
Intel® Cluster Checker Multi-Language API

Mateo Guzmán, Matias Cabral, Cesar Martinez Spessot
Argentina Software Development Center

Intel Argentina

INTRODUCTION
Intel® Cluster Checker (CLCK) is a tool that verifies the configuration, measures performance and validates compliance of the Intel® 
Cluster Ready Specification in Linux-based clusters. With more than 100 tests-modules CLCK performs a wide range of cluster 
evaluations. It assesses firmware, kernel, storage, and network settings and also stresses compute nodes and network using multiple 
benchmarks. 
Customized checks can be created and integrated to the execution of the tool though an API provided for that purpose. However, this
test modules should be written in Perl* programming language.
This work proposes a new component of CLCK called Intel® Cluster Checker Multilanguage API (CLCK_Multilang_API), which allows
users and developers to write their tailored test modules in arbitrary programming languages and add them to the execution of the tool.
Two example languages, Perl* and Python were used as references for this project.
The solution includes some mixing of technologies such as SWIG, native C APIs of each language, and Java Script Object Notation
(JSON) .

CONCLUSIONS
The solution proves that it is possible to write test modules in different programming languages and integrate them to the execution of
Intel® Cluster Checker. For simplicity matters, Python and Perl* where used as reference, however, the architecture allows adding support
for new languages with little effort.
Although some performance is lost due to the test-modules communication and data structures conversion, the flexibility improvement 
is worth this loss of performance. This API can be implemented as an optional feature of the tool, not affecting performance unless the 
user requires to use it.
The research will continue adding support for new languages and reducing the execution time.

Intel® Cluster Checker Architecture

Test modules communication

Data messaging

Intel® Cluster Checker Multilanguage API

Performance Analysis

AKNOWLEDGEMENTS
Thanks to the Argentina Cluster Engineering Team (Intel) for giving the opportunity and space for this research project.

Intel® Cluster Checker consists of an engine
(CLCK Engine) and a set of test modules. The
engine accepts as input the list of cluster nodes
and a configuration file. For each test module it
gathers the information needed and controls it
against a specified criteria to define if the test is
successful or not

A C library “interoperability” is used  as 

intermediate to communicate CLCK 
Engine (Perl*) and test modules (Perl or 
Python).  
SWIG allows to execute C code from 
Perl or Python. 
Perl API and Python API are used to 
execute test modules routines from the 
C library.

Data needs to be transmitted from CLCK Engine 
to the test modules and vice verse. 
Since each language have different data types 
and/or treat the data types in a different manner, 
a mapping between them must be defined.
Java Script Object Notation (JSON) is used as 
data interchange format.

Three new modules (Utils, Common, Node) were created for each language in order to work as a 
façade of the original modules. They provide the “Utils”, “Common” and “Node” functionality 

encapsulating the encoding/decoding process. 
Finally a Message module was created for each language which contains the status of the test-
modules to be returned to the CLCK Engine. 

The solution introduces an overhead in the 
execution of the tool mainly caused by the 
data structures conversion which is done 
twice for each call to a test module. 
This overhead increments the execution time 
by 1.45 times compared with the regular 
CLCK execution. This figure is the result of 
executing multiple times a test module with 
the current version of the tool and using the 
new API.

When CLCK Engine 
needs to call a test-
module routine, 
encodes the parameters 
(JSON) and calls the 
functionality provided by 
Interoperability C Library 
(ICL) exposed by SWIG.
A proxy module was 
created for each 
language to encapsulate 
the JSON encoding / 
decoding and 
dynamically call the 
required test module´s 
routine .  

Perl Data Structures

JSON

Python Data Structures

ENCODE

ENCODE

DECODE

DECODE

CLCK Engine 

SWIG

Perl API Python API

Interoperability

Python Module

SWIG

…

CLCK::Common

Perl API

… Perl Module

CLCK::Functionality::Utils CLCK::Functionality::Node

Perl_proxy Utils Common Node Python_proxy Utils Common Node

SWIG

Perl 
Python 
C 

CLCK::Message CLCK.Message

40JAIIO - HPC 2011 - ISSN: 1851-9326 - Página 158


