u). We will show that
g(u) satisfies the remaining conditions, subdividing into cases based on λ(u).
Case 1a: If λ(u) ∈ {XY,XZ}, then u ∈ OddG (g(u)) and λ′(u) ∈ {XY,XZ} with
λ′(u) 6= λ(u). We have OddG?u ({u}) = NG?u(u) = NG(u). Thus

OddG?u (g′(u)) = OddG?u (g(u) ∆ {u})
= OddG?u (g(u)) ∆ OddG?u ({u})
= OddG (g(u)) ∆ (NG(u) \ g(u)) ∆NG(u)
= OddG (g(u)) ∆ (NG(u) ∩ g(u)) (8.1)

which implies

• u ∈ OddG?u (g′(u)) since u ∈ OddG (g(u)) and u /∈ NG(u),

• u ∈ g′(u) if and only if u /∈ g(u) (this is desired because λ′(u) 6= λ(u)); together
with the previous item this yields (g3) or (g4), as appropriate,

• if v ∈ OddG?u (g′(u)), then either v ∈ OddG (g(u)) or v ∈ g(u), so either u = v
or u ≺ v; this is (g2).

So g′(u) indeed satisfies all the required conditions.
Case 1b: If λ(u) = YZ, then u /∈ OddG (g(u)), hence

OddG?u (g′(u)) = OddG?u (g(u)) = OddG (g(u)) ∆ (NG(u) ∩ g(u)). (8.2)

This implies

• u /∈ OddG?u (g′(u)) because u /∈ OddG (g(u)) and u /∈ NG(u),

• u ∈ g′(u) because u ∈ g(u); together with the previous item this yields Condi-
tion (g5),

• if v ∈ OddG?u (g′(u)), then either v ∈ OddG (g(u)) or v ∈ g(u), so either u = v
or u ≺ v; this is Condition (g2).

So g′(u) indeed satisfies all the required conditions.
Part 2: We will show that the correction set g(v), where v 6= u, satisfies conditions (g1)
and (g2) of gflow, splitting into subcases depending on whether u ∈ OddG (g(v)) or
u /∈ OddG (g(v)).
Case 2a: If u /∈ OddG (g(v)), first note that

OddG?u (g′(v)) = OddG?u (g(v)) = OddG (g(v)) ∆ (NG(u) ∩ g(v)).

Hence if w ∈ OddG?u (g(v)), then either w ∈ OddG (g(v)) or w ∈ g(v), so v = w or
v ≺ w; this is condition (g2). Condition (g1) is trivially still satisfied.
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Case 2b: If u ∈ OddG (g(v)), first note that v ≺ u. If w ∈ g′(v), then w ∈ g(v)
or w ∈ g′(u) or w = u and in each case w = v or v ≺ w, this is condition (g1).
Furthermore, we have

OddG?u (g′(v)) = OddG?u (g(v) ∆ g′(u) ∆ {u})
= OddG?u (g(v)) ∆ OddG?u (g′(u)) ∆NG(u)
= OddG (g(v)) ∆ (NG(u) \ g(v)) ∆ OddG (g(u)) ∆ (NG(u) ∩ g(u)) ∆NG(u)
= OddG (g(v)) ∆ (NG(u) ∩ g(v)) ∆ OddG (g(u)) ∆ (NG(u) ∩ g(u))

where the third step uses the property that

OddG?u (g′(u)) = OddG (g(u)) ∆ (NG(u) ∩ g(u))

for any λ(u), which follows from combining (8.1) and (8.2). Hence, ifw ∈ OddG?u (g′(v)),
then at least one of the following holds:

• w ∈ OddG (g(v)), so v = w or v ≺ w.

• w ∈ g(v) so v = w or v ≺ w.

• w ∈ OddG (g(u)), so u = w or u ≺ w; in both cases v ≺ w since v ≺ u.

• w ∈ g(u), so u = w or u ≺ w; in both cases v ≺ w since v ≺ u.

In each case, Condition (g2) is satisfied.
Part 3: Finally we show that the correction set g(v), where v 6= u, satisfies con-
ditions (g3), (g4) or (g5) of gflow, splitting into subcases depending on whether
v ∈ NG(u) or v /∈ NG(u), and also λ(v).
Case 3a: Suppose v ∈ NG(u) and distinguish cases according to λ(v).

• Suppose λ′(v) = XY. Then λ(v) = XY, and hence v /∈ g(v) and v ∈ OddG (g(v)).
We have

– v ∈ OddG?u (g′(v)) since v ∈ OddG (g(v)) and v /∈ g(v),
– v /∈ g′(v),

which together give condition (g3).

• Suppose λ′(v) = XZ. Then λ(v) = YZ, and hence v ∈ g(v) and v /∈ OddG (g(v)).
We have

– v ∈ OddG?u (g′(v)) since v /∈ OddG (g(v)) and v ∈ NG(u) ∩ g(v),
– v ∈ g′(v),

which together give condition (g4).

• Suppose λ′(v) = YZ. Then λ(v) = XZ, and hence v ∈ g(v) and v ∈ OddG (g(v)).
We have

– v /∈ OddG?u (g′(v)) since v ∈ OddG (g(v)) and v ∈ NG(u) ∩ g(v),
– v ∈ g′(v),
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which together give condition (g5).
Case 3b: Suppose v /∈ NG(u) and distinguish cases according to λ(v).
• Suppose λ(v) = XY, this case is analogous to the corresponding one in Sub-

case 3a, so condition (g3) is satisfied.

• Suppose λ(v) = XZ, then v ∈ g(v) and v ∈ OddG (g(v)). Furthermore, λ′(v) =
XZ. We have

– v ∈ OddG?u (g′(v)) since v ∈ OddG (g(v)) and v /∈ NG(u) ∩ g(v),
– v ∈ g′(v),

which together give condition (g4).

• Suppose λ(v) = YZ, then v ∈ g(v) and v /∈ OddG (g(v)). Furthermore, λ′(v) =
YZ. We have

– v /∈ OddG?u (g′(v)) since v /∈ OddG (g(v)) and v /∈ NG(u) ∩ g(v),
– v ∈ g′(v),

which together give condition (g5). �

The previous result required the vertex that was complemented on to not be an
output. A similar result holds when it is an output.
Lemma 8.4.3. Let (g,≺) be a gflow for (G, I,O, λ) and let u ∈ O. Then (g′,≺) is a
gflow for (G ? u, I,O, λ′), where for all v ∈ O :

λ′(v) :=


YZ if v ∈ NG(u) and λ(v) = XZ
XZ if v ∈ NG(u) and λ(v) = YZ
λ(v) otherwise.

Furthermore, for all v ∈ O:

g′(v) :=
{
g(v) if u /∈ OddG (g(v))
g(v) ∆ {u} if u ∈ OddG (g(v)) .

Proof. The proof is basically the same as that of Lemma 8.4.2 if we take g(u) and
g′(u) to be empty. The output vertex has no label, so its label does not need to be
updated. �

As a pivot is just a series of three local complementations, doing a pivot also
preserves the existence of a gflow on a labelled open graph. Let us explicitly state the
effect this has on the measurement type of vertices.
Corollary 8.4.4. Let (G, I,O, λ) be a labelled open graph with a gflow and let
u, v ∈ O be connected by an edge. Then the labelled open graph (G∧uv, I, O, λ′) has
a gflow, where

λ′(a) =


YZ if λ(a) = XY
XZ if λ(a) = XZ
XY if λ(a) = YZ

for a ∈ {u, v}, and λ′(w) = λ(w) for all w ∈ O \ {u, v}
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Proof. G ∧ uv = G ? u ? v ? u so it suffices to check that λ′ as specified here is indeed
what you get if you apply Lemma 8.4.2 first for u, then for v and then for u again.
For instance, if λ(u) = XY, then after the first application of Lemma 8.4.2 we have
λ1(u) = XZ. Then after the local complementation on v we get λ2(u) = YZ (as u and
v are neighbours), and then applying the final local complementation on u again we
get λ′(u) = λ3(u) = YZ as desired. The other cases are checked similarly. �

Perhaps somewhat surprisingly, the deletion of some types of vertices also preserves
the existence of gflow.

Lemma 8.4.5. Let (g,≺) be a gflow for (G, I,O, λ) and let u ∈ O with λ(u) 6= XY.
Then (g′,≺) is a gflow for (G \ {u}, I, O, λ) where ∀v ∈ V, v 6= u:

g′(v) :=
{
g(v) if u 6∈ g(v)
g(v) ∆ g(u) if u ∈ g(v)

Proof. Observe that u ∈ g(u) as λ(u) 6= XY and hence u 6∈ g′(v) for both cases in the
definition. Hence, g′ is indeed a function on the graph G\{u}.

To check that g′ is indeed a gflow we check the necessary conditions for all v ∈ G\{u}.
First, if u 6∈ g(v), then g′(v) = g(v) and hence we are done. If u ∈ g(v), then v ≺ u and
hence also v ≺ w where w ∈ g(u) or w ∈ OddG (g(u)). Since g′(v) = g(v)∆g(u) we see
that then conditions (g1) and (g2) are indeed satisfied. For conditions (g3)–(g5) we note
that we cannot have v ∈ g(u) or v ∈ OddG (g(u)). As a result v ∈ g′(v) ⇐⇒ v ∈ g(v)
and v ∈ OddG\{u} (g′(v)) ⇐⇒ v ∈ OddG (g(v)). Since the labels of all the vertices
stay the same, (g3)–(g5) stay satisfied. �

Remark 8.4.6. The condition in the previous lemma that λ(u) 6= XY is necessary.
Removing a vertex with label XY will, in general, create a graph which does not allow
a gflow. For instance consider the following open graph:

I Ou

Here the first two vertices both have label XY. This graph has a gflow specified by
I ≺ u ≺ O and g(I) = {u}, g(u) = {O}, but removing u will disconnect the graph
and hence the resulting graph does not have a gflow. Note that if we were to have
the same graph, but with u in a different measurement plane, then the graph will not
have a gflow to start with (because if it did, then we would need u ∈ g(I), so that
I ≺ u but also u ∈ g(u) so that I ∈ Odd (g(u)) giving u ≺ I), and hence this does not
contradict Lemma 8.4.5.

In general, removing a qubit from a measurement pattern (i.e. a vertex from the
underlying labelled open graph) will change the semantics of the computation. In
Section 8.6 we will see that there are however some semantics preserving operations
that come down to deleting a vertex.

The final gflow-preserving graph-operation we will consider is adding vertices to
inputs and outputs. This is sometimes necessary to unfuse a phase on an input or
output (cf. Lemma 8.3.1).
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Lemma 8.4.7. Let Γ = (G, I,O, λ) be a labelled open graph with G = (V,E). Let
Γ′ be the labelled open graph that results from converting an output u ∈ O into a
vertex measured in the XY-plane and adding a new output vertex u′ after it:

... 7→ ...
u u′u

I.e. let Γ′ = (G′, I, O′, λ′), where G′ = (V ′, E′) with V ′ = V ∪{u′} and E′ = E∪{u ∼
u′}, O′ = (O \ {u}) ∪ {u′}, and λ′(v) is the extension of λ to domain V ′ \ O′ with
λ′(u) = XY. Then if Γ has a gflow, Γ′ also has a gflow.

Proof. Suppose Γ has a gflow (g,≺). Let g′ be the extension of g to domain V ′ \O′
which satisfies g′(u) = {u′}, and let ≺′ be the transitive closure of ≺ ∪{(u, u′)}.

The tuple (g′,≺′) inherits (g1) and (g3)–(g5) for all v ∈ V \O because the correction
sets have not changed for any of the original vertices. Furthermore, u′ ∈ OddG′ (g′(v))
for any v implies u ∈ g′(v) as u is the only neighbour of u′; hence u′ ∈ OddG′ (g′(v))
implies v ≺′ u ≺′ u′. Therefore (g2) continues to be satisfied for all v ∈ V \O.

Now, for u, (g1) holds because u ≺′ u′ by definition, (g2) holds because OddG′ (g′(u)) =
{u}, and (g3) can easily be seen to hold. Thus, (g′,≺′) is a gflow for Γ′. �

Lemma 8.4.8. Let Γ = (G, I,O, λ) be a labelled open graph with G = (V,E). Let Γ′
be the labelled open graph that results from converting an input u ∈ I into a vertex
measured in the XY-plane and adding a new input vertex u′ in the XY-plane before
it:

... 7→ ...
u u′ u

I.e. let Γ′ = (G′, I ′, O, λ′), where G′ = (V ′, E′) with V ′ = V ∪{u′} and E′ = E∪{u ∼
u′}, I ′ = (I \ {u}) ∪ {u′}, and λ′(v) is the extension of λ to domain V ′ \ O which
satisfies λ′(u′) = XY. Then if Γ has gflow, Γ′ also has gflow.

Proof. Suppose Γ has a gflow (g,≺). Let g′ be the extension of g to domain V ′ \ O
which satisfies g′(u′) = {u}, and let ≺′ be the transitive closure of ≺ ∪{(u′, w) : w ∈
NG(u) ∪ {u}}.

The tuple (g′,≺′) inherits the gflow properties for all v ∈ V \ O because the
correction sets have not changed for any of the original vertices and because the
additional inequalities in ≺′ do not affect the gflow properties for any v ∈ V \O. The
latter is because

• u′ /∈ g′(v) = g(v) for any v ∈ V \O, and

• u′ /∈ OddG′ (g′(v)) = OddG′ (g(v)) for any v ∈ V \O since its only neighbour u
was an input in Γ and thus satisfies u /∈ g(v) for any v ∈ V \O.

Now, for u′, (g1) holds by the definition of ≺′. Note that OddG′ (g(u′)) = NG′(u),
so (g2) also holds by the definition of ≺′. Finally, (g3) holds because u′ /∈ g(u′) and
u′ ∈ OddG′ (g(u′)) = NG′(u). Thus, (g′,≺′) is a gflow for Γ′. �
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8.5 Graph operations on measurement patterns

The previous section detailed how to change a labelled open graph while preserving
the existence of a gflow. A measurement pattern however also has measurement angles
associated to it. So in order to do these transformations in a way that preserves the
linear map we are implementing, we need to incorporate the changes to these meas-
urement angles. That is what we will do in this section, by representing measurement
patterns as MBQC-form diagrams, and rewriting these using the ZX-calculus.

First, let us see how to rewrite MBQC+LC diagrams to MBQC-form diagrams by
incorporating the local Cliffords into the measurement pattern.

Lemma 8.5.1. Any ZX-diagram D which is in MBQC+LC form can be brought into
MBQC form. Moreover, if the MBQC-form part of D involves n qubits, of which p are
inputs and q are outputs, then the resulting MBQC-form diagram contains at most
n + 2p + 4q qubits. If the underlying labelled open graph of D has a gflow, then so
does the resulting MBQC-form diagram.

Proof. Any single-qubit Clifford unitary can be expressed as a composite of three
phase gates [13, Lemma 3]. Note that this result holds with either choice of spider, i.e.
any single-qubit Clifford unitary can be expressed as α β γ or α′ β′ γ′ .

Now, with the Z-X-Z version, for any Clifford operator on an input, we can ‘push’
the final Z-phase gate through the graph state part onto the outgoing wire. There, it
will either merge with the measurement effect or with the output Clifford unitary:

. . .

=
. . .

u
u

u1

α

u2

β γ γ

β

α

If γ ∈ {0, π}, merging the phase shift with a measurement effect may change the angle
but not the phase label, e.g. if γ = π:

απ = α+ π απ = −α απ = −απ
2

π
2

If γ ∈ {π2 ,−
π
2 }, merging the phase shift with a measurement effect will flip the phase

labels XZ and YZ, e.g. if γ = −π2 :

−π2 α = α− π
2 −π2 α = 0 απ

2 = α

−π2 α = π
2 −α

Thus we need to add at most two new qubits to the MBQC-form part when removing
a Clifford unitary on the input.

For a Clifford unitary on the output, we have
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. . .

=

. . .

α

u

u

u1
α

β

u2
β γ

γ

0u3

u4

Thus we add at most four new qubits.
Combining these properties, we find that rewriting to MBQC form adds at most

2p+ 4q new qubits to the pattern.
The underlying labelled open graph has changed by adding new vertices before

inputs and vertices after outputs. Hence, Lemmas 8.4.7 and 8.4.8 ensure that the
resulting MBQC-form diagram still has a gflow. �

Eqs. (6.27) and (6.29) showed how to apply a local complementation and pivot on
a ZX-diagram by introducing some local Clifford spiders, while in Section 8.4 we saw
what the effect is of these operation on the gflow of a labelled open graph. Now we
combine these to modify an MBQC form diagram while preserving the existence of a
gflow.

Lemma 8.5.2. Let D be an MBQC+LC diagram and let u ∈ G(D) be a non-input
vertex. Then the diagram resulting from applying Eq. (6.27) on u (i.e. a local
complementation on u), can be transformed into an equivalent MBQC+LC diagram
D′ with G(D′) = G(D) ? u. If D has a gflow, then so does D′.

Proof. Suppose D is an MBQC+LC diagram, Γ = (G, I,O, λ) the corresponding
labelled open graph, and α : O → [0, 2π) the associated measurement angles. By
assumption, u /∈ I, so – with the exception of the output wire or the edge to the
measurement effect – all edges incident on u connect to neighbouring vertices in the
graph. The input wires on the other qubits can be safely ignored. To get back
an MBQC+LC diagram after Eq. (6.27) is applied to u, we only need to rewrite
the measurement effects, and hence we need to construct new λ′ and α′ for these
measurement effects. We do that as follows.

First of all, there are no changes to the measurement effects on vertices v 6∈ N(u)∪
{u}, and hence for those vertices we have λ′(v) = λ(v) and α′(v) = α(v).

The vertex u gets a π
2 X-phase from the application of Eq. (6.27). If u ∈ O, then it

has no associated measurement plane or angle. In this case, this red π
2 simply stays

on the output wire, as allowed in an MBQC+LC diagram. When u /∈ O, there are
three possibilities, depending on λ(u):

• If λ(u) = XY, then the new measurement effect is
π
2 α = π

2 α− π
2−π2

π
2

π
2 = α− π

2−π2

= α− π
2−π2 = π

2 − α
π
2

i.e. λ′(u) = XZ and α′(u) = π
2 − α(u).
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• If λ(u) = XZ, then the new measurement effect is
π
2 απ

2 = π
2 α−π2

π
2

π
2 = α−π2 = α− π

2

i.e. λ′(u) = XY and α′(u) = α(u)− π
2 .

• If λ(u) = YZ, then the new measurement effect is
π
2 α = α+ π

2

i.e. λ′(u) = YZ and α′(u) = α(u) + π
2 .

The vertices v that are neighbours of u get a −π2 Z-phase. Again, if such a v is an
output, this phase can be put as a local Clifford on the output. If it is not an output,
then there are also three possibilities depending on λ(v):

• If λ(v) = XY, then the new measurement effect is
−π2 α = α− π

2

i.e. λ′(v) = XY and α′(v) = α(v)− π
2 .

• If λ(v) = XZ, then the new measurement effect is
−π2 α = 0 απ

2 = α

i.e. λ′(v) = YZ and α′(v) = α(v).

• If λ(v) = YZ, then the new measurement effect is
−π2 α = π

2 −α

i.e. λ′(v) = XZ and α′(v) = −α(v).

With these changes, we see that the resulting diagram D′ is indeed in MBQC+LC
form. The underlying graph G(D′) results from the local complementation about u of
the original graph G(D). Furthermore, the measurement planes changed in the same
way as in Lemma 8.4.2, and hence if D has a gflow, then so will D′. �

Proposition 8.5.3. Let D be an MBQC+LC diagram and let u ∈ G(D). Then the
diagram resulting from applying Eq. (6.27) on u (i.e. a local complementation on u),
can be transformed into an equivalent MBQC+LC diagram D′. If D has a gflow, then
so does D′.

Proof. If u is not an input vertex, the result is immediate from Lemma 8.5.2.
If instead u is an input vertex, we modify D by replacing the input wire incident

on u by an additional graph vertex u′ measured in the XY-plane at angle 0, and a
Hadamard unitary on the input wire:

. . .

=
. . .

0

u
u

u′

Throughout this process, the measurement effect on u (if any) does not change, so
it is left out of the above equation. In the resulting diagram D′, u is no longer an
input. Furthermore, D′ is an MBQC+LC diagram. Thus, the desired result follows
by applying Lemma 8.5.2 to D′. That the resulting diagram has a gflow follows by
combining Lemmas 8.4.8 and 8.4.2. �
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A pivot is just a sequence of three local complementations. Thus, the previous
lemma already implies that an MBQC+LC diagram that has been pivoted on can also
be brought back into MBQC+LC form. Nevertheless, it will be useful to explicitly
write out how the measurement planes and angles of the vertices change.

Lemma 8.5.4. LetD be an MBQC+LC diagram and let u, v ∈ G(D) be neighbouring
non-input vertices. Then the diagram resulting from applying Eq. (6.29) to u and v
(i.e. a pivot about u ∼ v) can be transformed into an equivalent MBQC+LC form
diagram D′ satisfying G(D′) = G(D) ∧ uv. If D has a gflow, then so will D′.

Proof. Let Γ = (G, I,O, λ) be the labelled open graph underlying D and let α : O →
[0, 2π) be the associated measurement angles. We will denote the measurement planes
after pivoting by λ′ : O → {XY,XZ,YZ} and the measurement angles after pivoting
by α′ : O → [0, 2π). Let a ∈ {u, v}, then:

• If a is an output, we consider the Hadamard resulting from the pivot operation
as a Clifford operator on the output.

• If λ(a) = XY then λ′(a) = YZ and if λ(a) = YZ then λ′(a) = XY:
α = α α = α

In both cases, the measurement angle stays the same: α′(a) = α(a).

• If λ(a) = XZ, then
α =π

2 αππ
2

π
2 = −απ

2
π
2 = π

2 − α
π
2

i.e. λ′(a) = XZ and α′(a) = π
2 − α(a).

The only other changes on measurement effects are π Z-phases on vertices w ∈
N(u)∩N(v). For measured (i.e. non-output) vertices, these preserve the measurement
plane and are absorbed into the measurement angle in all three cases:

(λ′(w), α′(w)) =


(XY, α(w) + π) if λ(w) = XY απ = α+ π

(YZ,−α(w)) if λ(w) = YZ απ = −απ
2

π
2

(XZ,−α(w)) if λ(w) = XZ απ = −α

If instead w is an output vertex, the π Z-phase becomes a Clifford gate on the output
wire. The measurement planes and the graph change exactly like in Corollary 8.4.4
and hence D′ has a gflow when D does. �

8.6 Removing Clifford vertices
In this section, we will see that we can rewrite measurement patterns so that less
qubits are involved in the pattern while preserving the computation performed and
the presence of a gflow.

Definition 8.6.1. Let D be a ZX-diagram in MBQC+LC form, with underlying
labelled open graph (G, I,O, λ) and corresponding set of measurement angles α : O →
[0, 2π). We say a measured vertex u ∈ G is Clifford when α(u) = k π2 for some k.
Otherwise the vertex is non-Clifford.
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Our goal will be to remove as many internal Clifford vertices as possible. Recall
that in Section 6.8 we managed to use local complementation and pivoting rules to
delete spiders with a specific phase. In this section we will do something similar, but
slightly more general.

We make a key observation for our simplification scheme: an YZ or XZ measurement
with a 0 or π phase can be removed from the pattern by modifying its neighbours in
a simple manner:

Lemma 8.6.2. Let D be a ZX-diagram in MBQC+LC form, and let u ∈ G(D) be a
non-input vertex with λ(u) 6= XY and α(u) = aπ where a = 0 or a = 1. Then we can
efficiently find an equivalent diagram D′ with G(D′) = G(D)\{u}. If D has a gflow,
then so does D′.

Proof. Since λ(u) 6= XY, its aπ measurement angle is an X-spider. It is then straight-
forward to show using the axioms of the ZX-calculus, that:

aπ

...

=

...

...
...

...
...

aπ

aπ

aπ

...

=

...

...
...

...
...

aπ

aπ

π
2

These aπ Z-phases on the right-hand side can be absorbed into the measurement of
the neighbouring vertices (or for output vertices, added as a local Clifford). This does
not change the plane of the measurement, only the angle. The resulting diagram D′

is then also in MBQC+LC form. Lemma 8.4.5 shows that the existence of a gflow is
preserved. �

We can now state a version of Eq. (6.30), but in the context of measurement patterns.

Lemma 8.6.3. Let D be a ZX-diagram in MBQC+LC form with vertices V , and let
u ∈ V be a non-input vertex with λ(u) = YZ or XY and α(u) = ±π2 . Then we can
efficiently find an equivalent diagram D′ with vertices V \ {u}. If D has a gflow, then
so does D′.

Proof. Apply a local complementation about u and reduce the diagram to MBQC+LC
form with Lemma 8.5.2. This lemma shows that the presence of a gflow is preserved. As
can be seen from Lemma 8.5.2, if u was in the XY plane, then it will be transformed to
the XZ plane and will have a measurement angle of π2∓

π
2 . As a result, its measurement

angle is of the form aπ for a ∈ {0, 1}. If instead it was in the YZ plane, then it stays in
the YZ plane, but its angle is transformed to π

2 ±
π
2 in which case it will also be of the

form aπ for a ∈ {0, 1}. In both cases we can remove the vertex u using Lemma 8.6.2
while preserving the presence of a gflow. �

Analogously, the following can be seen as a generalisation of Eq. (6.31).

Lemma 8.6.4. Let D be a ZX-diagram in MBQC+LC form with vertices V , and let
u, v ∈ V be neighbouring non-input measured vertices. Suppose that either λ(u) = XY
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with α(u) = aπ for a ∈ {0, 1} or λ(u) = XZ with α(u) = (−1)a π2 . Then we can
efficiently find an equivalent diagram D′ with vertices V \ {u}. If D has a gflow, then
so does D′.

Proof. We apply a pivot about uv and reduce the diagram to MBQC+LC form with
Lemma 8.5.4. This preserves the presence of gflow. As can be seen from Lemma 8.5.4,
if λ(u) = XY then λ′(u) = YZ with α′(u) = α(u) = aπ. If instead we had λ(u) = XZ
(and thus α(u) = (−1)a π2 ), then λ′(u) = XZ, but α′(u) = π

2−α(u) = π
2−(−1)a π2 = aπ.

In both cases we can remove the vertex u using Lemma 8.6.2 while preserving the
presence of a gflow. �

Combining the previous lemmas we can remove any internal Clifford vertex, except
for some internal Clifford vertices that are only connected to boundary vertices. While
it might in general not be possible to remove such vertices, when the diagram has a
gflow, we can always find an equivalent smaller diagram.

Lemma 8.6.5. LetD be a ZX-diagram in MBQC+LC form which has a gflow. Denote
its vertices by V . Let u ∈ V be an internal vertex that is only connected to input
and output vertices. Suppose that either λ(u) = XY with α(u) = aπ for a ∈ {0, 1} or
λ(u) = XZ with α(u) = (−1)a π2 . Then we can efficiently find an equivalent diagram
D′ with gflow and vertices V \{u}.

Proof. We prove the result for λ(u) = XY and α(u) = aπ. The other case is similar.
We claim that u is connected to at least one output that is itself not an input.

Suppose it is not. Then the diagram looks like the following:

aπ

.
.
.

LC

LC

LC

LC

D′

.
.
.

Here ‘LC’ denotes that there are local Cliffords on the inputs. Since D has gflow, the
entire diagram must be (proportional to) an isometry, and hence it must still be an
isometry if we remove the local Cliffords on the inputs. But we note that we then
have the map

aπ

.
.
.

before the rest of the diagram. This map is not invertible. This is a contradiction, as
the entire diagram cannot then be an isometry.

So u is connected to some output vertex v which is not an input. We can then
do a pivot on uv using Lemma 8.5.4. This adds a Hadamard gate beyond v, and
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changes the label of u to YZ. We can then remove u using Lemma 8.6.2. The resulting
diagram then still has gflow. �

Theorem 8.6.6. Let D be a ZX-diagram in MBQC+LC form that has a gflow. Then
we can efficiently find an equivalent ZX-diagram D′ in MBQC+LC form, which also
has gflow and which contains no non-input Clifford vertices.

Proof. Starting with D we simplify the diagram step by step using the following
algorithm:

1. Using Lemma 8.6.3 repeatedly, remove any non-input vertex measured in the
YZ or XY plane which has a ±π2 phase.

2. Using Lemma 8.6.2 repeatedly, remove any non-input vertex measured in the
YZ or XZ plane with angle aπ.

3. Using Lemma 8.6.4 repeatedly, remove any non-input vertex which is connected
to any other internal vertex and is either measured in the XY plane with an
aπ phase or is measured in the XZ plane with a ±π2 phase. If any have been
removed, go back to step 1.

4. If there are non-input measured Clifford vertices that are only connected to
boundary vertices, use Lemma 8.6.5 to remove them. Then go back to step 1.
Otherwise we are done.

By construction there are no internal Clifford vertices left at the end. Every step
preserves the existence of a gflow, so the resulting diagram still has a gflow. As every
step removes a vertex, this process terminates in at most n steps, where n is the
number of vertices in D. Each of the steps possibly requires doing a pivot or local
complementation requiring O(n2) elementary graph operations. Hence, the algorithm
requires at most O(n3) elementary graph operations. �

We can reformulate this theorem in terms of measurement patterns. This shows that
any qubit measured in a Clifford angle can be removed from a pattern by modifying
it in a suitable manner.

Theorem 8.6.7. Let (G, I,O, λ, α) represent a uniformly, strongly, and stepwise
deterministic measurement pattern with q inputs and outputs and n non-Clifford
measured qubits. Then we can efficiently find a uniformly, strongly and stepwise
deterministic measurement pattern that implements the same linear map and uses at
most (n+ 8q) measurements.

Proof. Let D be the ZX-diagram in MBQC form from Lemma 8.1.9 that implements
the same linear map as the measurement pattern P := (G, I,O, λ, α). As P is
uniformly, strongly and stepwise deterministic, it has a gflow by Theorem 8.2.2, and
hence D also has gflow by Definition 8.2.9. Let D′ be the ZX-diagram in MBQC+LC
form produced by Theorem 8.6.6. Since D′ has no internal Clifford vertices, its MBQC-
form part can have at most n internal vertices. It may still have boundary Clifford
vertices, and by assumption |O| = |I| = q, so the MBQC-form part contains at most
(n+ 2q) vertices.
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Denote by D′′ the MBQC-form diagram produced by applying Lemma 8.5.1 to D′.
Then D′′ has at most ((n+ 2q) + 6q) vertices.

We can construct a labelled open graph Γ′ and measurement angles α′ from D′′

using Lemma 8.1.13. As D′′ has a gflow, (Γ′, α′) represents a uniformly, strongly
and stepwise deterministic measurement pattern. This new pattern involves at most
(n+ 8q) qubits. �

Remark 8.6.8. While it has been known that qubits measured in a Clifford angle
can be removed from a graph state [112], as far as the author is aware, the result that
this can be done on a measurement pattern while preserving determinism is new.

8.7 Further pattern optimisations
In this section we continue the process of removing qubits from measurement patterns
started in the previous section by finding a few more simplification rules. Before we
do that however, we will show that a measurement pattern with measurements in all
three planes can always be reduced to one with measurements in two planes, namely
XY and YZ, in a straightforward manner using pivoting and local complementation.

Definition 8.7.1. A labelled open graph is in phase-gadget form if

• there does not exist any v ∈ O such that λ(v) = XZ, and

• there do not exist any neighbours v, w ∈ O such that λ(v) = λ(w) = YZ.

We say an MBQC+LC form diagram or a measurement pattern is in phase-gadget
form when its underlying labelled open graph is.

Remark 8.7.2. We call this a phase-gadget form since, as discussed in Remark 8.1.8,
the XY-type vertices form a graph-like ZX-diagram, while the YZ-type vertices are
phase gadgets that are connected to this graph-like diagram of XY-type vertices.

Proposition 8.7.3. Let D be a ZX-diagram in MBQC+LC form which has a gflow.
Then we can efficiently find an equivalent ZX-diagram D′ in MBQC+LC form with
the same number of vertices that has a gflow and is in phase-gadget form.

Proof. Set D0 := D and iteratively construct the diagram Dk+1 based on Dk.

• Suppose the diagram Dk contains a pair of vertices u ∼ v that are both meas-
ured in the YZ-plane. Note that any input vertex w has λ(w) = XY, as
otherwise w ∈ g(w) contradicting the definition of the co-domain of g as given
in Definition 8.2.5. Therefore u, v /∈ I. Let Dk+1 be the MBQC+LC diagram
that results from pivoting on that edge u ∼ v (Lemma 8.5.4). This changes
the measurement plane for u and v from YZ to XY and it does not affect the
measurement planes for any other vertices:

α

β

...

...

α′

β′

...

...
→
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• Otherwise, if there is no such connected pair but there is some vertex u that is
measured in the XZ-plane (which is again necessarily not an input) we let Dk+1
be the MBQC+LC diagram that results from applying a local complementation
on u (Lemma 8.5.2):

α

β

...

... →
γ

...
δ

...

α′

β′

...

...
γ

...
δ′

...

π
2

π
2

π
2 u u

As can be seen from Lemma 8.5.2, this process changes the measurement on u
from XZ to YZ and it does not affect the label of any vertices that are measured
in the XY-plane.

• If there is no such connected pair nor any vertex that is measured in the XZ-plane
then Dk is already in the desired form, so we are finished.

The number of vertices not measured in the XY-plane decreases with each step, and
no vertices are added, so this process terminates. Since a pivot is just a sequence of
local complementations, Dk+1 has gflow if Dk had gflow (Corollary 8.4.4). Finally
every step preserves equivalence, so Dk+1 is equivalent to Dk. �

Now let us proceed with two new rewrite rules that allow us to further remove some
measured qubits.

Lemma 8.7.4. Let D be an MBQC+LC diagram with an internal vertex u measured
in the YZ plane, and suppose it has a unique neighbour v measured in the XY plane.
Then there is an equivalent MBQC+LC diagram D′ with G(D′) = G(D)\{u}. If D
had gflow, then D′ also has gflow.

Proof. We do the following rewrite:
α

... = ...

β α+ β

The resulting diagram is then again an MBQC+LC diagram. The change to the
labelled open graph comes down to deleting a YZ vertex. By Lemma 8.4.5 this
preserves gflow. �

Since vertices measured in the YZ axis are basically phase gadgets, we can fuse
them together when they have the same set of neighbours (cf. Eq. (6.23)).

Lemma 8.7.5. Let D be an MBQC+LC diagram with internal vertices u and v
both measured in the YZ plane and with N(u) = N(v). Then there is an equivalent
diagram D′ with G(D′) = G(D)\{u}. If D had gflow, then D′ also has gflow.

Proof. We do the following rewrite:
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α

β

α1

αn

...

α+ β α1

αn

...=

...

... ...

...

This was shown to be sound in Eq. (6.23). The new diagram is still an MBQC+LC
diagram, and the labelled open graph has only changed by deleting a YZ vertex. Hence,
by Lemma 8.4.5 this preserves gflow. �

While the simplifications outlined in Section 8.6 remove Clifford vertices, the rewrites
of this section succeed in removing vertices that have a non-Clifford measurement
angle. Furthermore, since the measurement angles are added together, this might
result in additional Clifford vertices that can then be removed in turn. This iterative
simplification process will prove crucial in the next chapter where we will use it for
optimising the T-count of quantum circuits (cf. Section 9.5).

8.8 Circuit extraction
We saw in Section 8.3 how to convert a circuit into a measurement pattern. In this
section we will do the converse and find a way to convert a measurement pattern with
gflow back into a circuit. We call this problem of converting a measurement pattern,
or more generally any ZX-diagram, into a circuit the circuit extraction problem.
In Refs. [34, 192] it was shown how to convert a measurement pattern into a circuit
involving a number of ancillae proportional to the number of measured qubits in the
pattern, while also requiring measurements and classical control in the resulting circuit.
In Ref. [162] an algorithm was found that results in ancilla-free circuits, but which
also only worked with measurements in a single plane. Our algorithm can deal with
measurements in all three planes and results in an ancilla-free circuit.

Before we describe our algorithm we will require some additional results regarding
gflow.

8.8.1 Maximally delayed and focused gflow
First, to perform our circuit extraction we will require a more specific type of gflow.
In particular, we require a gflow that is maximally delayed and focused. These ideas
were originally introduced in Ref. [157, 158] for patterns with measurements in a single
plane. We extend them here to work with measurements in three planes.

Intuitively, a gflow is maximally delayed when the corrections for each vertex are
applied as late as possible. In order to figure out how delayed a gflow is, we need to
‘stratify’ the vertices into layers of vertices that can be corrected at the same time.

Definition 8.8.1 (Generalisation of [158, Definition 4] to multiple measurement
planes). For a labelled open graph (G, I,O, λ) and a gflow (g,≺) of (G, I,O, λ), let

V ≺k =
{

max≺(V ) if k = 0
max≺(V \ (

⋃
i<k V

≺
i )) if k > 0
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be layers of anti-chains (i.e. incomparable elements in the partial order ≺) where
max≺(X) := {u ∈ X ; ∀v ∈ X,¬(u ≺ v)} is the set of the maximal elements of X.

Note that V =
⋃
k V
≺
k and that there is some N ∈ N such that V ≺n = ∅ for all

n ≥ N .

Definition 8.8.2 (Generalisation of [158, Definition 5] to multiple measurement
planes). For a labelled open graph (G, I,O, λ) and two gflows (g,≺) and (g′,≺′) of
(G, I,O, λ), we say (g,≺) is more delayed than (g′,≺′) if for all k,∣∣∣∣∣

k⋃
i=0

V ≺i

∣∣∣∣∣ ≥
∣∣∣∣∣
k⋃
i=0

V ≺
′

i

∣∣∣∣∣
and there exists a k such that the inequality is strict. A gflow (g,≺) is maximally
delayed if there exists no gflow of the same labelled open graph that is more delayed.

Theorem 8.8.3 (cf. [158] and [15, Appendix C]). There exists an efficient algorithm
that decides whether a given labelled open graph has a gflow, and that outputs a gflow
if one exists. Moreover the gflow this algorithm finds is maximally delayed.

Corollary 8.8.4. A labelled open graph has a gflow if and only if it has a maximally
delayed gflow.

Remark 8.8.5. It’s not too hard to see that if (g,≺) is a maximally delayed gflow
for (G, I,O, λ), that necessarily V ≺0 = 0. As a consequence we have for any v ∈ V ≺1
that g(v) ⊆ O ∪ {v} and Odd (g(v)) ⊆ O ∪ {v}.

The second property we need for our gflows is that of being focused. This notion was
originally introduced for patterns where all measurements are in the XY-plane [157],
and intuitively says that corrections only affect the vertex they are meant to correct
and no others. This notion can be extended to patterns with measurements in all
planes, but is particularly nice for patterns in phase-gadget form. In that setting all
vertices that are in a correction set g(v) of a focused gflow must be of XY type, while
all vertices in Odd (g(v)), i.e. the vertices being corrected, must be either v itself or
of type YZ.

Lemma 8.8.6. Let (G, I,O, λ) be a labelled open graph which has gflow (g,≺).
Suppose there exist v, w ∈ O such that v ≺ w. Define g′(v) := g(v) ∆ g(w) and
g′(u) := g(u) for all u ∈ O \ {v}, then (g′,≺) is a gflow.

Proof. As the correction set only changes for v, the gflow properties remain satisfied
for all other vertices. Now, suppose w′ ∈ g′(v), then w′ ∈ g(v) or w′ ∈ g(w). In the
former case, v ≺ w′, and in the latter case, v ≺ w ≺ w′, since (g,≺) is a gflow. So
(g1) holds. Similarly, suppose w′ ∈ Odd (g′(v)), then by linearity of Odd (·) we have
w′ ∈ Odd (g(v)) or w′ ∈ Odd (g(w)). Again, this implies v ≺ w′ or v ≺ w ≺ w′ since
(g,≺) is a gflow. So (g2) holds. Finally, v ≺ w implies v /∈ g(w) and v /∈ Odd (g(w)).
Therefore v ∈ g′(v) ⇐⇒ v ∈ g(v) and v ∈ Odd (g′(v)) ⇐⇒ v ∈ Odd (g(v)). Thus
(g3)–(g5) hold and (g′,≺) is a gflow. �
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Lemma 8.8.7. Let (G, I,O, λ) be a labelled open graph with a gflow (g,≺). Let
v ∈ O. Then there exists g′ : O → P

(
I
)

such that

1. (g′,≺) is a gflow and g′(w) = g(w) for all w ∈ O with w 6= v,

2. for all w ∈ g′(v) ∩O, either v = w or λ(w) = XY,

3. for all w ∈ Odd (g′(v)) ∩O, either v = w or λ(w) 6= XY.

Proof. Let g0 := g, we will modify the function in successive steps to g1, g2, and so
on. For each non-negative integer k we define

Sk,XY := {u ∈ (Odd (gk(v)) ∩O) \ {v} : λ(u) = XY},
Sk,XZ := {u ∈ (gk(v) ∩O) \ {v} : λ(u) = XZ},
Sk,YZ := {u ∈ (gk(v) ∩O) \ {v} : λ(u) = YZ},

and set Sk := Sk,XY ∪ Sk,XZ ∪ Sk,YZ. If Sk = ∅, let g′ := gk and stop. Otherwise,
choose wk ∈ Sk among the elements minimal in ≺, and define

gk+1(u) :=
{
gk(v) ∆ gk(wk) if u = v

gk(u) otherwise.

Note wk ∈ Sk implies wk 6= v, as well as either wk ∈ gk(v) or wk ∈ Odd (gk(v)). Thus
if (gk,≺) is a gflow, then v ≺ wk, and hence by Lemma 8.8.6, (gk+1,≺) is also a gflow.
Since (g0,≺) is a gflow, this means (gk,≺) is a gflow for all k.

Now, ifwk ∈ Sk,XY, then wk ∈ Odd (gk(wk)) by (g3). This implies wk /∈ Odd (gk+1(v)),
and thus wk /∈ Sk+1. Similarly, if wk ∈ Sk,XZ ∪ Sk,YZ, then wk ∈ gk(wk) by (g4) or
(g5). This implies wk /∈ gk+1(v), and thus wk /∈ Sk+1. Hence, in each step Sk+1 has
at least one less minimal element than Sk.

Suppose there exists w′ ∈ Sk+1 \ Sk, then either w′ ∈ gk(wk) or w′ ∈ Odd (gk(wk))
and thus in either case wk ≺ w′. In other words, we always remove a minimal
element from the set and add only elements that come strictly later in the partial
order. Therefore, the process terminates after n ≤ |V | steps, at which point Sn = ∅.
Then the function g′ = gn has the desired properties: (1) holds because we never
modify the value of the function on inputs other than v and every step results in a
gflow, and (2) and (3) hold because Sn = ∅. �

Based on these lemmas, we can now show the focusing property. These results state
basically that correction sets can be taken to only contain measurements in the XY
plane, while the effects of these corrections, apart from the qubit where they should
have an effect, are only felt on qubits measured in a different plane.

Proposition 8.8.8. Let (G, I,O, λ) be a labelled open graph which has a gflow. Then
(G, I,O, λ) has a maximally delayed gflow (g,≺) with the following properties for all
v ∈ V :

• for all w ∈ g(v) ∩O, either v = w or λ(w) = XY, and

• for all w ∈ Odd (g(v)) ∩O, either v = w or λ(w) 6= XY.
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We call a gflow with these properties focused.

Proof. Let (g0,≺) be a maximally delayed gflow of (G, I,O, λ), which exists by Corol-
lary 8.8.4. Set n := |V | and consider the vertices in some order v1, . . . , vn. For each
k = 1, . . . , n, let gk be the function that results from applying Lemma 8.8.7 to the
gflow (gk−1,≺) and the vertex vk. Then gk satisfies the two properties for the vertex
vk. The function gk also equals gk−1 on all inputs other than vk, so in fact gk satisfies
the two properties for all vertices v1, . . . , vk. Thus, gn satisfies the two properties for
all vertices. Moreover, the partial order does not change, so (gn,≺) is as delayed as
(g0,≺); i.e. it is maximally delayed. Hence if g := gn, then (g,≺) has all the desired
properties. �

Finally, using this combination of maximally delayed and focused gflow, we can
show that we can always find a maximal vertex that is connected to an output, a fact
that is crucial for the extraction algorithm.

Lemma 8.8.9. Let (G, I,O, λ) be a labelled open graph in phase-gadget form, which
furthermore satisfies O 6= ∅. Suppose (G, I,O, λ) has a gflow. Then there exists a
maximally delayed gflow (g,≺) such that NG(V ≺1 ) ∩ O 6= ∅. In other words, there
exists a maximal vertex connected to an output.

Proof. By Proposition 8.8.8, there exists a maximally delayed gflow of (G, I,O, λ) such
that no element of a correction set (other than possibly the vertex being corrected) is
measured in the YZ plane. Let (g,≺) be this gflow.

Since by assumption the open graph does not consist solely of outputs, we have
V ≺1 6= ∅ (c.f. Remark 8.8.5). Hence, the following arguments are non-trivial. Again
by Remark 8.8.5, we have g(v) ⊆ O ∪ {v} for any v ∈ V ≺1 . Now if there is a v ∈ V ≺1
with λ(v) = XY, then v ∈ Odd (g(v)). Hence this v must be connected to at least one
output, and we are done. As the graph is in phase-gadget form, there are no vertices
labelled XZ and hence we may now assume that λ(v) = YZ for all v ∈ V ≺1 .

Suppose first that V ≺2 = ∅, so that the only non-output vertices are in V ≺1 . The
vertices in V ≺1 are all labelled YZ and thus appear in their own correction sets; this
means they cannot be inputs because inputs do not appear in correction sets. The
vertices in V ≺1 are not outputs either, so each of them must have at least one neighbour
(since otherwise it would just be a scalar). Being in phase-gadget form implies that
two vertices labelled YZ cannot be adjacent, and all vertices in V ≺1 are labelled YZ.
Thus by process of elimination, any vertex v ∈ V ≺1 must have a neighbour in O, and
we are done.

So now suppose there is some vertex w ∈ V ≺2 . Then, regardless of λ(w), we have
g(w) ⊆ V ≺1 ∪O ∪ {w} and Odd (g(w)) ⊆ V ≺1 ∪O ∪ {w}. By the focusing property, for
any v 6= w with λ(v) = YZ we have v /∈ g(w). Since all vertices in V ≺1 have label YZ
we must therefore have g(w) ∩ V ≺1 = ∅ and hence g(w) ⊆ O ∪ {w}.

We claim that we must now necessarily have Odd (g(w)) ∩ V ≺1 6= ∅, i.e. that there
is a v ∈ V ≺1 that is in Odd (g(w)). Suppose this is not the case. Then we define a new
partial order ≺′ := ≺ \{(w, u) : u ∈ V ≺1 } which results in a gflow (g,≺′): dropping
the given inequalities from the partial order does not affect the gflow properties since
u ∈ V ≺1 implies w /∈ g(u) and w /∈ Odd (g(u)). But furthermore we see that (g,≺′) is
more delayed than (g,≺), because w (and potentially some of its predecessors) move to
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an earlier layer, contradicting the assumption that (g,≺) is maximally delayed. Hence,
there is indeed a v ∈ V ≺1 such that v ∈ Odd (g(w)). Now if λ(w) = XY, we have
w 6∈ g(w) and hence g(w) ⊆ O so that there must be some o ∈ O that is connected to
v and we are done. Otherwise, if λ(w) = YZ, then w ∈ g(w), but since both v and w
are measured in the YZ plane they are not neighbours, and hence there still must be
an o ∈ O that is connected to v. Thus, the gflow (g,≺) has the desired property. �

8.8.2 Extracting a circuit
In this section we will find a way to extract a (unitary) circuit from a measurement
pattern. This involves some new results that we will prove along the way. In Sec-
tion 8.8.3 we will condense the procedure into a short and efficient algorithm. As
we wish to extract a circuit we will assume the measurement pattern has the same
number of inputs and outputs. Our algorithm will crucially rely on the existence
of a gflow, and hence we will assume the pattern has a gflow. For convenience we
represent the pattern by a MBQC+LC diagram, and describe the algorithm in terms
of ZX-diagrams.

The algorithm will consist of making sequential changes to the ZX-diagram so that
the diagram looks progressively more like a circuit. During the process, there will be
a ‘frontier’: a set of Z-spiders such that everything to their right looks like a circuit,
while everything to their left (and including the frontier vertices themselves) is an
MBQC-form ZX-diagram equipped with a gflow. We will refer to the MBQC-form
diagram on the left as the unextracted part of the diagram, and to the circuit on
the right as the extracted part of the diagram. For example:

M

π
4

π
4

5π
4

D

frontier

-π4
π
4

π

3π
4

extractedunextracted

(8.3)

In this diagram, we have merged the XY measurement effects with their adjacent
vertices, in order to present a tidier picture. The matrix M is the biadjacency matrix
between the vertices on the frontier and all their neighbours to the left of the frontier.
For the purposes of the algorithm below, we consider the extracted circuit as no longer
being part of the diagram, and hence when we refer to ‘outputs’ below, we mean the
vertices on the frontier.

The general idea now is to start at the end of the diagram, find a suitable vertex
connected to a frontier vertex, and transform the diagram in such a way that we can
‘consume’ this vertex. We then keep repeating this procedure until all vertices are
consumed.
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Step 0: First, we transform the pattern into phase-gadget form using Proposi-
tion 8.7.3, ensuring that all vertices are measured in the XY or YZ planes, and that
vertices measured in the YZ plane are only connected to vertices measured in the XY
plane. This can be done efficiently, and preserves the interpretation of the diagram.
Furthermore, the resulting diagram still has a gflow.

Step 1: We unfuse any connection between output vertices as a CZ gate into the
extracted circuit, and we consider any local Clifford operator on the output vertices
as part of the extracted circuit. For example:

..
.

D

extracted

..
.

π
2

π
2

unextracted

..
.

D

extracted

..
.

π
2

π
2

unextracted

=

This process changes the unextracted diagram in two ways. The first simply removes
local Clifford operators, which does not affect the underlying labelled open graph.
The second removes connections between the frontier vertices. While this changes the
labelled open graph, it preserves the existence of gflow:

Lemma 8.8.10. Let (G, I,O, λ) be a labelled open graph with gflow. Then (G′, I, O, λ)
where G′ is equal to G but with all edges between the vertices in O removed also has
gflow.

Proof. We claim that if (g,≺) is a gflow for G, then it is also a gflow for G′. Note that
OddG′ (g(v))∩O = OddG (g(v))∩O as the only changes to neighbourhoods are between
the output vertices. It is then easily checked that all properties of Definition 8.2.5 are
still satisfied. �

Thus, the resulting unextracted diagram continues to be in MBQC+LC form and
it continues to have a gflow. If the only unextracted vertices are on the frontier, go
to step 5, otherwise continue to step 2.

Step 2: The unextracted diagram is in phase-gadget form and has a gflow. Thus,
by Lemma 8.8.9, it has a maximally delayed gflow (g,≺) such that NG(V ≺1 ) ∩O 6= ∅,
where V ≺1 is the ‘most delayed’ layer before the outputs (see Definition 8.8.1). Such a
gflow can be determined efficiently by first finding any maximally delayed gflow using
the algorithm of Theorem 8.8.3 and then following the procedure outlined in the proof
of Lemma 8.8.9.

Now, if any of the vertices in V ≺1 are labelled XY, pick one of these vertices and go
to step 3. Otherwise, all the maximal non-output vertices (with respect to ≺) must
have label YZ; go to step 4.

Step 3: This step is where the non-trivial part of the extraction happens. We have
a maximal non-output vertex v labelled XY, which we want to extract. Since it is
maximal in ≺, we know that g(v) ⊆ O by Remark 8.8.5. As the gflow is maximally
delayed, we have Odd (g(v)) ∩O = {v}. Let us consider an example. In the following
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diagram, we have indicated the vertex v and its correction set g(v):

D

v w
g(v)

(8.4)

Note that we are ignoring the measurement effects on the left hand-side spiders for
clarity. In the above example, the biadjacency matrix of the bipartite graph between
the vertices of g(v) on the one hand, and their neighbours in the unextracted part on
the other hand, is 1 1 0 0

0 0 1 1
0 1 1 1

 (8.5)

where the rows correspond to vertices of g(v), and vertices are ordered top-to-bottom.
We do not include the bottom-most output in the biadjacency matrix, as it is not part
of g(v), and we do not include the bottom left spider, as it is not connected to any
vertex in g(v).

The property that Odd (g(v))∩O = {v} now corresponds precisely to the following
fact: if we sum up all the rows of this biadjacency matrix modulo 2, the resulting row
vector contains a single 1 corresponding to the vertex v and it has zeros everywhere
else. It is straightforward to see that this is indeed the case for the matrix of (8.5).

This fact will allow us to extract the vertex v. However, in order to use these row
operations, we need to see how these can be applied to a ZX-diagram.

Lemma 8.8.11. The following equation holds.

..
.

M

..
.D = ..

.

M ′

..
.D (8.6)

Here M describes the biadjacency matrix of the vertices on the right to the vertices
on the left, and M ′ is the matrix produced by adding row 1 to row 2 (modulo 2) in
M . Furthermore, if the diagram on the left-hand side has a gflow, then so does the
one on the right-hand side.

Proof. We will show how to transform the first diagram into the second in such a way
that gflow and equality is preserved at every step. For clarity we will not draw the
entire diagram, but instead focus on the relevant part. First of all, we note that we
can add CNOTs in the following way while preserving equality:
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..
.

M
..

. = ..
.

M

..
. = ..
.

M

..
.

..
.

..
.

..
.

As we are only adding vertices at the outputs, it should be clear how the gflow can
be extended to incorporate these new vertices (cf. Lemma 8.4.7).

Now let A denote the set of vertices connected to the top vertex, but not to the
vertex beneath it, B the set of vertices connected to both, and C the vertices connected
only to the bottom one. Further restricting our view of the diagram to just the
neighbourhood of these two spiders, we see that we can apply a pivot-and-delete
rewrite as in Eq. (6.31):

A

B

C

pivot

=

A

B

C

=

A

B

C

Looking at the connectivity, it is straightforward to see that the matrix M has now
been changed in exactly the way described. The underlying labelled open graph still
has a gflow because it has changed according to Corollary 8.4.4, followed by two
deletions of vertices as in Lemma 8.4.5. �

Pick any output w ∈ g(v). Lemma 8.8.11 shows that the application of a CNOT to
two outputs corresponds to a row operation on the biadjacency matrix, which adds
the row corresponding to the target to the row corresponding to the control. Hence if,
for each w′ ∈ g(v) \ {w}, we apply a CNOT with control w and target w′, the effect
is to add all the rows in g(v) to that of w:

D

v w

=

extractedunextracted

D

v w

extractedunextracted

= D

v w

extractedunextracted

As a result, w is now only connected to v, but v may still be connected to other
vertices in O \ g(v) (which is indeed the case in our example). For each such vertex
u, applying a CNOT with control u and target w removes the connection between u
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and v:

=D

v w

extractedunextracted

D

v w

extractedunextracted

u u

Now we can extract v by removing w from the diagram, adding a Hadamard to the
circuit (this comes from the Hadamard edge between v and w), adding the measure-
ment angle of v to the circuit as a Z-phase gate, and adding v to the set of outputs of
the graph (i.e. the frontier):

..
. ..
.

α

v

w

..
.

..
. ..
.

α

v

..
.

= (8.7)

On the underlying labelled open graph this corresponds to removing w and adding v
to the list of outputs. Since w was only connected to v, and no other output vertex is
connected to v, it must be that w is not part of any correction set g(v′) for any other
v′ in the graph (because if it were, then the odd neighbourhood necessarily contained
v, which contradicts the gflow being focused). So the resulting labelled open graph
still has a gflow.

As the vertex w has been removed, the number of vertices in the unextracted part
of the diagram is reduced by 1. We now go back to step 1.

Step 4: All the maximal vertices are labelled YZ. Since we chose our gflow according
to Lemma 8.8.9, we know that at least one of these vertices is connected to an output.
Pick such a vertex v, and pick a w ∈ O∩NG(v) (this set is non-empty). Pivot about vw
using Eq. (6.29) and reduce the resulting diagram to MBQC form with Lemma 8.5.4.
Afterwards, v has label XY and w has a new Hadamard gate on its output (which
will be dealt with in the next step 1).

We have changed one vertex label in the unextracted part of the diagram from YZ
to XY. Since no step introduces new YZ vertices, step 4 can only happen as many
times as there are YZ vertices at the start of the algorithm. Go back to step 1.

Step 5: At this point, there are no unextracted vertices other than the frontier
vertices, all of which have degree 2 and can be removed using rule (i1). Yet the
outputs might be connected to the inputs in some permuted manner and the inputs
might carry some local Cliffords:

extractedunextracted

π
2

-π2
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This is easily taken care of by decomposing the permutation into a series of SWAP
gates, at which point the entire diagram is in circuit form.

Since step 3 removes a vertex from the unextracted diagram, and step 4 changes
a measurement plane from YZ to XY (and no step changes measurement planes in
the other direction), this algorithm terminates. All steps correspond to ZX-diagram
rewrites, so the resulting diagram is a circuit that implements the same linear map as
the original diagram.

8.8.3 An efficient circuit-extraction algorithm

Now that we have a procedure for extracting a circuit from a pattern, we can simplify
some of the steps involved.

In step 2, instead of using the gflow to find a maximal vertex, we do the following:
Write down the biadjacency matrix of the bipartite graph consisting of outputs on
one side and all their neighbours on the other side. For example, diagram (8.4) would
give the matrix: 

1 1 0 0 0
0 0 1 1 0
0 1 1 1 0
1 1 0 1 1

 (8.8)

Now perform a full Gaussian elimination on this Z2 matrix. In the above case, this
results in the matrix: 

1 0 0 0 0
0 1 0 0 0
0 0 1 0 1
0 0 0 1 1

 (8.9)

Any row in this matrix containing a single 1 necessarily corresponds to a maximal
vertex with label XY. For instance, in the matrix in (8.9), the first row has a single 1
in the first column, and hence the top-left spider of (8.4) is maximal. Similarly, the
second row has a single 1, appearing in column 2, and hence the second spider from
the top on the left in (8.4) is maximal.

If we found at least one maximal vertex labelled XY with this method, we implement
the row operations corresponding to the Gaussian elimination procedure as a set of
CNOT gates using Lemma 8.8.11. Doing this with the diagram (8.4) gives:

D D= (8.10)

We see that every row which had a single 1 now corresponds to a frontier spider with
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a single neighbour, and hence we can extract vertices using the technique of (8.7):

D = D

extractedunextracted extractedunextracted

(8.11)
As we now extract multiple vertices at a time, there could be connections between

the new frontier vertices (for instance between the top two frontier spiders in (8.11)).
These turn into CZ gates the next time step 1 is done.

If the Gaussian elimination does not reveal a row with a single 1, then we are in
the situation of step 4. We perform pivots involving a vertex with label YZ and an
adjacent output vertex until there is no vertex with a label YZ which is connected to
an output. We then go back to step 1.

Interestingly, by using these shortcuts we can extract a circuit without having a
gflow explicitly calculated. The fact that there is a gflow is crucial for the correctness of
the algorithm though: without it there is no guarantee that our Gaussian elimination
approach will succeed, and in fact when the diagram does not have gflow it will in
general not succeed.

Algorithm 1 Circuit Extraction
1: procedure Extract(D) . input is MBQC+LC diagram D
2: Init empty circuit C
3: G, I,O ← Graph(D) . get the underlying graph of D
4: D,C ← ProcessOutputs(D,O,C)
5: while ∃v ∈ D\O do . there are still vertices to be processed
6: D,O,C ← ExtractVertices(D,O,C) .See Algorithm 2
7: for v ∈ O do . the only vertices still in D are in O
8: if v connected to input has Clifford then
9: C ← Cliffords(Qubit(v))

10: Perm ← Permutation from inputs to outputs . step 5 of Section 8.8.2
11: for swap(q1, q2) in PermutationAsSwaps(Perm) do
12: C ← swap(q1, q2)
13: return C
14: procedure ProcessOutputs(D,O,C) .Corresponds to step 1 of Section 8.8.2
15: for v ∈ O do
16: if v has local Cliffords then
17: C ← Cliffords(Qubit(v))
18: Remove Cliffords from v on output wire
19: for edge between v and w in O do
20: C ← CZ(Qubit(v), Qubit(w))
21: Remove edge between v and w

22: return D,C
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For a pseudocode description of the extraction algorithm see Algorithms 1 and 2.
The observations we have made allow us to state the following theorem:

Theorem 8.8.12. Let P be a measurement pattern with gflow and n inputs and
outputs containing a total of k qubits. Then there is an algorithm running in time
O(n2k2 + k3) that converts P into an equivalent n-qubit circuit that contains no
ancillae. The number of non-Clifford gates in the circuit is equal to the number of
qubits in P measured in a non-Clifford angle.

Proof. The runtime for the extraction algorithm is dominated by Gaussian elimination
of the biadjacency matrices which has complexity O(n2m), where n is the number
of rows, corresponding to the number of outputs, and m is the number of columns,
corresponding to the neighbours of the outputs. In principle m could be as large as
the number of vertices in the graph and hence could be as large as k. Doing a pivot
requires in the worst case to toggle the connectivity of almost the entire graph, which
requires k2 elementary graph operations. Since for every vertex in the graph we might
have to do a pivot and a Gaussian elimination the complexity for the entire algorithm

Algorithm 2 Extracting a vertex in the circuit extraction algorithm
1: procedure ExtractVertices(D,O,C) .See Section 8.8.3
2: while There is YZ vertex connected to O do
3: v ← YZ vertex connected to O
4: w ← a neighbour of w in O
5: D ← Pivot(D,v,w)
6: if any YZ vertex found then
7: D,C ← ProcessOutputs(D,O,C) .See Algorithm 1
8: return D,O,C

9: N ← Neighbours(O)
10: M ← Biadjacency(O,N)
11: M ′ ← GaussReduce(M)
12: Init vs . initialise empty set vs
13: for row r in M ′ do
14: if sum(r) == 1 then . there is a single 1 on row r
15: Set v to vertex corresponding to nonzero column of r
16: Add v to vs . v will be part of the new frontier
17: M ← Biadjacency(O,ws) . smaller biadjacency matrix
18: for (r1, r2) ∈ GaussRowOperations(M) do
19: C ← CNOT(Qubit(r1), Qubit(r2))
20: Update D based on row operation
21: for v ∈ vs do . all v now have a unique neighbour in O
22: w ← Unique neighbour of v in O
23: C ← Hadamard(Qubit(w))
24: C ← Phase-gate(Phase(v), Qubit(w))
25: Remove w from D and O
26: Add v to O
27: D,C ← ProcessFrontier(D,O,C)
28: return D,O,C
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is upper-bounded by O(k(n2k + k2)) = O(n2k2 + k3). �

Note that if k ≥ O(n2), which will be the case for most useful computations, the
bound in the theorem becomes O(k3). We expect this bound to be rather pessimistic
as it would require the diagram to be almost fully connected in every step of the
computation. As pivots toggle connectivity, this seems rather unlikely, and indeed
empirical data seems to suggest that the extraction is much more sensitive to the
number of outputs rather than the total number of vertices. We will discuss several
ways in which this circuit extraction algorithm can be improved and generalised in
Chapter 10. In the next chapter we will use the algorithm to optimise circuits.





Chapter 9

Optimisation of quantum circuits
In this chapter we will apply the results of Chapters 6 and 8 to two problems: quantum
circuit optimisation, and verification of equality of quantum circuits.

To understand the context of our results we start with an overview of existing
approaches to circuit optimisation in Section 9.1. Then we will present our main ZX-
calculus based simplification routine in Section 9.2. This is based on the rewrite rules
of measurement patterns described in Theorem 8.6.6 extended with the additional
simplifying rewrite rules of Section 8.7.

In order to apply our optimisation routine to circuits of a realistic size, we made
a software library named PyZX. The architecture and implementation of PyZX is
discussed in Section 9.3.

In Section 9.4 we will apply our simplification method to Clifford circuits and see
that it reduces them to a pseudo-normal form that has several desirable features: it has
an optimal number of free parameters, and in the linear nearest neighbour connectivity
model its 2-qubit gate depth is less then any other existing normal form for Clifford
circuits.

Then in Section 9.5 we apply our method to Clifford+T circuits with the goal of
minimising the number of T gates present in the circuit. We will see that our method
outperforms or matches all of the other existing ancilla-free T-count optimisers.

In order to get a circuit-to-circuit T-count optimiser, we need to use the circuit
extraction algorithm of the previous chapter. This has the drawback that it is relatively
slow and that for many circuits it actually increases the number of 2-qubit gates in
the circuit. In order to get around these issues we introduce the method of phase
teleportation in Section 9.6, which allows us to bypass the need for circuit extraction.
With phase teleportation we can reduce the T-count without changing any other
feature of the circuit.

For any software implementation it is of course crucial to know that it has been
implemented correctly. We discuss in Section 9.7 how our optimisation procedure
is essentially self-checking, and can produce a certificate of equality for any of our
optimised circuits.

We end with some concluding remarks in Section 9.8

9.1 Introduction to quantum circuit optimisation
The goal of quantum circuit optimisation is to take a given circuit C that implements
some unitary U and transform it into a circuit C ′ that still implements U , but is
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better than C in some chosen metric. Before we get into the work that has been done
on this topic, we will outline the most important metrics that are being considered.

An obvious one is total gate count. A circuit which contains more gates is of
course going to be harder to implement, and hence it makes sense to want to minimise
the number of gates in a circuit. A related metric is that of 2-qubit gate count
where the goal is to minimise the number of gates that act on 2 (or more) qubits,
such as CNOT and CZ gates. This is an important metric because in many types of
quantum computers two-qubit gates take more time or introduce more noise into the
system than single qubit gates.

In most types of quantum computers operations acting on disjoint sets of qubits
can be performed in parallel, and hence the total time required to implement a circuit
is not related to the number of gates needed, but rather the number of parallel layers
of gates that are needed. This number is referred to as the depth of the circuit. This
gives the metric of gate depth, but since 2-qubit gates generally take more time to
implement than single qubit gates, another metric in use is 2-qubit gate depth that
only measures the number of 2-qubit gate layers needed.

The above-mentioned metrics (in combination with routing discussed below) are
generally the most important when it comes to near-term quantum computation. The
situation is different when it comes to computation at the logical level of a fault-
tolerant quantum computer. In this setting one can only easily perform gates that
interact well with the error-correcting code used. This usually includes Clifford gates,
but excludes non-Clifford ones. A gate like the T gate must then be implemented
using magic state injection where a magic state is prepared and combined with the
circuit in a particular manner to implement a T gate (similar to how this is done
in Eq. (7.4)). The problem is that such magic states will be prepared at the noisy
physical level and must be distilled in order to be used in a fault-tolerant manner. This
is generally very costly. For instance, in Ref. [79, Appendix M] they work through
an example of Shor’s algorithm run on a surface code (a leading candidate for fault-
tolerant quantum computation) where about 95% of the total number of qubits, and
almost all the execution time is required for magic state distillation1. In the surface
code, a T gate has been estimated to be about 50 times [78] to 300 times [174] more
costly to implement than a CNOT gate in the surface code. A relevant metric for
fault-tolerant computation is therefore the T-count of a circuit: the number of T
gates required to implement the circuit.

A final consideration is that in most types of quantum computers it is not possible
for every pair of qubits to interact with each other, since they might for instance be
physically far apart. When optimising circuits we might therefore also want to make
sure the resulting circuit only contains 2-qubit gates between qubits that can actually
interact with one another. We will refer to this problem as routing the circuit. A
related problem is qubit mapping where the qubit lines of a circuit must be mapped
to the (physical) qubits of the quantum computer.

Before we continue with an overview of the field of quantum circuit optimisation
let us remark that the general problem of optimisation is unlikely to have an efficient

1Recent work in optimising the design and layout of magic state distillation factories has greatly
improved the resource cost of implementing T gates in the surface code [84, 144]. Nevertheless,
they still account for most of the cost of implementing a circuit on the surface code.
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solution. The complexity class QMA is the quantum analogue to NP, and hence
contains problems that are believed to be hard. A complete problem for QMA is
determining whether a circuit implements the identity [27]. As a consequence, the
general problem of determining what the optimal number of gates (or 2-qubit gates or
T gates) is to implement a given unitary is probably intractable: if we could determine
the optimal gate count of a circuit, then we can easily test whether a circuit implements
the identity by checking whether its optimal gate-count is equal to zero. This explains
why all known results that find optimal implementations of circuits take exponential
time in the number of qubits.

There are basically four branches of quantum circuit optimisation: approximate
synthesis, exact synthesis, heuristic optimisation and circuit routing. We will now
give a short overview of previous results and methods used in the first three, with
a focus on heuristic optimisation. Circuit routing will not be relevant for this thesis
(although we discuss it briefly in Section 10.2). For the purpose of this section we will
define ‘efficient’ to mean ‘taking time polynomial in the relevant parameters’.

Synthesis constructs a circuit directly from a description of the unitary. The input
is thus not a circuit, but instead, for instance, a matrix. The seminal result in approx-
imate synthesis is the Solovay-Kitaev algorithm [64] that gives a way to arbitrarily
closely approximate a unitary on any number of qubits with any approximately uni-
versal gate set. The runtime for this algorithm is not surprisingly exponential in the
number of qubits, and furthermore is not optimal in the number of gates used. Other
synthesis results focus on a restricted number of qubits. Refs. [26, 184] showed how to
efficiently synthesise a single qubit unitary with an optimal number of T gates, while
Ref. [86] does the same for 2-qubit unitaries with an optimal number of controlled-S
gates.

In contrast to approximate synthesis, exact synthesis focuses on unitaries that can
be exactly represented by a circuit in some chosen gate set. For instance, in Ref. [202]
they find that any 2-qubit unitary can be implemented with at most 3 CNOT gates
when arbitrary single qubit unitaries are allowed. In Ref. [6] they implement a smart
brute-force approach to finding optimal depth Clifford+T circuits of small size. In
particular they verified that the 3-qubit Toffoli gate, i.e. the controlled-CNOT gate,
has a optimal T-count of 7.2 Recall that in Section 6.5 we gave a decomposition of the
CCZ gate into phase gadgets that also had a T-count of 7. The Toffoli gate is simply the
CCZ gate with the third qubit surrounded by Hadamard gates, so our decomposition
was indeed optimal. The brute-force approach was improved in Ref. [67] by exploiting
parallelisation which allowed them to find optimal T-counts for 4 qubit circuits. A
brute force approach was also used to find optimal implementations (in terms of total
gate count, CNOT count and depth) of Clifford circuits up to 5 qubits [135].

For circuits and unitaries on a larger number of qubits it quickly becomes impractical
to synthesise optimal implementations. This has lead to a burgeoning field of heuristic
optimisation algorithms. These take in an existing quantum circuit, apply a set of
rules and transformations and output a new circuit that implements the same unitary,
but (hopefully) performs better on the chosen metric. For these approaches there is
usually no guarantee that the resulting circuit is optimal in any sense.

2This only holds when restricted to unitary circuits. When ancillae and classical control are allowed
the T-count can be reduced to 4 [123], or even 2 for certain pairs of Toffoli gates [83].
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Perhaps the most straightforward set of heuristics involve what we will refer to as
peephole optimisation, but which is sometimes also referred to as template matching.
Peephole optimisation works by replacing small ‘chunks’ of a circuit by more optimal
counterparts. The process is repeated until no more chunks can be optimised. The
power of this method derives from the variety of chunks that can be matched. The
most widely used peephole optimisations consist of combining adjacent gates. For
instance, canceling adjacent CNOT gates and Hadamard gates and combining adjacent
Z-phase gates:

→
→α β α+ β

→

A more thorough approach is applied in for instance Ref. [135] where every 4-qubit
Clifford sub-circuit is replaced by an optimal implementation of the same circuit.
Peephole optimisations are usually combined with a representation of the circuit that
includes information on which gates can be commuted past one another. This allows
gates to be ‘moved out of the way’ so that more matches can be found. An often-used
representation for this is a directed acyclic graph that contains information concerning
which gates necessarily have to follow other gates. For a systematic study on the use
and complexity of peephole optimisation in quantum circuits we refer to Ref. [116].

Another important subfield where peephole optimisation is widely used is in revers-
ible logic synthesis. Important components of many quantum circuits are essentially
classical logical circuits implementing for instance adders or multipliers. Since any
classical reversible logic circuit can be implemented using just Toffoli, CNOT and
NOT gates, the goal of synthesising these circuits is usually minimising the number
of Toffoli gates. The many results in this field, see e.g. Refs. [18, 151, 227], will not be
of importance to us, but we will highlight one key result. A circuit that consists fully
of CNOT gates is known as a linear reversible circuit. In Ref. [148] they found
that such a circuit on n qubits can be represented by an n × n matrix of zeros and
ones, and that it can be efficiently synthesised using a modified Gaussian elimination
algorithm into a circuit containing an asymptotically optimal number of CNOT gates.

There is one final heuristic approach we will discuss that is especially important for
T-count optimisation. For any n-qubit unitary U that can be implemented by a circuit
consisting of just diagonal gates and CNOT gates we can find a phase polynomial
f : {0, 1}n → R (cf. Section 6.5) and an invertible n× n matrix A over Z2 such that
U |~x〉 = eif(~x) |A~x〉 for all ~x ∈ {0, 1}n [10]. The action of the matrix A is a linear
reversible circuit and hence can be implemented solely using CNOT gates. All of
the non-Clifford information is then captured in the phase polynomial f . There exist
efficient methods to synthesise a circuit from a phase polynomial f . We gave a simple
one in Section 6.5, but there are also more intricate synthesis methods [9, 10]. By
representing every sub-circuit consisting of CNOTs and diagonal gates as a phase
polynomial and resynthesising we can already significantly reduce the T-count of the
full circuit. As shown in Eq. (6.22), a phase gadget, which is just one term of a phase
polynomial, can be implemented as a circuit using a ‘ladder’ of CNOT gates. Since a
phase gadget is symmetric in the qubits, the orientation of the ladder is irrelevant. By
representing the circuit as a phase polynomial this ‘irrelevant’ information is modded
out, allowing us to do simplifications that are hard to see in a circuit description. For
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instance3:

α

=
α

-α

(6.22)

−α

=
(6.23)

(f)

=
(i)

(c)

The first to take this approach was Ref. [10]. This was improved upon by Ref. [3]
by applying some peephole optimisations that reduce the number of Hadamard gates
that act as a barrier to phase polynomial approaches. Finally, it was combined with
an even larger set of peephole optimisations in Ref. [165] that produced circuits with
a significantly lower CNOT count.

Interestingly, different phase polynomials can represent the same unitary. Finding
equivalent phase polynomials that have less terms, and thus require less T gates to
implement, is done by dedicated phase polynomial optimisers. The first to use
such an optimiser was Ref. [11] where they showed the problem of finding optimal
equivalent phase polynomials to be related to the problem of Reed-Muller decoding,
which is believed to be a hard problem. The results of Ref. [11] were improved upon
by Ref. [114] where they exploited a relation to the problem of 3-tensor factorisation.
They call their approach third order duplicate and destroy, abbreviated to TODD. In
Section 9.5 we will use TODD in combination with our ZX-calculus-based approach.
Finally, let us mention Ref. [24] where they introduce a general framework for finding
optimisations to phase polynomials.

Recently some work has been done on generalising the phase polynomial approach
so that it can also deal with Hadamard gates. This has lead to a representation of
quantum circuits as a series of Exponentiated Pauli operators [144]. This was
used in Ref. [230] to get T-counts similar to the method we will introduce.

9.2 Simplification of ZX-diagrams

In this section we will describe the ZX-diagram simplification strategy we will use to
do circuit optimisation. This strategy uses the rules from Section 6.8 in combination
with those of Section 8.7.

Our starting point will be a circuit given in the form of a ZX-diagram. If the circuit
we want to simplify contains gates that are not native to the ZX-calculus, such as
Toffoli gates, we decompose these gates in a way that allows us to represent them
directly in the ZX-calculus.

Before we describe our rewrite strategy let us remark that whenever a rewrite
introduces parallel edges or self-loops that we immediately implicitly remove these

3This particular example could also be simplified by a simple rule that says that phase gates can
be commuted through a pair of CNOT gates with opposite target and control such as is done in
Ref. [165], but for complicated configurations, for instance if we had phase gadgets on 3 qubits,
this would be increasingly cumbersome.
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Figure 9.1: Main set of simplification rules (scalar factors not included). The rules
(l) and (p) are not presented in full generality (for that see Eqs. (6.30)
and (6.31)). In particular all the Z-spiders are allowed to have phases
and in (p) the two main spiders are also allowed to share neighbours. If
an application of one of these rules would add an edge between a pair of
spiders that are already connected, then instead this connection is removed
(cf. Eq. (6.19)).

using Eqs. (6.19) and (6.20)), i.e.:

α β... ... = α β... ...

α

...
=

...
α α

...
=

...
α+ π

1√
2

The main rewrite rules are shown in Figure 9.1. The first steps consist in making
the diagram graph-like (cf. Definition 6.6.3):

1. First, we change the (t)ype of all the X-spiders to Z-spiders by introducing
Hadamard boxes. This means that all other rules only need to deal with Z
spiders.

2. As the previous step potentially introduced many Hadamard boxes, we now
proceed with canceling double (h)adamard boxes.

3. Now (f)use all the neighbouring Z spiders.

4. Remove (i)dentities. This step might produce more pairs of adjacent Hadamard
boxes and hence we go back to step 2) to remove these.

We repeat these steps until a fixed point is reached. This procedure is very similar to
that described in Lemma 6.6.4. Recall that a graph-like ZX-diagram is essentially the
same thing as a ZX-diagram in MBQC form where every measured spider is measured
in the XY-plane (cf. Lemma 8.3.1). Since we started with a circuit, the diagram, when
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Figure 9.2: Gadgetisation rules based on the pivot rule (6.29). As in that equation,
the right-hand side contains fully connected bipartite graphs between the
3 sets of vertices.

viewed as an MBQC form diagram, has gflow (cf. Lemma 8.3.2). The other rules we
will introduce in this section similarly preserve the existence of a gflow on the diagram.

Now we will apply more involved rules in order to get rid of Clifford vertices as
described in Sections 6.8 and 8.6.

5. Apply a (l)ocal complementation to every internal vertex with a ±π/2 phase
in order to remove it. See also Eq. (6.30).

6. Apply a (p)ivot to every pair of internal vertices with a 0 or π phase in order
to remove the pair. See also Eq. (6.31).

These rewrite rules will remove many of the internal Clifford spiders, but not all
of them. In particular, we could still have internal vertices left that have a 0 or π
phase that are connected solely to boundary spiders and internal spiders with a non-
Clifford phase. In order to get rid of these spiders we require two generalisations of
the (p)ivoting rule that we already implicitly used in Lemmas 8.6.4 and 8.6.5. See
Figure 9.2.

We call these ‘gadgetisation’ rules, as they produce phase gadgets. The proof of
correctness of these rules follows very similarly to that of Eq. (6.31). For (g) we unfuse
the jπ and α spiders, apply the pivot rule Eq. (6.29), and then copy the jπ through.
For (b) we do the same, except we unfuse the α like so:

α

. . . . . .
= α
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We apply these rules with the following strategy:

7. Apply a (b)oundary gadgetisation for every internal vertex with a 0 or π phase
that is connected only to boundary spiders. If it is connected to multiple
boundaries, give a preference to boundary spiders that have a Clifford phase,
as the resulting phase gadgets can be easily simplified away later.

8. Apply a (g)adgetisation to every remaining internal spider with a 0 or π phase.
Such a spider is necessarily connected to some other internal spider (since oth-
erwise it would not be connected to anything else making it a scalar).

Remark 9.2.1. For the purpose of these rewrite rules, we consider a phase gadget
as a different type of vertex that is not available for further gadgetisation. This is
necessary to prevent the previous step being an infinite loop where the ‘base’ of a
phase gadget keeps getting used in a gadgetisation.

Remark 9.2.2. The rewrite rule (b) only works if the boundary is connected to
exactly one input or output. If the internal vertex is not connected to any such
boundary, then spiders can be unfused to make the boundary have the right shape.
This only introduces additional boundary spiders, not any internal ones.

After these steps, any internal spider either has a non-Clifford phase or is part of a
phase gadget. Note furthermore that the phase gadget produced by rules (g) and (b)
is connected to exactly what the jπ spider was connected to. As all the phase gadgets
in our diagram are produced by applying these rules to spiders with a 0 or π phase
that is not connected to any other spider with a 0 or a π phase, each phase gadget
is then necessarily not connected to any other phase gadget. This means that the
resulting diagram fits the description of a MBQC+LC diagram in phase-gadget form
(cf. Definition 8.7.1), where the phase gadgets are interpreted as YZ measurements,
and the ‘regular’ spiders are interpreted as qubits measured in the XY-plane.

We present now the final set of rewrite rules. See Figure 9.3. The (c)opy rules allow
us to remove the phase gadgets with a Clifford phase. The first is easily proven with
(c), while the second uses Eq. (6.15) and then (l). The two other rules allow us to
(a)dd together the phases of particular configurations of spiders. The first is proven
in Eq. (6.23) while the second follows easily from (i) and (hh).

Now we can present the final steps of our simplification procedure:

9. Apply (c1) and (c2) to remove all Clifford phase gadgets.

10. Apply (a1) to any pair of phase gadgets that have the same set of neighbours.
If this introduces new Clifford phase gadgets then go back to the previous step.

11. Apply (a2) to any phase gadget which has a single neighbour. If this introduces
any new internal Clifford spiders, go back to step 4. Otherwise we are done.

If step 11 introduced Clifford vertices, steps 4-6 can change the connectivity of the
diagram so that phase gadgets can potentially become connected to one another. In
this case, the pivoting of step 6 turns these phase gadgets into regular vertices. These
steps might result in new internal spiders with a 0 or π phase which are only connected
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Figure 9.3: Copy and fusion rules for phase gadgets. The right-hand side of (c2) rep-
resents a fully connected graph between all the neighbours of the removed
phase gadget.

to non-Clifford spiders. Steps 7 and 8 can again remove these. As noted below steps
7 and 8, we do not consider the base of a phase gadget as available for gadgetisation.

Most of the power of this algorithm, especially when dealing with T-count optim-
isation, comes from the latter steps dealing with gadgetisation. We will hence refer
to the full simplification routine of steps 1-11 as gadget-simp.

9.3 PyZX
The simplification procedure described above would of course be tedious to implement
by hand on large diagrams. In order to apply this procedure to diagrams of a useful
size, we implemented the routine in software.

PyZX (pronounced like ‘physics’ without the ‘h’) is a Python-based library designed
for reasoning with large quantum circuits and ZX-diagrams. PyZX is Free and Open
Source Software, licensed under GPLv3. The project is hosted on GitHub and available
at:

https://github.com/Quantomatic/pyzx

It allows users to efficiently rewrite ZX-diagrams using built-in simplification strategies.
In this section we aim to give a short overview of the general architecture of PyZX
and some of the utilities it offers.

PyZX is written in pure Python with the only dependencies being NumPy [173]
and Matplotlib [154].

There are two main data-structures present in PyZX: Circuits and Graphs. A
Circuit is basically a wrapper around a list of gates, while a Graph represents a
ZX-diagram.

The Circuit class is the entry-point for importing and exporting circuits to and
from PyZX. It also provides methods to do gate-level operations, such as converting
a Toffoli-circuit into a Clifford+T circuit or taking the adjoint of all its gates. There

https://github.com/Quantomatic/pyzx
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is also a variety of circuit optimisation schemes that act directly on the Circuit class
which can be found in the optimize sub-module.

A Circuit consists of a list of Gates, which in turn are small classes containing
some information about the gate and how to convert it into various representations,
such as ZX-diagrams or the QASM format [56].

The Graph class is more interesting. The graphs in PyZX are simple, undirected
graphs with typed vertices and edges. Vertices come in three types: boundaries, Z-
spiders and X-spiders. Each vertex can be labelled by a phase that is stored as a
fraction representing a rational multiple of π. For instance, a label of 1

2 corresponds
to a phase of π

2 .
The edges come in two types, which correspond respectively to a regular connection

between spiders, and a Hadamard-edge. As ZX-diagrams allow parallel edges between
spiders and self-loops, we need a way to deal with these in PyZX graphs. Adding
an edge where there is already one present will simply replace it. Often, it is more
convenient to use the rules of the ZX-calculus to resolve parallel edges and self-loops
whenever a new edge is added. How this should be done depends on the types of edges
and vertices involved:

= π...... ... ...
=...... ... ... =...... ... ...

= π...... ... ...

=...... ... ...

=...... ... ... =...... ... ...

=... ...
= π... ...

(9.1)

Note that these rules as presented here are not scalar-accurate. In PyZX the scalar is
stored separately from the graph, as a complex number. This number is automatically
updated in order to preserve the correct scalar value of the diagram.

The Graph class abstracts away some of the details of the underlying representation
of the graph. As a result, a different implementation of a graph can simply be a
subclass of the BaseGraph class in order to work with all the other functionality of
PyZX.

The default pure Python implementation of a graph in PyZX stores its connectivity
as a dictionary of dictionaries, where the first level has vertices as keys (identified by
an integer), with the values being another dictionary containing all the neighbours of
this vertex. The values of these dictionaries in turn specify by which type of edge the
vertices are connected, regular or Hadamard. Phases are stored in another dictionary.
We have experimented with other graph back-ends, but we found that this simple
implementation is fast enough to handle and simplify diagrams with hundreds of
thousands of vertices in a reasonable time-frame.

Usually you will not want to manually create a ZX-diagram. There are various
ways to import ZX-diagrams into PyZX. Directly importing ZX-diagrams is possible
using the Quantomatic format [134], but PyZX can also read files describing quantum
circuits in a variety of languages. It currently supports QASM [56], the Quipper ASCII
format [90, 186], the QC/TFC format used by the Reversible Circuit Benchmarks
page [152] and the QSIM format used by the quantum supremacy circuits of Ref. [12].
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The simplification strategies for ZX-diagrams in PyZX are built in a hierarchical
manner.

At the bottom level there are rules that consist of a matcher and a rewriter. A
matcher loops over all the vertices or edges of a graph (which one depends on the
rule) and tries to find as many non-overlapping sections of the graph that are suitable
for the rule to be applied. Once it finishes, it returns a list of matches (what such
a match object looks like differs per rule). The rewriter takes this list of matches
and figures out which changes to the graph need to be made. Since all the matches
are non-overlapping, this can be done for each match separately. If these changes
involve adding vertices or changing phases, then this is done immediately, but in
order to reduce overhead, other changes (adding edges or removing edges and vertices)
are collected until the rewriter has processed all matches, and are then implemented
simultaneously.

For a simple example of a rule, let us consider identity removal:

α β..
.

..
. = α β..
.

..
. (9.2)

The matcher loops over vertices and tries to find those vertices that have a phase of
zero, and exactly two neighbours. When it has found such a vertex, it removes its
neighbours from the list of candidates (in order to prevent overlapping applications),
and it makes it into a match that contains the vertex, its neighbours, and the type of
the edge that should be made between these neighbours in the rewritten graph (in the
case above, since both edges to the middle vertex were Hadamard edges, the resulting
edge is a regular edge, cf. (hh)). The rewriter takes this list of matches, builds a list
of vertices to be removed, and edges to be added, and applies this all at once. As the
neighbours of the removed vertex could already have been connected in the original
graph, this could lead to a self-loop that is handled as in Eq. (9.1).

The next stage in the hierarchy of simplification strategies are the basic simplifiers.
These are built on a single rule. A simplifier keeps applying the matcher and rewriter
of a single rule, until the matcher finds no more matches. Because a matcher only
finds non-overlapping rules, and thereby might miss possible applications for the rule
the first time around, and because the rewritten diagram might produce new sections
of the graph that are suitable for application of the rule, the simplifier might need
to do the process of matching and rewriting many times before no new matches are
found. In order for the simplifier to not get stuck in an infinite loop, it is important
that the rule actually simplifies the diagram in some manner, i.e. that some kind of
metric on the graph is reduced. In the case of the basic simplifiers used in PyZX, this
metric is usually that the number of vertices in the graph is reduced, but it could also
be something more complex such as trading one type of vertex for another one.

Let us consider the identity removal simplifier (named id simp in PyZX). Its
simplifier removes all the identity spiders in the diagram as in (9.2). The rule never
generates new arity-2 zero-phase spiders, hence the only way in which the simplifier
has to run multiple times is when there were multiple identities in a row, i.e. when
the rule applications had overlap. Since every application of the rule removes a vertex,
this simplifier indeed terminates.
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At the top level of the hierarchy are the compound simplifiers. These simply
combine other simplifiers into a more complicated simplification strategy, by applying
other simplifiers in some particular order, potentially looping over this combination
until none of the simplifiers finds any more reductions.

For instance, PyZX also implements a basic simplifier that fuses spiders together
(cf. (f)), called spider simp. We could combine id simp and spider simp together
in a compound simplifier as follows:

def fuse simp(g):
i = 0
while True:

i1 = id simp(g)
i2 = spider simp(g)
if i1 == 0 and i2 == 0: break # No matches found
i += 1

return i

Here i1 and i2 contain the number of iterations the simplifiers had to go through
before no more matches were found. This simplifier simply keeps removing identities
and fusing spiders until this is no longer possible. Note that removing an identity
might make more possibilities for fusing spiders, and fusing spiders might make a
zero-phase arity-two spider. Hence, we indeed need the loop in this function to make
full use of these simplifiers.

Some simplification rules might disconnect part of the graph, in particular making
dangling scalar diagrams consisting of 1 or 2 spiders (like happens in for instance
Eq. (7.9)). These scalar diagrams are automatically converted into a complex number
and combined with the scalar of the Graph.

9.4 Clifford circuit optimisation

As a first demonstration of the power of gadget-simp, let us apply it to Clifford
circuits. Recall that the simplification routine of Section 6.8 is a weaker version
of gadget-simp. This routine was already capable of completely reducing a scalar
Clifford diagram to a single number. Similarly, gadget-simp is able to reduce any
Clifford diagram to a pseudo-normal form.

For a Clifford diagram any spider has a phase in the set {0, π/2, π,−π/2}. Local
complementation removes any internal spider with a phase of ±π/2. The pivoting
steps remove most of the internal π spiders. The only ones that remain are those
that are only connected to boundary spiders (as there are no remaining internal non-
Clifford spiders they could be connected to). Hence, the boundary gadgetisation in
step 7 makes these into phase gadgets. These phase gadgets are all removed in step 9
using (c1). Hence, the resulting diagram has no internal spiders left. The resulting
diagram will then look something like the following:
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π

π
2

π

-π2

I.e. each spider is connected to an input or output wire, possibly both (assuming
that we are representing solitary scalar spiders as a complex number). If the diagram
had no inputs, then we recognize this form as a graph state with local Clifford gates
(cf. Definition 6.6.8). We have thus reproved Theorem 6.6.10, which said that every
Clifford state is equal to a GS-LC state. Hence, gadget-simp is a general procedure to
bring Clifford diagrams to a pseudo-normal form that is closely related to the GS-LC
form of states, and hence we will refer to these diagrams as being in GS-LC normal
form.

This form is especially interesting when the input diagram is a Clifford circuit. The
resulting diagram will look like the following:

LC

LC

LC

...

LC

LC
...
LC

··
·

= LC

LC

...
LC

LC LC

...

LC

··
·

P
Here each box of ‘LC’ stands for a local Clifford that consists of a possible Hadamard
gate followed or preceded by some power of an S gate. In the left diagram, each
spider can be connected to any other spider. To get to the right-hand diagram we
simply unfuse some spiders to make CZ gates out of spiders connected on the same
side, and converted some Z-spiders into X-spiders to create the middle part of the
diagram labelled P. We can transform this part of the diagram into a circuit using
the Gaussian elimination procedure of Section 8.8.2. This works because P has the
form of a linear reversible circuit. That is, it is a permutation of computational
basis states where the output state is given in terms of parities of the inputs, e.g.
|x1, x2, x3, x4〉 7→ |x1 ⊕ x2, x1 ⊕ x3, x4, x3〉 . Such a unitary can always be realised via
CNOT gates. This was first observed in Ref. [148].

With this decomposition of P into CNOT gates, we obtain a Clifford circuit with 6
layers of gates:

Local Clifford + CZ + CNOT + H + CZ + Local Clifford (9.3)

Here each local Clifford layer can be further decomposed in a layer of Hadamard gates
and a layer of Sk gates, giving an 8-layer pseudo-normal form for Clifford circuits.

There are a variety of pseudo-normal forms for Clifford circuits in the literature,
starting with the 11-layer form given by Aaronson and Gottesman [2] and the coarser-
grained 5-layer form of Dehaene and De Moore [65], which led to improved versions
by Maslov and Roetteler [153] and van den Nest [200], respectively. While there are
some superficial similarities between the normal form of Eq. (9.3) and these earlier
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ones, there is at least one notable difference. All of the forms mentioned above require
at least two distinct CNOT layers, but (with the exception of Ref. [2]) require just
a single later of Hadamard gates. On the other hand, our normal form has just a
single CNOT layer, at the cost of multiple Hadamard layers. We will now see that
this trade-off has some positive consequences.

In Ref. [153] the authors argued that since there are 22n2+O(n) Clifford unitaries
on n qubits, one needs at least 2n2 +O(n) Boolean degrees of freedom to specify all
the n qubit Clifford unitaries, and furthermore they found a normal form which has
the same number of degrees of freedom and hence is asymptotically optimal in this
sense. In that same work they also found a different Clifford pseudo-normal form
that has a lower 2-qubit gate depth when restricted to a ‘linear nearest neighbour
architecture‘ where 2-qubit gates are only allowed between adjacent qubits put on a
line. The 2-qubit gate depth of this form in that architecture is bounded by 14n− 4.
Our normal form improves on this bound, while at the same time also satisfying the
2n2 +O(n) asymptotically optimal gate count.

Theorem 9.4.1. The GS-LC pseudo-normal form on n qubits has an asymptotically
optimal number of degrees of freedom 2n2 +O(n). Furthermore, any Clifford unitary
in this normal form can be mapped to a linear nearest neighbour architecture with a
2-qubit gate depth of 9n− 2.

Proof. The argument follows closely the one given in Ref. [153], but for a different
normal form. Our normal form has 5 layers of single qubit Clifford gates. The
Hadamard layers each add at most n gates, while the S-phase layers add at most 3n
gates, hence these layers only add a linear number of degrees of freedom. Each CZ layer
adds n2/2 degrees of freedom, while a CNOT layer adds n2 degrees of freedom [153,
Section I]. Hence the total degrees of freedom is given by 3n+ 2 · 3n+ 2 · n2/2 + n2 =
2n2 +O(n).

For the 2-qubit gate depth, we note that any CNOT circuit can be implemented
on a linear nearest neighbour architecture in depth 5n [140]. A CZ circuit followed or
preceded by a series of SWAP gates that reverses the qubit order can be implemented
in depth 2n+ 2 on a linear nearest neighbour architecture [153, Thm. 6]. But by [153,
Cor. 7], when we have two of these CZ circuits, possibly separated by some other
gates, then this pair of CZ circuits can be implemented in 2-qubit gate depth 4n− 2.
As the only layers in our pseudo-normal form that contribute to the 2-qubit gate
depth are two CZ layers and a CNOT layer we then indeed have a total depth of
5n+ 4n− 2 = 9n− 2. �

9.4.1 On completeness of the ZX-calculus
An important aspect of the ZX-calculus that we have not yet discussed in detail is
completeness, i.e. whether any two ZX-diagrams that represent equal linear maps can
be transformed into one another using the graphical rewrite rules of the ZX-calculus.
The set of rules we use is known to not be complete for the set of all ZX-diagrams, or
even just those where all phases are multiples of π/4 [178]. Backens showed in 2013
that the rule-set we use (cf. Figure 6.1) is however complete for Clifford diagrams [13].
Their proof consists of two stages. The first shows that any Clifford ZX-diagram
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can be converted to the GS-LC pseudo-normal form. The second step builds on the
work of Ref. [72] to show that two GS-LC normal forms representing the same linear
map can be transformed into one another by a sequence of local complementations.
The first step, that any Clifford diagram can be brought to GS-LC pseudo-normal
form, is proved by showing how all ZX-diagrams consisting of a GS-LC normal form
composed with any generator of the ZX-calculus can be brought back into GS-LC
form, a process that requires many case distinctions. The results we have discussed
above give a different proof of this first step: starting from any Clifford ZX-diagram,
apply gadget-simp to convert it into GS-LC normal form. This strategy is preferable
for multiple reasons: it requires less case distinctions, it builds on rewrite rules (local
complementation and pivoting) that are needed in the second step regardless, every
rewrite step consists of an actual simplification of the diagram, and the process can
even be applied if the diagram is not fully Clifford.

9.5 Clifford+T circuit optimisation
We have seen that gadget-simp is capable of normalising Clifford circuits. In this
section we will see how we can use gadget-simp to produce a circuit-to-circuit optim-
isation routine that can reduce the number of non-Clifford gates needed to implement
a circuit. We will benchmark an implementation of this routine and see that it matches
or outperforms all other existing methods that have the same goal.

When gadget-simp is applied to a Clifford circuit, it eliminates all the internal
spiders, leaving a compact diagram. This is no longer the case when the circuit being
simplified has non-Clifford gates. In that case, each non-Clifford gate can result in
additional internal spiders, resulting in a diagram with a potentially intricate internal
structure. The main problem then if we want to use gadget-simp as a circuit-to-circuit
routine, is to transform the resulting ZX-diagram back into a circuit.

Fortunately, we have in fact already solved this problem in Chapter 8. The graph-
like diagrams produced by gadget-simp can be seen as MBQC+LC diagrams where
the phase gadgets correspond to vertices measured in the YZ-plane, and every other
vertex is measured in the XY-plane. As noted in Section 9.2, each of the rewrite rules
of gadget-simp corresponds to a rewrite rule of Chapter 8 and preserves the existence
of gflow. Hence, using the algorithm of Section 8.8.3 we can convert the diagram back
into a circuit. As described in Theorem 8.8.12 the number of non-Clifford gates in the
resulting circuit matches the number of non-Clifford vertices in the diagram.

We have then the following circuit-to-circuit optimisation routine:

1. Write your circuit in the Clifford+T gate set and interpret it as a ZX-diagram.

2. Simplify the diagram with gadget-simp.

3. Extract a new circuit from the simplified diagram using the results of Sec-
tion 8.8.3.

Note that the procedure actually works for a gate set that includes all Z rotation
gate, and not just T gates. We will however focus on Clifford+T, because there is a
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wider variety of benchmark circuits available for this gate set, and more research has
been done in optimising these circuits.

We have implemented the routine in PyZX and applied it to a set of benchmark
circuits. Specifically, we used all of the Clifford+T benchmark circuits from Refs. [10,
165] (except for some of the larger members of the gf(2n)-mult family). Most of
these circuits include Toffoli gates. We have decomposed these into the Clifford+T
gate set using a standard decomposition. These benchmark circuits are widely used in
other approaches to quantum circuit optimisation (in addition to the aforementioned,
also in Refs. [11, 114]) and include components that are likely to be of interest to
quantum algorithms, such as adders or Grover oracles. See Table 9.1 for the list of
results.

Of the 36 benchmark circuits, we are at or improving upon the best previously
known ancilla-free T-count for 26 circuits (∼72%), and we improve on 6 (∼17%). If
we apply some simple post-processing afterwards (in the form of peephole optimisation)
and feed the resulting circuit into the TODD phase polynomial optimiser [114], we
improve on the state of the art for 20 circuits (∼56%). These two methods seem to
complement each other well in the ancilla-free regime, obtaining significantly better
numbers than either of the two methods alone, and matching or beating all other
methods for every circuit tested.

For 20 of the 36 circuits, we exactly match the best previously known result, which
is interesting, since the methods we use are quite different in nature from previous
methods. The circuits where PyZX seems to do considerably better are ones that
contain many Hadamard gates. The fact that PyZX achieves improvements when
there are many Hadamard gates is as expected, as most other successful methods
employ a dedicated phase-polynomial optimiser [10, 11, 114, 165] that is hampered by
the existence of Hadamard gates. On the other hand, the only circuits where phase
polynomial techniques significantly out-perform our methods are in the gf(2n)-mult
family. After some simple preprocessing, these circuits have almost no Hadamard
gates, hence they are very well-suited to phase polynomial techniques.

As noted before, our optimisation routine is agnostic to the values of the non-Clifford
phases. We have also tested our routine on the quantum Fourier transform circuits of
Ref. [165] that include more general non-Clifford phases, and in each case found that
our non-Clifford gate count exactly matched their results.

9.6 Phase teleportation
An important detail we glossed over in the previous section is whether our optimisation
routine preserves or optimises other metrics of interest. For circuits meant to be run
on the logical level of a fault-tolerant quantum computer, the most important metric,
after the number of non-Clifford gates, is the number of 2-qubit gates. Unfortunately,
in this regard the method described above behaves rather poorly. For most of the
benchmark circuits tested, the extracted circuit contains (many) more 2-qubit gates
then the original circuit. In Chapter 10 we will discuss ways in which the extraction
algorithm can be improved in order to reduce the number of 2-qubit gates in the
resulting circuit. In this section we will describe a way in which the extraction stage
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Circuit n T Best Method PyZX PyZX
+TODD

adder8 24 399 213 RMm 173 167
Adder8 23 266 56 NRSCM 56 56
Adder16 47 602 120 NRSCM 120 120
Adder32 95 1274 248 NRSCM 248 248
Adder64 191 2618 504 NRSCM 504 504
barenco-tof3 5 28 16 Tpar 16 16
barenco-tof4 7 56 28 Tpar 28 28
barenco-tof5 9 84 40 Tpar 40 40
barenco-tof10 19 224 100 Tpar 100 100
tof3 5 21 15 Tpar 15 15
tof4 7 35 23 Tpar 23 23
tof5 9 49 31 Tpar 31 31
tof10 19 119 71 Tpar 71 71
csla-mux3 15 70 58 RMr 62 45
csum-mux9 30 196 76 RMr 84 72
cycle173 35 4739 1944 RMm 1797 1797
gf(24)-mult 12 112 56 TODD 68 52
gf(25)-mult 15 175 90 TODD 115 86
gf(26)-mult 18 252 132 TODD 150 122
gf(27)-mult 21 343 185 TODD 217 173
gf(28)-mult 24 448 216 TODD 264 214
ham15-low 17 161 97 Tpar 97 97
ham15-med 17 574 230 Tpar 212 212
ham15-high 20 2457 1019 Tpar 1019 1013
hwb6 7 105 75 Tpar 75 72
hwb8 12 5887 3531 RMm&r 3517 3501
mod-mult-55 9 49 28 TODD 35 20
mod-red-21 11 119 73 Tpar 73 73
mod54 5 28 16 Tpar 8 7
nth-prime6 9 567 400 RMm&r 279 279
nth-prime8 12 6671 4045 RMm&r 4047 3958
qcla-adder10 36 589 162 Tpar 162 158
qcla-com7 24 203 94 RMm 95 91
qcla-mod7 26 413 235a NRSCM 237 216
rc-adder6 14 77 47 RMm&r 47 47
vbe-adder3 10 70 24 Tpar 24 24

Table 9.1: Benchmark circuits from [7] and [164]. The columns n and T contain the
number of qubits and T gates in the original circuit. Best is the previous
best-known ancilla-free T-count for that circuit and Method specifies which
method was used: RMm and RMr refer to the maximum and recursive
Reed-Muller decoder of Ref. [11], Tpar is Ref. [10], TODD is Ref. [114] and
NRSCM is Ref. [165]. PyZX and PyZX+TODD specify the T-counts
produced by respectively our method, and our method combined with
TODD. Numbers shown in bold are better than previous best, and italics
are worse. The superscript (a) indicates an error in a previously reported
T-count.
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of the algorithm can be skipped, bypassing the issue completely.
The method, that we call phase teleportation, relies on the observation that

gadget-simp is completely parametric in the values of its non-Clifford phases: the
decision of which rewrite rule to apply or how it should be applied never depends on
the exact value of the non-Clifford phase.

We continue to use gadget-simp, but instead of working with concrete phases, we
begin by replacing every non-Clifford phase in our starting circuit C with a fresh
variable name α1, . . . , αn resulting in a parametric circuit C[α1, . . . , αn]. We store the
concrete angles in a separate table τ : {1, . . . , n} → R. To get back the original circuit
we simply insert these angles back into the variables: C = C[τ ].

Next, we perform gadget-simp on C[α1, . . . , αn] symbolically. That is, we work
on a ZX-diagram whose spiders are labelled not just with phase angles, but with
polynomials over the variables (α1, . . . , αn).

The interesting step happens when two variables are added together by the (a1) or
(a2) rule of Figure 9.3. One of two things can occur: (a) the two variables have the
same sign or (b) they have different signs:

(a)
±αi + P

±αj +Q

α1

αn

... ±(αi + αj) + P +Q

α1

αn

...=

...

... ...

...

(b)
±αi + P

∓αj +Q

α1

αn

... ±(αi − αj) + P +Q

α1

αn

...=

...

... ...

...
Since none of our simplifications will copy any of the variables we started with, these
are the only occurrences of αi and αj in the ZX-diagram. Hence, in the case (a), if
we replace αi with αi + αj and αj with 0, we get an equivalent diagram.

Put another way, in case (a), we can update our table τ by setting τ ′(i) := τ(i)+τ(j),
τ ′(j) := 0, and τ ′(k) := τ(k) for k /∈ {i, j}. As the ZX-diagrams described by the
tables of phases τ ′ and τ are the same, we see that C[τ ] and C[τ ′] must also describe
equivalent ZX-diagrams, and hence implement the same unitary. Crucially, C[τ ′] now
contains fewer non-Clifford phases, since αj has ‘teleported’ to combine with αj . Case
(b) is similar, except we should set τ ′(i) := τ(i)− τ(j).

This observation yields Algorithm 3.

Remark 9.6.1. When two variables αi and αj are added together so that τ(i) + τ(j)
is a multiple of π/2 (or similarly for τ(i)−τ(j)), the spider will be treated as a Clifford
spider for the remainder of the application of gadget-simp. The reason this works is
because in the updated τ ′, both τ ′(i) and τ ′(j) now carry a Clifford phase, and hence
we can treat the values αi and αj as if they were Clifford to start with.

By construction, the phase teleportation algorithm results in a circuit with the
same number of non-Clifford gates as the one based on circuit extraction described
in the previous section. But in contrast to that algorithm, phase teleportation does
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Algorithm 3 Phase teleportation
Starting with a circuit, do the following:

1. Choose unique variables α1, . . . , αn for each non-Clifford phase and store the
pair (C, τ), where C is the parametrised circuit and τ : {1, . . . , n} → R assigns
each variable to its phase.

2. Interpret C as a ZX-diagram and apply gadget-simp to it while doing the
following:

Whenever (f), (a1), or (a2) is applied to a pair of vertices or phase-
gadgets containing variables αi and αj , update the phase table τ as
described for cases (a) and (b) above.

3. When gadget-simp is done, C[τ ] still describes the same unitary, but now
contains possibly fewer non-Clifford phases.

not change anything else in the circuit. In particular, it does not change the number
or location of the 2-qubit gates, and hence for a majority of the benchmark circuits
results in smaller circuits. This makes phase teleportation ideally suited as a first
step in a compound simplification step, where later steps can optimise, for instance,
2-qubit gate count. These methods can then perform better since there will in general
be less ‘obstructions’ in the form of non-Clifford gates.

It should also be noted that in our implementation, the application of gadget-simp,
or equivalently, that of phase teleportation, will usually not take more than a few
seconds, even for circuits containing tens of thousands of gates. In contrast, extracting
a circuit from the resulting diagram can take multiple minutes. Hence, phase tele-
portation allows the optimisation to be done much faster, as it skips this expensive
extraction stage.

Phase teleportation could also be directly used on parametric circuits such as the
quantum variational eigensolver [179]. In this setting phase teleportation will combine
together redundant free parameters.

9.7 Verification of equality
It is of course crucial that the implementation of an optimisation routine does not
change the unitary the circuit implements, i.e. that it preserves the semantics of the
circuit. An ‘easy’ way to verify that the original circuit is equal to the optimised one
is to directly calculate the matrix of the unitary. This unfortunately takes memory
exponential in the number of qubits. The general problem of determining whether
two quantum circuits implement the same unitary is complete for the complexity class
QMA [27], which is the quantum analogue of NP, and hence we do not expect there
to be a much more efficient procedure that will work for all pairs of circuits.

Using gadget-simp we can construct an equality verification scheme: given two
circuits C1 and C2 (or more generally, any two ZX-diagrams with the same number
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of inputs and outputs), we make the circuit C = C1 ◦ C†2 and apply gadget-simp to
C (the dagger † represents the adjoint of the circuit). If the resulting diagram is the
identity, i.e. where all the spiders have been simplified away, we conclude that C1 and
C2 implement the same unitary, and otherwise our procedure has failed in providing
an answer.

Note that the adjoint of a circuit is easily constructed by reversing the order of the
gates, and taking the adjoint of each individual gate. Because C1 and C2 implement
unitaries, if they indeed implement the same unitary, then C will implements the iden-
tity unitary. It is our hope then that gadget-simp succeeds in finding this reduction.
If it indeed does, then the set of rewrites that simplifies C to the identity forms a
certificate of equality of C1 and C2. If the simplification however does not succeed in
fully reducing the diagram, then we cannot conclude anything either way: it might
be that the circuits are not equal, and that that is why the simplification failed, or
it could be that our simplification schema was not powerful enough to find the right
reduction. The utility of this verification is therefore completely determined by the
set of equalities it can verify.

We used this validation scheme to verify correctness of all the optimised benchmark
circuits of Ref. [165], except for qcla-mod7 on which it failed. Using the Feynman
tool [8] we then showed that this optimised circuit indeed contained an error.

We can also use the validation scheme to verify equality of our own optimisation
routine. This might seem counter-intuitive as you would not expect a simplification
routine to be able to verify its own correctness. The reason why the success of
our validation schema can still be seen as strong evidence of the correctness of our
implementation, is due to the specific nature of gadget-simp. It applies all possible
occurrences of a rewrite before moving on to the next rewrite. Hence, after just a
few rewrite steps, C := C1 ◦ C†2 where C2 is the optimised version of C1 no longer
looks like a concatenation of C1 and C†2 . The set of rewrites that are done to C will
be vastly different to those used in optimising C1. It is then unlikely that an error
in the implementation will cancel itself out. We used this validation scheme to verify
correctness of all the optimised circuits in Table 9.1.

It is unclear exactly which pairs of circuits this method is able to verify equality of.
When both circuits are Clifford, the method will always succeed, but beyond that it is
hard to say anything concrete. We conjecture that if two circuits can be transformed
into one another using the rewrite rules of Figure 6.1, that the method should be able
to verify this equality. The intuition behind this conjecture is that these rewrite rules
only concern the Clifford structure of the circuit (in the sense that there is no rewrite
rule that uses any phases other than multiples of π/2). As gadget-simp removes all
the Clifford spiders, it stands to reason that the different representations of a diagram
under these rewrite rules are ‘modded out’.

9.8 Conclusion
In this chapter we introduced a new approach to quantum circuit optimisation using
the ZX-calculus. We found a single simplification algorithm that is at the same time
capable of reducing Clifford circuits to a beneficial normal form, while also matching
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or surpassing the state-of-the-art in ancilla-free T-count optimisation when combined
with the TODD phase polynomial optimiser. We found we could extract circuits from
the simplified ZX-diagrams using the algorithm described in Section 8.8.2, or by using
the new method of phase teleportation. Finally, we saw that the optimisation method
is essentially self-checking, being powerful enough to produce a certificate of equality
for its optimised circuits.

Shortly after the results shown in Table 9.1 appeared online, Ref. [230] appeared on
the arXiv, which used the technique of exponentiated Pauli’s discussed in Section 9.1.
On every circuit that was benchmarked both in their paper as well as in Table 9.1,
the same T-count was found. This is rather surprising as our method and theirs seem
very different. This implies one of two things. Either both methods are capable of
finding some kind of canonical local optimum, or both methods are actually doing
the same thing when viewed through the right lens. We conjecture that it might be
the second option. If this is correct then it might be possible to describe ZX-calculus
rewrite rules using the language of exponentiated Pauli’s.

The results of this chapter cover just a few ways in which diagrammatic reasoning
can help with optimising quantum circuits. In the next chapter we discuss several
avenues in which research could be carried forward.





Chapter 10

Future applications of diagrammatic
reasoning
In this thesis we have seen that the ZX-calculus can be successfully applied to the
study of measurement-based quantum computation, circuit optimisation and circuit
verification. There are however many more aspects of quantum computation that we
believe can benefit from the usage of the ZX-calculus and related graphical calculi.

In this chapter we will discuss several ways in which our optimisation strategy
can be improved and generalised. Specifically, we discuss how the circuit extraction
algorithm can be improved to reduce the CNOT count, how the presence of gflow
can possibly be used to facilitate optimisation involving ancillae and classical control,
and how our methods can be applied to circuit routing and optimisation of Toffoli
circuits. Finally, we will discuss some preliminary research into using ZX-diagrams to
do circuit simulation based on the stabiliser decomposition method.

Although the results we discuss in this chapter are cause for hope that the ZX-
calculus will indeed be useful in a wide variety of fields, the reader is advised to bear
in mind that the research discussed in this chapter is still in an early stage, and hence
will contain a lot of speculation.

10.1 Improving circuit extraction
As remarked in Section 9.6, the application of our optimisation scheme can result
in a higher number of 2-qubit gates than what we started out with. The solution
we proposed there was to use phase teleportation. While this solves the problem, it
disregards much of the structure we have derived about the circuit in the process
of simplifying its ZX-diagram. In this section we will take another look at circuit
extraction, and remark on a couple of ways in which it can be improved.

But first let us remark on the differences in performance between some classes of
circuits. The worst increases in 2-qubit gate count are seen when optimising circuits
that implement classical reversible functions. In that case most of the gates in the
circuit arise from decompositions of Toffoli gates. The decomposition of a Toffoli gate
into the Clifford+T gate set is already highly optimised. The reason we then see an
increase in the CNOT count is because we basically ‘forget’ this information about
this optimised placement of CNOT gates in the Toffoli gates when we extract a circuit.
The Gaussian elimination algorithm we use for extraction is necessarily a heuristic,
and hence we cannot expect it to perform as well as the optimal CNOT placements in
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the original decomposition of a Toffoli gate. In this setting we would expect a more
conservative peephole optimiser to perform better.

A class of circuits where our algorithm actually succeeds in producing 2-qubit gate
counts that are better than the state-of-the-art (at the moment of writing) are the
‘quantum chemistry’ circuits benchmarked in Ref. [55]. Those circuits essentially
consist of many phase gadgets, each of which is surrounded by local Clifford gates.
When such a circuit is presented as a series of gates, some kind of order of placement
of the ‘CNOT-ladders’ (cf. Eq. (6.22)) must be chosen. While work is being done on
finding good heuristics for placing these ladders (such as in Ref. [55]), our algorithm
essentially gets rid of this problem by actually representing the phase gadgets as phase
gadgets, and only outputting a circuit using extraction after the optimisation is done.

There are several ways in which the 2-qubit gate count of our extraction algorithm
can be improved. First, we observe that for many circuits it only takes a few row
operations on the biadjacency matrix of its simplified ZX-diagram to produce a row
that corresponds to an extractable vertex. When this is the case, instead of applying
a Gaussian elimination algorithm, we can simply brute-force through all possible com-
binations of row operations until we find a combination that results in an extractable
vertex. For n qubits, there are n(n−1)/2 ways to add rows together, n(n−1)(n−2)/6
to add 3 rows together, and so on in a exponential manner for more rows. Hence, this
kind of brute-forcing is only possible when a small number of row operations suffice
(and when the number of qubits is not too high). We implemented this brute-force
method in PyZX. To limit runtime, we instituted a cut-off for when to stop searching
and apply the Gaussian elimination algorithm instead. We see that in practice 1 or 2
row operations suffice for most vertices in most circuits (although some circuits resist
this brute-force approach almost entirely).

The second improvement is more conceptual in nature. The Gaussian elimination
lets us discover which vertices can be extracted. However, not every row operation
that we did in the Gaussian elimination necessarily contributes to the extractability
of vertices. Intuitively, we can halt the Gaussian elimination algorithm ‘early’ so that
row operations that do not assist in extraction are not implemented as CNOT gates.
For instance, suppose we did a Gaussian elimination which needed 14 row operations
to fully reduce the matrix, and which resulted in 3 extractable vertices. We can then
walk through these 14 row operations step by step, and after every step check how
many vertices are extractable. Perhaps it takes 4 row operations for the first vertex to
become extractable, 7 for the second one and 10 for the third one. Since we already
know that 3 vertices is the maximum number of extractable vertices, we no longer
need the remaining 14− 10 = 4 row additions, saving 4 CNOT gates. Once those row
operations have been filtered out, we can also check through the remaining operations
to see which ones do not actually influence the extractability of the vertices and remove
those as well.

The final improvement to CNOT count of the extraction algorithm we will consider
is also conceptual in nature. The columns of the matrix that is being eliminated
correspond to unextracted vertices. These vertices have no inherent order to them.
We can hence arbitrarily permute columns in the matrix to our benefit. Ideally we
would use a Gaussian elimination algorithm that eliminates a matrix to the ‘nearest
permutation’ instead of to the identity, but we are not aware of such an algorithm
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existing. A good heuristic however is simply picking some beneficial order of the
columns. Instead of picking this order at the start and letting the elimination run its
course, we can do a ‘lazy’ choice of column permutation where we update our choice
after every individual column elimination.

Let us describe a heuristic that uses this method and seems to work quite well.
Before we start the Gaussian elimination, we look among all columns for one that has
a 1 in the first row. If there are multiple, then we pick the column that has the lowest
number of 1’s. We now permute the columns to make this column the first one. We
then let our Gaussian elimination algorithm eliminate this first column. Since there is
a 1 in the first row, the algorithm will not have to do a pivot to this row, and because
we picked a column with as few 1’s as possible, the algorithm will require less row
operations to eliminate this column. With the first column cleared, we pick the second
column. Here we again pick the column that has the fewest 1’s, but now must have a
1 on the second row. We do a column permutation to make this the second column
and again let our elimination algorithm clear out the second column. We proceed,
picking columns with a 1 on the diagonal while containing as few 1’s as possible until
we have exhausted all the rows.

By using these modifications—the brute-force approach, the early stopping, and the
column swapping—we get significantly better CNOT counts. In general this however
does not seem to change the quantitative picture that our algorithm does worse on
classical reversible circuits, and performs well on the quantum chemistry circuits.

We have now discussed ways to improve the extraction for ZX-diagrams from which
we can already extract a circuit. A complementary question is whether the class of
ZX-diagrams we can turn into a circuit can be increased in size. The results of this
thesis show that a circuit can be extracted from a ZX-diagram as long as the diagram
has a gflow in a suitable way. It is then an interesting question whether this condition
is necessary. Is there some algorithm that extracts a circuit from any ZX-diagram? As
a ZX-diagram does not necessarily represent a unitary, and a (deterministic) circuit is
always unitary, extraction is not always possible. If we have the promise that the ZX-
diagram represents a unitary then we can always extract a circuit in exponential time
by simply calculating the linear map the ZX-diagram represents and using existing
unitary synthesis methods.

We conjecture that there is no method that efficiently extracts a circuit from a ZX-
diagram with a promise of unitarity. This is motivated by the following argument. It
is known that the computational power of quantum computation increases drastically
when post-selection on measurement outcomes is allowed [1]. It is conceivable that we
have a post-selected quantum circuit doing some hard calculation, that just happens
to be proportional to a unitary. We can easily represent such a post-selected circuit
as a ZX-diagram, and if we had an efficient method for extracting a circuit, then
we could convert this post-selected circuit into a regular one, bringing the power of
post-selection to regular quantum computation. This would have drastic consequences
like the collapse of the polynomial hierarchy.
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10.2 Circuit routing

An issue that we chose to gloss over in Chapter 9 is circuit routing: ensuring that 2-
qubit gates only happen between pairs of qubits that are actually connected in a given
qubit architecture. There is however an interesting way in which this requirement can
be incorporated in our optimisation routine.

The ZX-diagram simplification algorithm proceeds entirely the same: in order to
conform to a given qubit architecture we only need to change the circuit extraction
algorithm. Note that there are two places in this algorithm where 2-qubit gates appear.
CZ gates appear when connections between vertices on the boundary are removed
during extraction. We currently do not know of any intelligent way to make these
conform to the architecture. So for now we propose simply using existing methods to
route the CZ gates (for instance Ref. [54]).

The interesting part is the Gaussian elimination stage that introduces CNOT gates.
Since a row addition step between rows r1 and r2 adds a CNOT between the qubits
corresponding to the rows r1 and r2, making CNOT gates conform to the architecture
reduces to finding a way to do Gaussian elimination on a matrix using a restricted set
of row additions. A method to do this kind of Gaussian elimination using Steiner trees
has been developed in Ref. [130] (and independently in Ref. [166]). These methods can
immediately be applied to our circuit extraction algorithm to route the CNOT gates.
Unfortunately, this usually seems to result in worse results than straightforward circuit
routing algorithms. The results can be improved by applying the techniques from the
previous sections that improve the CNOT count of the extraction, but currently not
enough to compete with existing methods.

Recall that in the previous section, an improvement to the Gaussian elimination
was made by permuting the columns of the matrix in a specific manner. We speculate
that it should be possible to improve the Steiner tree algorithm in circuit extraction
by finding a different heuristic for picking column permutations that uses information
from the given circuit architecture.

10.3 Optimisation with ancillae

Our circuit optimisation results focused on optimising quantum circuits without the
use of ancillae. It is known that using ancillae can greatly improve several metrics,
such as T-count [83, 114] and circuit depth [191]. It then seems like a worthwhile
pursuit to find a method to do optimisation with ancillae using the ZX-calculus.

When given a ZX-diagram, we can easily turn it into a circuit with ancillae, as
long as we allow post-selection, i.e. a measurement where we fix the outcome to
a particular value. For instance, consider the following graph-like ZX-diagram (that
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implements a 3-control Toffoli gate):
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We can now unfuse the internal spiders (but leaving the phase gadgets intact) to get
the following diagram:
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Here we indeed see ancillae prepared in the |+〉 state, and some post-selections to the
〈+| effect. We could implement this circuit by repeatedly executing it, performing
measurements instead of post-selections, until we get a run where the measurements
get the outcome specified by the post-selections. However, the expected number of runs
to do this increases exponentially with the number of post-selections. This method
for introducing ancillae in ZX-diagrams is thus not one that scales.

In order to get a scalable method, we need some kind of way to correct for the wrong
measurement outcomes. In Chapter 8 we saw that this problem was solved in the
one-way model using gflow. As our extraction algorithm also requires the existence
of a gflow, this suggests that there should be some way to modify our extraction
algorithm to make it also introduce ancillae and measurements that can be corrected.
While we have been able to do circuit extraction with ancillae and classical control on
some small circuits by hand, it is still unclear how to do this in a generic manner.

10.4 Toffoli circuit optimisation with the
ZH-calculus

In this thesis we focused solely on the ZX-calculus. There are however also other
graphical calculi for linear maps between qubits. A well-studied alternative to the
ZX-calculus, is the ZW-calculus [50, 103]. This calculus also includes the Z-spider,
but instead of Hadamard gates and X-spiders, the ZW-calculus takes the W-spider
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to be fundamental, which is a generalisation of the W-state |W 〉 := |001〉+ |010〉+
|100〉. The ZW-calculus has been useful in proving completeness (it was the first
graphical calculus for qubits to be proven complete, and it served as the basis for
the first completeness proofs of the ZX-calculus [122, 170]). It even allowed for a
complete axiomatisation of Fermionic quantum computation [104]. The ZW-calculus
has however not been used in any more practical tasks (so far). This could stem from
the fact that the W-state that is fundamental to the ZW-calculus is simply not used
as much in quantum computation protocols.

In 2018, a new calculus was developed by Backens and Kissinger called the ZH-
calculus [14]. This calculus generalises the arity-2 Hadamard box used in the ZX-
calculus to an H-box of arbitrary arity:

. . .

. . .

n

m

=
∑

(−1)i1...imj1...jn |j1 . . . jn〉 〈i1 . . . im|

The sum in this equation is over all i1, . . . , im, j1, . . . , jn ∈ {0, 1} so that an H-box
represents a matrix with all entries equal to 1, except for the bottom right element
which is equal to −1. We see then that a single-input single-output H-box is a Hadam-
ard box (up to normalisation). The benefit of the ZH-calculus comes from the easy
representation of CCZ gates (and thus also Toffoli gates), which is a straightforward
extension of the representation of a CZ gate in the ZX-calculus (cf. Eq. (6.12)):

CCZ =

In a similar manner we can write down n-controlled Z gates. Because these more
complicated gates have such a simple structure in the ZH-calculus we can more easily
see and apply simplifications on circuits containing Toffoli gates.

We were able to use the ZH-calculus to rederive some well-known simplifications
involving Toffoli gates [139], such as the 4 T-count implementation of the ‘Toffoli∗’
gate of Selinger [188], the 4 T-count implementation of the Toffoli gate using an
ancilla and classical control of Jones [123], and the 4 T-count implementation of a
compute-uncompute pair of Toffoli gates of Gidney [83]. By using the ZH-calculus we
unified the derivation of all these rules. It would be interesting to see if we can use
the ZH-calculus to derive more sophisticated Toffoli rewriting tricks that would be
hard to find using just the circuit model.

We conclude this section with a promising approach for using the ZH-calculus
to systematically optimise circuits based on Toffoli gates. Recall that we viewed the
Hadamard box in the ZX-calculus as an edge, resulting in a description of a ZX-diagram
as a simple graph. We were then able to remove all internal Clifford spiders using the
graph-theoretic operations of local complementation and pivoting. Analogously, in the
ZH-calculus we can view H-boxes as hyper-edges connecting any number of vertices
together. This gives a description of a ZH-diagram as a hypergraph. It turns out
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that the hypergraph operations of hyper-local-complementation and hyper-pivoting
have analogues in the ZH-calculus, and they also allow for the removal of some type
of Clifford spiders [143]. Interestingly, these operations turn out to have a somewhat
equivalent description in the path-sum approach of Amy [8], and point towards a
connection between the ZH-calculus and the path-sum of a circuit.

For most of the benchmark Toffoli circuits shown in Table 9.1, the application of
these hypergraph rules reduces them to a kind of normal form where there are no
internal spiders left, similar to how we were able to reduce Clifford circuits to a normal
form (cf. Section 9.4). While intriguing, it is not yet clear whether this normal form
is usable for some task.

10.5 Circuit simulation
The final topic we will discuss in this thesis is circuit simulation. We already saw in
Section 6.8 that we can use the ZX-calculus to completely reduce a scalar Clifford
diagram, and in this way efficiently classically simulate the application of a Clifford
circuit to a Clifford input state. It turns out that this method can be generalised to work
for simulation of Clifford+T circuits using the method of stabiliser decompositions [32].
Let us first explain the basics of this method.

Suppose we wish to calculate the amplitude A = 〈0 · · · 0|C |0 · · · 0〉 where C is a
given Clifford+T circuit. We can use the magic state injection method (cf. Eq. (7.4))
for every T gate to turn this T gate into a |T 〉 magic state ancilla so that C will just
be a post-selected purely Clifford circuit C ′ with some |T 〉 ancilla inputs. Hence, the
problem of calculating 〈0 · · · 0|C |0 · · · 0〉 can be reduced to calculating an amplitude
A = 〈0 · · · 0T · · ·T |C ′ |0 · · · 0〉 for a Clifford circuit C ′, so that the only non-Clifford
part of this computation is captured in these T magic state ancillae.

We know that we can easily calculate this type of amplitude if the input state and
output effect are Clifford. Hence, if we simply expand each |T 〉 as a sum of Clifford
states like |T 〉 = |0〉 + eiπ/4 |1〉, then we can decompose the calculation of A into a
sum

A =
∑

x1x2···xt∈{0,1}

ei
π
4 (x1+...+xt) 〈0 · · · 0x1 · · ·xt|C ′ |0 · · · 0〉 .

Each of the terms is now the amplitude corresponding to a Clifford computation
and hence can be calculated relatively efficiently. Note that a ‘standard’ simulation
method that uses a representation of the input state and sequentially updates it based
on the gates in the circuit necessarily scales exponentially with the number of qubits.
In contrast, this method scales only polynomially with the number of qubits, but
exponentially with the number of T gates. Indeed, if the circuit contained t T gates,
then the above decomposition of A contains 2t terms. This method then seems to be
promising for large circuits that contain only a small number of T gates.

The exponent 2t can be improved significantly. A stabiliser decomposition of
an arbitrary state |ψ〉 is a representation |ψ〉 =

∑k
i=1 λi |φi〉 where λi ∈ C and all the

|φi〉 are Clifford states. Since the Clifford states span the space of all states, such a
decomposition always exists (although it cannot necessarily be found efficiently if |ψ〉
is arbitrary, because the dimension of the space is exponential). The stabiliser rank



280 Chapter 10. Future applications of diagrammatic reasoning

of |ψ〉 is defined as the minimal number of terms k needed to write |ψ〉 as a sum of
Clifford states.

In the example above we used the decomposition |T 〉 = |0〉+eiπ/4 |1〉 as the basis for
a stabiliser decomposition of |T 〉⊗t (i.e. t copies of the |T 〉 state) that contains 2t terms.
For example, taking t = 2 we had |TT 〉 = |00〉+eiπ/4 |01〉+eiπ/4 |10〉+eiπ/2 |11〉. But
we can in fact group these terms in a more clever way:

|TT 〉 = (|00〉+ eiπ/2 |11〉) + eiπ/4(|01〉+ |10〉). (10.1)

This is a stabiliser decomposition of |TT 〉 of rank 2 (and in fact, since |TT 〉 is not
Clifford itself, this is the lowest possible). By grouping |T 〉⊗t as (|TT 〉)⊗t/2 (assuming
that t is even) we get a stabiliser decomposition of |T 〉⊗t that only requires 2t/2 terms.

The currently best-known decomposition of |T 〉⊗t for large t relies on a decompos-
ition of |T 〉⊗6 into 7 terms [32]. Using this decomposition we can find a stabiliser
decomposition of |T 〉⊗t requiring 7t/6 = 2αt terms where α = log2(7)/6 ≈ 0.468.
This is hence a bit better then the exponent of 0.5 when using the decomposition of
Eq. (10.1).

The current best implementation of a variant of this simulation algorithm using the
decomposition described above is given in Ref. [29] and can simulate 40 to 50 qubit
circuits on a desktop computer containing more than 60 non-Clifford gates.

Because the simulation cost scales exponentially in the number of T gates, it makes
sense to apply a T-count optimiser on the circuit before you start simulating it. Even
just a modest 10% reduction in the T-count could make the simulation vastly cheaper
if the T-count is significant. This presents an opportunity for the usage of the ZX-
calculus as it is not just bound to optimising circuits, but can instead optimise the
number of non-Clifford spiders on any ZX-diagram.

To use the ZX-calculus for this simulation method we make a few changes to the
algorithm. Our goal is still to calculate A = 〈0 · · · 0|C |0 · · · 0〉. Instead of using magic
state injection to rewrite C to a Clifford circuit with ancillae, we just simplify the
scalar ZX-diagram corresponding to A using the procedure outlined in Section 9.2.
As this is a scalar diagram, the resulting diagram will have no Clifford vertices left:
every spider will either carry a non-Clifford phase, or be part of a phase gadget with
a non-Clifford phase.

The next step consists of replacing a set of spiders by a stabiliser decomposition.
We can cast the decompositions |T 〉 = |0〉+ eiπ/4 |1〉 and the one of |TT 〉 presented in
Eq. (10.1) in terms of ZX-diagrams as follows:

π
4

= eiπ/4

π

+
π
4

= eiπ/4+
π
4 ππ

2

With a little more work, the ‘6-to-7’ decomposition of Ref. [32] can be shown to
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correspond to the following equality:
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To use this equality on a scalar graph-like ZX-diagram we pick 6 spiders carrying a
phase that is an odd multiple of π

4 , and hence are non-Clifford. We then unfuse a π
4

phase from each of them to create the left-hand side of Eq. (10.2). For example:
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By applying Eq. (10.2) to the right-hand side of the above diagram we get a sum of 7
ZX-diagrams. Crucially, each of the resulting ZX-diagrams has 6 fewer non-Clifford
spiders, and hence we can further simplify each of these diagrams until these spiders
are removed. This simplification might in turn cancel out some of the non-Clifford
spiders. It is this last potential cancellation of additional non-Clifford spiders where
the benefit lies of using the ZX-calculus for this simulation method. This is best
illustrated with an example.

Consider the 7-qubit circuit hwb6 from the benchmark circuits of Figure 9.1. Of
course this circuit can easily be directly simulated by calculating its matrix, but we
will use it to demonstrate the potential usefulness of the ZX-calculus for the stabiliser
decomposition simulation method. The circuit has 105 T gates. While this number is
too high to simulate it, when we apply the circuit optimisation routine of Section 9.5
it reduces to 75, which starts to become feasible to simulate. Now we apply the state
|+ +−−−+−〉 to this circuit and we post-select for the effect 〈+011− 1−| (chosen
as to result in a final diagram that is as large as possible). We then simplify the
resulting scalar ZX-diagram as described. The resulting diagram has 33 non-Clifford
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spiders. If we were to use the 6-to-7 method on all these 33 spiders, this would result
in 67228 Clifford terms. However, if we apply it to 6 spiders at a time, simplifying
after each step and canceling additional spiders, we only need 8865 terms (on this
particular run). This number is very sensitive to which 6 spiders are chosen at every
step. A slightly more complicated procedure that tries different choices for each step
and picks the best one was able to fully decompose the diagram using just 49 terms,
3 orders of magnitude better than the naive approach.

While this certainly looks very promising, and could potentially result in a large
improvement over existing stabiliser decomposition simulation methods, our current
implementation is still too slow to compete with established methods. It also remains
to be seen whether this improvement in the number of terms needed continues to be
present when simulating larger circuits.
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[73] Jacques Faraut and Adam Korányi. Analysis on symmetric cones. Clarendon
Press Oxford, 1994. ↑ 11, 92, 94

[74] Richard P Feynman. ‘Simulating physics with computers’. In: International
journal of theoretical physics 21(6), 1982, pages 467–488. doi: 10.1007/
BF02650179. ↑ xiii

[75] Daniel I Fivel. ‘How interference effects in mixtures determine the rules of
quantum mechanics’. In: Physical Review A 50(3), 1994, page 2108. doi:
10.1103/PhysRevA.50.2108. ↑ 19

[76] Daniel I Fivel. ‘Derivation of the rules of quantum mechanics from information-
theoretic axioms’. In: Foundations of Physics 42(2), 2012, pages 291–318. doi:
10.1007/s10701-011-9603-y. ↑ 20

[77] David J Foulis and Mary K Bennett. ‘Effect algebras and unsharp quantum
logics’. In: Foundations of physics 24(10), 1994, pages 1331–1352. doi: 10.
1007/BF02283036. ↑ xiii, xv, 53, 55

[78] Austin G Fowler and Simon J Devitt. A bridge to lower overhead quantum
computation. Preprint. 2012. arXiv: 1209.0510. ↑ 252

[79] Austin G Fowler, Matteo Mariantoni, John M Martinis and Andrew N Cleland.
‘Surface codes: Towards practical large-scale quantum computation’. In: Phys-
ical Review A 86(3), 2012, page 032324. doi: 10.1103/PhysRevA.86.032324.
↑ 167, 252

https://doi.org/10.1007/BF01646490
https://doi.org/10.1088/2058-9565/1/1/015003
https://doi.org/10.1088/2058-9565/1/1/015003
https://doi.org/10.22331/q-2020-06-04-279
https://doi.org/10.22331/q-2020-06-04-279
https://doi.org/10.1007/978-3-642-03073-4_18
https://doi.org/10.1007/978-3-642-14162-1_24
https://doi.org/10.1007/978-3-642-14162-1_24
https://doi.org/10.1103/PhysRevA.77.042307
https://doi.org/10.1007/BF02650179
https://doi.org/10.1007/BF02650179
https://doi.org/10.1103/PhysRevA.50.2108
https://doi.org/10.1007/s10701-011-9603-y
https://doi.org/10.1007/BF02283036
https://doi.org/10.1007/BF02283036
https://arxiv.org/abs/1209.0510
https://doi.org/10.1103/PhysRevA.86.032324


290 Bibliography

[80] Mariami Gachechiladze, Otfried Gühne and Akimasa Miyake. ‘Changing the
circuit-depth complexity of measurement-based quantum computation with
hypergraph states’. In: Physical Review A 99(5), 2019, page 052304. doi:
10.1103/PhysRevA.99.052304. ↑ 193, 195

[81] J. P. Gaebler, T. R. Tan, Y. Lin, Y. Wan, R. Bowler, A. C. Keith, S. Glancy,
K. Coakley, E. Knill, D. Leibfried et al. ‘High-Fidelity Universal Gate Set for
Be 9+ Ion Qubits’. In: Physical Review Letters 117(6), 2016, page 060505.
doi: 10.1103/PhysRevLett.117.060505. ↑ 194

[82] Israel M. Gelfand and Mark A. Naimark. ‘On inclusion of a normed ring in the
ring of operators on a Hilbert space’. In: Matematicheskii Sbornik 12, 1943,
pages 197–213. ↑ 10

[83] Craig Gidney. ‘Halving the cost of quantum addition’. In: Quantum 2, June
2018, page 74. issn: 2521-327X. doi: 10.22331/q-2018-06-18-74. ↑ 253,
276, 278

[84] Craig Gidney and Austin G. Fowler. ‘Efficient magic state factories with a
catalyzed |CCZ〉 to 2|T 〉 transformation’. In: Quantum 3, Apr. 2019, page 135.
issn: 2521-327X. doi: 10.22331/q-2019-04-30-135. ↑ 252

[85] Mercedes Gimeno-Segovia, Pete Shadbolt, Dan E. Browne and Terry Rudolph.
‘From Three-Photon Greenberger-Horne-Zeilinger States to Ballistic Universal
Quantum Computation’. In: Physical Review Letters 115(2), 2015, page 020502.
doi: 10.1103/PhysRevLett.115.020502. ↑ 209

[86] Andrew N Glaudell, Neil J Ross and Jacob M Taylor. Optimal Two-Qubit
Circuits for Universal Fault-Tolerant Quantum Computation. Preprint. 2020.
arXiv: 2001.05997. ↑ 253

[87] Andrew M Gleason. ‘Measures on the closed subspaces of a Hilbert space’. In:
Journal of mathematics and mechanics, 1957, pages 885–893. ↑ 18

[88] Daniel Gottesman and Isaac L. Chuang. ‘Demonstrating the viability of uni-
versal quantum computation using teleportation and single-qubit operations’.
In: Nature 402(6760), 1999, pages 390–393. doi: 10.1038/46503. ↑ 195

[89] Marco Grandis. ‘On the categorical foundations of homological and homotop-
ical algebra’. In: Cahiers de topologie et géométrie différentielle catégoriques
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a ⊥ b (summable in effect algebra), 55
a⊥ (complement in effect algebra), 55
a⊥ (negation of effect), 17
|+〉, 167
|−〉, 167

|0〉, 167
|1〉, 167
√
a (in JBW-algebra), 107

a/b, 109
a | b (compatible effects), 147
dae (ceiling of element), 31
bac (floor of element), 31
Ap (Peirce decomposition), 100

C(a) (classical algebra), 29
C(X), 15

� (effect theory), 67

Eff(A) (effect space), 57

G(D) (underlying labelled open graph),
215

g(v), 218
GS-LC (graph state with local Cliffords),

183
G ? u (local complementation), 184
G ∧ uv, 187

H (quaternions), 11
H (Hadamard gate), 169

I (non-output), 183

JBpsu, 95
JBWnpsu, 96
JBWpsu, 96

Kn(fully connected ZX-diagram), 184

La (sequential product map), 28
λ (assignment of measurement planes),

213

MBQC (measurement-based quantum
computation), 193

MΓ,α (linear map associated to labelled
open graph), 214

N(v) (set of neighbours), 182

O (non-input), 183
O (octonions), 11
OCM (only connectivity matters), 175
OddG (A), 218
OET (operational effect theory), 60
OUS(category of order unit spaces), 58
OUS (order unit space), 14

PET (pure effect theory), 73

Qa (quadratic product), 92
Qa,b (triple product map), 92
QMA (complexity class), 253

SEA (sequential effect algebra), 147
St(A) (state space), 57

Ta (product map of Jordan algebra), 90

v ∼ w (connected vertices), 182
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2-qubit gate count, 252

homological category (pointed), 123

ancilla, 170
Archimedean order unit, 14
AS-compression, 82
assert map, 74
associated vector space, 16
associativity in sequential product, 24,

29
atomic effect, 33, 79
atomic map, 72
atomistic lattice, 33

Banach space, 94
base norm space, 83
basically disconnected, 105
bicomplement, 82
Bloch sphere, 168
Born rule, 5, 38
bounded linear map, 4
bounded posets, 56
bounded set, 96
brickwork state, 205

C*-algebra, 9
category, 54
Cauchy-Schwarz inequality, 102
causal flow, 217
ceiling

in effect monoid, 137
in effect theory, 64
in JBW-algebra, 101
in sequential effect space, 31

central effect, 44
central element, 93
chain (poset), 143
circuit

— routing, 252, 276
— synthesis, 253
adjoint, 270
linear reversible —, 254

unitary —, 170
circuit extraction, 237

algorithm, 246
improvements, 273
overview, 241

circuit model, 169
circuit optimisation

— with ancillae, 276
Clifford —, 262
CNOT —, 273
heuristic —, 253
peephole —, 254
phase polynomial —, 255
TODD, 255

classical algebra, 29
classical control, 170
Clifford

— hierarchy, 208
— normal-form, 263
— state, 170
— unitary, 170
— vertex, 231
stabiliser, 170

clopen set, 105
coarse-graining, 17
cokernel, 74
commutative sequential effect algebra,

147
compatible effects, 24, 25, 147
compatible filters and compressions, 69
complement, 27
complement (effect algebra), 55
compression, 62

standard — (JBW-algebra), 103
compression system, 62
computational basis states, 168
cone, 13
convex-extreme map, 72
correction set, 218
covering property, 34
cozero set, 105

dagger kernel category, 74
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dagger-category, 71
density operator, 6, 38

on sequential effect space, 39
depth (of a circuit), 252
deterministic pattern, 217

stepwise —, 217
strongly —, 217
uniformly —, 217

�-effect-theory, 67, 112
Dirac notation, 4, 167
direct sum

of effect algebras, 133
of sequential effect spaces, 46

directed complete, 96
directed set, 96
division (JBW-algebra), 109
downset, 67, 79
dual vector space, 39

effect
in effect theory, 57
in JB-algebra, 95
in order unit space, 14

effect algebra, 55
sequential effect algebra, 147

effect monoid, 132
effect space (effect theory), 57
effect theory, 57

monoidal structure, 58
operational —, 60

embedding (effect monoid), 133
epic morphism, 54
error expression, 197
Euler decomposition, 169
extremally disconnected, 124
extreme ray, 13

face, 13, 82
faithful functor, 54
faithful transformation, 66
feed-forward, 193
Fermionic quantum computation, 278
filter, 62
finite-dimensional (effect theory), 60
floor

in effect monoid, 137

in effect theory, 64
in JBW-algebra, 101
in sequential effect space, 31

Fourier expansion, 181
functor, 54
fundamental identity, 92

gadget-simp, 259
Galois connection, 68
gate

CCZ —, 181
Clifford —, 170
CNOT —, 169
CZ —, 169
Hadamard —, 169
in PPM model, 200
NOT —, 169
parity phase —, 193
phase —, 169
S —, 169
T —, 169
Toffoli —, 253

gate count, 252
gate set, 168

approximately universal —, 171
Clifford+T —, 171
universal —, 170

gflow, 218
focused —, 238
maximally delayed —, 238
on ZX-diagram, 219

GHZ state, 172
Gottesman-Knill theorem, 171, 189, 191
graph, 182

labelled open —, 213
open —, 183
simple —, 182

graph state, 183
— with local Cliffords, 183

Hadamard
— basis, 168
— box, 173
— edge, 173
— gate, 169

Hilbert space, 4
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homogeneous cone, 13
homogeneous multiplication, 145
homomorphism

Jordan —, 90
hyper-edge, 278
hypergraph, 278
hyperstonean space, 124

idempotent
in Jordan algebra, 99
in sequential effect algebra, 147

image (effect theory), 63
indecomposable sequential effect space,

46
inner product, 3, 81

self-dual —, 81
inverse (JBW-algebra), 107
irreducible effect monoid, 133
isometry, 4, 94

partial —, 113
isomorphism

in effect theory, 58
of effect monoids, 133
order —, 13

JB-algebra, 94
purely exceptional —, 123

JBW-algebra, 96
subalgebra, 98

JC-algebra, 95
Jordan algebra, 11, 89

special —, 90
Jordan identity, 11, 90
Jordan product, 90

in sequential effect space, 41
JW-algebra, 97

Kadison’s representation theorem, 15
Kalmbach extension, 56
kernel, 73
Koecher–Vinberg theorem, 38
Kraus decomposition, 9

labelled open graph, 213
associated ZX-diagram, 214

linear map associated to labelled open
graph, 214

linearised Jordan equations, 90
local complementation

as simplification rule, 189, 256
in ZX-calculus, 185
on labelled open graph, 222
on measurement pattern, 229

local complementation of G about u,
184

local tomography, 47
in effect theory, 59

locally tomographic composite, 47

MacDonald’s theorem, 92
magic state, 198

— distillation, 252
— injection, 252

maximal element (poset), 143, 238
MBQC+LC form, 216
measurement expression, 196
measurement pattern

branch, 217
deterministic —, 217
in one-way model, 212
in PPM model, 196
runnable —, 213
stepwise deterministic —, 217
strongly deterministic —, 217
uniformly deterministic —, 217

measurement-based quantum computa-
tion, 193

minimal central effect, 44
monic morphism, 54
monoidal category, 54
monoidal effect theory, 58
monotone map, 13
morphism

between effect algebras, 55
between effect monoids, 133
embedding of effect monoids, 133
in category theory, 54

negation of effect, 17
no-restriction hypothesis, 23, 40
norm, 4
norm exposed face, 82
normal
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element of C∗-algebra, 124
map between posets, 96

normalisation equation (Jordan algebra),
91

observable, 9
octonions, 11
odd neighbourhood, 218
ω-complete, 131

— order unit space, 145
one-way model, 212
only connectivity matters, 175
open graph, 183

input, 183
output, 183

operational effect theory, 60
operational equivalence, 16
operator algebra, 9
operator norm, 10
order derivation, 152
order ideal, 36
order isomorphism, 13
order reflecting map, 133
order separation, 14

in effect theories, 59
order unit, 14
order unit space, 14
ordered vector space, 12
ortho-sharp, 69
orthogonal effect, 25

in effect theory, 75
in sequential effect algebra, 147
in sequential effect space, 29

P-graph state, 196
parity phase gate, 193
partial commutative monoid, 54
partial isometry, 113
pattern fragment, 197

— implementing a gate, 197
Pauli matrices, 169
Peirce decomposition, 100
phase gadget, 180

— fusion, 181
as linear map, 180
CNOT ladder, 180

gadgetisation, 257
phase polynomial, 181, 254
phase teleportation, 268

algorithm, 268
phase-gadget form, 235
pivot, 187

as simplification rule, 190, 256
in ZX-calculus, 188
on measurement pattern, 230

polar decomposition, 113
polar pair, 114
positive element

in ordered vector space, 12
positive map

between JB-algebras, 95
between ordered vector spaces, 12

post-selection, 276
POVM, 6, 38
power associative, 93
PPM model, 194

2-qubit gate, 201
T gate, 202

predual, 96
product map

in Jordan algebras, 90
projective face, 82
PROP, 177
proper face, 13
pseudo-inverse (JBW-algebra), 107
pure effect theory, 73
pure map, 72
purely exceptional JB-algebra, 123
purification, 9

quadratic product
in sequential effect space, 43
of a Jordan algebra, 92

Quantomatic, 209
quantum circuit, 170
quaternions, 11
qubit mapping, 252

range projection, 102
rank

of effect, 35
of Euclidean Jordan algebra, 85
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reducible effect monoid, 133
Reed-Muller decoding, 255
reversible logic synthesis, 254
reversible transformation, 51
rule

colour change —, 174
copy —, 175
exchange —, 175
scalars, 176
soundness, 174
spider fusion —, 174

scalar
in effect theory, 57
ZX-diagram, 172

scalar-like system, 60
Schrodinger picture vs Heisenberg pic-

ture, 16, 59
self-adjoint, 4
self-dual, 81
self-dual inner product, 13
separating set of states, 96
sequential effect algebra, 147
sequential effect space, 25
sequential product, 23, 147

compressible —, 151
in quantum theory, 7
on effect algebra, 147
on order unit space, 25
quadratic, 151

sharp effect, 28
in effect theory, 63
ortho-sharp, 69

sharp map, 122
simple element, 150
simple sequential effect space, 45
simulation

Clifford —, 191
snake lemma, 123
Solovay-Kitaev algorithm, 253
special Jordan algebra, 90
special Jordan product, 90
spectral decomposition, 29
spider, 171

— fusion, 174
symmetries, 175

spin factor, 12
square root (JBW-algebra), 107
stabiliser

see Clifford, 170
stabiliser decomposition, 279
stabiliser rank, 279
standard compression (JBW-algebra),

103
standard filter (JBW-algebra), 111
state

in effect theory, 57
order unit space, 14
state of JB-algebra, 95

state-closed system, 60
Steiner tree, 276
Stinespring dilation, 9
strictly convex cone, 13
strong complementarity, 175
strong topology, 97
sub-unital map

between JB-algebras, 95
between order unit spaces, 58

summable elements (effect algebra), 55
surface code, 252
symmetry of transition probabilities, 37,

80

T-count, 252
tensor product, 46
TODD, 255
tomography (effect theory), 59

local tomography, 59
trace, 5
trace (sequential effect space), 39
transition probability, 5
triple product (Jordan algebra), 92
trivial system (effect theory), 57

unit interval, 14
unital map

between JB-algebras, 95
in an effect theory, 66

unitary, 4

vertex
internal —, 183
neighbours, 182
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non-input —, 183
non-output —, 183

von Neumann algebra, 97

W-state, 278
weak topology, 97

X-spider, 171

yanking equations, 175

Z-spider, 171
zero set, 105
ZH-calculus, 278
Zorn’s Lemma, 143
ZW-calculus, 277
ZX-calculus, 174

completeness, 177, 264
rules, 175
soundness, 174

ZX-diagram, 171
equivalence, 173
fully connected —, 184
graph-like —, 182
in MBQC form, 215
in MBQC+LC form, 216
in PyZX, 260
interpretation, 173
PPM model, 198
scalar —, 172
underlying labelled open graph, 215
underlying open graph, 183



Research data management
This thesis research has been carried out under the institute policy of the Insti-
tute for Computing and Information Sciences of the Radboud University Nijme-
gen. Information regarding this research data management policy can be found
at https://www.ru.nl/icis/research-data-management/policy-protocol/ (last
accessed March 13th 2020).

The results of Chapter 9, specifically the data of Table 9.1, was produced using
PyZX. This software developed as part of this thesis research is licensed under the
Apache license and is available at https://github.com/Quantomatic/pyzx.

https://www.ru.nl/icis/research-data-management/policy-protocol/
https://github.com/Quantomatic/pyzx




Samenvatting
Deze thesis beschrijft het onderzoek dat ik gedaan heb in mijn vierjarige aanstelling
als PhD student. Omdat mijn onderzoek zich in twee verschillende onderwerpen heeft
gesplitst, is deze thesis ook in twee stukken opgedeelt. Losjes samengevat: het eerste
gedeelte probeert te acherhalen waarom onze natuurwetten zijn zoals ze zijn en niet
anders, en het tweede gedeelte probeert het bestuderen van kwantumcomputers te
versimpelen tot het herschrijven van intüıtieve diagrammen. Hieronder geef ik een
korte samenvatting en introductie van de beide onderwerpen en resultaten.

Kwantummechanica vanuit principes
Waarom val je terug naar de grond als je springt? Waarom trekken magneten elkaar
aan? Waarom zijn sommige elementen radioactief? “Dat is nu eenmaal zo” is
niet bepaald een bevredigend antwoord. Een beter antwoord is “dat is vanwege de
zwaartekracht/magnetisme/zwakke kernkracht”, aangezien je volgende vraag dan gaat
over een fundamentaler aspect van ons universum: “waarom is er zwaartekracht?”. Het
antwoord daarop, omdat energie en massa de ruimte krommen, laat een nog funda-
mentaler aspect van ons universum zien. Hoewel dit nog niet helemaal een bevredigend
antwoord is, want waarom kromt massa de ruimte dan, voelt het wel alsof we iets
interessants geleerd hebben over het universum. De vraag van ‘waarom’ is nog groter
bij de studie van de allerkleinste deeltjes in ons universum. Die deeltjes gedragen zich
volgens de wetten van de kwantummechanica. Iedereen die hier van wat van af weet
zal beamen dat de wiskunde die deze natuurkunde beschrijft lastig en contra-intüıtief
is. Het zou dus mooi zijn als we de vraag “waarom kwantummechanica?” konden
beantwoorden zoals hier boven, met een verzameling onderliggende principes die iets
interessants zeggen over de natuur. Dat is wat dit gedeelte van de thesis probeert te
doen.

De zoektocht naar principes voor kwantummechanica gaat terug naar het prille begin
van de theorie. Interessant genoeg is het resultaat van deze zoektocht niet zozeer een
gebrek aan principes, maar juist een grote hoop aan mogelijk keuzes: er zijn vele
verschillende verzamelingen van principes van waaruit we kwantummechanica kunnen
krijgen—ik tel zeker twintig verschillende gepubliceerde methodes in de afgelopen
twintig jaar alleen. Ieder van deze zogenaamde reconstructies geeft weer een beetje
meer inzicht in waarom ons universum werkt zoals het werkt. Mijn eigen conclusie uit
het bestaan van al deze verschillende wegen die naar Rome leiden is dat het universum
op kwantummechanica draait omdat het niet anders had kunnen zijn. De wiskunde
laat het simpelweg niet toe!

Mijn eigen toevoeging aan dit vraagstuk bestaat uit het vinden van twee nieuwe
reconstructies van de kwantummechanica, gepresenteerd in hoofdstukken 2 en 3.
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De principes waarop de eerste methode berust kunnen samengevat worden als: “een
reeks metingen van hetzelfde object gedraagt zich zo goed als het kan.” Dit verdient
wat uitleg. In onze dagelijkse wereld kunnen we zoveel metingen doen van een object
als we willen. Ik kan bijvoorbeeld mijn theekop aanraken om te voelen of de thee heet
is, en ik kan aan de thee ruiken om het soort thee te bepalen. Wat speciaal hier aan
is, is dat de volgorde van deze ‘metingen’ niet uitmaakt. Of ik nou eerst de thee ruik
of eerst de theekop aanraak, de resultaten zullen hetzelfde zijn. De reden hiervoor
is dat ik de metingen kan doen zonder het object, de thee, aan te tasten. Maar dit
is eigenlijk helemaal niet waar: de theekop aanraken maakt de thee een klein beetje
kouder, wat de volgende metingen zal aantasten. Ditzelfde is waar voor heel kleine
objecten zoals atomen. Iedere meting tast het object aan, waardoor de volgorde van
metingen belangrijk is. Mijn afleiding van de kwantummechanica begint met deze
observatie dat de volgorde van metingen inderdaad belangrijk is. De volgende stap is
de realisatie dat het dan alsnog zo kan zijn dat voor twee specifieke type metingen
de volgorde van meten niet uitmaakt. Mijn principes stellen dat in dit geval deze
metingen zich ten opzichte van elkaar klassiek moeten gedragen. Deze aannames,
die natuurlijk eerst voldoende wiskundig rigoureus gemaakt moeten worden, blijken
genoeg om kwantummechanica te krijgen.

De tweede afleiding is abstracter en is meer gemotiveerd vanuit elegante wiskun-
dige structuren. Het belangrijke concept hier is dat van een puur proces. De pure
processen zijn de ‘echte’ processen, terwijl alle andere processen ‘gemixt’ zijn. In de
kwantummechanica zijn pure processen de “volledig kwantummechanische” processen,
terwijl gemixte processen vervuild zijn geraakt door interactie met onze klassieke
wereld, bijvoorbeeld door metingen of onvoorspelde lekkage. De principes die ik vereis
voor deze reconstructie van kwantummechanica stellen dat de pure processen an sich
(dus waarbij we de gemixte processen negeren) al een goedgedragende theorie moeten
vormen. De formalisatie van dit is nogal technisch, maar leidt uiteindelijk ook tot het
verwachte eindpunt van de kwantummechanica.

Kwantumsoftware vanuit diagrammen
Het tweede gedeelte van de thesis gaat over een heel ander onderwerp. De verbindende
link is dat het ook over een aspect van de kwantummechanica gaat.

Het zou mooi zijn als we kwantummechanische systemen konden simuleren op een
computer, want dit zou ons bijvoorbeeld kunnen helpen de interactie tussen moleculen
beter te begrijpen wat bijvoorbeeld weer kan leiden tot een beter en versneld begrip van
het effect van medicijnen op ons lichaam. Het simuleren van een kwantummechanisch
systeem op een computer is echter lastig omdat dit exponentieel veel rekentijd en
geheugen nodig heeft. In de jaren ’80 had de beroemde natuurkundige Richard
Feynman een ingeving: als het simuleren van een kwantumsysteem met een gewone
computer lastig is, waarom gebruiken we dan niet een kwantumcomputer? Terwijl de
computers die wij alledaags gebruiken draaien op bits die de waarde 0 of 1 kunnen
hebben, werken kwantumcomputers met qubits, quantum bits, wiens waarde een
superpositie van 0 en 1 kan zijn, oftewel, waar de waarde tegelijkertijd 0 én 1 kan
zijn.
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Sindsdien is er enorm veel werk gedaan om kwantumcomputers tot werkelijkheid
te maken, zowel aan de theoretische als aan de praktische kant. In een demonstratie
eind 2019 liet een team van Google voor de allereerste keer een berekening zien die
gedaan was op een kwantumcomputer die praktisch onmogelijk zou zijn geweest om
uitgevoerd te worden op een normale computer. We zijn dus nu in een tijdperk
gekomen waarin kwantumcomputers een realiteit zijn, hoewel er nog een lange weg
te gaan is voordat deze machines ook daadwerkelijk nuttige problemen, zoals het
simuleren van de werking van medicijnen, sneller kunnen oplossen dan de computers
die we al hebben.

Omdat bestaande kwantumcomputers nog zo gelimiteerd zijn is het belangrijk dat
we er het meeste uithalen wat we kunnen. Dit vereist dat iedere gegeven berekening
zo optimaal mogelijk geimplementeerd wordt om zo min mogelijk qubits en operaties
te gebruiken op een kwantumcomputer. In mijn onderzoek heb ik nieuwe technieken
ontwikkeld om kwantumberekeningen te optimaliseren. We hebben verschillende
methodes gevonden en geimplementeerd die een gegeven kwantumberekening ‘kleiner’
maakt zodat deze alsnog kan passen op beperkte kwantumcomputers.

Het interessantste hieraan is het gereedschap dat we gebruikt hebben om de res-
ultaten te verkrijgen, we gebruikten hier namelijk de ZX-calculus voor. Dit is een grafis-
che taal die kwantummechanische processen weergeeft als gekleurde cirkels, spiders
genaamd, die aan elkaar verbonden zijn. Bijvoorbeeld:

π
π
2

π
4

π

Hoewel er al sinds 2007 gewerkt wordt aan de ZX-calculus, zijn onze resultaten een van
de eersten die laten zien dat er ook een daadwerkelijk voordeel te behalen is met het
gebruik van de ZX-calculus. In contrast met de abstracte berekeningen van standaard
technieken, kunnen we met deze diagrammen volledig grafisch rekenen. Een van de
rekenregels zegt bijvoorbeeld dat spiders van dezelfde kleur samensmelten:
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Zo zijn er nog een paar simpele regels (zie Figuur 6.1 op pagina 175). Verrassend
genoeg zijn deze paar regels genoeg om alle benodigde eigenschappen van een kwan-
tumberekening te kunnen afleiden. Deze simpele regels combineer ik vervolgens tot
complexere regels zodat ze meer geschikt zijn om door een computer automatisch toe
te passen op grote diagrammen. Ik beschrijf ook methodes om deze diagrammen om
te zetten naar een formaat waarin ze daadwerkelijk uitvoerbaar zijn op een kwantum-
computer. Het is mijn hoop dat deze resultaten het begin vormen van een beschrijving
van steeds meer aspecten van kwantumcomputers met behulp van diagrammatische
technieken.
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