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In an externally applied magnetic field, ultrapure crystals of the bilayer compound Sr3Ru2O7 undergo a
metamagnetic transition below a critical temperature, Tp, which varies as a function of the angle between the
magnetic field H and the Ru-O planes. Moreover, Tp approaches zero when H is perpendicular to the planes.
This putative “metamagnetic quantum critical point,” however, is pre-empted by a nematic fluid phase with
order one resistive anisotropy in the ab plane. In a “realistic” bilayer model with moderate strength local
Coulomb interactions, the existence of a sharp divergence of the electronic density of states near a van Hove
singularity of the quasi-one-dimensional bands, and the presence of spin-orbit coupling results in a mean-field
phase diagram which accounts for many of these experimentally observed phenomena. Although the spin-orbit
coupling is not overly strong, it destroys the otherwise near-perfect Fermi-surface nesting and hence suppresses
spin-density-wave ordering.
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I. INTRODUCTION

The Ruddlesden-Popper series Srn+1RunO3n+1 is a family
of ruthenate materials which exhibit a wide variety of elec-
tronic properties ranging from unconventional superconduc-
tivity sn=1d to itinerant electron ferromagnetism sn$3d and
have been the focus of intense research for over a decade.1–3

Most materials in this class are “bad metals4” fthe resistivity
rsTd~T and in excess of the Ioffe-Regel limitg at room tem-
perature and above; yet, they obey Fermi-liquid theory at
low temperatures stypically T,50 Kd. The low-energy elec-
tronic properties of these materials are determined mainly by
the electrons in the Ru t2g subspace consisting of the nearly
degenerate dxz ,dyz ,dxy orbitals. Therefore, in addition to the
spin and charge degrees of freedom, the orbital degrees of
freedom play an important role in determining the properties
of these systems. Here, we focus on the bilayer sn=2d com-
pound Sr3Ru2O7 which is neither a superconductor nor a
ferromagnet.

Sr3Ru2O7 is a tetragonal material consisting of RuO2
planes forming bilayers which are stacked and weakly
coupled to one another. In crystals of high-purity and struc-
tural perfection, a metamagnetic transition,5 i.e., a sudden
and sharp rise in the magnetization with a modest increase in
the applied field, is observed. While this transition is first
order, the transition line terminates at a critical point
sHp ,Tpd, where it becomes continuous sin analogy with a
liquid-vapor transition in the pressure-temperature planed.
However, the critical field and temperature Hp and Tp depend
on the angle, u, between the magnetic field and the crystal-
line c axis, perpendicular to the RuO2 bilayers: Hp decreases
from ,7.8 to ,5.1 T, as u increases from 0° to 90°, while
Tp drops from Tpsu=90°d=1.25 K to Tp,0 as u→0, that is,

when H is perpendicular to the RuO2 planes.6 Thus, it was
proposed that this material exhibits a type of quantum critical
phenomena associated with the termination point of the first-
order line of metamagnetic transitions.7 However, experi-
ments involving ultrapure single-crystal samples swith a re-
sidual resistivity less than 1 mV cmd have shown that
instead of such a “metamagnetic quantum critical point,”8

there is a bifurcation of the metamagnetic phase boundary,
which leads to two first-order metamagnetic transitions at
closely spaced field values Hc1<7.8 T and Hc2<8.1 T.9 At
intermediate fields, Hc1,H,Hc2, an electron nematic
phase10,11 appears, which spontaneously breaks the discrete
square lattice rotational symmetry from C4 to C2 as inferred
from the observation of resistive anisotropy in the ab
plane.12 The nematic phase occurs in a narrow range of fields
and for a range of angles 0° #u#40° sthe green region in
Fig. 1d. Resistive anisotropy is also found in the blue region
in Fig. 1 for 55° #u#90° but it is not known whether this
reflects the existence of a new phase.

In the present paper, we study the microscopic origins of
the weak metamagnetism and the accompanying nematicity.
A possible microscopic route to understanding metamag-
netism in this material was proposed by Binz and Sigrist13 in
a model of a two-dimensional s2Dd band on a square lattice
whose Fermi surface lies close to a van Hove svHd singular-
ity. Incorporating weak local Coulomb repulsion between the
electrons, they showed that when the magnetic field tunes the
Fermi surface of one spin species close enough to the vH
singularity, there is a jump in magnetization. Grigera et al.14

were the first to propose that the existence of the vH singu-
larities might be a driver for nematicity accompanying meta-
magnetism in a spin-dependent version of the Pomeranchuk
distortion15 previously studied in the two-dimensional Hub-
bard and t-J models.16,17 A critical insight into the problem of
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nematicity accompanying metamagnetism was proposed in a
paper by Kee and Kim,18 who showed that additional inter-
actions between the electrons can lead to new instabilities
which split the metamagnetic transition, leading to an inter-
mediate phase. Specifically, they considered a model with
weak quadrupolar interactions and showed that a mean-field
treatment naturally leads to a sequence of two transitions as a
function of increasing H. First, at a critical field Hc1, the
spin-up Fermi surface reconnects across the vH point at one
edge of the Brillouin zone, leading to a metamagnetic jump
accompanied by the spontaneous breakdown of C4 symmetry
sdepending on which vH point reconnectsd. Then, at a higher
field Hc2, the spin-up Fermi surface reconnects across the
second vH point, leading to a second metamagnetic jump
and a restoration of C4 symmetry.

The model originally considered by Kee and Kim18 is a
single band model, with strongly kW-dependent effective inter-
actions, engineered to promote nematicity. While it ties
metamagnetism and nematicity in an ingenious way, it still
leaves open the issue of the possible microscopic origins of
such phenomena. In particular, it does not address the issue
of what features of the material’s electronic structure are
most important in accounting for its phase diagram.

Here, we address this issue by considering a more realistic
model of the electronic structure of Sr3Ru2O7. Since both
band-structure calculations and angle-resolved photoemis-
sion sARPESd experiments show that there are at least three
bands at the Fermi energy per Ru atom ssix per bilayerd, we
consider a model sSec. Id with three Wannier functions, cor-
responding loosely to the Ru dxz, dyz, and dxy orbitals sFig.
2d. The former two give rise sas we discuss in Sec. IId to

crisscrossing quasi-one-dimensional s1Dd bands while the
latter gives rise to quasi-2D bands. Each of these bands is,
moreover, split in two by the interbilayer hopping, which is
substantial in the case of the quasi-1D bands. The multior-
bital band structure also implies the existence of an on-site
spin-orbit coupling of moderate strength. We study the or-
dered phases produced by physically reasonable local son-
sited Coulomb interactions using unrestricted Hartree-Fock
wave functions ssee Fig. 4d.

In the multiband context, the nematic phase corresponds
to a particular orbital-ordered broken-symmetry configura-
tion. Moreover, we will show below that transitions into such
a nematic phase are naturally accompanied by metamagnetic
transitions. Because the 1D bands are closer to the vH points
and because of the stronger divergence of the density of
states, n, at the vH point in 1D, sn,1 /ÎEd, we find that both
nematicity and metamagnetism order are primarily driven by
a collective reordering of these bands. In addition, a number
of other qualitative features of the experimentally observed
phase diagram occur naturally and generically from the
mean-field solution of the present model:

s1d The interval in which the nematic phase occurs can be
tuned to be relatively small sHc2−Hc1d /Hc2!1. sSee Fig. 6.d

s2d There is an asymmetry to the problem, apparent in
Fig. 6 and in the experimental data, which results in a mono-
tonic decrease in the nematic order as H rises from Hc1 to
Hc2, resulting in a smaller change in the nematicity at Hc2
than at Hc1. This feature arises in our model due to the un-
derlying asymmetry in the electronic density of states near
the vH singularity of the quasi-1D bands.

s3d Our model naturally accounts for why metamagnetism
and nematic phases do not occur in the monolayer ruthenate
Sr2RuO4. The strong bilayer splitting in Sr3Ru2O7 places the
Fermi level in a region where the density of states of the 1D
bands has pronounced positive curvature, satisfying the re-
quirement of the Landau theory of a weakly first-order meta-
magnetic transition.19

s4d Even a moderate spin-orbit coupling, lso,0.2t, con-
sistent with band structure estimates,20,21 produces an order 1
decrease in the critical fields as u varies from 0° to 90°. sSee
Fig. 9.d

FIG. 1. sColor onlined The experimentally determined low-
temperature phase diagram of Sr3Ru2O7 in the field-angle plane
based on resistivity and magnetic-susceptibility measurements on
shape-unbiased octagonal crystals at 100 mK. For the resistivity
measurements, both the in-plane field component and the current
are along either the crystallographic a or b axis. The shaded regions
are those in which a resistive anisotropy is observed. The solid
black lines represent first-order phase transitions as determined by a
sharp dissipative peak in a measurement of the imaginary compo-
nent of the ac susceptibility fsee discussion in Grigera et al. sRef.
6dg. We observed no dissipative peak at the boundaries of the blue
region si.e. for 55° ø u ø90°d but we cannot rule out its existence
beyond our resolution.

O px

O py

Ru dxy
Ru dzx

O pz O pz

Ru dyz

FIG. 2. sColor onlined The Ru dxy ,dyz ,dxz orbitals in a single
layer of Sr3Ru2O7 in the ab plane. p overlaps between two like
orbitals along nearest-neighbor bonds are mediated by the interven-
ing oxygen p orbitals. For two identical dij orbitals siÞ j and i , j

=x ,y ,zd, the hopping along the î direction is strong and is mediated
by the oxygen pj orbital and vice versa. d overlaps between two
identical d orbitals along a nearest-neighbor bond do not make use
of the oxygens and are therefore much weaker in comparison. Fur-
thermore, all nearest-neighbor hopping between two distinct d or-
bitals vanish by symmetry.
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s5d The near-perfect nesting of the quasi-1D bands ac-
counts for the most prominent peaks in the low-energy
magnetic-structure factor observed in neutron-scattering ex-
periments at H=0.22,23 However, the spin-orbit coupling is
remarkably efficient at spoiling this nesting, thus plausibly
explaining why spin-density-wave sSDWd order does not ac-
tually materialize sat least for H=0d.22,23

Clearly, there are many aspects of the physics that are
more subtle and cannot be addressed, even qualitatively, at
mean-field level. There is, after all, considerable evidence of
the effects of strong quantum fluctuations associated with the
narrowly pre-empted metamagnetic quantum critical point.
We will return to these shortcomings at the end of the paper.

II. MODEL

We have studied a simple tight-binding model of a single
RuO4 bilayer with terms organized according to a hierarchy
of scales,

H = H1 + Hso + H2 + ¯ , s1d

where H1 contains the largest terms, which involve the most
direct p overlaps between Ru d orbitals on nearest-neighbor
sites: the largest hoppings between two neighboring identical
daa8 orbitals sa ,a8=x ,y ,z ,aÞa8d are along the crystalline
â and â8 directions. These hoppings in turn make use of the
intervening oxygen p orbitals. The single bilayer approxima-
tion is a good one because transport measurements confirm
the existence of highly two-dimensional transport and there-
fore weak bilayer-bilayer coupling. H1 also includes the on-
site Coulomb repulsion terms between two electrons on the
same orbital sUd as well as between two electrons in differ-
ent orbitals sVd. Hso captures the effect of on-site spin-orbit
coupling. H2 represents the kinetic-energy terms due to
weaker d overlaps between the orbitals se.g., along the ẑ
direction for the dxy orbitalsd. Still smaller terms, some of
which we will mention below, are represented by the ellipsis.

Let d
a,s,RW ,l
† create an electron with spin polarization s at

horizontal position RW , in layer l= 61, and in orbital a
=x ,y ,z corresponding to the dxz, dyz, or dxy orbital, respec-
tively. In order to emphasize the underlying symmetries of
the Hamiltonian, we define a spinor field

Cas
† sRW ,ld = d

a,s,RW ,l
† , a = x,y,z . s2d

In terms of these and nl,a,RW =osd
a,s,RW ,l
† da,s,RW ,l,

H1 = − to
l,RW

FC†sRW ,ldsT̂x + T̂zdCsRW + x̂,ld + C†sRW ,ldsT̂y

+ T̂zdCsRW + ŷ,ld +
1

2
C†sRW ,− ldsT̂x + T̂ydCsRW ,ld

+ H.c.G +
U

2 o
l,a,RW

n
l,a,RW
2 +

V

2 o
l,aÞa8RW

nl,a,RWnl,a8,RW

− HW · o
RW ,l

C†sRW ,ldsLW + SWdCsRW ,ld . s3d

The contraction over the spinor subscript indices is implied,
and we have defined the following matrices:

T̂ab;ss8
i = dabda

i dss8,

Lab;ss8
i = ,ab

i dss8,

Sab;ss8
i = dabtss8

i , s4d

where ,W are the orbital angular momenta projected onto the
t2g states san explicit form of these are given in Sec. IIId and
tW are the Pauli matrices. The final term above is the Zeeman
coupling to an external field. We note that in the t2g sub-
space, the angular momentum is only partially quenched
since it is possible, for example, to form linear combinations
of orbitals dxz6 idyz which are eigenstates of ,z. Therefore,
the external magnetic field will couple both to LW and SW .

The on-site spin-orbit coupling Hamiltonian is

Hso = lsoo
RW ,l

C†sRW ,ldsLW · SWdCsRW ,ld , s5d

and the smaller nearest-neighbor couplings are

H2 = − t8o
RW ,l

FC†sRW ,ldT̂xCsRW + ŷ,ld + C†sRW ,ldT̂yCsRW + x̂,ld

+
1

2
C†sRW ,ldT̂zCsRW ,− ld + H.c.G . s6d

So far, in writing the above terms, we have assumed locally
perfect octahedral symmetry with the result, for example,
that the hopping matrix element, t, between dxz orbitals on
sites separated by one lattice constant in the x direction or on
equivalent sites in neighboring planes of a bilayer are equal
to each other. The actual material deviates slightly from this
ideal symmetry;24 small terms that break this symmetry as
well as further range-hopping terms and interactions are all
represented schematically by the ellipsis in Eq. s1d and will
not be considered explicitly here.

The Fermi surface of our model taking into account the
kinetic terms of H1 ,H2 and also the spin-orbit term Hso is
shown in Fig. 3sad. It is useful to contemplate its relation to
the simpler Fermi surface fshown in Fig. 3sbdg obtained by
setting the couplings in H2 and Hso to 0. In this simpler
model, hoppings only along the strongest bonds of each or-
bital are taken into account and consequently, there are per-
fect one-dimensional bands which are split by the bilayer
hopping and form the straight patches of the Fermi surface.
These Fermi sheets are purely dxz ,dyz in orbital character.
Moreover, the 2D bands which come from the dxy orbital are
degenerate at this level of approximation. Were we to include
the effects of the smaller hopping terms in H2, a small split-
ting of the 2D bands and a slight warping of the 1D bands
would result; but there still would not be any mixing be-
tween bands, and hence there would be multiple points at
which two pieces of the Fermi surface would cross one an-
other. When spin-orbit coupling is included, these degenera-
cies are lifted as is evident from Fig. 3sad. Therefore, Hso has
the important qualitative effect of changing the Fermi-
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surface topology even if its magnitude is small. We will
study the consequences of including Hso in Sec. III.

The dxy bands play little active role in the physics dis-
cussed below, so we will for the most part ignore these bands
altogether, treating them instead simply as a particle reser-
voir which allows us to perform calculations involving the
remaining bands at constant chemical potential rather than at
constant density.

III. MEAN-FIELD THEORY

We first consider an idealized model of a bilayer consist-
ing of two orbitals sdxz ,dyzd in each layer. For the moment,
we neglect the curvature of the Fermi surface and any mixing
between the two orbitals. In this limit, the orbitals form per-
fect one-dimensional bands that are bilayer split due to the
hopping along the c axis. In the presence of these multiple
orbital degrees of freedom, it is natural to consider spin and
orbital-ordered broken-symmetry states and so we define the
following sets of collective variables:

Nl = o
RW

kC†sRW ,ldsT̂x + T̂ydCsRW ,ldl ,

MW l = o
RW

kC†sRW ,ldfSWsT̂x + T̂ydgCsRW ,ldl ,

Nl
o = o

RW
kC†sRW ,ldsT̂x − T̂ydCsRW ,ldl ,

NW l
s = o

RW
kC†sRW ,ldfSWsT̂x − T̂ydgCsRW ,ldl . s7d

These represent, respectively, the total electron density of the
one-dimensional bands, N, their overall magnetization, MW ,
and the nematic order parameter, No, that represents the dif-

ference in charge density in the two bands, and lastly, we
also define NW s, which represents the difference in moment in
each band. We call this latter quantity the order parameter for
the “nematic-spin-nematic” phase.25 Whereas MW breaks time
reversal sTd and SUs2d symmetry, and No breaks the lattice
C4 rotation symmetry sRd, the nematic-spin-nematic order
breaks SUs2d, sTd, and sRd; however, the product sTRd is not
broken in this phase. In the presence of an externally applied
magnetic field, there is no distinction between the nematic
and the nematic-spin-nematic phases.

The mean-field phase diagram of our model is presented
in Fig. 4. The details of the calculations are presented in the
Appendix. The zero-field phase diagram sad consists of four
phases: sId a paramagnetic phase, sIId a nematic phase, sIIId a
phase in which the ferromagnet and nematic-spin-nematic
are degenerate but do not coexist, and sIVd a coexistence
phase of nematic, nematic-spin-nematic, and ferromag-
netism. All phase boundaries shown here are first-order tran-
sitions. When the magnetic field is nonzero sbd, the ferro-
magnetic phase has a lower free energy than the nematic-
spin-nematic phase and this degeneracy is lifted.

In a nonzero field, all phase boundaries become metamag-
netic transitions. Two qualitatively different features arise in
this case. First, there are only two types of phases: either
magnetic order is present alone sI and IIId or magnetic order
coexists with nematic order sIId. In sbd, the only difference
between regions I and III is the size of the moment slarger in
region IIId. Note, in particular, that with increasing magnetic
field, phase III moves in to smaller values of U and V. Thus,
without requiring any fine tuning, it is possible for the sys-
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FIG. 3. sad A “realistic” tight-binding Fermi surface of Sr3Ru2O7

taking into account the kinetic energy terms in H1, H2 as well as
Hso. Here, t8=0.1t and lso=0.2t. sbd Fermi surface derived from an
idealized model taking into account only the single-particle terms in
H1. In the nematic phase, one of the “spin-up” bonding bands
crosses the vH point at either sp ,0d or s0,pd depending on the sign
of the nematic order parameter sto be defined belowd. Quotes are
placed around spin-up because in the presence of spin-orbit cou-
pling, the magnetic field lifts the degeneracy of Kramers’ doublets,
and in this case, it is the appropriate pseudospin band which crosses
the vH point.
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FIG. 4. sColor onlined Mean-field T=0 phase diagram in the
U-V plane in the absence of spin-orbit coupling for m=0.81 sad at
zero applied field and sbd in finite field, taken here to be uHW u
=0.04t. In zero field sad, there are four distinct phases: a paramag-
netic region sid, a nematic region sshown in blued sIId, a region in
which the ferromagnet and nematic-spin-nematic phases are degen-
erate but do not coexist sIIId, and a region in which the nematic,
ferromagnet, and nematic-spin-nematic phases coexist spurple re-
giond sIVd. All phase boundaries correspond to first-order transi-
tions. In a finite field sbd, all regions acquire a nonzero magnetic
moment. Regions I and III do not have nematic order, whereas
region II contains nematic order. In this case, phase boundaries
correspond to metamagnetic transitions. For U<V chosen such that
at zero field, the parameters lie in region I in sad above, a field
sweep moves the phase boundaries closer to the origin so that the
system traverses regions I→ II→ III in sbd as the field increases. In
this way, the system exhibits a nematic phase precisely between two
metamagnetic transitions.
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tem studied here to undergo a sequence of metamagnetic
transitions, starting with a paramagnetic phase and ending
with a ferromagnetic phase with nematic order sandwiched
in between as shown in Fig. 5. The requirements for such a
phenomenon to occur in our model is that U<V. For U
@V, for instance, the effect of applying a magnetic field is to
induce ferromagnetism alone. By contrast, when U<V, this
ferromagnetic phase is pre-empted at low fields by a nematic
phase. Figure 6 shows the magnetization and nematic order
as a function of field for a particular value of U=V=2.5t.
Here it is clearly seen that as the field sweeps across the first
metamagnetic transition, nematic order develops; when the
field is increased further, a second metamagnetic transition
occurs which destroys the nematic phase.

In Fig. 7, the single quasiparticle density of states is plot-
ted in the nematic phase. There is a double peak near the
Fermi level whose splitting corresponds to the size of the

nematic gap. Also shown in Fig. 7 is the density of states at
a slightly lower field where the system is just about to enter
the nematic phase. We note that there is a reduction in the
quasiparticle density of states at the Fermi level in the nem-
atic phase; this in turn implies that the entropy of the nematic
phase at low temperatures within mean-field theory is lower
than the neighboring isotropic phases. This is also seen in
Fig. 8 from the curvature of the phase boundaries of the
nematic phase at finite temperatures. We highlight here that
this result from mean-field theory disagrees with the experi-
mental observations reported in Ref. 12 where the nematic
phase boundaries “fan” outward, implying that in actuality,
the nematic phase has a higher entropy than the neighboring
isotropic phases. We believe that this effect must stem from
fluctuations sboth thermal and quantumd due to the presence
of nematic domains.
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FIG. 5. sColor onlined Phase diagram at zero temperature in the
U-H plane with U=V in the absence of spin-orbit coupling for m
=0.81. For each U=V, as the field is increased, two metamagnetic
transitions occur and are denoted Hc1 sdashed lined and Hc2 ssolid
lined. For Hc1,H,Hc2 a nematic phase sblue regiond occurs, cor-
responds to region II in Fig. 4sbd, and collapses onto region IV in
Fig. 4sad in the zero-field limit. Although we have chosen U=V in
this figure, we emphasize that a phase diagram with the same to-
pology occurs if we set U=aV, for a range of a, so long as the line
U=aV crosses each of the three regions shown in Fig. 4sbd.
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FIG. 6. sColor onlined sad Magnetization and sbd nematicity as a function of applied field for U=V=2.5t and m=0.81t in the absence of
spin-orbit coupling. The nematic phase is found to lie precisely between the two metamagnetic transitions.
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FIG. 7. Single quasiparticle density of states sarbitrary unitsd in
the nematic phase, H=0.04t ,U=V=2.5t ,m=0.81t. The Fermi en-
ergy is at E=0. The dashed line corresponds to the quasiparticle
density of states at H=0.02t, there the nematic phase does not arise.
Since the nematic phase has a lower density of states, it is expected
that in mean-field theory, it will also have a lower entropy at tem-
peratures small compared to m.
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IV. EFFECT OF SPIN-ORBIT COUPLING: ANGLE-
DEPENDENT METANEMATIC TRANSITIONS

The results above were based on the assumption that spin
SUs2d symmetry is preserved in the system. However, the
experimental phase diagram6 of Sr3Ru2O7 sFig. 1d exhibits
an Os1d anisotropy in the critical field at which a metamag-
netism occurs: the critical field with H along the c axis is
about 1.6 times larger than the case when it points in the ab
plane. A natural way to account for this anisotropy is to
consider the effect of spin-orbit coupling in the material.
Since the material has an inversion center, k-dependent spin-
orbit interactions, such as the Rashba coupling, are forbid-
den, and we proceed by considering the effect of an atomic
spin-orbit coupling, given in Eq. s5d. While the precise mag-
nitude of the spin-orbit coupling constant lso for this mate-
rial is unclear, local-density approximation sLDAd calcula-
tions of the monolayer ruthenate compound Sr2RuO4 suggest
that lso is approximately 10% of Ef.

20,21 Indeed, in recent
ARPES studies of Sr3Ru2O7, LDA calculations had to em-
ploy spin-orbit coupling in order to fit properly to the Fermi
surface.26 Since this spin-orbit coupling term is onsite, it
seems reasonable to expect that similar values also hold for
the bilayer compound.

When such spin-orbit coupling terms are included in the
Hamiltonian, the dxy band must necessarily be taken into
account. However, since the spin-orbit coupling is smaller
than the crystal-field splitting, we can treat it as a perturba-
tion and project the angular momentum operator L onto the
t2g subspace. To be more explicit, a valid choice of the or-
bital angular momentum operators projected onto the t2g
manifold is

,x = 10 0 0

0 0 − 1

0 − 1 0
2, ,y = 1 0 0 − 1

0 0 0

− 1 0 0
2 ,

,z = − if,x,,yg . s8d

In terms of these operators, the spin-orbit coupling in each
layer of our system is represented by the 636 matrix,

L · S = S ,z ,x − i,y

,x + i,y − ,z D . s9d

Having in mind the framework of a minimal model which
captures the essential features of the experimental phase dia-
gram, we first treat the quasi-2D band as a free-electron sys-
tem and neglect the effect of Coulomb interactions. We have
checked that the inclusion of a Hubbard repulsion on this
band produces no qualitative changes to the results reported
here. Furthermore, we neglect the terms in H2 as before. This
way, the mean-field order parameters in the presence of spin-
orbit coupling are identical to those in Eq. s7d, and the spin-
quantization axis is defined to be in the direction of the ap-
plied field. However, the spin-orbit coupling term is sensitive
to the orientation of the magnetic field relative to the c axis
since the orbital angular momentum operators above are de-
fined with respect to the crystalline axis of the system. More
explicitly, in the tilted field, the spin-orbit term is modified as

Hsosud = lsoL · S̃sud ,

S̃sud = expS− i
sW · nW

2
uDS expSi

sW · nW

2
uD , s10d

where u is the angle of the applied field relative to the c axis
and nW is a unit vector either in the crystalline a or b direction.

In Fig. 9, we show the phase diagram in the H-u plane,
keeping U=V fixed and lso=0.2t. As the field is tilted toward
the ab plane, we see that the critical field at which the meta-
magnetic transition occurs is smaller in magnitude. For all
angles, there are two metamagnetic transitions with a nem-
atic phase in between. When the field is tilted away from the
c axis, the crystalline C4 symmetry is broken, and we distin-
guish a phase in which the nematic order jumps from a small
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T
/t

FIG. 8. Phase diagram of the system without spin-orbit coupling
showing the finite temperature boundaries of the nematic phase.
First-order transitions ssolid curved at low temperatures give way to
continuous transitions sdashed curved at higher temperatures as the
vH singularities get smoothed out. Finite temperature metamagnetic
crossovers away from the nematic phase are not shown. Here, U
=V=2.5t, m=0.81t, and l=0.2t.
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FIG. 9. sColor onlined Angle-dependent metanematic phase
boundaries in the presence of spin-orbit coupling showing an Os1d
anisotropy in the critical fields. When the field is tilted toward the
ab plane, the C4 point-group symmetry is automatically broken. In
region I at low fields, the moment is small and there is also a small
nematic phase present for all u.0. The first metamagnetic transi-
tion into region II gives rise to an accompanying jump in nematicity
in addition to the magnetization. Finally, the second metamagnetic
transition into region III results in a discontinuous decrease in the
size of the nematic order parameter as well as a jump in magneti-
zation. Here, U=V=2.5t, m=0.81t, and lso=0.2t.
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value sregion Id to a large value sregion IId and jumps back to
a small value sregion IIId. Thus the tilted field shows the
nematic analog of metamagnetic transitions, and we refer to
these transitions here as “metanematic” transitions.27 We
note that although we find metamagnetic transitions with the
same general angle dependence as seen in experiments, the
nematic phase in our model does not have the correct topol-
ogy in the field-angle plane scompare Figs. 1 and 9d. Instead,
we find that if a nematic phase occurs, it remains present for
all field orientations. Given the structure of the phases shown
in Fig. 4sbd, it does not appear impossible that the correct
topology could emerge under appropriate circumstances; but
in the present model, this would require angle-dependent in-
teractions. While such terms are unphysical at the bare mi-
croscopic level, they could arise at the effective level due to
fluctuation effects that have not been considered here.

The ordering tendencies which we have considered so far
do not break lattice translational symmetry. However, inelas-
tic neutron-scattering experiments22,23 have provided evi-
dence that there are substantial incommensurate spin fluctua-
tions in this system although static SDW order has not been
observed at zero external field. The incommensurate spin
fluctuations in this system occur primarily due to the partial
nesting of the Fermi surface. Therefore, we must check
whether such finite q ordering tendencies in this material are
favored over the uniform nematic order proposed in this pa-
per. To do this, we have computed the generalized one-loop
spin susceptibility

fxijsqdgba
st = E

0

b

dto
pp8

o
abgd

sab
i sgd

j

3 kTtdspa
† stddtp+qbstddap8g

† s0ddbp8−qds0dl

s11d

in the presence of spin-orbit coupling and magnetic field.
The electron Hamiltonian is a 12312 matrix and the elec-
tron propagators are spin and orbital dependent which in turn
makes the above spin susceptibility a 36336 matrix. Using
the random-phase approximation sRPAd, we find that an in-
stability toward the formation of SDW order occurs in the
system staking U=Vd when U exceeds a critical strength
Uc,SDW which satisfies

Uc,SDW

2
maxseigfxgd = 1 s12d

and for the band-structure parameters we have been using
slso=0.2t , t8=0,m=0.81td the maximal eigenvalue of the
susceptibility matrix is obtained at the wave vector q
= s0.27,0.27dp where the spin susceptibility xzzsqd obtains
its largest value. From this mean-field estimation, we find
that Uc,SDW<3.1t, which is also close to the critical coupling
required for ferromagnetism, as seen in Fig. 4.

Thus, in addition to accounting for the angle-dependent
metamagnetic transitions observed in this system, the inclu-
sion of spin-orbit coupling also naturally explains why static
incommensurate SDW order does not occur despite the pres-
ence of incommensurate spin fluctuations in this system.

V. DISCUSSION

We have shown in this paper that the remarkable low-
temperature properties of Sr3Ru2O7 can be understood as
being a consequence of orbital ordering of the quasi-1D
bands. We have been able to account for most of the gross
features of the experiments from a simple microscopic
model. Our results are based on a mean-field solution of a
system with strong electron interactions and a justification
for focusing solely on this approach has not been provided.
Although metamagnetism and nematicity generally arise as
strong-coupling effects in metals and are therefore difficult to
treat in a controlled theoretical fashion, the divergence of the
density of states n at the vH point ensures that the Stoner
criterion can be satisfied even for weak interactions, which
are much less than the bandwidth. Thus, by the notion of
adiabatic continuity, it may be legitimate to treat this prob-
lem from a weak-coupling standpoint.

Previous attempts to explain metamagnetism and nematic-
ity in this system18,28,29 were based on the assumption that
the quasi-2D bands drive the nematic and metamagnetic
transitions. By contrast, we point out here that it is much
more natural to think instead that the quasi-1D bands are
responsible for the transitions. We note, from a symmetry
standpoint, that the quasi-1D bands form a twofold represen-
tation of the C4 rotation symmetry of this system: thus, the
nematic phase which breaks C4 rotation symmetry corre-
sponds to an orbital ordering among these bands. Further-
more, it is known from experiment that the monolayer ruth-
enate Sr2RuO4 does not exhibit metamagnetism for magnetic
fields up to 30 T. The primary difference in the electronic
structure of the monolayer vs the bilayer compound is the
large bilayer splitting in the latter. We have shown here that
while the quasi-2D bands are only weakly affected by the
bilayer splitting, the quasi-1D bands are rather strongly af-
fected by it. Thus, the experimental differences between the
monolayer and bilayer ruthenate compounds as well as sym-
metry considerations lead us to propose that quasi-1D bands
in this system are primarily responsible for the rich phase
diagram of the bilayer ruthenate. Although we propose a dif-
ferent microscopic origin for the Fermi-surface distortion
from that used in previous work on the subject, we note that
our picture is still one of a weak-coupling Pomeranchuk
type. As such it automatically retains the attractive feature,
common to any weak anisotropic distortion of electronic
structure in the vicinity of EF, that it naturally predicts a
sensitivity to impurity scattering.30 This in turn matches one
of the key experimentally determined characteristics of the
behavior that we set out to explain.

Along with the focus on the 1D bands comes the exis-
tence of a nesting vector, 2kF, and the issue of SDW order.
At mean-field level, the preferred SDW instability for a pair
of orthogonal quasi-1D bands leads31 either to bidirectional
order with ordering vectors s2kF ,pd and sp ,2kFd or unidi-
rectional order with ordering vector s2kF ,2kFd. However, in-
elastic neutron-scattering studies have found that the most
dominant peaks are observed in the s2kF ,0d direction.22 Nev-
ertheless, we have shown that even moderate spin-orbit cou-
pling reduces the nesting to the extent that the mean-field
tendency to nematic and SDW ordering are comparably
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strong. Moreover, we expect fluctuation effects to reduce the
ordering tendency of an incommensurate SDW swhich has a
gapless sliding mode and two nearly gapless spin-wave
modesd relative to the Ising-type nematic order, especially
given the quasi-2D structure of this material, which makes
fluctuational corrections all the more significant.

However, there are still two qualitatively important fea-
tures of the experimental data that are not well accounted for
by any mean-field treatment we know of: s1d the intermedi-
ate nematic phase has been shown, in experiment, to have
higher entropy at low temperatures than either of the adja-
cent disordered phases. In contrast, at mean-field level, the
ordered phase always has a lower Fermi-surface density of
states than the proximate disordered phases and so has
smaller low-temperature entropy. s2d Doping studies suggest
that at least part of the peaks in the density of states that are
thought to drive the metamagnetism are somehow locked to
the Fermi energy rather than being purely features of an un-
derlying rigid-band structure. These features we believe are
signatures of strong-coupling effects and can be accounted
for by a more sophisticated theory in which local nematic
order is present over a broad range of magnetic fields sin-
cluding B=0d but only propagates to long distances in the
narrow range of B in which macroscopic anisotropies are
observed.

More generally, it is clear that fluctuation effects play a
significant role in the physics. Even though the putative
metamagnetic quantum critical point is pre-empted by the
nematic phase, the observed fluctuational phenomena that
lead to the conjectured critical point in the first place remain
real and dramatic. It is likely that they reflect the existence of
a “nearby” quantum critical point, even if it is not actually
observed. In this context, mean-field results, of the sort dis-
cussed in the present paper, should be adopted with caution.
At the very least, the effective parameters that enter our
model must be reinterpreted as strongly renormalized effec-
tive parameters, given that the observed bandwidths32 are
narrower by a factor of order 10–100 than the bandwidths
found in LDA calculations.33 We defer the fascinating study
of fluctuation effects to a future publication.

Finally, we make a comment about the observed resistiv-
ity anisotropy in this material when H ic. While we have
presented a symmetry argument for why such a resistivity
anisotropy ought to be present, we have not explicitly com-
puted the resistivity anisotropy from our model. Indeed, any
small nematic Fermi-surface distortion such as that discussed
here is unlikely to produce a large effect on the low-
temperature resistivity due to the distortion alone. The reason
for this is that the nematic phase arises from a discrepancy in
electrons which are close to a vH singularity; these, in turn,
have a very small characteristic velocity and hence would
contribute most weakly to transport signatures. The distor-
tion of the Fermi surface is more likely to change the trans-
port properties by being a source of domains and domain-
wall scattering, something which is beyond the scope of the
calculations that we report. We note further that in the ex-
periments of Ref. 12 when the field is tilted toward the ab
plane both the average resistivity and the anisotropy rapidly
decrease with angle. In our picture, we imagine that as the
field is tilted, nematic domains get aligned and scattering is

therefore considerably reduced. Thus, ironically, precisely
the same signal which was used to detect the nematic fluid
would prove to be useless deep in the nematic phase, when
the system forms a single macroscopic nematic order. A
more quantitative theory of the physics discussed here will
be presented elsewhere.

Note added. As we were preparing to submit this paper,
we became aware of a related study by Lee and Wu.34
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APPENDIX: METAMAGNETISM AND NEMATICITY OF
QUASI-1D BANDS

Here, we present, for the sake of clarity, the derivation of
the mean-field equations which were used to deduce the
phase diagram in Fig. 4. The mean-field order parameters are
defined via

knx,l,RW ,sl =
1

4
sNl + No

l + sMl + sNs
ld ,

kny,l.RW ,sl =
1

4
sNl − No

l + sMl − sNs
ld . sA1d

After decomposing the interactions in terms of the above
expectation values, we arrive at the following one-particle
Hamiltonian:

HskWd = SHxskWd 0

0 HyskWd
D , sA2d

where

HaskWd = − 2t cos ka 1̂434

+1
dma,↑

s1d − h 0 − t 0

0 dma,↓
s1d + h 0 − t

− t 0 dma,↑
s−1d − h 0

0 − t 0 dma,↓
s−1d + h

2
and a=x ,y. We have also defined the quantities

dmx,s
sld =

U

4
sNo

l − sMl − sNs
ld −

V

2
No

l,

dmy,s
sld =

U

4
s− No

l − sMl + sNs
ld +

V

2
No

l. sA3d

Thus, by neglecting the hybridization between the x ,y orbit-
als, the mean-field Hamiltonian takes the block-diagonal
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form above and the quasiparticle bonding and antibonding
energies are easily obtained:

e6s
x = − 2t cos kx − sh +

1

2
sdmx,s

s1d

+ dmx,s
s−1dd 6Ît2 +

1

4
sdmx,s

s1d − dmx,s
s−1dd2,

e6s
y = − 2t cos ky − sh +

1

2
sdmy,s

s1d

+ dmy,s
s−1dd 6Ît2 +

1

4
sdmy,s

s1d − dmy,s
s−1dd2. sA4d

Due to the 1D band dispersion, it is possible to obtain the

density of states and the grand-canonical free-energy density
analytically by summing over the eight quasiparticle bands
of this model. At zero temperature,

F = F0sMl,Ns
l,No

ld + E
−`

m

sE − mdnsEddE ,

F0sMl,Ns
l,No

ld =
U

8 o
l

fsN̄ld2 + sMld2 + sNs
ld2 − sNo

ld2g

+
V

4 o
l

fsN̄ld2 + sNo
ld2g , sA5d

E
−`

m

sE − mdnsEddE = −
2

p
Re o

a=x,y
o

s,s8=61

F1 −
1

4
Hm + sh −

1

2
fdma,s

s1d + dma,s
s−1dg + s8Ît2 +

1

4
fdma,s

s1d − dma,s
s−1dg2J2G1/2

−
2

p
Re o

s,a=x,y
o

s8=61

1

2
Hm + sh −

1

2
fdma,s

s1d + dma,s
s−1dg + s8Ît2 +

1

4
fdma,s

s1d − dma,s
s−1dg2J2

3 sin−15m + sh −
1

2
fdma,s

s1d + dma,s
s−1dg + s8Ît2 +

1

4
fdma,s

s1d − dma,s
s−1dg2

2
6 . sA6d

The phase diagram is then obtained by minimizing the above free energy with respect to the order parameters. We note that
even upon including curvature effects in the band structure, the grand-canonical free-energy density can be expressed analyti-
cally in terms of complete elliptic integrals. However, for the sake of simplicity, we do not include such terms here. While such
Fermi terms do modify the precise location of phase boundaries, they have no qualitative effect on the physics.
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