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We deal with randomness quantifiers and concentrate on their ability to discern the
hallmark of chaos in time series used in connection with pseudo-random number
generators (PRNGs). Workers in the field are motivated to use chaotic maps for
generating PRNGs because of the simplicity of their implementation. Although there
exist very efficient general-purpose benchmarks for testing PRNGs, we feel that the
analysis provided here sheds additional didactic light on the importance of the main
statistical characteristics of a chaotic map, namely (i) its invariant measure and (ii) the
mixing constant. This is of help in answering two questions that arise in applications:
(i) which is the best PRNG among the available ones? and (ii) if a given PRNG turns
out not to be good enough and a randomization procedure must still be applied to it,
which is the best applicable randomization procedure? Our answer provides a comparative
analysis of several quantifiers advanced in the extant literature.
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1. Introduction

Chaos theory started more than 30 years ago and changed our world
view regarding the role of randomness and determinism. As the statistical
characteristics of chaotic systems were better understood (Lasota & Mackey 1994;
Brown & Chua 1996; Beck & Schlögl 1997; Setti et al. 2002), a wide variety
of situations emerged in which chaos, instead of stochastic systems, became a
‘controller of noise’.
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Chaos illustrates the rather striking fact that complex behaviour arises from
simple rules when nonlinearities are present. Since simple chaotic maps are
capable of generating stochastic-like signals, implementations based on chaotic
systems are usually less involved than those based on more complex algorithms
(Stojanovski & Kocarev 2001; Kocarev & Jakimoski 2003). One tries to apply this
notion to generate pseudo-random number generators (PRNGs) because random
numbers are widely used not only in cryptography and Monte Carlo applications
but also in less obvious applications (Pecora et al. 1990; L’Ecuyer 1994; Kocarev &
Parlitz 1995; Hidalgo et al. 2001; Fernandez et al. 2003). We mention just a
couple of them. (i) In spread spectrum techniques, a binary signal is mixed with
a random number sequence, to spread the spectrum over a wider frequency range.
Using different random number sequences, it is possible to share a communication
channel among several users (Mazzini et al. 1997; Dinan & Jabbari 1998; Shan
et al. 2006; De Micco et al. 2007). Reduction of electromagnetic interference
is another important benefit of the spread spectrum effect (Setti et al. 2000;
Callegari et al. 2002). (ii) Consider a low-frequency signal immersed in a high-
frequency digital noise. Sampling at time intervals defined by a random number
sequence, the resultant signal becomes filtered without using any coil or capacitors
that are expensive, especially in power systems (Petrocelli et al. 2007).

Truly random numbers are not attainable from computers, and it is unlikely
that we will ever be able to get them from ‘natural’ sources, since one
commonly assumes that any system is governed by underlying physical rules and
consequently it is deterministic. A successful strategy to build up a PRNG is to
start with the time series of a simple nonlinear chaotic map and to apply to it an
adequate randomizing procedure so as to ‘heighten/boost’ its stochastic nature.
Such strategy requires a quantitative evaluation of the improvement achieved
after effecting the procedure. González et al. (2005) used the statistical complexity
measure originally proposed by López-Ruiz et al. (1995) and later modified
by Lamberti et al. (2004) to quantify the effectiveness of such randomizing
modus operandi when applied to a Lorenzian chaotic system. It was also shown
there that a widely employed course of action—the mixing of two chaotic
signals—is not effective in this respect, contrary to what one might expect.
In this vein, it is important to note that general-purpose tests available in
the open literature (http://csrc.nist.gov/rng/; http://stat.fsu.edu/pub/diehard/;
http://www.iro.umontreal.ca/∼simardr/random.html) are not designed taking
into account the particular characteristics of a chaotic map. Instead, one can
appreciate in Rosso et al. (2007a) the fact that the deterministic nature of chaotic
dynamics leaves special manifestations in the associated time series, which can
be revealed only by recourse to adequate statistical quantifiers.

De Micco et al. (2008) randomized chaotic maps by means of two different
randomizing procedures, namely discretization and skipping. The idea of
concocting an ‘information’ plane, called the entropy-complexity plane, was
advanced in order to use it as a means to ascertain the effectiveness of each
of these two modi operandi. The main difference of this information plane from
other complexity-entropy diagrams is the joint use of two different probability
distribution functions (PDFs) in it, both associated to the pertinent time series.

Other important tools at our disposal are to be mentioned as well. In a recent
and excellent report, Marwan et al. (2007) reviewed applications of so-called
recurrence plots for a wide variety of fields and endeavours. They also proposed
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several measures to quantify the recurrence plots’ characteristics (Marwan et al.
2007). Additionally, two useful information-theoretic quantifiers of randomness,
the rate entropy and the excess entropy, were proposed in Feldman et al. (2008)
as coordinates of a complexity-entropy diagram.

In the present work, we explore combinations of all the above-mentioned
quantifiers with the purpose of answering the following questions: (i) among
several chaotic maps, just which is the one that generates the best time series?
and (ii) which is the best strategy—discretization or skipping—to randomize a
given chaotic time series? The ensuing quantifiers testing will be performed by
means of two representative chaotic maps (and their iterates).

The paper is organized as follows: the statistical properties of a chaotic map and
its iterates are reviewed in §2. Section 3 describes each of the analysed quantifiers.
Section 4 deals with results for two representative maps and, finally, conclusions
are presented in §5.

2. Statistical properties of a chaotic map

Let f be a chaotic map on the interval [0, 1]. Suppose the map has an invariant
measure μ(x). Then the map is ergodic if for any integrable test function Q(x),
and for an arbitrary initial condition x0 (up to a set of zero μ-measure), the time
average is equal to the ensemble average

Q̄ = hQi. (2.1)

Equation (2.1) is a consequence of the famous Birkhoff ergodic theorem (Cornfeld
et al. 1982). Mixing is an even stronger requirement than ergodicity. A map
is called ‘mixing’ if any smooth initial probability density ρ(x) converges to
the invariant measure μ(x) after enough successive iterations. Mixing implies
ergodicity. The reverse, however, is not true (Beck 1990).

There exists an equivalent definition of mixing via correlation functions. Let
φ1(x) and φ2(x) be two integrable test functions and define the generalized
correlation function of the map f by

C (φ1, φ2, n) = lim
J→∞

1
J

J−1X
j=0

φ1(xj+n)φ2(xj) − hφ1ihφ2i, (2.2)

where

hφii = lim
J→∞

1
J

J−1X
j=0

φi(xj). (2.3)

The map is mixing if, for arbitrary φ1 and φ2,

lim
n→∞ C (φ1, φ2, n) = 0. (2.4)

Let us stress that it is not easy to prove that f is a mixing map
because the mixing condition given in equation (2.4) must be fulfilled for
arbitrary test functions. Formally, every mixing map f has an associated
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Perron–Frobenius operator L (Beck 1990) that determines the time evolution of
any initial density ρ0(x) towards the invariant measure μ(x)

ρn+1 = L[ρn]. (2.5)

The explicit formal expression for the Perron–Frobenius operator for a one-
dimensional map f is given by (Beck 1990)

L[ρy] =
X

x²f −1(y)

[ρ0(x)]
|f 0(x)| . (2.6)

This operator L has a set of eigenfunctions ψα(x) and eigenvalues ηα. The
invariant measure μ(x) is the eigenfunction corresponding to the largest
eigenvalue η0 = 1. The full set of eigenfunctions and eigenvalues may be used
as a basis to express any density

ρ0(x) =
X

α

cαψα(x),

ρn(x) = Lnρ0(x) =
X

α

ηn
αcα = c0ψ0(x) + Rn . (2.7)

The eigenvalue with the second largest absolute value, η1, has a ‘distinguished’
physical meaning: it is related with the mixing constant rmix that governs the
relaxation of exponentially mixing maps

|Rn | ∼ |η1|n ∼ exp
µ

− n
rmix

¶
. (2.8)

The invariant measure μ(x) gives the histogram of the time series, and the
ideal PRNG must have μ(x) = const. The mixing constant rmix gives the transient
characteristic time (Mazzini et al. 1997; Rovatti et al. 2004a,b; De Micco et al.
2007; Petrocelli et al. 2007), and its ideal value is rmix = 0. In many applications
of PRNGs, both the invariant measure and the mixing constant are relevant.

The analytical expression of the invariant measure μ(x) of a given map f
is usually not known. Exceptions are the logistic map in full chaos and the
piecewise-linear maps. The mixing constant rmix has been analytically obtained
only for piecewise-linear maps. For other maps, it must be numerically obtained
by means of a piecewise-linear approximation of the map (Lasota & Mackey 1994;
Beck & Schlögl 1997).

It is then obviously convenient to have quantifiers for measuring the uniformity
of the invariant measure μ(x), and the mixing constant rmix, for any chaotic map.
These quantifiers are useful to compare time series coming from different chaotic
maps and also to assess the improvements produced by randomization procedures.

It is possible to show that the invariant measure of f d is identical to the
invariant measure of f . Also, the mixing constant rmix for f d is lower than
the mixing constant for f . The iteration of a map is one of the randomization
procedures proposed in the literature, being used to diminish rmix. This procedure
is also known as skipping because iterating is tantamount to skipping values in
the original time series, which does not change μ(x) and, consequently, is not
conductive to a randomization of chaotic maps with μ(x) 6= const. In this paper,
we will use ‘skipping’ as a method of quantifier analysis.
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3. Quantifiers for the invariant measure and mixing constant

In this section, we review several quantifiers proposed for measuring the main
statistical properties of chaotic PRNGs. The quantifiers are classified according to
their origin into three classes: (i) quantifiers based on information theory (López-
Ruiz et al. 1995; Lamberti et al. 2004; Rosso et al. 2007a), (ii) quantifiers based on
recurrence plots (Eckmann et al. 1987; Marwan et al. 2007), and (iii) quantifiers
based on intrinsic computation (Feldman et al. 2008).

(a) Quantifiers based on information theory

They are appropriate functionals of the PDF. Let {xi} be the time series under
analysis, with length M . There are infinite possibilities to assign a PDF to a
given time series, a subject that will be given due consideration below. In the
meantime, suppose that the PDF is discrete and is given by P = {pi ; i = . . . , N }.
One then defines various quantities, as follows.

(i) Normalized Shannon entropy H [P]. Let S [P] be the Shannon entropy

S [P] = −
NX

i=1

pi ln(pi). (3.1)

It is well known that the maximum Smax = ln(N ) is obtained for
Pe = {1/N , . . . , 1/N }, that is, the uniform PDF. A ‘normalized’ entropy
H [P] can also be defined in the fashion

H [P] = S [P]/Smax. (3.2)

(ii) Statistical complexity measure. A full discussion about statistical
complexity measures exceeds the scope of this presentation. For a
comparison among different complexity measures, see the excellent paper
by Wackerbauer et al. (1994). In this paper, we adopt the definition of the
seminal paper of López-Ruiz et al. (1995) with the modifications advanced
in Lamberti et al. (2004) so as to ensure that the concomitant SCM version
becomes (i) able to grasp essential details of the dynamics, (ii) an intensive
quantity, and (iii) capable of discerning both among different degrees of
periodicity and chaos (Rosso et al. 2007a). The ensuing measure, to be
referred to as the intensive statistical complexity, is a functional C [P]
that reads

C [P] = QJ [P, Pe] · H [P], (3.3)

where QJ is the ‘disequilibrium’, defined in terms of the so-called extensive
Jensen–Shannon divergence (which induces a squared metric; Lamberti
et al. 2004). One has

QJ [P, Pe] = Q0 · {S [(P + Pe)/2] − S [P]/2 − S [Pe]/2}, (3.4)

with Q0 a normalization constant (0 ≤ QJ ≤ 1) that reads

Q0 = −2
½µ

N + 1
N

¶
ln(N + 1) − 2 ln(2N ) + ln N

¾−1

. (3.5)
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We see that the disequilibrium QJ is an intensive quantity that reflects
on the system’s ‘architecture’, being different from zero only if there
exist ‘privileged’, or ‘more likely’ states among the accessible ones. C [P]
quantifies the presence of correlational structures as well (Martin et al.
2003; Lamberti et al. 2004). The opposite extremes of perfect order
and maximal randomness possess no structure to speak of and, as a
consequence, C [P] = 0. In between these two special instances, a wide
range of possible degrees of physical structure exist, degrees that should
be reflected in the features of the underlying probability distribution. In
the case of a PRNG, the ‘ideal’ values are H [P] = 1 and C [P] = 0.

As pointed out above, P itself is not a uniquely defined object, and several
approaches have been employed in the literature so as to ‘extract’ P from the
given time series. Just to mention some frequently used extraction procedures: (i)
time series histogram (Martin 2004), (ii) binary symbolic dynamics (Mischaikow
et al. 1999), (iii) Fourier analysis (Powell & Percival 1979), (iv) wavelet transform
(Blanco et al. 1998; Rosso et al. 2001), (v) partition entropies (Ebeling & Steuer
2001), (vi) permutation entropy (Bandt & Pompe 2002; Keller & Sinn 2005),
(vii) discrete entropies (Amigó et al. 2007), etc. There is ample liberty to choose
among them. De Micco et al. (2008) proposed two probability distributions as
relevant for testing the uniformity of μ(x) and the mixing constant: (i) a P based
on time-series’ histograms and (ii) a P based on ordinal patterns (permutation
ordering) that derives from using the Bandt–Pompe method (Bandt & Pompe
2002).

For extracting P via the histogram, one divides the interval [0, 1] into a finite
number Nbin of non-overlapping subintervals Ai : [0, 1] = ∪Nbin

i=1 Ai and Ai ∩ Aj =
∅ ∀i 6= j . Note that N in equation (3.1) is equal to Nbin. Of course, in this approach,
the temporal order of the time series plays no role at all. In this paper, the
quantifiers obtained via the ensuing PDF are called H (hist) and C (hist). Let us
stress that for time series within a finite alphabet, it is relevant to consider an
optimal value of Nbin (e.g. De Micco et al. 2008).

In extracting P by recourse to the Bandt–Pompe method, the resulting
probability distribution P is based on the details of the attractor-reconstruction
procedure. Causal information is, consequently, duly incorporated into the
construction process that yields P. In this paper, the quantifiers obtained via
the ensuing PDF are called H (BP) and C (BP). A notable Bandt–Pompe result
consists in getting a clear improvement in the quality of information theory-
based quantifiers (Larrondo et al. 2005, 2006; Kowalski et al. 2007; Rosso et al.
2007a,b, 2008; Zunino et al. 2007, 2008).

The extracting procedure is as follows. For the time series {xt : t = 1, . . . , M }
and an embedding dimension D > 1, one looks for ‘ordinal patterns’ of order D
(Bandt & Pompe 2002; Keller & Lauffer 2003; Keller & Sinn 2005) generated by

(s) 7→ ¡
xs−(D−1), xs−(D−2), . . . , xs−1, xs

¢
, (3.6)

which assign to each ‘time s’ a D-dimensional vector of values pertaining to
the times s, s − 1, . . . , s − (D − 1). Clearly, the greater the D-value, the more is
the information on ‘the past’ incorporated into these vectors. By the ‘ordinal
pattern’ related to the time (s), we mean the permutation π = (r0, r1, . . . , rD−1)
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of (0, 1, . . . , D − 1) defined by

xs−rD−1 ≤ xs−rD−2 ≤ · · · ≤ xs−r1 ≤ xs−r0 . (3.7)

In order to get a unique result, we consider that ri < ri−1 if xs−ri = xs−ri−1 . Thus,
for all the D! possible permutations π of order D, the probability distribution
P = {p(π)} is defined by

p(π) = ]{s|s ≤ M − D + 1; (s) has type π}
M − D + 1

. (3.8)

In the last expression, the symbol ] stands for ‘number’.
The advantages of the Bandt–Pompe method reside in (i) its simplicity, (ii) the

associated extremely fast calculation process, (iii) its robustness in the presence
of observational and dynamical noise, and (iv) its invariance with respect to
nonlinear monotonous transformations. The Bandt–Pompe methodology is not
restricted to a time-series representative of low-dimensional dynamical systems
but can be applied to any type of time series (regular, chaotic, noisy or reality
based), with a very weak stationary assumption (for k = D, the probability for
xt < xt+k should not depend on t; Bandt & Pompe 2002). One also assumes
that enough data are available for a correct attractor reconstruction. Of course,
the embedding dimension D plays an important role in the evaluation of
the appropriate probability distribution because D determines the number of
accessible states D!. Also, it conditions the minimum acceptable length M À D!
of the time series that one needs in order to work with a reliable statistics. In
relation to this last point, Bandt and Pompe suggest, for practical purposes,
working with 3 ≤ D ≤ 7 with a time lag τ = 1. This is what we do here (in the
present work D = 6 is used).

(b) Quantifiers based on recurrence plots

Recurrence plots were introduced by Eckmann et al. (1987) so as to visualize
the recurrence of states during phase space evolution. The recurrence plot is a two-
dimensional representation in which both axes are time ones. The recurrence of a
state appearing at two given times ti , tj is pictured in the two-dimensional graph
by means of either black or white dots, where a black dot signals a recurrence. Of
course only periodic continuous systems will have exact recurrences. In any other
case, one detects only approximate recurrences, up to an error ². The so-called
recurrence function can be mathematically expressed as

R(i, j) = Θ (ε − kEx(i) − Ex(j)k) , (3.9)

with Ex(i) ∈ <m and i, j = 1, . . . , N , N being the number of discrete states Ex(i)
considered, k · k is a norm and Θ(·) is the Heaviside step function.

In the particular case of the PRNGs analysed in this paper, only 1D series are
considered, but the recurrence function idea can be extended to D-dimensional
phase spaces or even to suitably reconstructed embedding phase spaces. Of course,
the visual impact produced by the recurrence plot is insufficient to compare the
quality of different PRNGs because of the ‘small-scale’ structures that may be
present in our scenario. Several kinds of measures have been defined to quantify
these small-scale structures (Marwan et al. 2007), each measure being a functional
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of the recurrence function (equation (3.9)). In this paper, two kinds of recurrence
plot measures are considered.

(i) Measures based on the recurrence density (measured by the number of points
in the recurrence plot). In this paper, we use the recurrence rate (RR),
given by

RR(ε) = 1
N 2

NX
i,j=1

Rij(ε) . (3.10)

Note that in the limit N → ∞, RR is the probability that a state recurs to
its ε-neighbourhood in phase space. For PRNGs, the ideal value would be
RR = 0. But in practice, if no points are to be found in the recurrence plot,
a larger ε must be adopted in order that the quantifier may make sense.

(ii) Diagonal measures. These are measures related to the histogram P(ε, l) of
diagonal line lengths, given by

P(ε, l) =
NX

i,j=1

[1 − Ri−1,j−1(ε)] [1 − Ri+l ,j+l(ε)] ·
l−1Y
k=0

Ri+k,j+k(ε) . (3.11)

Processes with uncorrelated or weakly correlated behaviour originate no
(or just very short) diagonals, whereas deterministic processes give rise to
‘long’ diagonals and smaller amount of single, isolated recurrence points.
In this paper, three measures based on the statistics of diagonal lines are
considered.
(a) The deterministic quantifier DET. The ratio of recurrence points that

form diagonal structures of at least length lmin to all recurrence points

DET =
PN

l=lmin
l · P(ε, l)PN

l=1 l · P(ε, l)
. (3.12)

(b) The average diagonal line length L given by

L =
PN

l=lmin
l · P(ε, l)PN

l=lmin
P(ε, l)

. (3.13)

(c) The entropy ENTR given by

ENTR = −
NX

l=lmin

P(ε, l) ln P(ε, l). (3.14)

(c) Quantifiers based on intrinsic computation

We consider in this paper two quantifiers introduced in Feldman et al. (2008),
i.e. the entropy rate hμ and the entropy excess E. They are defined for time series
with a finite alphabet A, which is not a limitation because the xi ’s may be thought
of as real numbers only in analytical studies. In any practical case, they are in
fact floating point numbers and, consequently, they have only a finite number
of allowed A-values. A subsequence sL = {xi , xi+1, . . . , xi+L} is called an L-block.
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Let P(sL) denote the probability of a particular L-block. Then the block entropy
H (L) is

H (L) ≡ −
X
sL

P(sL) log2 P(sL). (3.15)

The sum runs over all possible blocks of length L > 0 and H (0) ≡ 0 by definition.
For stationary processes and sufficiently large L, H (L) ∼ L. On the other hand,
the entropy rate hμ is defined as

hμ(L) = H (L)

L
hμ = lim

L→∞
hμ(L). (3.16)

The entropy rate is also known as the metric entropy in dynamical systems
theory and it is equivalent to the thermodynamic entropy density familiar from
equilibrium statistical mechanics (Feldman et al. 2008). The entropy rate provides
a reliable and well-understood measure of the randomness or disorder intrinsic to
a process. However, this tells us little about the underlying system’s organization,
structure or correlations. A measure of the system’s organization may be obtained
by looking at the manner in which hμ(L) converges to its asymptotic value hμ.
When only observations over length L-blocks are taken into account, a process
appears to have an entropy rate of hμ(L) larger than the asymptotic value of hμ.
As a result, the process seems to be of a more random nature than it really is
by the ‘excess’ amount of hμ(L) − hμ bits. Summing these entropy over estimates
over L, one obtains the excess entropy (Crutchfield & Packard 1983)

E ≡
∞X

L=1

[hμ(L) − hμ] . (3.17)

(d) Expected behaviour for PRNG

Summing up, the quantifiers to be compared here are: H (hist), C (hist), H (BP),
C (BP), RR, DET, ENTR, L, hμ and E. These quantities should tell us how good
our PRNG is as compared to the ideal condition μ(x) = const., rmix = 0. H (hist)

is the natural quantifier to measure a non-constant μ(x), with value 1 for the
ideal PRNG. It does not depend on the order of appearance of a given time-series
event, but only on the number of times such event takes place. As for H (hist), it is
not able to uncover any change in rmix-values. Thus, to get a good representation
plane, we ought to demand a quantifier that changes with rmix and not with μ(x).
To look for such a kind of quantifier, we must study H (hist), C (hist), H (BP), C (BP),
RR, DET, ENTR, L, hμ and E as functions of rmix. A family of iterated maps f d

may be used to that end because they share the same invariant measure and rmix
is a decreasing function of d. The best quantifier for rmix would be that which
has maximal variation over the entire family of maps.

4. Application to logistic map and three-way Bernoulli map

In this section, we present results for the families of iterates of two chaotic well-
known maps, the logistic map (LOG) and the three-way Bernoulli map (TWB),
that have been selected, among other possibilities, because they are representative
of two different classes of systems.
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Table 1. Mixing constant (rmix as a function of the iteration-order d for LOG and TWB).

d TWB LOG

1 0.56789 0.333333333
2 0.31848 0.111111111
3 0.13290 0.037037037
4 0.05788 0.012345679
5 0.03646 0.004115226
6 0.01791 0.001371742
7 0.01152 0.000457247
8 0.00515 0.000152416

(i) LOG is given by
xn+1 = 4xn(1 − xn), (4.1)

and its natural invariant density can be exactly determined, being
expressed in the fashion

ρinv(x) = 1
π

√
x(1 − x)

. (4.2)

LOG is paradigmatic because it is representative not only of maps with
a quadratic maximum, but also emerges when the Lorenz procedure is
applied to many continuous attractors with basins that may be approached
with the Lorenz method via a one-dimensional map (like the Lorenz,
Rossler and Colpits ones among others). A non-uniform natural invariant
density is an important feature in this instance (Beck & Schlögl 1997).
The ensuing rmix-values are also displayed in table 1. They have been
obtained by recourse to the transfer operator method, as described in
Beck & Schlögl (1997).

(ii) TWB is given by

xn+1 =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

3xn if 0 ≤ xn ≤ 1
3

3xn − 1 if
1
3

< xn ≤ 2
3

3xn − 2 if
2
3

< xn ≤ 1.

(4.3)

TWB is representative of the class of piecewise-linear maps as, for example,
the four-way tailed shift map, the skew tent map, the three-way tailed shift
map, etc. All these maps share a uniform natural invariant density (Beck &
Schlögl 1997). The mixing constant rmix of the whole family of maps f d is
given by rd

mix = (1/3)d (table 1).

For the evaluation of the different quantifiers, we used files with M = 50 × 106

floating point numbers. In the Band–Pompe approach, we consider D = 6 while
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Figure 1. Information theory quantifiers as functions of rmix: (a) LOG; (b) TWB. Squares, H (hist);
right triangles, H (BP); left triangles, C (hist); circles, C (BP).

for histograms we have taken Nbin = 216. All recurrence plots measures depend on
several parameters.

(i) The dimension De of the embedding space. In this paper De = 1.
(ii) ε, a parameter crucial so as to define just when recurrences occur. We

adopted ε = 1/(216 − 1) corresponding to 16-bit numbers.
(iii) lmin is the minimum length accepted for diagonal lines. lmin = 2 is used in

this paper for all diagonal measures except for L (lmin = 1 is used for L).
(iv) N is the number of values used for each realization. In this paper, values

of RR, DET, ENTR and L are mean values over 10 surrogate series with
N = 10 000 data each.

Figures 1–3 illustrate the behaviour of all the quantifiers for the iterates of LOG
(figures 1a, 2a and 3a) and the iterates of TWB (figures 1b, 2b and 3b). These
figures show that the following quantifiers are the ones usable for measuring rmix:
C (BP), DET, ENTR and L. On the other hand, the following quantifiers depend
on the invariant density, but they do not depend on rmix: H (hist), C (hist) and RR.
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Figure 2. Recurrence plots quantifiers as functions of rmix: (a) LOG; (b) TWB. Squares, RR;
circles, L; up triangles, DET; right triangles, ENTR.

Intrinsic computation quantifiers display a completely different behaviour for
LOG and for TWB. In LOG, both quantifiers have no dependence with rmix, but
in TWB, hμ decreases as rmix increases while E is an increasing function of rmix.
Thus, these parameters do not seem to be convenient ones.

Comparing LOG with TWB by recourse to these parameters shows that TWB
is slightly better than LOG. The problem with TWB and with other piecewise-
linear maps is they are not realistic enough and that their implementation is more
involved than for other maps like LOG.

As an application of the above quantifiers, we study two usual randomization
procedures by means of the representation plane depicted in figure 4, employing
a quantifier depending on μ(x) as x-axis (H (hist) is selected) and a quantifier
depending on rmix as y-axis (DET is selected). The first procedure is skipping and
the second one is discretization (De Micco et al. 2008). Skipping has been used as
a randomization procedure for piecewise-linear maps. The representation plane
evidences the fact that this procedure is better than discretization because these
maps already have the ideal invariant measure (they have H (hist) = 1) and only rmix
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Figure 3. Intrinsic computation quantifiers as functions of rmix: (a) LOG; (b) TWB. Squares, E;
circles, hμ.

must be diminished to get the ideal PRNG. Figure 4b shows that discretization
is a better procedure for LOG because the ideal point [1, 0] is not reached by
skipping.

5. Conclusions

In summary, we were able to show here the following.

(i) Two classes of quantifiers are required for the evaluation of the quality
of a PRNG: (i) quantifiers depending on rmix only (and not on μ(x)), like
H (hist), C (hist) and RR and (ii) quantifiers depending on μ(x) only (and not
on rmix), as C (BP), H (BP), DET, L and ENTR.

(ii) Intrinsic computation quantifiers are dependent on both μ(x) and rmix and
then they are not convenient for PRNG analysis with our methodology.

(iii) Representation planes with one quantifier of each class as coordinate axis
allow for different chaotic PRNGs to be compared with each other so as to
determine the best one. Furthermore, these representation planes permit
one to judiciously select the best randomizing procedure.
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Figure 4. DET as a function of H (hist), as evaluated in De Micco et al. (2008), for both
randomization procedures applied to: (a) LOG; (b) TWB. Squares and dashed lines, discretization;
circles and solid lines, skipping.

Our present results are consistent with those of previous works (Gonzalez et al.
2005; Larrondo et al. 2005; De Micco et al. 2008).
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