Environment for the Automatic Development
and Tuning of Parallel Genetic Algorithms

Paola Caymes-Scutari and German Bianchini

Laboratorio de Investigacién en Cémputo Paralelo/Distribuido (LICPaD)
Departamento de Ingenieria en Sistemas de Informacién, Facultad Regional Mendoza
Universidad Tecnolégica Nacional. (M5502AJE) Mendoza, Argentina.

Abstract. The use of high performance computing has been gaining
more and more followers in the different branches of Science and Engi-
neering given the potential offered to deal with complex and big prob-
lems, and the increasing economic facilities to configure some kind of
parallel machine. However, the parallel programming paradigm involves
additional aspects to the merely functional which could provoke different
kinds of bottlenecks in the performance of the applications. Such difficul-
ties may represent critical obstacles specially for the non-expert users.
In this paper we present an environment to provide general support for
the automatic development and tuning of parallel applications. The en-
vironment provides an interface to guide the user in the specification of
the problem and the solution, which makes transparent the process of
code generation and instrumentation. Because the parallelization of any
problem/solution is hard to generalize, the environment tackles differ-
ent classes of problems. In this article, we introduce the class of Parallel
Genetic Algorithms.

1 Introduction

The efficient use of parallel systems presents different limitations in particular
for general and non-expert users, given the amount of aspects involved by the
paradigm, such as concurrency, parallel programming models, the synchroniza-
tion, the communications and the different kinds of middleware, among others.
In addition, there is a set of additional concepts which are crucial to the suitable
behaviour of the parallel application: the decomposition and mapping techniques,
the granularity, the concurrency degree, the load balancing, the scalability, etc.
[5]. Through the years, different approaches and/or tools appeared to make eas-
ier the task of the user. The more significant approaches to our field of study
are on the one hand the communication libraries such as PVM [2] or MPI [6]
which encapsulate the communication primitives, and on the other hand the
skeletons to implement certain parallel behaviour patterns [1, 7,8, 10]. However,
even though these approaches offer facilities at certain levels, they also present
certain restrictions and require a certain degree of knowledge about the concepts
related to concurrency and parallelism in order to carry out an adequate imple-
mentation of the program. The main reason why these limitations are present is

40JAIIO - HPC 2011 - ISSN: 1851-9326 - Pagina 17



related to the diverse nature of each problem and of each execution environment,
which makes more difficult the automation of the development and performance
improvement processes. Such limitations have motivated the development of an
environment (presented in Section 2) to provide support and automation in the
generation and tuning of classes of parallel applications, by taking profit from
common structures and techniques to decompose, assign, compute and commu-
nicate.

In particular, the environment includes the class of Parallel Genetic Algo-
rithms (PGAs) [9]. Genetic algorithms (GAs) use techniques inspired by evo-
lutionary biology such as inheritance, mutation, selection, and crossover [3]. A
typical GA is initialized with a population of random guesses and directs the
population (along a series of time steps or generations) toward convergence at
the global optimum. In each generation, the fitness of every individual in the
population is evaluated, multiple individuals are stochastically selected from the
current population (based on their fitness), and modified (recombined and pos-
sibly randomly mutated) to form a new population. The new population is then
used in the next iteration of the algorithm. The fitness function is defined over
the genetic representation, it measures the quality of the represented solution,
and it is always problem dependent. The GA stops after a predetermined num-
ber of iterations or when a termination condition is satisfied. In order to exploit
this search method and explore the search space in parallel, we consider in par-
ticular the class of PGAs which involves multiple populations (or islands) and
incorporates the migration operator [9]. In this approach, the general idea is to
execute several single GAs in parallel and to apply an additional genetic op-
erator, the migration, to interchange the characteristics of the populations at
certain regular periods of time. The migration can be applied in different man-
ners and following diverse criteria to determine which individual to migrate and
which one to replace. In this way, new search spaces could be explored at each
population. This approach is frequently called island model.

2 Automatic Development and Tuning Environment

A completely automatic parallelization of any application is a hard (if not im-
possible) task, as mentioned before. This is why the presented environment for
the automatic development and tuning of parallel applications deals with classes
of problems, and obeys to a cooperative approach. Thus, on the one hand the
intervention of the user is required for the characterization of the pair problem-
solution. And on the other hand, the environment is prepared to: i) provide the
means to guide and assist the users in depicting the pair problem-solution, ii)
formalize in a specification the information provided by the user, iii) support the
automatic generation of the parallel application by combining the information
provided by the user and the corresponding skeleton of the class of problem, and
iv) provide the support to automatically tune the behaviour of the application.
From the architectural point of view, the environment is mainly divided into
two modules: an interface to guide the user along the problem specification

40JAIIO - HPC 2011 - ISSN: 1851-9326 - Pagina 18



process, and a translator that transforms the specification into the tunable
parallel application. The specification language has been defined by abstracting
the elements and the parameters of the class of problem under consideration.

The interface (or first module) takes as input the entities described by the
user. The first objective of this module is to provide a clear and intuitive interface
to the non expert user, thereby facilitating the characterization of the problem
and its solution so that the subsequent generation of the source code of the
application is transparently carried out. The interface assists the user in the
process of entering the parameters and operators of the PGA without need for
the user to have specific knowledge relating to the specification language, the
programming one, or even without knowing the appearance of the code that will
constitute the automatically generated parallel application. For the majority
of the parameters and operators, the interface provides default values and/or
definitions that facilitate and guide the user’s choices along the initial steps.
In the particular case of the PGAs, some of the parameters to specify are for
example: the fitness function, the termination condition, the type of selection,
the size of the population, the amount of available computational nodes, among
others. The second objective of this interface is to formalize a specification with
the aim of condensing all the obtained information, according to the predefined
syntax for the specification. Such a specification is the output of the first module.
At the same time, it constitutes the input of the second module.

The existence of the specification as an independent unit within the process
of automatic generation of the application is important for two reasons: on the
one hand, it allows completing the specification of the problem in several ses-
sions before building the application. On the other hand, the already existing
specifications can easily being retrieved for making modifications to them or to
generate new specifications from them, allowing for the reuse of some parts of
the specification, such as those relating to the execution environment, population
sizes and individuals, etc.

The translator (or second module) manages the information provided by the
specification for interpreting the skeleton of the PGA. Thus, the fitness function
is included in the corresponding method of the skeleton, the corresponding type
of selection is set, and so on. Once the skeleton is completely filled, the applica-
tion is built. In consequence, the output of the second module is in this case the
PGA application’s source code. Note that the generated application is already
prepared to be dynamically tuned according to the current conditions of the
execution environment, given that the application inherits the instrumentation
inserted into the skeleton for that purpose. The advantage is that the whole
translation, instrumentation and tuning processes are completely transparent to
the user.

The instrumentation inserted into the application for tuning purposes, is
related to the improvement of diverse performance bottlenecks, inherent to the
parallel paradigm, and to the particular class of problem. In this case, we selected
the class of GAs given that the method has been applied to an extremely wide
range of problems [4]. Despite the potential of this search method, it has a

40JAIIO - HPC 2011 - ISSN: 1851-9326 - Pagina 19



series of parameters whose behaviour depends on the problem, the input or the
environment. Some examples are the rate of migration, the selection method,
the rate of mutation, etc. Fortunately, by means of the tuning process, they may
be overcome according to the particular conditions of each execution.

3 Conclusions

The use of parallel/distributed systems is increasing given the computational
power provided to solve big and complex problems. However, the parallelization
of any application is not a trivial task, and the effort of parallelizing an ap-
plication not always ensures an acceptable performance (expected or required).
In this article, we present an environment which provides automatic generation
and tuning of classes of parallel applications. The user cooperates with the en-
vironment by classifying the problem-solution to solve, and by characterizing
the elements necessaries to depict that pair problem-solution. The environment
automatically generates a formal specification encapsulating all the information,
which is used in the following steps for generating the instrumented source code
of the application. In consequence, the user is able to generate a parallel and
tunable application in a transparent manner, even with no knowledge about-
the specification and/or programming languages, the tuning technologies, or the
parallel paradigm issues.

References

1. Bacci, B., Danelutto, M., Orlando, S., Pelagatti, S., Vanneschi, M.: P3L: A
structured high level programming language and its structured support. Con-
currency: Practice and Experience, 7(3), 225-255 (1995)

2. Geist, A., Beguelin, A., Dongarra, J., Jiang, W., Manchek, R., Sunderam, V.:
PVM: Parallel Virtual Machine, A User’s Guide and Tutorial for Network
Parallel Computing. MIT Press. Cambridge, MA (1994)

3. Goldberg, D.E.: Genetic algorithms in search, optimization, and machine learn-
ing. Addison-Wesley, Reading, MA (1989)

4. Goldberg, D.E.: Genetic and evolutionary algorithms come of age. Communi-
cations of the ACM, 37(3), 113-119 (1994)

5. Gramma, A., Gupta, A., Karypis, G., Kumar, V.: Introduction to Parallel
Computing (2nd Ed.). Pearson Addison Wesley (2003)

6. Groop, W., Lusk, E., Skjellum, A.: Using MPI - Portable Parallel Programming
with the Message-Passing Interface (2nd Ed.). The MIT Press (1999)

7. Kulkarni, S.: An intelligent framework for Master-Worker applications in a dy-
namic metacomputing environment. Computer Science Department. University
of Wisconsin - Madison (2001)

8. MacDonald, S., Anvik, J., Bromling, S., Schaeffer, J., Szafron, D., Tan, K.:
From patterns to frameworks to parallel programs. Parallel Computing 28(12),
1663-1684 (2002)

9. Nowostawski, M., Poli, R.: Parallel genetic algorithm taxonomy. KES 1999:
88-92 (1999)

10. Sérot, J., Ginhac, D.: Skeletons for parallel image processing: an overview of
the SKIPPER project. Parallel Computing 28(12), 1685-1708 (2002)

40JAIIO - HPC 2011 - ISSN: 1851-9326 - Pagina 20





