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ABSTRACT 

BACKGROUND: The South American tree Solanum mauritianum Scopoli 

(Solanaceae) is a problematic invasive plant in numerous tropical, sub-tropical and 

temperate regions across the globe. As conventional management approaches are not 

cost-effective, biological control provides an alternative approach. Gargaphia decoris 

Drake (Tingidae), is currently being implemented as a biological control agent in South 

Africa and New Zealand. Considering the importance of climate in the establishment 

and success of a biological control agent, this study used ecological niche models 

(ENM) to identify areas where S. mauritianum is a problematic invader and where 

suitable conditions exist for G. decoris. Additionally, the climate niche dynamics of G. 

decoris were investigated and ENMs projected worldwide for the year 2050 were built. 

RESULTS: Our results indicate that most of the countries where S. mauritianum is 

problematic have suitable climatic conditions for G. decoris, and that the species can 

survive in climates with lower temperatures than the ones in its native range. For future 

climates ENMs predict wider regions with favourable climatic conditions for G. 
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decoris. CONCLUSION: Considering the results of this study, the prospects of G. 

decoris as a biological control agent is good under present and future climates. The 

agent‟s introduction could be considered in affected countries where it has not been 

released. 
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1. INTRODUCTION 

Solanum mauritianum Scopoli (Solanales: Solanaceae), commonly known as 

Bugweed (South Africa),Woolly Nightshade (Australia and New Zealand) or Tobacco 

bush (Australia), is a perennial tree native to South America, particularly north-eastern 

Argentina, southern Brazil, Paraguay and Uruguay.1 Solanum mauritianum has become 

naturalized in Africa, Australasia, India and islands in the Atlantic, Indian and Pacific 
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Oceans, presumably via the Portuguese trade routes in the early 16th century. 2 The tree 

has reached invasive status in several countries. 1 Within these invaded countries, S. 

mauritianum is particularly problematic in conservation areas, agricultural lands, 

forestry plantations and riverine habitats. 3 Conventional control approaches such as 

chemical or mechanical methods are not cost-effective at a large scale. Thus, biological 

control is considered one of the few sustainable options to effectively control the plant‟s 

invasion over time and space.1 

The lace bug, Gargaphia decoris Drake (Heteroptera: Tingidae), which is native 

to Argentina and Brazil, was introduced for the biological control of S. mauritianum in 

South Africa in 1999 and in New Zealand in 2009, following years of exhaustive 

laboratory tests and risk analyses.4 This lace bug causes extensive foliar damage, such 

as chlorosis and premature leaf abscission,  has a relatively narrow potential host range 

that does not include other species within the genus Solanum, except for S. melongena, 

and exhibits very strong feeding and oviposition preferences for S. mauritianum in 

choice tests in the laboratory .5, 6 In South Africa, G. decoris has caused extensive 

damage to S. mauritianum during population outbreaks  but has been deemed an 

inefficient agent due to its sporadic fluctuations in population density.4, 7 In New 

Zealand, its performance has been more effective and consistent over time.8  In South 

Africa, cold winter temperatures were originally blamed for poor establishment. 

However, this was dismissed after thermal assessments by Barker and Byrne (2005) 

which found that the insect was not directly affected by the cold temperatures. 9 

Currently, predation is considered to be a major factor constraining G. decoris 

populations .1  

Regarding the other biological control agent of S. mauritianum (released in 

South Africa), Anthonomus santacruzi Hustache (Coleoptera: Curculionidae), low 
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temperature and low humidity are factors impeding its establishment. 10 Given this 

background, it is imperative that climatic aspects should be taken into account, 

investigated and better understood in view of the successful establishment of insect 

biological control agents of S. mauritianum.10 Ecological niche models (ENM) assess 

the ecological requirements of species based on their known occurrences and aim to 

identify different regions that suit these requirements. ENMs can also be projected on 

future climatological reconstructions that are similar ecologically to those where the 

species occurs. These regions resemble, in terms of the variables provided, the 

fundamental niches of species, namely the complete set of environmental conditions 

under which they can persist. 11, 12 For biological control studies, ENMs based on 

climate parameters can be very helpful for identifying areas where an invasive species is 

present and where there are good prospects, in terms of climate, for the successful 

introduction of a potential control agent. These kinds of studies are being increasingly 

used to understand the potential distribution and extent of insect establishment in novel 

environments, including pest species and natural enemies. 13, 14, 15 Such information can 

be very valuable for determining the extent, cost and probability of success of biological 

control programmes. Hence, an ENM is an important tool for defining strategies for the 

biological control of invasive species. 

Although ENMs are useful for understanding and predicting species 

distributions across landscapes or different times, they also have limitations. The 

successful establishment of a non-indigenous species in a new environment depends on 

many factors, among them predators,  food availability,  and climatic similarity.16 Of 

these, ENMs take into account climatic similarity under the assumption that species are 

conservative in their climatic requirements across space and time but this assumption 

has been challenged by evidence of climatic niches shifting during invasions. 16, 17, 18 A 
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niche shift is a change in the limits of the environmental space occupied by a species. 17 

Therefore, the recognition of differences in the environmental spaces occupied by a 

species in native and invaded areas and of the climatic variables involved can provide 

important insight into understanding the results of ENMs and awareness of their 

potential limitations. 

The aims of this study were: i) to identify within the regions where S. 

mauritianum is known to be a problematic invader, areas with suitable climatic 

conditions for the introduction of G. decoris as a biological control agent; ii) to identify, 

within the areas where G. decoris has been successfully introduced, the variables which 

differ more with respect to the climate of the native range and, therefore, the variables 

to which the species exhibits more plasticity and could adapt more easily when the 

conditions are different to the ones in its native range; and iii)  to generate a worldwide 

ecological niche model of G. decoris projected onto future climates (period 2050), 

considering the invasive nature of S. mauritianum. 

 

2. MATERIALS AND METHODS 

2.1 Species data 

 Two occurrence datasets were compiled for G. decoris, one with native range 

records (from Argentina and Brazil) and another with its entire distribution, including 

native and non-native records. The native record dataset was compiled with the aim of 

recognizing areas where the species is established and where the climatic conditions are 

different from the ones in the native area.  If the non-native records were found to occur 

in regions predicted by the model (built with the native records) to have novel climatic 
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conditions or non-suitable conditions, then the climatic conditions in these areas differ 

to the ones in the native range. 

 To avoid biases due to spatial autocorrelation, occurrences less than 10 km 

apart were discarded. The final datasets (Appendix A) used to train the models were 

constituted by 13 and 45 records (including only native records and all records, 

respectively) compiled from specimens held at the Museo de La Plata (Argentina) and 

from the literature. 1, 6, 8, 19, 20, 21, 22, 23, 24, 25 Three records from New Zealand were 

personally communicated to the authors by Fowler (2018).  

 

2.2 Variable selection 

To build the models, we used the set of 19 bioclimatic variables (Appendix B) 

available from the WorldClim database. 26 For the models developed in regions where 

S. mauritianum is a problematic invader, the resolution of the layers used was 2.5 arc-

min (~5 km), and for the models developed on a global scale for future climates 

(excluding South America, its native range), it was 5 arc-min (~10 km). To project 

future climate (for the 2040-2069 period, referred to as 2050), three Global Climate 

Models (GCM) were used, CCSM4, GISS-E2-R and MIROC5, with two very different 

representative concentration pathways (RCP): RCP 2.6 and RCP 8.5. A Representative 

Concentration Pathway (RCP) considers a wide range of possible changes in future 

climates depending on how much greenhouse gas (GHG) is released in the years to 

come. RCP 2.6 predicts milder changes, assuming that global GHG emissions will peak 

between the years 2010-2020 and subsequently decline substantially, while RCP 8.5 

predicts the most catastrophic scenario, in which emissions will continue to rise during 

the current century (IPCC 2013). 
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As climatic surrogates and in order to avoid issues with multi-collinearity we 

performed a principal component analysis (PCA) of the 19 Worldclim variables clipped 

to the extent of a polygon. 27 The polygon of the calibration area of the ENM trained 

with the native records encompassed all the ecoregions where these records are 

distributed with a buffering zone of 50 km (Appendix C). 28 Likewise, the polygon of 

the calibration area of the ENM trained with all the records comprised all the ecoregions 

where these are distributed with a buffering zone of 50 km as well (Appendix D). For 

the areas where the models were projected, the polygons used to clip the variables for 

the PCA included the extent of the countries where S. mauritianum is a problematic 

invader, or in the case of future projections, included the extent of the world. PCA 

analysis was performed using the „PCARaster‟ function in ENMGadgets Rpackage. 29 

The PCAs used to train the models had a cumulative variation of >90% for the first four 

principal components (PC), so we used them as climatic predictors (Appendices E, F). 

For the first two PCs in the model built with the native records, the variables with 

highest contributions were Mean Temperature of Coldest Quarter (Bio11), Annual 

Mean Temperature (Bio1) and Min Temperature of Coldest Month (Bio6) and Annual 

Precipitation (Bio12), Precipitation of Wettest Month (Bio13) and Precipitation of 

Wettest Quarter (Bio16), respectively; and for the model built with the full distribution, 

these were Mean Temperature of Coldest Quarter (Bio11), Annual Mean Temperature 

(Bio1) and Annual Precipitation (Bio12), Precipitation of Wettest Month (Bio 13) and 

Precipitation of Wettest Quarter (Bio16), respectively. 

 

2.3 Ecological niche models 

ENMs were prepared using Maxent v3.4.1k. and were developed with the two 

occurrence datasets (native and entire) and 10000 random background points 
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representing the distribution of environmental conditions in the training area following 

the recommendations of Phillips & Dudík (2008). 30, 31 In order to avoid over-

parameterization, the models trained with the native and with the entire dataset were 

tuned by exploring the performance of different beta-regularization multiplier values 

(0.5 to 4) and of different feature classes (L, H, LQ and LQH). Model performance for 

each combination of regularization multiplier and feature class were evaluated, 

following the recommendations of Shcheglovitova and Anderson (2013), through the 

omission rate and the area under the curve (AUC), and by analyzing the model 

predictions in the known distribution of the species. 32 Optimal model complexity was 

estimated using a regularization multiplier of 1.5 and the feature classes LQ for the 

models trained with the native records (Appendix G, Table I), and using 2.5 and the H 

feature class for the models trained with the full dataset (Appendix G, Table II). 

 The model trained with the native dataset was validated through the jackknife 

approach. This methodology was specifically designed to evaluate the predictive 

accuracy of models built with a small number of occurrences (fewer than 25 records).33 

It is based on removing one record from the dataset and building a model using the 

remaining n–1 records. The ability of each n-1 model to predict the record excluded is 

tested. To do this, the n-1 models are converted into binary presence–absence maps 

using a threshold. We used the „minimum training presence threshold‟. As many n-1 

models are built as records exist. The significance of the models is tested using the P 

value program, and if P ≤ 0.05 the model is validated. 33 The models trained with the 

full dataset were validated by applying the partial receiver operating characteristic 

procedure (pROC). For each species, 1000 random iterations with 50 % sub-sampling 

were performed to evaluate if the real models were statistically significantly better than 

This article is protected by copyright. All rights reserved.

A
cc

ep
te

d 
A

rti
cl

e



random (higher than 1.0) (P < 0.001).34 These evaluations were carried out in Niche 

Toolbox.35 

 Discriminatory ability was measured through the area under the curve of the 

receiver operating characteristic plot (AUC/ROC), which ranges from 0 to 1. Values 

closer to 1 indicate a better prediction, values of 0.5 correspond to a prediction equal to 

random, and values lower than 0.5 a prediction worse than random. 

 Current and future models were converted into binary maps. Values above the 

„minimum training presence logistic threshold‟ (MTP) were considered as presence, and 

values below this threshold as absence.33 The MTP indicates values above which the 

climate conditions are suitable for the survival of the modelled species and guarantees 

that all actual presences of the target species are predicted as suitable. A multivariate 

environmental similarity surface (MESS) analysis was conducted to identify the regions 

with environmental conditions outside the range of the training area, i.e. with novel 

climatic conditions in the models trained with the native dataset and with the entire 

dataset. Cells on the binary map where the MESS analysis recovered novel climates 

were identified. For future models, the full dataset was used to train the models. 

Consensus maps were built in which the regions where the three GCMs matched were 

recovered. This procedure was performed for the two RCPs considered.  

 Current binary maps were superimposed on a map of the areas where S. 

mauritianum is problematic in order to investigate areas where the establishment of G. 

decoris would be more relevant.1 

  

2.4 Direct climate comparisons 

A direct climate comparison was performed for the records in areas where the MESS 

analysis of the model trained with the native records identified novel climates. The raw 
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environmental data of the 19 bioclimatic variables were extracted for the ecoregions 

occupied by these records and from the native range of distribution. This information 

was used to build and compare boxplots for each region. The World Wildlife Fund 

(WWF) hierarchical classification was followed to identify ecoregions. 28 

 

3. RESULTS 

3.1 Present ENM for regions where S. mauritianum is a problematic invader 

 Jackknife validation indicated that the ENM built with native records was 

robust, yielding predictions statistically significantly better than random (P < 0.001) and 

the performance of the model was very good with an AUC of 0.894. Based on model 

projections, all releases of G. decoris in South Africa (Fig. 1a) and New Zealand (Fig. 

2a) where establishment has been confirmed had suitable habitat conditions, except for 

two records of G. decoris in KwaZulu-Natal, South Africa in areas predicted by the 

model as being unsuitable. Some of the release sites where the establishment of the 

lace bug has not been confirmed are in Gauteng, KwaZulu-Natal and Eastern Cape 

provinces. The MESS analysis determined small areas with novel climatic conditions 

in the northeast and southwest of South Africa. In New Zealand (Fig. 2a) the model 

indicated that the North Island is climatically suitable for G. decoris, as well as the 

western side of the South Island, though most of this region had environmental 

conditions outside the training area. Areas where S. mauritianum is problematic and 

where the model found suitable climates for the establishment of G. decoris were 

located mainly in patchy regions throughout Madagascar and on the margins of the 

Mascarene islands (Fig. 1a); in northern Uganda and southeastern Kenya (Fig. 1c); in 

most of Australia and in central Papua New Guinea (Fig. 2a); in most of India and, just 

a few central pixels, in Sri Lanka (Fig. 2c); and in the USA in the state of California 
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(Fig. 3a). For most of these regions suitable climatic conditions outside the range of the 

training area were found. 

 The ENM built with the full distribution, including native and non-native 

records of G. decoris, proved to be significantly better than random (AUC ratio of 1.37) 

and exhibited a very good model performance with an AUC of 0.91. Models built with 

all the records exhibited a similar pattern to those built with only the native records but, 

as expected, predicted wider areas with suitable conditions and fewer areas with novel 

climatic conditions. Most of South Africa (Fig. 1b) except for the central area, and 

most of New Zealand (Fig. 2b) except for central regions in the South and North 

Islands, were determined to have suitable conditions. With respect to the other areas 

where S. mauritianum is problematic, suitable climates for the establishment of G. 

decoris were also found in central and southern Madagascar and in the north of 

Reunion Island and most of Mauritius (Fig. 1b); in most of Uganda and in Kenya 

towards the south and west (Fig. 1d); in the central part of Australia (Fig. 2b); 

throughout the majority of India and all Sri Lanka (Fig. 2d); and in the USA in some 

parts of Florida and in all the western areas (Fig. 3b). In Madagascar, Reunion Island, 

India, Sri Lanka and the USA, suitable climatic conditions outside the range of the 

training area were found, however, most of these were only a few pixels. In Papua New 

Guinea, S. mauritianum is a serious problem but no climatically suitable areas for G. 

decoris were identified (Fig. 2b). 

 

3.2 Direct climate comparisons 

 From the North Island of New Zealand, there are two records, from Waikato 

and the Bay of Plenty, in regions where the MESS analysis of the model trained with 

the native records identified climatic conditions outside the range of those present in the 
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native distribution of G. decoris (Fig. 2a). These regions correspond to the ecoregion of 

North Island temperate forests (NITF). The variables identified with a high discrepancy 

between the NITF ecoregion and the native range of distribution are all related to 

temperature (Fig. 4, Table 1): Annual Mean Temperature (Bio1), Temperature 

Seasonality (Bio4), Max Temperature of Warmest Month (Bio5), Min Temperature of 

Coldest Month (Bio6), Mean Temperature of Wettest Quarter (Bio8), Mean 

Temperature of Warmest Quarter (Bio10) and Mean Temperature of Coldest Quarter 

(Bio11). For all these variables, the boxplots do not overlap. Additionally, for Mean 

Diurnal Range (Bio2), Isothermality (Bio3), Precipitation of Warmest Quarter (Bio18) 

and Precipitation of Coldest Quarter (Bio19), the records from the Bay of Plenty and 

Waikato have values outside the range of the native distribution boxplots and, again, 

most of these variables are related to temperature (Appendix H). 

 

3.3 Future worldwide ENM (period 2050) 

 The worldwide consensus maps for future projections (2050) under the two 

RCP scenarios (2.6 and 8.5) are very similar, with some differences in the extent of the 

areas predicted as suitable (Fig. 5a, b). Most of Africa (Fig. 5a, b) was determined to 

support suitable conditions. The pattern is very similar to the present climate model for 

Uganda and Madagascar, much broader for Kenya and South Africa, while for 

Mauritius, conditions change and become unsuitable (Fig. 1b, d). For Oceania (Fig. 5a, 

b), the consensus maps predicted a similar but wider pattern than the current model 

except for New Zealand, where suitable areas became narrower. For Australia (Fig. 5a, 

b), the suitable region was wider, and for Papua New Guinea a few pixels exhibit 

suitable conditions in contrast with the present model where there were none (Fig. 2b). 

In Asia (Fig. 5a, b), suitable conditions are found mainly in the south and west of the 
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continent; for India (in the areas where S. mauritianum is particularly problematic) and 

Sri Lanka, suitable areas become narrower (Fig. 2d). Most of Europe (Fig. 5a, b) is 

predicted to support suitable conditions for both consensus maps. Finally, for North and 

Central America (Fig. 5c, d), the consensus map for the 8.5 RCP scenario is much wider 

than the 2.6 RCP scenario, as it predicts suitable conditions in areas of southern North 

America and northern Central America. The consensus map for the RCP 2.6 scenario is 

very similar to the present climate model for North America (Fig. 3b), but wider. 

 

4. DISCUSSION AND CONCLUSIONS 

 In the ENM trained with the native records, there are two established 

populations of G. decoris in South Africa that are in areas predicted by the model as 

unsuitable. Both these records fall outside the suitable area by 1.2 and 11 km. One 

possible reason for these outliers is that they are in regions with specific micro-climates. 

Another reason could be that the model might be somewhat overfitted. When the model 

was tuned, different regularization multipliers were considered. Regularization 

multipliers control model complexity: a lower regularization multiplier is likely to result 

in a more restricted and potentially overfitted model, whereas a larger regularization 

multiplier is likely to result in a less restrictive prediction. In New Zealand, there were 

many areas outside the training range where the climate had no analogs. The conditions 

outside the range in the training data were treated by Maxent as if they were at the limit 

of the training range, by “clamping” the variables. 
36 Due to the “clamping” in the 

exploratory models built with regularization multipliers higher than the one used, many 

of the areas with conditions outside the training range were predicted as suitable. These 

models were therefore unrealistic and had poor predictive ability, which is why we 

opted for a model that might be slightly overfitted. This should be taken into account 
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when interpreting the ENM trained with the native records. Most of the release sites 

with unconfirmed establishment  fell within the areas predicted to have suitable 

conditions, and the ones outside this range were quite close (the farthest is 22 km away), 

so considering that the model might be somewhat overfitted, the possibilities of 

successful establishment should not be discarded.1 

 It should be also noted that although some of the release sites with unconfirmed 

results were in areas predicted as suitable, these populations are not necessarily 

successfully established. ENMs do not consider features that can be crucial for the 

establishment of a species, such as biotic interactions (i.e. predators, competitors or 

presence of host plants), and, particularly in the case of G. decoris, abiotic features such 

as shadow exposure. It is worthwhile mentioning that G. decoris significantly reduces 

the photosynthetic output of S. mauritianum in both shaded and sunny habitats, and 

although the impact is greater in sunny environments the insect prefers shaded ones. 37, 

38 

The ENM built with only the native records predicted narrower areas with 

suitable conditions, whereas the model built with all the records (entire distribution) was 

wider. ENMs identify areas that are ecologically similar to those where the species is 

known to occur. 11 The inclusion of non-native records results in wider predictions since 

these records are distributed in areas with climates quite dissimilar to those in the native 

range.  

 Seven of the eleven temperature-related bioclimatic variables were clearly 

different in their value ranges between the native region and the NITF ecoregion, New 

Zealand (boxplots with no overlap). Among these are the two variables, Mean 

Temperature of Coldest Quarter (Bio11) and Annual Mean Temperature (Bio1), which 

contribute the most to PCI in both models (built with native records and entire 
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distribution). Moreover, the minimum and maximum temperatures of these seven 

variables were always lower in the NITF ecoregion than in the native range, differing by 

approximately 10 °C for the minimum, 5.5 °C for the maximum and 6 °C for the median 

temperatures. Furthermore, for eleven of the nineteen bioclimatic variables (Bio1-6, 

Bio8, Bio10-11 and Bio18-19), the climatic conditions of the records in the Bay of 

Plenty and Waikato are outside the ranges of the boxplot from the native region. 

Because of the dataset sizes we were not able to apply quantitative methods to measure 

the climatic niche shift, though the magnitude of the differences observed in the 

temperature related variables implied a mismatch between the climatic niche of the 

native and non-native ranges. With this background, ENMs should be conscientiously 

interpreted as they may be misrepresenting the regions where G. decoris could be 

introduced. 

 To date, cold winter temperatures were believed to be one of the reasons for 

the low population densities in South Africa, as low temperatures reduce the quality of 

S. mauritianum foliage.1 All the previous evidence suggests that this is not so. At least 

in New Zealand, all the temperature-related variables are much lower than in the native 

range, with G. decoris having established readily at many of these sites .8  The afore-

mentioned evidence suggests a change in the climatic niche occupied by G. decoris and 

the possibility that it can establish in regions with climates colder than those in its native 

range. 

 Our ENM indicates that most of the countries where S. mauritianum is 

problematic have areas with suitable climatic conditions for the establishment of G. 

decoris. These countries include South Africa, Madagascar, Kenya, Uganda, Eswatini, 

India, Sri Lanka, Australia (QLD coastline), New Zealand North and South Island, and 

the United States (California). Cowie et al (2018) calculated the climatic matches for 
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biological control in the countries where S. mauritianum is problematic. 1 Most of the 

regions with suitable conditions according to our study would also present a good 

climatic match. However, there are some exceptions. The Gauteng province (South 

Africa) and the state of California (United States), have the lower climatic match 

percentages, but in our models have suitable conditions.  On the other hand, New South 

Wales and Victoria coastlines (Australia), New Caledonia and the state of Florida 

(United States), have high climatic match percentages but in our models have unsuitable 

conditions.  

 The projected ENM (2050) suggests that regions experiencing problematic S. 

mauritianum invasions may support the establishment of G. decoris. Considering the 

results of this study, G. decoris has good prospects as a biological control agent both in 

the present and in the future. Its implementation could be considered in affected 

countries where it has not yet been released.  

 We have discussed some situations in which the results of our ENM should be 

cautiously interpreted in the context of models built for a biological control agent as 

they might affect their success and efficiency. These situations include models that 

might be overfitted, parameters not considered by the models and ENMs built for 

biological control agents whose abilities to adapt to different climatic conditions are not 

really known, among other possible situations. Therefore, a good or bad climatic match 

should always be interpreted with caution and contrasted with other lines of evidence. 

Hence, further efforts to understand relevant aspects of the biology and ecology of G. 

decoris are necessary to understand its potential as a biological control agent. 
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7. TABLES 

Table 1. Information on the climatic variables in the ecoregions occupied by Gargaphia 

decoris in the native range and in the NITF ecoregion (New Zealand). Variables in grey 

and with an asterisk are variables with high discrepancy. 

 

8. FIGURE LEGENDS 

Fig. 1 Suitability in Africa for the areas where Solanum mauritianum is considered a 

problematic invader for the establishment of Gargaphia decoris. a-b. South Africa, 

Madagascar, Mauritius and Reunion islands; c-d.  Uganda and Kenya. Red areas 

represent suitable conditions with climatic conditions not outside the native range; 

orange areas suitable conditions with novel climatic conditions; blue dots confirmed 

records, green pentagons unconfirmed records, cross-hatching indicates areas where 

Solanum mauritianum is considered a problematic invader. a&c. Models trained with 

native records (a with detail of the two confirmed records outside the red area); b&d. 

Models trained with the full dataset 

Fig. 2 Suitability in Australiasia for the areas where Solanum mauritianum is considered 

a problematic invader for the establishment of Gargaphia decoris. a-b Australia, New 

Zealand and Papua New Guinea. c-d India and Sri Lanka.  Red areas represent suitable 

conditions with climatic conditions not outside the native range; orange areas suitable 

conditions with novel climatic conditions; blue dots confirmed records, cross-hatching 
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indicates areas where Solanum mauritianum is considered a problematic invader. a&c. 

Models trained with native records; b&d. Models trained with the full dataset 

Fig. 3 Suitability of North America for the establishment of Gargaphia decoris. Red 

areas represent suitable conditions with climatic conditions not outside the native range; 

orange areas suitable conditions with novel climatic conditions; cross-hatching indicates 

areas where Solanum mauritianum is considered a problematic invader. a. Model 

trained with native records; b. Model trained with the full dataset 

Fig. 4 Boxplots representing variables with high discrepancy of the ecoregions occupied 

by Gargaphia decoris in the native range of distribution and the NITF ecoregion. Boxes 

represent the upper and lower 25% of the scores and are separated by the median, 

whiskers indicate the variability outside the upper and lower quartiles. Dots indicate 

values for the established populations in New Zealand. 

Fig. 5 Consensus maps (period 2050), on the left using RCP 2.6, on the right using RCP 

8.5. The darker the colour, the more GCM models predict novel climate conditions for 

the area. a-b. Africa, Asia, Oceania and Europe. c-d. Central and North America.  

 

8. SUPPORTING INFORMATION 

Appendix A: Distributional information 

Appendix B: Bioclimatic variable  

Appendix C: Native range of distribution in light green, calibration area of the ENM 

trained with the native dataset in dark green. 

Appendix D: Calibration area of the ENM trained with the full dataset in dark green. 

Appendix E: Results of the PCA used to train the ENM built with the native dataset. 

Appendix F: Results of the PCA used to train the ENM built with the full dataset. 
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Appendix G: Model evaluation information, Table I: native dataset, Table II: full 

dataset. Best model performances for the criteria considered are in red, orange and 

yellow (in decreasing order of performance). The chosen settings are in blue. 

Appendix H: Boxplots representing variables without high discrepancy.  
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Solanum mauritianum is an invasive weed that is causing serious problems in 

many regions of the world. Through ecological niche models prospects of Gargaphia 

decoris as biocontrol agent are explored. 
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