
HAL Id: lirmm-00415739
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00415739

Submitted on 10 Sep 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Automated Architectural Component Classification
Using Concept Lattices

Nour Alhouda Aboud, Gabriela Arévalo, Jean-Rémy Falleri, Marianne
Huchard, Chouki Tibermacine, Christelle Urtado, Sylvain Vauttier

To cite this version:
Nour Alhouda Aboud, Gabriela Arévalo, Jean-Rémy Falleri, Marianne Huchard, Chouki Tibermacine,
et al.. Automated Architectural Component Classification Using Concept Lattices. WICSA 2009 :
Joint Working IEEE/IFIP Conference on Software Architecture 2009 & European Conference on
Software Architecture 2009, Sep 2009, pp.10. �lirmm-00415739�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00415739
https://hal.archives-ouvertes.fr

Automated architectural component classification using concept lattices

Nour Alhouda Aboud∗, Gabriela Arévalo†, Jean-Rémy Falleri‡, Marianne Huchard‡, Chouki Tibermacine‡

Christelle Urtado§ and Sylvain Vauttier§

∗LIUPPA, Univ. de Pau et des Pays de l’Adour, Bayonne, France

Email: n.aboud@etud.univ-pau.fr
†LIFIA, Facultad de Informática (UNLP), La Plata, Argentina

Email: Gabriela.Arevalo@lifia.info.unlp.edu.ar
‡LIRMM, CNRS and Montpellier II University, France

Email:{Jean-Remy.Falleri, Marianne.Huchard, Chouki.Tibermacine}@lirmm.fr
§LGI2P, Ecole des Mines d’Alès, Nı̂mes, France

Email: {Christelle.Urtado, Sylvain.Vauttier}@ema.fr

Abstract

While the use of components grows in software develop-

ment, building effective component directories becomes a

critical issue as architects need help to search components

in repositories. During the life-cycle of component-based

software, several tasks, such as construction from scratch

or component substitution, would benefit from an efficient

component classification and retrieval. In this paper, we an-

alyze how we can build a classification of components using

their technical description (i.e. functions and interfaces) in

order to help automatic as well as manual composition and

substitution. The approach is implemented in the CoCoLa

prototype, which is dedicated to Fractal component directory

management and validated through a case study.

1. Introduction

Component-based software engineering promotes reuse in

the large: off-the-shelf software components are assembled

to build complex applications. Such an assembly process is

possible thanks to the availability of components’ external

description: required and provided interfaces syntactically

describe the functionalities a component needs to find in

its environment or provides to other components of its

environment. This assembly process can be implemented

at various stages of a software lifecycle. When designing

software from scratch, the software architect needs to find

software component types to assemble them before their

instantiation and deployment. At runtime, autonomous soft-

ware might self-assemble itself using available components.

When evolving some existing software, a designer might

also need to assemble some component types to an existing

incomplete software design made from components. Finally,

at runtime, dynamic autonomous software might need to

re-assemble some of its parts to react to component fail-

ure or unavailability. During previous work on automatic

component assembly and on dynamic component assembly

evolution [1], we recognized that an efficiently indexed

component directory was a central issue for component

reuse.

This paper proposes an indexing mechanism for com-

ponents that relies on type-theory and uses Formal Con-

cept Analysis (FCA) [2] to build various specialization

lattices that both offer human-readable views and computer-

browsable indexes to search for suitable components to

assemble or substitute to given ones. This indexing mech-

anism extends our previous proposal [3] with richer sub-

stitution semantics. Additionally, this paper describes the

implementation of this indexing mechanism in the CoCoLa1

tool, that could serve as the basis of an automatically

built and search-oriented yellow-page component directory.

The CoCoLa tool implements the automatic analysis and

classification of Fractal [4] components. It is based on a

three-step classification process that uses the syntactical

description of functionalities and interfaces and the external

view of components to iteratively classify these artifacts.

The structure of the paper is as follows. Section 2

motivates our work describing a didactic example we use

throughout the paper. Section 3 provides an overview of

the three-step classification process implemented in Co-

CoLa. Sections 4, 5 and 6 successively describe the three

functionality, interface and component classification steps

that use FCA to organize these artifacts into specialization

hierarchies. Section 7 sketches the design of the CoCoLa

component concept lattice building tool and describes ex-

periments on a case study. Section 8 compares our approach

to related work and Section 9 concludes.

2. Motivating Example

To explain our approach, we use a component repository

that contains four concrete (implemented) components that

implement various route calculation algorithms. Figure 1

1. CoCoLa stands for Component Concept Lattices.

Figure 1. Classification of route computation components

shows the descriptions of these components (the three leaf

components and the TouristicRouteCalculation

component) along with other informations that will be

explained further in the paper.

Figure 2 presents the specialization hierarchies of

data types involved in component functionalities. Map is

specialized by ZoomableMap. Route is successively

specialized by PubTranspRoute (public transportation

route), TouristicRoute, BotanicRoute which define

routes for tourists interested in visiting botanic gardens

and MuseumRoute which does the same for museums.

TouristicAgenda is derived along botanic garden or

museum interests. Location (just described by a name)

is specialized by GPScoord (which contains the place’s

GPS coordinates), MailAddr (which contains the place’s

address) and CompleteLocalization which integrates

all information.

The PubTransportRouteCalculation component

provides four functionalities. The first three calculate a

public transportation route, distance and duration between

given departure and arrival mail addresses. The fourth allows

to buy a transportation ticket that corresponds to a given

route. The component also requires localization conversion

functionalities and map functionalities that produce a general

map that covers route departure and arrival points, a road

network and a detailed map centered on a given location.

The TouristicRouteCalculation component cal-

culates a touristic route that integrates scenic sites that are

close to the standard route and the distance covered by such a

touristic trip. It also suggests an agenda of events of interest

for tourists.

Figure 2. Type hierarchy for route computation compo-

nents

The BotanicRouteCalculation (resp. Museum-

RouteCalculation) component calculates routes (and

the corresponding distances) that integrate botanic gardens

(resp. museums) close to the standard route. It also provides

an agenda of gardens (resp. museum) events and a function-

ality that lists the specific botanic species (resp. exhibitions)

tourists may find in the visited gardens (resp. museums).

In the current component directory, there are many of such

components with similar provided and required functional-

ities. If the directory has a flat structure, the user (human

designer or automatic procedure) has to carefully browse the

whole directory to find relevant components for connection

or substitution. Even in cases where the component library

can be searched through with keyword-based requests, the

user still has to browse the resulting set of functionalities

and has no clear information on component relevance. For

these software development or maintenance tasks, it would

be useful to easily know:

• which components can be assembled with a given

component,

• which components behave similarly, to quickly find an

approximate substitute to a given component,

• which new components should be added to the repos-

itory to improve future development and maintenance

tasks.

We can answer these questions rather easily by

examining the component classification we propose to

build in this paper (cf. Figure 1). Firtsly, we provide

classification links with replacement semantics. For

example, MuseumRouteCalculation is classified as a

possible substitute of TouristicRouteCalculation.

Secondly, new (abstract) component types (e.g.,

RouteCalculation) emerge: they generalize existing

(concrete) components and their implementation is

suggested. Indeed, defining a component assembly with

such a general component rather than specialized ones

would make the assembly more reusable and tunable.

Before explaining the basics for substitution and component

type emergence, next section gives an overall view of the

approach.

3. The three-step classification process of Co-

CoLa

In CoCoLa, components are automatically indexed in

a “yellow page”-like directory designed specifically for

searching components that can assemble to or substitute to a

given one. The process of component classification relies on

the syntactical information provided by the external views of

components (functionality signatures grouped in interfaces

of either provided or required direction). It uses FCA to

calculate concept lattices [2] that order this syntactical

information so that searching becomes as easy as lattice

traversal.

Our approach decomposes into three steps. At each step,

FCA is used to build a classification ordering the artifacts

according to the substitution principle.

• As a first step, classifications of provided and required

signature functionalities are built using the input and

output parameter types. Existing signatures are orga-

nized using the substitution order and new signatures

emerge.

• As a second step, classifications of provided and re-

quired interfaces use the functionality signature clas-

sifications built at previous step. Existing interfaces

are organized using the substitution order and new

interfaces emerge.

• As a last step, component classification uses the clas-

sifications of interfaces. It indicates possibilities for

component substitution and assembly and generates

new component descriptions that provide more general

designs.

These three steps are illustrated on the didactic example

of Section 2. Each of them is described in one of the three

following sections.

4. Classifying functionality signatures

At the first level, the substitution principle establishes that

a functionality substitutes to another one if it requires less

and provides more.

Require less means that the substitute functionality can:

• Generalize input parameter types in provided signatures

(or remove input parameters),

• Generalize output parameter types in required signa-

tures.

Provide more means that the substitute functionality can:

• Specialize output parameter types in provided signa-

tures,

• Specialize input parameter types in required signatures

(or add extra input parameters).

Let us first consider the case of the provided route

functionality. Table 1 shows the four route signatures used

in components of the repository.

The table encodes knowledge about these signatures.

Several kinds of descriptions, based on different underlying

connection and substitution models, can be used that need

more or less adaptation capabilities. In this paper, we use

a simple model where the order of parameters and the

number of parameters of a given type do not matter. This

model is very loose: It requires syntactic adaptations in

Java-like languages, but stricter models could be encoded

and implemented with the same construction techniques.

Tables thus encode the sets of input and output parameter

types. For our current application, we suppose that there is

a single output parameter type (return type). Further work

will generalize to multiple outputs. In tables, × is used

for a property owned by the signature, while ⊗ is used

for an inferred property. Inferences are deduced from the

substitution principle. For example, the route functionality

signature of first row owns Mail as one of its input

parameter types, and PTR as its return type. Inference on

input parameter types is based on the rule which states that

in the substitute, input parameters of provided functionality

signatures can be generalized. In the other perspective, it

means a functionality can substitute to another one the

input types of which are more specialized. For example,

input parameter type Mail in route signature (first row)

may substitute to input parameter type Comp (specialization

of Mail). Inferences on output parameter types obey the

reverse rule.

To encode the removal of input parameters, we need to

encode that a signature does not contain a parameter. We

add ¬p (also denoted by Np later in some figures) as a

fictive parameter type, with the meaning that ¬p substitutes

to p, because a signature that does not own p substitutes to a

signature that owns p. For example, the route functionality

signature of first row owns ¬D as one of its input parameter

types (D is inferred), because it does not own Date as an

input parameter type.

After the description of signatures, FCA is used to build

the classification. Given a table describing a set of objects

that own properties, FCA enables to calculate a lattice

ordering concepts extracted from the table. A concept is

a maximal subset of objects connected to a maximal sub-

set of properties, such that all objects own all properties.

For example, as all route signatures own the property set

{in Comp,in D,out R}, they define a concept together with

this set of properties (cf. Concept0 on Figure 3). The whole

lattice is presented in Figure 3. Concepts are represented

with a simplified form where inherited properties (top to

Concept_0
in_Comp
in_D
out_R

Concept_1
in_Loc

Concept_3
in_Mail
in_ND
out_PTR

route(Mail,Mail):PTR

Concept_4
out_BR

route(GPS,GPS,D):BR

Concept_5
out_MR

route(GPS,GPS,D):MR

Concept_2
in_GPS
out_TR

route(GPS,GPS,D):TR

Figure 3. Lattice of route signatures

bottom) and inherited objects (bottom to top) are omitted.

Figure 4 gives an interpretation of the lattice by rebuilding a

functionality signature for each concept of the lattice (except

for the bottom one). Valid substitutions can be read bottom-

up in this lattice: a functionality can replace a higher (more

general) one.

Similarly, we can produce classifications for all func-

tionality names from the example2. The case of required

functionality signatures is dealt with reverse encoding (as

detailed in [3]).

Figure 4. Classification of route signatures

5. Classifying interfaces

In this model, as in object-oriented languages and com-

ponent models, interfaces are collections of functionality

signatures. Encoding interfaces will thus rely on the lattice

of functionality signatures and apply the substitution princi-

ple for inferences. At this level, the substitution principle

states that in an interface that can substitute to another

one, we can find less required functionalities and more

provided functionalities. This implies two opposite encod-

ings — one for provided interfaces and one for required

ones. Provided interfaces are described in a table (Table 2

for the example) where columns correspond to relevant

concepts from the functionality signature lattices. Some

concepts correspond to existing functionality signatures

while others have been created by factorization. This is the

case of r1=route(Comp,Comp,D):R (interpretation of

Concept0 from Figure 3). A × character is used when

the provided interface owns a functionality signature. An

interface which owns a signature can substitute to another

one, which owns a signature higher in the lattice (it can

replace it). For example, IPubTranspRoute owns r2

which substitutes to r1 (cf. Figure 1) thus ⊗ is set for

(IPubTranspRoute, r1). Figure 5 gives the resulting

classification of provided interfaces. Substitutions can be

read bottom-up. New interfaces emerge from this classifica-

tion process: Concept1 represents a new provided interface

that factorizes r1 (route(Comp,Comp,D):R) and d1

(distance(Comp,Comp,D):Float). It will be denoted

IR for IRoute in the following. In the case of required

interfaces, the substitution principle needs adding the knowl-

edge of which functionality signature a required interface has

2. The whole figure set of the example is available online:
http://www.lirmm.fr/∼huchard/RouteComponent/

Table 1. Encoding route signatures (provided point of view). Type names are shortened

IN parameters OUT parameters

Loc GPS Mail Comp ¬D D R PTR TR BR MR

route(Mail,Mail):PTR × ⊗ × ⊗ ⊗ ×

route(GPS,GPS,D):TR × ⊗ × ⊗ ×

route(GPS,GPS,D):BR × ⊗ × ⊗ ⊗ ×

route(GPS,GPS,D):MR × ⊗ × ⊗ ⊗ ×

not. Similarly to the case of required signature encoding,

a required interface which has not a given functionality

signature will be described as possibly substitutable to all

interfaces that have any form of the functionality.

6. Classifying components

In this model, components can be seen as collections

of directed interfaces, as in most component models. This

description is often referred to as their external view. En-

suring component substitution demands that less interfaces

are required, while more provided interfaces are possible.

Following the same principles, Table 3 shows a description

of the external view of components. Components are de-

scribed by the interfaces they own and interfaces inferred by

substitution rules. Ownership of a required (resp. provided)

interface implies inference of required (resp. provided) inter-

faces higher in the corresponding lattice. When a component

does not own a required interface (e.g.,TRC does not own

IConversion), all the forms of this interface can be

admitted for substitution and are inferred. Figure 6 presents

the resulting lattice which can be used for building the classi-

Concept_0

Concept_1
r1
d1

Concept_2
r2
d2
du
b

IPubTranspRoute

Concept_3

Concept_5
r4

IBotanicRoute

Concept_6
r5

IMuseumRoute

Concept_8
a2
s

IBotanicAgenda

Concept_9
a3
e

IMuseumAgenda

Concept_4
r3
d3

ITouristicRoute

Concept_7
a1

ITouristicAgenda

Figure 5. Classification of provided interfaces

fication of Figure 1. Concept0 is the RouteCalculation

component of the top of the classification. Concept1 was

removed for the sake of simplicity but could also be inter-

preted and included inside the result. Concept2 would be

interpreted as the component containing all interfaces and it

is unlikely that designers would be interested to develop it

as a new component.

7. Implementation and Experimentations

In order to implement the process presented in this

paper, we first define a meta-model which groups all the

concepts needed in the process. It sets a vocabulary for

the component-based architecture descriptions that are used

to build concept lattices. The component descriptions from

the component repository, which provide the external views

of components we want to classify, are first transformed

into instances of this meta-model. The resulting models

(now expressed in a common vocabulary) are then used to

generate context tables. Next paragraphs first present this

meta-model and then detail the architecture and functioning

of the CoCoLa prototype tool.

Concept_0
req_I0

req_ILocZoomMap
req_IConversion

pro_IR

Concept_1
req_I2
req_I4

Concept_2
req_I3
req_I8

Concept_3
req_IGPSMap
pro_IPTR
PTRC

Concept_4
req_ILocMap
pro_IMR
pro_IMA
MRC

Concept_6
pro_IBGR
pro_IBGA

BRC

Concept_5
req_!IConversion

pro_ITR
pro_ITA
TRC

Figure 6. Classification of components

Table 2. Encoding provided interfaces

r1 r2 r3 r4 r5 d1 d2 d3 du b a1 a2 a3 e s

IPubTranspRoute ⊗ × ⊗ × × ×

ITouristicRoute ⊗ × ⊗ ×

IMuseumRoute ⊗ ⊗ × ⊗ ×

IBotanicRoute ⊗ ⊗ × ⊗ ×

ITouristicAgenda ⊗

IMuseumAgenda ⊗ × ×

IBotanicAgenda ⊗ × ×

Table 3. Encoding components. IR represents Concept1 of provided interface lattice. Names have been shortened.

Required interfaces Provided interfaces

I0 ILocZM I2 I4 I3 I8 IGPSM ILocM ¬IConv IConv IPTR IBGR IMR ITR IR IMA IBGA ITA

PTRC ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ × × × ⊗

TRC ⊗ × × ⊗ × ⊗ ×

MRC ⊗ ⊗ ⊗ ⊗ ⊗ × × ⊗ × ⊗ ⊗ × ⊗

BRC ⊗ × × ⊗ × ⊗ ⊗ × ⊗

7.1. CoCoLa Component Meta-Model

The metamodel of Figure 7 depicts the grammar of the

model we adopted for component-based software architec-

ture descriptions in our context. In this meta-model, we

consider a component as a software artefact defining a set of

directed interfaces. Each interface can thus be provided or

required by a component. An interface is described by a set

of functions which declare parameters in input, output or the

two simultaneously (inout parameters). Each function can

additionally declare exceptions of a certain type. This model

supports hierarchical descriptions of components. Thus, a

component can have sub-components within its definition.

Classes, components and interfaces have in common the

meta-class StructuredType. As in most programming

languages, this is considered as a specific kind of the

concept Type, in the same way as for the meta-class

PrimitiveType which conceptualizes integers, booleans,

and other basic types. Contrary to primitive types, structured

ones can have supertypes and known subtypes. Functions,

parameters and types are considered as named elements:

their name serves as an identification key in the whole set

of artefacts.

7.2. Component Ordering as an Automatic Trans-

formation Process

We developed a prototype tool called CoCoLa that imple-

ments the proposed automatic component ordering process.

Figure 8 provides an overview of the CoCoLa tool architec-

ture. It receives as input a set of component-based architec-

ture descriptions defined in Fractal [4] ADL, the Java imple-

mentation of these components (which take the form of Java

classes) and their interfaces, and a tree of type hierarchy. The

XMI-Builder module of CoCoLa produces an XMI [5]

document which merges all these (input) definitions and

represents an instance of an Ecore3 metamodel defined as a

concrete implementation of the metamodel of Figure 7. The

tool then starts to generate context tables for functionalities

grouped by names, provided (resp. required) interfaces and

components. These tables are serialized as CSV (Comma-

Separated Values) files. Starting from these definitions, the

tool builds the concept lattice for each context table. For

doing so, the Lattice_Builder component of CoCoLa

uses an external library, called erca4 to produce DOT5 files

containing the concept lattices of each architectural artefact.

The CoCoLa tool has a graphical user interface mod-

3. http://www.eclipse.org/modeling/emf/

4. http://code.google.com/p/erca/

5. DOT is a plain text graph description language.

Component

Class

DirectedInterface

+ role: InteraceRole

Interface

NamedElement

+ name

StructuredType

<<Enumeration>>

InterfaceRole

+ provided
+ required

<<Enumeration>>

ParamDirection

+ in
+ out
+ inout

Type

PrimitiveType

Function

Parameter

+ direction:ParamDirection

exception

0..*

1..*

0..*

0..*

superType

subComponent

0..*

0..*

0..*

Figure 7. CoCoLa component metamodel

XMI_Builder

F_ContextGenerator

<<External Tool>>

Galatea

<<Fractal ADL File>>

FractalArchDesc

<<File>>

JavaCode
<<Java Source File>>

InterfaceOrClass

<<XML File>>

TypeHierarchy

<<XMI File>>

CoCoLA Model

<<Ecore File>>

CoCoLA Metamodel

instanceOf

I_ContextGenerator

C_ContextGenerator

Lattice_Builder

<<CSV File>>

F_ContextTable

<<CSV File>>

I_ContextTable

<<CSV File>>

C_ContextTableuses

uses

uses

<<DOT File>>

F_Lattice

<<DOT File>>

I_Lattice

<<DOT File>>

C_Lattice

CoCoLA

CoCoLA_GUI

LatticeView

LatticeAnalysis

uses
produces

produces

produces

uses

uses

uses

uses

uses uses

usesproduces

produces

produces

uses

uses

uses

uses

<<SVG File>>

ConceptLatticeFig produces

Figure 8. A simplified structural view of the architecture of CoCoLa

ule which provides two categories of functionalities. First,

it builds an SVG6 description of lattices of the different

artifacts and draws their graphical representation in the

GUI. Second, it implements some tasks on these lattices

to simulate requests that could be directed to a component

directory. For example, it lists the components that can

replace and the components that can be connected to a

component choosen by the user. Similar simulated user

requests can be run for interfaces.

7.3. Experiments on the Dream Library

We experimented our approach on a set of Fractal

components issued from Dream7. Dream is a component-

based framework dedicated to building communication mid-

dleware. It provides, among others, a component library

implementing various communication paradigms: group

communications, message passing, event-reaction, publish-

subscribe, etc.

We measured a set of metrics on this library and we

obtained the following results:

• Total number of component definitions: 170

• Total number of interfaces: 283

• Average number of interfaces per component: 1.92

• Number of provided interfaces: 127

• Number of required interfaces: 156

6. SVG (Scalable Vector Graphics) is an XML-based file format for
describing vector graphics.

7. ObjectWeb Dream project Website: http://dream.ow2.org/

• Maximal Depth of component (resp. interface) hierar-

chies (typing point of view): 2 (resp. 7)

• Total number of functions: 799

• Number of functions in required interfaces: 561

• Number of functions in provided interfaces: 238

• Total number of parameters: 1007

• Average number of parameters per function: 1.26

This library is of relatively average size. We nonetheless

observe that it defines more than 1000 parameters that appear

in almost 800 functions. All of these functions are declared

in 283 interfaces provided or required by 170 component

definitions. There is almost the same number of required and

provided interfaces (22% of required interfaces more). The

number of functions in required interfaces is however more

important than in provided ones (nearly 2,4 times more) and

the number of parameters of non-primitive types (arrays,

classes and interfaces) represents about 94% of the total

number of parameters.

It is obvious that we cannot present in this paper the gen-

erated lattices, because of their large size and the complexity

to users to navigate inside. In the following paragraphs,

we present however some metric values measured on these

lattices and some interesting interpretations of them. We

limit voluntarily our study to the provided part of the

components to be more concise.

In the Dream library, there are not much variations on

the signatures, and functionality signature lattices are mostly

reduced to one concept.

The lattice of provided interfaces8 contains:

• 51 concepts,

• 96 edges in transitive reduction (edges of the whole

ordering represent potential substitution),

• 4 factorization concepts (they represent new provided

interfaces) which factorize one signature,

• 5 merged concepts (they group interfaces with the same

provided external view) which group between 1 and 5

interfaces that share 2 and 3 signatures.

Figure 9 shows an example of a factorization concept:

C49 factorizes bind(): OutgoingPush for interfaces

ChannelProtocol and TCPIPProtocol.

The lattice of component external views9 contains:

• 55 concepts,

• 101 edges in transitive reduction (edges of the whole

ordering represent potential substitution),

• 7 factorization concepts (they represent new provided

external views), which factorize one interface,

• 14 merged concepts; one groups 58 composite compo-

nents that don’t have external interface ; the other 13

concepts group an average of 4 components that share

one or two interfaces.

Figure 10 shows the TaskManager component

which is classified as a possible substitute (relatively to

provided point of view) to ActivityManager. The

ActivityManager and ActivityManagerType

components share the same provided external view.

This case study shows the feasibility of the technique;

Lattices of the provided part of components have reasonable

size and help identifying opportunities for substitution and

new definitions. They also give an overall view of the library

thanks to the non-flat organization and constitute a structure

suitable for navigation tools.

8. Related work

In the literature there are many works regarding the

organization of software libraries and the retrieval of compo-

nents. Iribarne et al. [6] define the requirements for a com-

ponent trading service which enables to publish, query and

retrieve existing components. Component descriptions en-

compass different kinds of information: functional (syntactic

definition of interfaces), formal (behavior and collaboration

protocol), non-functional (semantic properties) and business

(company affiliation). Regarding syntactical informations,

the use of exact and relaxed matching schemes, based on

substitution and specialization rules on component types

(sets of interfaces), is suggested. However, this work only

outlines the features of such registries and is more focused

8. http://www.lirmm.fr/∼huchard/RouteComponent/fixtest6/dot/Interface/
pro-interface treillis.dot.svg

9. http://www.lirmm.fr/∼huchard/RouteComponent/fixtest6/dot/Compo-
nents/component treillis.dot.svg

on the conceptual definition of a component trading service.

Contrarily, our work aims at defining practically how the

content of a component registry can be built to efficiently

support component indexing and retrieval.

In the code conjurer tool [7], interfaces are extracted

from test-cases and used for finding classes thanks to the

merobase10 component finder. Required part is dealt through

an automated dependency resolution mechanism. In our

proposal, we combine provided and required aspects in

classifying components and suggest the development of

more generic components.

Zaremski and Wing [8] propose an extensive study of

functionality signature matching rules. Relaxed matching

is based on functionality substitution principles, stated as

predicates on the pre- and post-conditions of the func-

tionalities. The use of such matching rules is advocated

to design search mechanisms for function libraries but no

concrete solution to structure and index the content of such

repositories is defined. Our component substitution rules are

derived from this work, which is an extension of the common

specialization rules of strongly-typed object languages [9] to

support relaxed matching. Our work proposes an adaptation

of this work to components, to deal with directions and the

iterative classification of more complex syntactical types,

from functionalities up to components.

Existing component registries, also called trading services,

such as Corba Trading Object Service [10], conform to the

principles of the ODP standard [11]. Component service

advertisements are published to a component registry. Ser-

vice types can be structured as a specialization hierarchy.

As opposed to our approach, the service type hierarchy is

built manually and is static [12]. Moreover, the classification

of the components is also manual and explicitly defined

in the component advertisement. Finally, these component

registries are purely service oriented and only contain pro-

vided interface definitions. In our proposal, the content of

such registries is extended to required interfaces and whole

component types in order to support various architectural

construction and evolution processes.

Comparable registries have been studied for web ser-

vices [13]. Registries usually provide simple data models

with limited capabilities for structuring their contents. UDDI

and WSDA registries for instance are designed essentially

to discover existing web services. Their entries do not

contain any detailed descriptions but a link to comprehensive

external descriptions (generally in WSDL) maintained by

the web service providers. Web services are classified into

business categories associated with keywords that enable

their pre-selection. On the contrary, ebXML registries [14]

contain extensive descriptions of web services, stored thanks

to a complex, extensible data model, enabling multiple

classifications. However, classification is handled manually

10. http://merobase.com/

Figure 9. An excerpt of the provided interface lattice of Dream library

Figure 10. An excerpt of the component provided external view lattice of Dream library

by the web service providers, defining explicit classification

information in their web service registration requests. As for

previous service registries, this leads to poorly structured

contents and erroneous retrievals.

FCA [15] has been studied as a solution to automati-

cally organize browsable functionality libraries [16]. Queries

are formulated incrementally with keywords, narrowing the

number of potential results as the query becomes more

precise. FCA is used to structure the set of keywords and

requests are handled as traversals of the resulting concept

hierarchy which does not necessarily reflect specialization

relations between the syntactical types of functionality signa-

tures. Fischer [16] uses attributes which represent fragments

of the formal specifications of functionalities (simple pre-

and post- conditions).

In the context of web services, machine learning tech-

niques (clustering) are applied to the textual documentations

of the services to cluster them and identify meaningful

keywords [17], [18]. FCA is then used in a second step to

structure the classification and drive the matching between

queries and the indexed services.

As compared to this work, we not only deal with the pro-

vided services but also with the required services. Moreover,

we propose a multi-level classification process to handle the

various syntactical types which define components (func-

tionalities, interfaces, whole components). In this paper,

we extend the work in Arévalo et al. [3] to obtain better

factorization on provided functionality signatures and to

include the support of required functionality and interface

removal in a substitute.

9. Conclusion

The contribution of this paper is twofold. It first presents

an automated process for classifying components from their

external descriptions. This process is based on type-theory

(we only use syntactic information) and uses FCA to it-

eratively build lattices that provide functionality signature

classifications, interface classifications and component clas-

sifications. Compared to our previous work, the semantics

of substitution has been extended to encompass artefact

addition or removal when applicable.

It then provides a description of the CoCoLa prototype

tool that implements the aforementioned process. Thanks to

a pivot meta-model, component descriptions from various

formats are translated into comparable models (instances

of the common meta-model). These descriptions are then

processed to build context tables and lattices. Experiments

have been run on the Dream component library (that comes

from a real-world component-based framework) and show

the feasibility of our approach as it allows to identify possi-

ble component substitutions and gives readable classification

of the components.

Perspectives for this work still are numerous. On the

theoretical aspect, it would be interesting to run systematic

comparisons on various substitution semantics (from strict

typing to loose matching with more adaptations). Adding

the capability of identifying variations in function names

with natural language techniques would be of great interest.

Adding the treatment of metadata on variants [19] and

including non-functional attributes for components is also a

large field to explore: non-functional attributes could allow

to provide additional filtering steps to select components

with more accuracy (as done in [20]). On the experimental

point of view, we wish to further use CoCoLa on real

component repositories to try and identify the combinatorial

limit of the tool and provide solutions in the form of

reasonably small directory interconnection. We also wish to

further analyze component repositories in order to suggest

component refactorings or extra component developments

to enhance reuse capabilities.

Acknowledgements. Authors would like to thank warmly

Nicolas Auboin, Olivier Bendavid, Nicolas Haderer and

David Pallet who contributed in the development of the

CoCoLa tool.

References

[1] N. Desnos, M. Huchard, G. Tremblay, C. Urtado, and S. Vaut-
tier, “Search-based many-to-one component substitution,”
Journ. of Software Maintenance and Evolution: Research and
Practice, vol. 20, no. 5, pp. 321–344, September/October
2008.

[2] B. Ganter and R. Wille, Formal Concept Analysis: Mathe-
matical Foundations. Springer, 1999.

[3] G. Arevalo, N. Desnos, M. Huchard, C. Urtado, and S. Vaut-
tier, “FCA-based service classification to dynamically build
efficient software component directories,” Int. Journ. of Gen-
eral Systems, vol. 38, no. 4, pp. 427–453, May 2009.

[4] E. Bruneton, C. Thierry, M. Leclercq, V. Quéma, and S. Jean-
Bernard, “An open component model and its support in java,”
in Proc. of the ACM SIGSOFT Int. Symp. on Component-
based Software Engineering (CBSE’04). LNCS 3054, 2004,
pp. 7–22.

[5] OMG, “Xml metadata interchange (xmi) v2.1.1 specifica-
tion, document formal/07-12-02,” http://www.omg.org/cgi-
bin/apps/doc?formal/07-12-02.pdf, 2007.

[6] L. Iribarne, J. M. Troya, and A. Vallecillo, “A trading service
for COTS components,” The Computer Journal, vol. 47, no. 3,
pp. 342–357, 2004.

[7] O. Hummel, W. Janjic, and C. Atkinson, “Code conjurer:
Pulling reusable software out of thin air,” IEEE Software,
vol. 25, no. 5, pp. 45–52, 2008.

[8] A. M. Zaremski and J. M. Wing, “Specification matching
of software components,” ACM Transactions on Software
Engineering and Methodology (TOSEM), vol. 6, no. 4, pp.
333–369, 1997.

[9] G. Castagna, “Covariance and contravariance: conflict without
a cause,” ACM Transactions on Programming Languages and
Systems, vol. 17, no. 3, pp. 431–447, 1995.

[10] OMG, “Trading Object Service Specification (TOSS) v1.0,”
2000, http://www.omg.org/cgi-bin/doc?formal/2000-06-27.

[11] Information Technology Open Distributed Pro-
cessing, “ODP Trading Function Specification
ISO/IEC 13235-1:1998(E),” December 1998,
http://webstore.iec.ch/preview/info isoiec13235-
1%7Bed1.0%7Den.pdf.

[12] R. Marvie, P. Merle, J.-M. Geib, and S. Leblanc, “Type-
safe trading proxies using TORBA,” in Fifth Int. Symp. on
Autonomous Decentralized Systems, ISADS, IEEE Computer
Society, 2001, pp. 303–310.

[13] S. Dustdar and M. Treiber, “A view based analysis on
web service registries,” Distributed and Parallel Databases,
vol. 18, pp. 147–171, 2005.

[14] ebXML Registry Services Specification (RS) v3.0,
http://www.oasis-open.org/, May 2005.

[15] C. Lindig, “Concept-based component retrieval,” in IJCAI-95
Workshop: Formal Approaches to the Reuse of Plans, Proofs,
and Programs, J. Köhler et al., Eds., 1995, pp. 21–25.

[16] B. Fischer, “Specification-based browsing of software com-
ponent libraries,” in Proc. of the 13th IEEE int. conf. on
Automated Software Engineering (ASE’98), 1998, pp. 74–83.

[17] M. Bruno, G. Canfora, M. D. Penta, and R. Scognamiglio,
“An approach to support web service classification and an-
notation,” in Proc. of the IEEE Int. Conf. on e-Technology,
e-Commerce and e-Service (EEE’05), 2005, pp. 138–143.

[18] M. Á. Corella and P. Castells, “Semi-automatic semantic-
based web service classification,” in Business Process Man-
agement Workshops, ser. LNCS 4103, J. Eder and S. Dustdar,
Eds. Springer, 2006, pp. 459–470.

[19] M. Åkerholm, J. Fröberg, K. Sandström, and I. Crnkovic, “A
model for reuse and optimization of embedded software com-
ponents,” in 29th IEEE Int. Conf. on Information technology
Interface, (ITI 2007), June 2007, pp. 567 – 572.

[20] B. George, R. Fleurquin, and S. Sadou, “A component se-
lection framework for cots libraries,” in Proceedings of the
ACM SIGSOFT Symposium on Component-Based Software
Engineering (CBSE’08). Karlsruhe, Germany: LNCS 5282,
Springer-Verlag, October 2008.

