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ABSTRACT 
Given the close interaction between nitric oxide (NO) and reactive oxygen species (ROS) in 
biological systems and their especial relevance in regulating aspects of the cardiovascular 
physiology, the concept of “nitroso-redox balance” has arisen as a more comprehensive manner 
of interpreting the intracellular redox state. Nitroso-redox signaling pathways participate in 
numerous cardiovascular mechanisms, including myocardial contractility and relaxation, 
mitochondrial respiration, and endothelial function. Alterations of this balance are involved in 
numerous aspects of cardiovascular pathophysiology. NO and ROS generating mechanisms 
play a major role in both regulating and responding to the redox state of the cell, which targets 
calcium handling, contractile and vasoactive mechanisms. Thus, the nitroso-redox signaling 
pathway is critically important in cardiac physiology and pathophysiology, and consequently 
a fundamental therapeutic target. This article briefly addresses the cardiovascular implications 
of the biological balance between NO and ROS, and their relevance in the development of heart 
diseases. 
Keywords: Nitroso-redox balance, S-nitrosylation, myocardial contractility, calcium 
handling, oxidative stress. 

RESUMEN 
Dada la íntima interacción entre el óxido nítrico (NO) y las especies reactivas de oxigeno 
(ROS) en los sistemas biológicos, y su especial relevancia en la regulación de la fisiología 
cardiovascular, ha surgido el concepto de “balance nitroso-redox” como una forma más 

inclusiva para interpretar el estado redox intracelular. Las vías de señalización nitroso-redox 
participan en numerosos mecanismos cardiovasculares, tales como contractilidad y relajación 
miocárdica, respiración mitocondrial y función endotelial. Las alteraciones de este balance 
están involucradas en muchos aspectos de la fisiopatología cardiovascular. Los sistemas que 
producen NO y ROS juegan un rol clave tanto en la regulación como en la respuesta al estado 
redox de la célula, el cual afecta el manejo de calcio y mecanismos contráctiles y vasoactivos. 
Así, las vías de señalización nitroso-redox son claves para la fisiología y fisiopatología 
cardiaca, y consecuentemente son un blanco terapéutico fundamental. Este artículo aborda 
brevemente las implicaciones cardiovasculares del balance biológico entre NO y ROS, y su 
relevancia en el desarrollo de enfermedades cardiacas. 
Palabras clave: Balance nitroso-redox, S-nitrosilacion, contractilidad miocárdica, manejo de 
calcio, estrés oxidativo. 
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The cardiomyocyte redox state is tightly regulated by several cellular systems. Reactive oxygen 
species (ROS) and reactive nitrogen species (RNS) (such as superoxide and nitric oxide (NO), 
respectively) normally participate in signaling pathways as part of delicate mechanisms that 
maintain the cardiovascular homeostasis [1]. Given the close interaction between ROS and NO 
signaling, and the regulation they can reciprocally exert, it is useful to think of the cellular 
redox state as a “nitroso-redox balance” (Figure 1). Disruption of this equilibrium leads to an 
intracellular nitroso-redox imbalance, which has the potential to act as a hazardous agent 
targeting diverse cellular components [2;3]. Specifically, this concept of nitroso-redox balance 
is characterized by three levels of interaction between ROS and RNS, namely enzymatic 
production, chemical reaction, and signaling via post-translational modifications. 

NO sources and NO-based signaling 

NO production is enzymatically mediated by nitric oxide synthases (NOS) of which three 
isoforms have been identified: NOS1 (or neuronal NOS), NOS2 (or inducible NOS) and NOS3 
(or endothelial NOS). Extensive study has led to a view of isoform-specific NO signaling in 
precise subcellular compartments. NOS3 plays a critical role in regulation endothelial function 
in the vasculature. In the myocardium, NOS3 is localized primarily to caveolae of the 
sarcolemma and t-tubules, where is linked to multiple cell surface receptors, including 
muscarinic, β-adrenergic, and bradykinin receptors. NOS1 localizes to the SR, in close 
interaction with xanthine oxidoreductase (XOR) and ryanodine receptor (RyR2) where it 
influences Ca2+ cycling and thereby exerts positive inotropic effects in the heart. NOS1 and 
NOS3 are constitutively expressed and their activity are Ca2+-dependent, while NOS2 is 
inducible under certain stressing conditions or inflammation, and it is Ca2+-independent. 
NO activates numerous downstream pathways.  A classical pathway is the activation of soluble 
guanylyl cyclase (sGC) to produce cGMP which is able to activate cGMP-dependent protein 
kinase (PKG). Dysfunctional NO-sGC-cGMP signaling is observed in several diseases 

Figure 1. Schematic overview of the nitroso-redox balance. Nitric oxide synthases-mediated NO production and the 
superoxide (O2.-) generated by proteins with oxidase activity as well as by the electron transport chain, are the main sources 
of chemical species which determine the nitroso-redox state of the cell. The equilibrium nitroso-redox is tightly maintained 
by a number of interacting enzymatic systems with regulatory function, including antioxidant and denitrosylation systems. 
A shift toward higher abundance of NO (left of the scheme) may induce a state of nitrosative stress with detrimental functional 
effects. Similarly, dysregulated O2.- (right) production induces oxidative stress with consequent cellular damage. Both 
alterations of the equilibrium are considered as “disrupted nitroso-redox balance”. 
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undergoing oxidative stress, including heart failure [4], which would explain the poor response 
to NO-based therapies in these pathologies. 
S-Nitrosylation. Alternatively, NO exerts signaling via post-translational modifications of 
sulfhydryl groups of proteins and small molecules, a reaction termed S-nitrosylation [5]. 
Protein S-nitrosylation occurs by transnitrosylation from low molecular weight S-nitrosothiols 
(S-NO, Figure 1), such as S-nitrosoglutathione (GSNO) or S-nitrosocysteine, by transition 
metal catalyzed addition of NO, or by endogenous NO-mediated nitrosylating agents such as 
dinitrogen trioxide (N2O3), which is formed by the autoxidation of NO [6] (Figure 2). Cysteines 
susceptible to S-nitrosylation are generally located in a predictive consensus motif, between an 
acidic and a basic amino acid [6]. Physiologic superoxide and NO production as well as low 
ambient oxygen stabilizes SNO formation, favoring S-nitrosylation of proteins [7] , whereas 
increasing oxygen drives the reaction towards S-thiolation [8;9]. Pathologically elevated 
superoxide generation leads to oxidative stress, an altered intracellular redox state which 
disrupts the NO-signaling mechanisms. Superoxide reacts with NO, yielding peroxynitrite and 
preventing NO-triggered signaling [2]. S-nitrosylation is a labile and reversible covalent redox-
sensitive modification, which regulates diverse biologic processes [6;10]. The effect of S-
nitrosylation depends on the target protein, subcellular location and the extent of nitrosylation. 
S-nitrosylation competes with other post-translational modification of protein thiols, such as 
S-glutathionylation and irreversible oxidations. In turn, superoxide targets cysteine thiol 
moieties in proteins that could be S-nitrosylated, thus inhibiting these proteins from being 
reversibly regulated [11]. 

Denitrosylation. NO is removed from proteins by the action of denitrosylases. S-
nitrosoglutathione (GSNO) reductase (GSNOR) was the first enzyme discovered that 
metabolized S-nitrosothiols and is important in protecting cells from nitrosative stress, 
mechanisms which have been extensively reviewed [10]. A second major enzymatic system 
mediating intracellular protein denitrosylation is the thioredoxin system [12]. Unlike GSNOR 
which specifically denitrosylates GSNO, thioredoxins denitrosylate several S-nitrosylated 

Figure 2. Mechanisms of nitrosylation/denitrosylation of redox-sensitive proteins. The left side of the image depicts some 
representative NO-mediated mechanisms by which certain proteins carrying cysteine (Cys) residues surrounded by an 
appropriate amino acidic environment can be S-nitrosylated. The right side of the image summarizes the main mechanisms 
enzymatically regulated of denitrosylation of modified proteins. GSNO: S-nitrosoglutathione; GSH: glutathione; N2O3: 
dinitrogen dioxide; Me: transition metal; GSSG: oxidized glutathione; GSNHOH: glutathione S-hydroxysulfenamide; Trx: 
thioredoxine; NOS(s): nitric oxide synthases; GR: glutathione reductase; GSNOR: S-nitrosoglutathione reductase; TrxR: 
thioredoxine reductase. 
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proteins in a stimulus-coupled, substrate specific, and spatially restricted manner [12] (Figure 
2). 

Heart Failure 
Heart failure (HF) has been classically defined as a complex clinical syndrome characterized 
by an inadequate pumping of blood to meet the metabolic demands of the body. Recently, HF 
has been subdivided into heart failure with reduced ejection fraction (HFrEF) courses with 
evident systolic dysfunction (left ventricular ejection fraction <50%), and heart failure with 
preserved ejection fraction (HFpEF, ejection fraction>50%) exhibit signs of diastolic 
dysfunction [13;14]. In the early stages of HF, a compensatory response arises, involving 
structural and molecular remodeling of the heart to preserve circulatory integrity, but later on, 
this leads to further deterioration. Several defects in cardiac excitation-contraction (EC) 
coupling have been identified in failing hearts, including altered intracellular Ca2+ handling. In 
the cardiomyocyte, the final common feature in heart failure, regardless of the cause, is an 
increased diastolic sarcoplasmic reticulum (SR) Ca2+ leak and reduced SR Ca2+ content, which 
diminish the effectiveness of EC coupling. Changes in the expression of NOSs have been 
described in heart failure, involving disruption of the isoforms compartmentalization, although 
these changes remains controversial. It is mostly accepted that there is a reduced endothelial 
NO production, which affects myocardial perfusion and, in turn, contributes to circulatory 
dysfunction. In general, there is a consensus about limited NO (or associated derivatives) 
bioavailability due to increased superoxide. In addition, reduced NOS activity contributes to 
the disrupted nitroso-redox balance in heart failure leading to contractile dysfunction, 
hypertrophy and adverse remodeling. 
Cardiomyocytes from spontaneously hypertensive-heart failure (SHHF) rats were 
characterized by depressed contractility and increased SR Ca2+ leak, and exhibited 
hyponitrosylated and oxidized RyR2 due to the nitroso-redox imbalance in the SR 
microdomain [15] (Figure 3). Consistently, XOR expression and activity were increased. 
Despite an increase in total NOS1 abundance in heart failure, a portion has been demonstrated 
to translocate to the sarcolemma [16], and the remaining NOS1 on the SR might undergo 
enzyme uncoupling due exacerbated XOR-derived superoxide generation. XOR inhibition 
restores RyR2 nitrosylation and improves Ca2+ handling and contractility [15], and improves 
cardiac function and reverses remodeling [17]. However, most of clinical studies using XOR 
inhibitors in heart failure have shown little or none benefit [18-20]. Another therapeutic 
strategy, which combines hydralazine plus isosorbide dinitrate (an organic nitrate which 
releases NO), has been tested in clinical trials in patients with congestive heart failure, yielding 
successful outcomes in self-identified African-American patients [21]. Interestingly, it has 
been shown that treating SHHF cardiomyocytes with a combination of organic nitrates and 
hydralazine improves contractile performance by restoring the efficiency in Ca2+ handling [22].   
Reduced levels of the NOS cofactor tetrahydrobiopterin (BH4), observed in heart failure due 
to oxidation into dihydrobiopterin, is suggested to favor NOS uncoupling leading to NO 
signaling disruption, further oxidative stress and worsening the nitroso-redox imbalance 
(Figure 3B). In a model of pressure overload, BH4 supplementation prevented cardiac 
remodeling and progression to heart failure likely associated with conserved Ca2+ handling [23] 
by enhancing NOS1 activity, favoring phospholamban phosphorylation and accelerating 
relaxation. S-nitrosylation of phospholamban is required for its proper phosphorylation [24], 
and disruption of S-nitrosylation of sensitive Cys residues also contribute to dysfunctional 
myocyte relaxation. In this sense, GSNOR deficient mice which undergo hyper S-nitrosylation, 
exhibit improved recovery after myocardial infarction associated to faster Ca2+ decline [25], 
suggesting a role for S-nitrosylation on Ca2+ re-uptake. However, it has not been characterized 
if this effect is mediated by the sarcoplasmic reticulum calcium ATPase 
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(SERCA2a)/phospholamban or the cardiac sodium/calcium exchanger (NCX1), since S-
nitrosylation of this ion exchanger also accelerates Ca2+ decline [26]. Cardiac overexpression 
of NOS1 prevented contractile dysfunction by increasing phospholamban phosphorylation in 
a model of transverse aortic constriction [27].  
At the sarcolemma, NOS3-dervived NO plays an important role in regulating L-type Ca2+ 
channels (LTCC) by depressing Ca2+ inward current. NOS3 is sensitive to the nitroso-redox 
state of the cell and it can be either S-nitrosylated or S-glutathionylated in different redox 
circumstances, involving specific cysteine residues and leading to enzyme inhibition [28].  In 
turn, NOS3 is coupled to β3-adrenergic receptors (β3-AR). Although it is still controversial, 
there is increasing evidence suggesting that β3-adrenergic signaling would be a physiological 
brake to reduce the effects of sympathetic overstimulation in overt heart failure, by reducing 
Ca2+ entrance. β3-AR are upregulated in failing hearts and some studies overexpressing β3-AR 
mice showed attenuated left ventricular remodeling with chronic treatment of isoprenaline [29]. 
In this sense, specific stimulation of β3-adrenergic receptors protects against cardiac 
hypertrophy and failure due to pressure overload, involving a mechanism of NOS1-NOS3 
interaction, which prevents nitroso-redox dysregulation and preserves NOS3 coupling and 
signaling [30], favoring the hypothesis of a cardioprotective role for the β3 signaling. 
NOS2 is known to be upregulated in myocytes from patients with heart failure, and the Ca2+ 
handling mechanisms are severely affected by the unregulated NO generation. The septic shock 
leads to worsening of the nitroso/redox disequilibrium, where increased NOS2-derived NO and 
XOR-derived superoxide lead to profound disturbances, particularly in diastolic Ca2+ leakage 
[31], likely by oxidation of cysteine residues of RyR2 [32] by ROS or peroxynitrite. 
There is evidence of a mitochondrial NOS (mtNOS) expressed in the inner mitochondrial 
membrane or matrix, although its remains controversial. It seems likely that mtNOS is NOS1 
or a spliced variant of it (likely NOS1α or NOS1μ). In mitochondria, NO regulates electron 
transport chain and ROS production. It can inhibit Complex IV or, in combination with high 
[Ca2+] in the matrix, inhibits Complex I (which can also be S-nitrosylated) and so, favoring 
superoxide and peroxynitrite formation. Peroxynitrite at the mitochondria, in turn, can also 
inhibit Complex III and V, leading to additional ROS production and contributing to the 
opening of the permeability transition pore and cellular apoptosis or necrosis [33]. Thus, 
although NO can be protective against mitochondria-mediated cell death, dysregulated 
mtNOS-derived NO is likely to contribute and aggravate the nitroso-redox imbalance in 
pathological myocardial conditions. 
Failing cardiomyocytes also exhibit disrupted myofilament cross-bridge kinetics, which has 
been associated with nitroso-redox imbalance, involving oxidation of sensitive cysteine 
residues of myofibrillar proteins (Figure 3). In this sense, it remains unknown whether 
uncoupled NOS-derived superoxide also contributes to these effects, but the evidence indicates 
that BH4 improves diastolic dysfunction by reversing oxidative changes in myofibrillar proteins 
[34].  
Thus, NO signaling mostly mediated by S-nitrosylation is believed to play a protective role, 
preventing or delaying the progress toward failure after myocardial injury by modulating Ca2+ 
cycling kinetics and myofilament responsiveness.  

Therapeutic approaches for heart failure targeting NO signaling 
Conventional pharmacological therapies for heart failure include neurohumoral blockade, 
statins and diuretics (Table 1). Thus, myocardial dysfunction is battled by these indirect 
antioxidant strategies, which attenuates the symptoms and progression of heart failure, by 
targeting directly or indirectly the nitroso-redox state of cardiomyocytes, but do not reverse the 
condition. Importantly, these therapeutic strategies are ineffective against the progression of 
HFpEF, which represent about 50% of the cases of HF [35]. Thus, the development of novel 
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specific therapeutics for HFpEF is a priority since this proportion is predicted to continue 
increasing relative to HFrEF. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. Schematic representation 
of myocardial processes regulated by 
the nitroso-redox state. (A) With 
normal nitroso-redox balance, NOS1 
finely interacts with XOR in the SR 
microenvironment, thus regulating the 
NO and superoxide (O2.-) production 
and S-nitrosothiols formation. This 
physiologic condition allows the 
signaling pathway to be regulated by 
dynamic S-nitrosylation of susceptible 
cysteine residues on effector proteins 
such as ryanodine receptor (RyR2) or 
myofibrillar proteins (actin, troponins 
(TnI, TnC, TnT), myosin heavy chain 
(MHC), myosin binding protein C 
(MyBPC), titin). (B) A shift toward 
oxidative stress dysregulates 
NOS1/XOR interaction and promotes 
uncoupling of NOS which causes a 
switch from NO to ROS production, 
further disrupting the nitroso-redox 
balance and thereby potentiating the 
oxidative stress. This condition favors 
generation of peroxynitrite (ONOO-, a 
harmful agent for the integrity of the 
cell) and oxidative modifications of 
sensitive aminoacids, such as 
sulfonation (-Ox), nitration (-Nit) and 
S-glutathionylation (-SG), affecting 
protein structure and function.  
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Conclusion 
ROS and NO signaling pathways interplay to maintain an intracellular nitroso-redox balance, 
which plays a central role in cardiovascular physiology. The regulation exerted by S-
nitrosylation affects protein structure and function by modifying specific thiols and shielding 
modified thiols from irreversible alteration by oxidative stress. Remarkably, the spatial 
localization of NO and SNO signaling in coordination with the dynamic balance of protein S-
nitrosylation/denitrosylation, and their interaction with ROS determine whether the overall 
effect of S-nitrosylation is protective or detrimental. Currently, ongoing research on the 
interacting nitroso-redox mechanisms are being conducted to identify novel therapeutic targets 
in cardiovascular diseases. 

Table 1. NO-related therapeutic drugs 

Treatment Examples Mechanism Uses 

Organic nitrates 

 

Nitroglycerin 
Isosorbide dinitrate 

NO donors Ischemic heart 
disease 

Antioxidants 

 

Vitamin C 
Vitamin E 
XOR inhibitors 

 
 
Reduces superoxide  

Cardiovascular 
diseases 

Antioxidants/NO 
donors combo 

 

Hydralazine/Isosorbide 
dinitrate 
EMEPO (new compound) 

-Antioxidant plus NO supply 
-Superoxide scavenger + NO 
release 

Heart failure 

Statins 

 

Simvastatin, Atorvastatin Enhances NOS3-derived NO Hyperlipidemia 

ACE inhibitors 

 

Lisinopril 
Benazepril 

Side effects on nitroso-redox 
balance 

Hypertension 
Heart failure 

AT1 antagonists 

 

Losartan 
Valsartan 

Side effect on NOS3-NO 
production 

Hypertension 
Heart failure 

3rd Gen -blockers 

 

Nebivolol 
Carvedilol 

1-blocker + enhances NO 
production 

Heart failure 

Synthetic BH4 BH4 Favors coupling of NOS3 
(and/or NOS1) 

Phenylketonuria 
Cardiovascular 
diseases 

Nitroxyl (HNO) 
donors 

Angeli’s salt PKA-independent inotropy 
and lusitropy enhancer 

Heart failure 

NOS3 downstream 
signaling enhancers 

Cinaciguat (BAY 58-2667) 
PDE5 inhibitors 

Non-NO sGC activator 
Prolongs cGMP life 

Heart failure 
Erectile 
dysfunction 
Pulmonary 
hypertension 

Thiol-reducing agents -H2S Restores reduced thiol 
moieties  

Myocardial 
infarction 
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