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We discuss the effect of weak bond disorder in two-leg spin ladders on the dispersion relation of the
elementary triplet excitations with a particular focus on the appearance of bound states in the spin gap. Both the
cases of modified exchange couplings on the rungs and the legs of the ladder are analyzed. Based on a
projection on the single-triplet subspace, the single-impurity and small cluster problems are treated analytically
in the strong-coupling limit. Numerically, we study the problem of a single impurity in a spin ladder by exact
diagonalization to obtain the low-lying excitations. At finite concentrations and to leading order in the inter-
rung coupling, we compare the spectra obtained from numerical diagonalization of large systems within the
single-triplet subspace with the results of diagrammatic techniques, namely, low-concentration and coherent-
potential approximations. The contribution of small impurity clusters to the density of states is also discussed.
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I. INTRODUCTION

Since the synthesis of spin ladder materials such as
SrCu2O3 (Ref. 1) or sSr,Ca,Lad14Cu24O41 (Ref. 2) and the
later discovery of superconductivity under high pressure in
Sr0.4Ca13.6Cu24O41.84 (Ref. 3), spin-1 /2 two-leg spin ladders
have been on the focus of theoretical activities (see Refs. 4
and 5 for a review). This model is of particular interest, as
the ground state is nonmagnetic and it is an example for a
spin liquid. Many properties of the pure system, such as the
dispersion of elementary excitations6–9 and the thermo-
dynamics10 are well understood. The elementary excitations
are propagating, massive triplet modes.

A natural extension of the pure spin model comprises the
inclusion of impurities. In this paper, we discuss the effect of
impurities on the dispersion relation of the elementary triplet
excitations and focus on the appearance of bound states in
the spin gap. Such states could be visible in resonant experi-
ments. One may distinguish between different kinds of im-
purities. First, magnetic ions, such as the Cu2+ ions in
SrCu2O3, can be replaced by nonmagnetic ones such as Zn
(see Ref. 11, and references therein), effectively removing a
spin-1 /2 moment, or by other ions with the same or a differ-
ent effective moment. The replacement of the spin-carrying
ion will be referred to as a site impurity. Note that it is also
conceivable that a site impurity leads to modifications of the
exchange couplings to neighboring sites. Second, and this is
what we mainly have in mind in this study, the exchange
paths themselves can be modified by doping the bridging
X-ions in, e.g., Cu-X-Cu bonds, realizing what we call a
bond impurity (or simply impurity) in the following. Such a
situation is described in Ref. 12 for the alternating spin chain
system sCH3d2CHNH3CusClxBr1−xd3, where Cl and Br ions
are substituted with each other. Furthermore, a spin ladder
material exists, namely, sC5H12Nd2CuBr4 (Ref. 13) where
one could think of analogous doping experiments. This ma-

terial is suggested to contain two-leg spin ladders in the
strong-coupling limit, i.e., the coupling constant along the
legs JL is small compared to the coupling along the rungs JR
(see Ref. 13). Moreover, there are a number of further can-
didates for organic spin ladder materials in the strong-
coupling limit (see, e.g., Ref. 14). As an example for an
inorganic system, we mention CaV2O5 for which a ratio of
JL /JR,0.1 is discussed.15

In the literature, bond randomness in spin ladder systems
has been studied both in the weak and strong disorder limit
using the real-space renormalization group method,16,17

bosonization,18 and a mapping on random-mass Dirac
fermions.19 Most of these studies have focused on the stabil-
ity of the ground state and the gap against disorder and they
find that disordered spin ladders exhibit nonuniversal ther-
modynamic properties (see, e.g., Ref. 17) similar to disor-
dered dimerized spin-1 /2 chains.20

The plan of the paper is the following. First, we introduce
the model and perform a projection on the one triplet sub-
space in Sec. II. This approximation provides results which
are correct in leading order of the inter-rung coupling and are
quantitatively relevant for spin ladder materials in the strong-
coupling limit. Second, the single-impurity problem is solved
analytically in Sec. III in the strong-coupling limit. Also, we
analyze small clusters of bond impurities on neighboring
bonds. The results, i.e., the eigenenergies of single-impurity
(anti) bound states are then compared to those of a Lanczos
study for the full spin ladder model. In Sec. IV, finite con-
centrations of bond impurities are considered in the strong-
coupling limit. This problem is tackled both numerically and
analytically by means of diagrammatic approaches [low-
concentration approximation and coherent-potential approxi-
mation (CPA)]. The comparison of the numerical results with
the analytical approaches provides insight into the validity of
the latter methods. Finally, our conclusions are summarized
in Sec. V.
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II. MODEL

The Hamiltonian of the pure two-leg spin ladder reads

H0 = o
l=1

N

fJRSW l,1 · SW l,2 + JLsSW l,1 · SW l+1,1 + SW l,2 · SW l+1,2dg . s1d

SW l,1s2d are spin-1 /2 operators acting on site l on leg 1s2d and
N is the number of rungs. For the remainder of the paper, we
set JR=1 in all explicit computations, but we keep JR in the
equations for clarity. We will discuss the following situa-
tions:

H = H0 + H8,H8 = o
n=1

Nimp

hn, s2d

where Nimp is the number of modified couplings and hn is the
local perturbation at site ln leading to either a modified on-
site rung interaction JR8 =JR+dJR or a modified leg coupling
JL8=JL+dJL, connecting sites ln and ln+1. Explicitly, hn reads

hn = dJRSW ln,1 · SW ln,2, s3d

hn = dJLSW ln,j · SW ln+1,j, j = 1,2. s4d

The effect of modified interactions on the one-triplet disper-
sion will be discussed in the strong-coupling limit JL!JR by
projecting on the one-triplet subspace. Therefore, all terms
contained in H0 destroying or creating two triplet excitations
are neglected. For the application of diagrammatic tech-
niques, it is useful to map the spin operators on so called
bond operators21,22 sl

s†d , ta,l
s†d; a=x ,y ,z. sl

† creates a singlet on
the lth rung out of the vacuum state u0l and ta,l

† creates a
triplet excitation with orientation a, respectively. The exact
representation of Sl,1s2d

a ,a=x ,y ,z, in terms of bond operators
reads22

Sl,j
a = s1/2dh±sl

†ta,l ± ta,l
† sl − ieabgtb,l

† tg,lj . s5d

The plus sign corresponds to j=1 and the minus sign to j
=2; j labeling the leg. To avoid unphysical double occupan-
cies one has to impose the local constraint (summation over
repeated indices is implied in the following)

sl
†sl + ta,l

† ta,l = 1. s6d

Projecting on the one-triplet subspace and thereby applying a
Holstein-Primakoff type of approximation21,23 sl=sl

†<1 re-
sults in the effective Hamiltonian

H0,eff = JRo
l

ta,l
† ta,l +

JL

2 o
l

sta,l+1
† ta,l + H.c.d , s7d

where we have dropped irrelevant additive constants.
H0,eff is diagonalized by a Fourier transformation ta,l

†

= s1/ÎNdoke−iklta,l
† leading to

H0,eff = o
k

ekta,k
† ta,k s8d

and the dispersion relation of one-triplet excitations is6

ek = JR + JLcosskd . s9d

The perturbations hn caused by modifications of the ex-
change couplings are expressed in terms of bond operators as
follows:

hn =
1
N o

k,k1

vRsLdsk,k1dta,k
† ta,k1

s10d

with the potentials vRsLdsk ,k1d given by

vRsk,k1d = dJReilnDk, s11d

vLsk,k1d =
dJL

4
seilnDkeik1 + e−ilnDke−ikd , s12d

where Dk=k1−k is the momentum transferred in a scattering
process. All together, the effective Hamiltonian takes the
form

Heff = H0,eff + Heff8 , Heff8 = o
n=1

Nimp

hn. s13d

III. THE SINGLE-IMPURITY PROBLEM AND SMALL
IMPURITY CLUSTERS

The solution of the one-impurity problem for the effective
Hamiltonian (13), i.e., one modified coupling, is derived
from Schrödinger’s equation in real space. Here, we briefly
outline the procedure and our results, referring the reader to
the literature24 for details. In addition, small impurity clusters
are addressed and we study the problem of one impurity in
the full model (2) using the Lanczos method.

A. Single-impurity problem in real space

Schrödinger’s equation can be cast in the form

fI − G0sEdHeff8 gucl = 0, s14d

where G0sEd= sE−H0,effd−1 is the free Green’s function op-
erator associated to the effective one-particle Hamiltonian
H0,eff in Eq. (7) and ucl is an eigenstate of the Hamiltonian
Heff. A real-space representation can be given using the one-
triplet basis ta,l, where matrix elements of G0sEd are diagonal
in a and depend only on the distance Dl= ul− l8u. In the con-
tinuum limit N→`, they are given by

fG0sEdgDl
a,b = dab

1
2p
E

−p

p cosskDld
E − JR − JLcos k

dk , s15d

with a ,b=x ,y ,z. Although E needs to be analytically con-
tinued to the complex plane in order to obtain the retarded
Green’s function by setting E→E+ i0+, notice that for real E,
uE−JRu.JL, matrix elements in Eq. (15) are real. For sim-
plicity, we place the modified rung coupling on site l=0 and
the modified leg coupling between sites l=0 and l=1. The
(anti) bound states are found by setting the determinant of
I−G0sEdHeff8 to zero and, due to the impurity location, at
most the upper 232 submatrix needs to be considered. No-
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tice, however, that the eigenvalues are threefold degenerate
because of the three triplet modes a=x ,y ,z.

The eigenenergy of the (anti) bound state in the single
rung-impurity case dJRÞ0,dJL=0 is obtained as

E1,R = JR ± ÎJL
2 + sdJRd2, dJR _ 0. s16d

The plus (minus) sign in Eq. (16) corresponds to dJR.0
sdJR,0d. Therefore, a bound state in the spin gap, i.e., be-
low the original one-triplet band, appears for dJR,0. Con-
versely, for dJR.0, there is an antibound state above the
one-triplet band.

Analogously, one finds the eigenenergies of (anti) bound
states in the single leg-impurity case for dJR=0,dJLÞ0. For
dJL.0, there are always both a bound and an antibound
state, their energies given by

E1,L = JR ±
JL +

dJL

2 S1 +
dJL

4JL
D

1 +
dJL

2JL

, dJL . 0. s17d

On the other hand, we note that there are no states outside
the one-triplet band for −4JL,dJL,0; instead, we expect
the appearance of resonant modes inside the band [see Sec.
IV B, Fig. 5(c)]. Finally, for strong ferromagnetic coupling
dJL,−4JL, Eq. (17) again has two solutions; however, we
will restrict the discussion to the case of antiferromagnetic
couplings.

The wave function for (anti) bound states casld can also
be derived in a closed form

dJR Þ 0, dJL = 0:

casld ~ fG0sE1,Rdgl
aa, sl . 0d , s18d

dJR = 0, dJL Þ 0:

casld ~ fG0sE1,Ldgl
aa + fG0sE1,Ldgl−1

aa , sl . 1d . s19d

The width of casld in real space only depends on the ratio of
dJR /JL (or dJL /JL, respectively). The spatial extent of
ucasldu2 is the narrower, the larger this ratio is. For instance,
ucasl=4du2 / ucasl=1du2,0.01 for dJR /JL=1,dJL=0, while
ucasl=4du2 / ucasl=1du2,0.15 for dJR /JL=1/3.

B. Impurity clusters

Solving Schrödinger’s equation (14) in real space allows
for the discussion of small impurity clusters. We consider the
presence of impurities of the same type located on some of
the first Nc ladder sites. The (anti) bound eigenenergies de-
pend in principle on both the number of modified couplings
and their distance as well as the perturbation dJRfLg itself. It
is natural to expect the one-impurity eigenstates to interfere
when the single impurities come close enough.

As before, the eigenenergies of the cluster are evaluated
by setting the determinant of I−G0sEd Heff8 to zero. Now,
only the upper Nc3Nc submatrix needs to be considered. As
an example, we give the analytical expression for the case of

two modified rung couplings on neighboring sites sNc=2d.
One solution exists for both dJR,0 (inside the gap) or
dJR.0 (above the one-triplet band). Their eigenenergies
E2,R read

E2,R =
JLJR ± JL

2 + 2JLdJR ± 2dJRsJR + dJRd
JL ± 2dJR

. s20d

The plus sign has to be used for dJR.0 and the minus sign
in the opposite case. We have computed similar expressions
for clusters up to Nc=5. In Sec. IV C, we will show that the
influence of such clusters explains the details of the peak
structure in the density of states obtained by numerical di-
agonalization of systems with a finite impurity concentration.

C. Comparison with exact diagonalization

To test the region of validity of the results derived above
to first order in JL /JR, we now compare them to numerical
results for the full spin ladder Hamiltonian (2) with one
modified rung or leg coupling. We have exploited Sz conser-
vation, spin-inversion symmetry, reflection symmetry at the
impurity bond, and, in the case of a rung impurity, exchange
symmetry of both legs. Usually, one uses periodic boundary
conditions and exploits translational invariance. Although the
latter is not possible if an impurity is present, we still apply
periodic boundary conditions along the legs in order to mini-
mize surface effects. Finite-size effects turn out to be small-
est for an even number of rungs. We therefore concentrate on
systems with N=4, 6, 8, 10, 12, and 14 rungs. The largest
dimension is slightly above 10 million and occurs for N
=14 rungs (28 spins) and one leg impurity (where exchange
symmetry of the legs is absent).

In each of the relevant subspaces we have computed the
lowest eigenvalue using the Lanczos procedure. The results
for the lowest excitation energy E at finite N have then been
extrapolated to the thermodynamic limit N→` using the
Vanden-Broeck-Schwartz algorithm25,26 with a=−1. For the
pure ladder this yields estimates for the spin gap shown by
the open circles in Fig. 1. Using Nø14, we find a value of
s0.5025±0.0008dJR at JL=JR, in excellent agreement with
accepted values for this case (see Sec. III A of Ref. 10 for a
summary). As a further comparison, the full line in Fig. 1
shows a [7,6] Padé approximant to the 13th order series for
the spin gap of the pure ladder of Ref. 9.

A finite number of impurities (vanishing density) does not
affect the one-triplet band in the thermodynamic limit.
Hence, the result for the spin gap in the pure case also cor-
responds to the lower boundary of the one-triplet band if
impurities are present.

Turning now to the case of one impurity, we concentrate
on those situations where we may expect the lowest excita-
tion to be a bound state at the impurity, namely, dJR,0 or
dJL.0, respectively. To understand the finite-size behavior
of systems with one impurity, it is important to realize that
there are now two competing length scales involved. On the
one hand, there is the correlation length of the pure system
and, on the other hand, the spatial extent of the impurity
wave function needs to be considered [see Eqs. (18) and
(19)]. Indeed, the typical width of the impurity wave func-
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tion, which depends on the actual choice of parameters, can
be (much) bigger than the correlation length. This interplay
leads to a crossover in the finite-size behavior.

For small JL, the energy of the impurity level increases
with system size which is in contrast to the behavior of the
pure system where the energy of the lower edge of the band
decreases with system size. Since the latter finite-size behav-
ior is preserved at large JL, finite-size effects are nonmono-
tonic in the intermediate region, i.e., the finite-size behavior
changes at a characteristic system size that increases as the
impurity level approaches the one-triplet band. One now has
to be more careful with the extrapolation, and we can use
only those system sizes which are in the asymptotic regime
for large N. Accordingly, Fig. 1 shows extrapolated data
points for the impurity level only in a restricted region of JL.
When the impurity level approaches the one-triplet band, er-
ror bars become large, making it difficult to decide whether

this level merges into the band or approaches it only asymp-
totically. In any case, the numerical data demonstrate the
presence of an impurity bound state in a wide parameter
region.

In the limit of small JL!JR, we can compare to Eqs. (16)
and (17), respectively. One indeed observes quantitative
agreement for sufficient small JL, see Fig. 1(a) and the inset
of Fig. 1(b). Note that due to the normalization of Fig. 1, i.e.,
dJL,JL, Eq. (17) results in straight lines which start at E
=1 for JL=0. At larger JL deviations can be observed in Fig.
1, but an impurity level can still be seen. Accordingly, the
first-order approximation can still be expected to be qualita-
tively correct even in a parameter region where it is no
longer quantitatively accurate. Hence, we may use the first-
order approximation to study several impurities and even
finite densities which is no longer systematically possible by
Lanczos diagonalization of the full ladder Hamiltonian.

IV. FINITE CONCENTRATIONS

In this section, we discuss the effect of a finite concentra-
tion of modified couplings JR or JL on the one-triplet disper-
sion in the strong-coupling limit JL!JR. To treat this prob-
lem, we apply diagrammatic techniques, namely, a low-
concentration approximation (LCA) and the coherent-
potential approximation (CPA), and numerical
diagonalization of large systems. We also use our analytical
results for the eigenenergies of small impurity clusters to
explain the details in the numerical results for the density of
states, both for (anti) bound states and resonance modes.

Before we turn to the discussion of the analytical methods
and compare the results to those from numerical impurity
averaging (NAV), let us consider certain limiting cases. In
the following, c denotes the concentration of impurities.
Note that in the case of impurities on the legs, we set c=1 if
all 2N couplings are modified.

The limiting cases are (i) the pure system sc=0d, (ii) the
single-impurity case (see Sec. III A), (iii) the case c=1
where all couplings are equal to JR+dJR or JL+dJL, respec-
tively. In the latter case and for dJRÞ0,dJL=0, a one-triplet
band with the dispersion Ek= sJR+dJRd+JLcosskd will result,
i.e., its center is shifted by dJR with respect to the center of
the original band for c=0. Therefore, the single-impurity
(anti) bound state should develop into a dispersive band as
the concentration increases while the center escd of the band
lies between JR−ÎJL

2 + sdJRd2,escd,JR+dJR for dJR,0.
An analogous scenario arises for dJR.0.

For dJR=0,dJL.0, the triplet dispersion in the limit of
c=1, i.e., all JL modified, reads Ek=JR+ sJL+dJLdcosskd.
Thus, the bound and antibound states appear symmetrically
with respect to the center of the original band. On increasing
the concentration c, additional impurity levels will appear
and eventually, they will merge in the original band. Finally,
there will be one broadened band possessing a bandwidth of
sJL+dJLd.

A. Low-concentration and coherent-potential approximation

Based on a diagrammatic expansion of the one-triplet
Green’s function in the presence of impurities, a number of

FIG. 1. Excitation energy E of the lowest level for the full spin
ladder Hamiltonian (2). (a) One rung impurity JR8 =JR+dJR. (b) One
leg impurity JL8=JL+dJL. In all cases, the normalization is fixed to
JR=1. Symbols are obtained by extrapolation of Lanczos diagonal-
ization on finite systems. Open circles are for the pure system
(dJR=0 and dJL=0) and correspond to the spin gap; the solid line is
a [7,6] Padé approximant to the 13th order strong-coupling series
(Ref. 9) for the spin gap of the pure ladder. Dashed lines display the
analytical result for the position of the bound state in the effective
Hamiltonian (13), namely, Eq. (16) [panel (a)] and Eq. (17) [panel
(b)].
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useful methods exist to get approximate results for the self-
energy SsEd. First, we briefly comment on the low-
concentration approximation and second, we discuss results
from the coherent-potential approximation.

As in Sec. III we will concentrate on the single-triplet
subspace. Thus, apart from integrating out the singlet, the
hard-core constraint (6) is automatically satisfied within our
approximation, i.e., first-order perturbation theory in JL /JR.

Low-concentration approximation. Using standard
impurity-averaging techniques (see, e.g., Ref. 27), the self-
energy of the one-triplet Green’s function can be obtained in
first order in the impurity concentration. As the averaging
procedure restores translational invariance, the one-triplet
Green’s function GksEd can be written in terms of the Dyson
equation

GksEd =
1

E − ek − cSsEd
. s21d

Keeping only terms linear in c implies that the self-energy
SsEd is equal to the T̂ matrix of the one-impurity problem.
The diagrammatic expansion of the self energy is sketched in
Fig. 2. Note that all quantities in Eq. (21) become 232
matrices if the modified coupling connects two sites as real-
ized by a leg impurity. For a more detailed discussion of this
technique, the reader is referred to, e.g., Ref. 28.

The spectral function AksEd=−s1/pdIm GksEd. is plotted
in Fig. 3 for (a) JL=0.1,dJR=−0.1,c=0.01 and (b) for JL
=0.1,dJL=0.5,c=0.01. In accordance with our previous re-
sults we find one bound state in case (a) and a bound and an
antibound state in case (b). Figure 3 further reveals that first,
the impurity levels have developed a small dispersion and
second, the spectral weight is concentrated around k=p for
the bound states while it vanishes in the center of the zone,
and vice versa for the antibound states.

Coherent-potential approximation. The coherent-potential
approximation allows one to interpolate between the two
limits of c=0 and c=1. Here, we apply this method to the
case of dJR,0,dJL=0. The self-energy is obtained from a
self-consistent solution of the equation29

SsEd =
cdJR

1 − GsEdfdJR − SsEdg
. s22d

Rather than deriving this equation (see Ref. 29 for details),
let us mention some features of this method: (i) the self-
energy is symmetric under exchange of host and impurity

sites, i.e., c and 1−c and the respective replacement of the
coupling constants and (ii) it gives qualitatively correct re-
sults for the density of states for intermediate concentrations.
We note that in contrast to the low-concentration approxima-
tion [see, e.g., Fig. 4(a)], the CPA does not lead to a sharp
peak in the density of states at the position of the impurity
level even for low concentrations. This can, for example, be
seen in Fig. 4(b) for c=0.1. We have, however, checked that
in both diagrammatic approaches, the total weight in the im-
purity levels is the same and that it grows linearly with the
impurity concentration, as expected.

B. Numerical results and comparison

Now we compare the analytical results with a numerical
diagonalization of the effective Hamiltonian on large systems
and sampling over several realizations at fixed concentration.
The effective Hamiltonian Heff (13) has been diagonalized on
finite systems with N=103 rungs for different choices of im-
purity concentrations c for both types of bond impurities.
The density of states (DOS) is obtained from binning the
eigenvalues, the bin width of typically 10−3JR determining
the resolution in Figs. 4–7. Results are shown for JL
=0.1,dJR=−0.1 in Fig. 4 [panel (a): c=0.01; (b): c=0.1; (c):
c=0.3]. Note that, according to Eq. (16), the position of the

FIG. 2. Sketch of the diagrammatic expansion of the self-energy
SsEd in the low-concentration limit. Gk

0sEd=1/ sE−ekd is the free
one-triplet Green’s function.

FIG. 3. Spectral function AksEd in low-concentration approxi-
mation (LCA) for (a) perturbed rung couplings with dJR=−0.1, c
=0.01; (b) perturbed leg couplings with dJL=0.5, c=0.01. The
dashed lines mark the positions of the (anti) bound states from Eqs.
(16) and (17). JR=1 and JL=0.1 in both cases.
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single-impurity level is E1,R=0.8586JR. The following fea-
tures are observed: (i) for increasing concentration, addi-
tional peaks appear in the vicinity of the one-impurity level.
They stem from impurity clusters, i.e., impurities occupying
neighboring sites, as will be discussed in more detail below.
(ii) The bound state level develops into a band centered
around JR+dJR=0.9 as a function of concentration c. Notice
that larger concentrations c.0.5 are conveniently realized
by setting c→1−c ,JR→JR+dJR and dJR→−dJR. (iii) Inside
the original band, the curve is not smooth, but displays small
oscillations. These features are neither due to finite-size ef-
fects nor due to low statistics (the density of states has been
obtained by averaging over typically a few thousand random
realizations at fixed concentration). As we shall discuss be-
low, their origin can also be related to the effect of impurity
clusters.

Let us now comment on the comparison of the numerical
with the analytical results. By integrating AksEd over the mo-
mentum k, the density of states nsEd is obtained. Results
from the LCA are compared to the numerical impurity aver-
aging in the case of JL=0.1,dJR=−0.1,c=0.01 in Fig. 4(a).
Both approaches agree well with regard to the position of the
main impurity level. The comparison with the results from
the CPA for c=0.1 [Fig. 4(b)] and c=0.3 [Fig. 4(c)] shows
that this approach gives qualitatively reasonable results even

at fairly large concentrations. At c=0.3, the impurity levels
and the original band start to merge.

For a finite concentration of leg couplings, the numerical
results confirm our qualitative expectations. The data are
shown in Fig. 5 for JL=0.1,dJL=0.5 [panel (a): c=0.01; (b):
c=0.1; (c): c=0.9]. For clarity, we note that the possible
impurity configurations are (i) one modified coupling on one
leg, connecting, e.g., rung l and l+1; and (ii) both couplings
between rung l and l+1 modified. Both cases are taken into
account in the numerical implementation.

The impurity levels occur symmetrically with respect to
the center of the band. On increasing the concentration c, the
original band widens and eventually includes all impurity
levels [see Fig. 5(c) for c=0.9]. The influence of impurities
is now visible as resonance modes inside the band. Note that
the last case is equivalent to JL=0.6, dJL=−0.5, and c=0.1.

Comparing to the LCA from Eq. (21) for the case of JL
=0.1,dJL=0.5,c=0.01 [see Fig. 5(a)], we see that the posi-
tions of the highest peaks seen in the numerical data and the
analytical result almost coincide, similar to the case shown in
Fig. 4(a). The inset of Fig. 5(a) contains a zoom of the region
around the lower single-leg impurity peak with E1,L
=0.811JR revealing the presence of several less pronounced
structures. In summary, the analytical approaches give fair
results for the overall structure of the density of states even

FIG. 4. Density of states
(DOS) at finite concentration of
modified couplings JR8: numerical
data (NAV, solid line) for spin lad-
ders with N=103 rungs and JR
=1,JL=0.1,dJR=−0.1 [concentra-
tion: panel (a) c=0.01; panel (b)
c=0.1; panel (c) c=0.3]. Dashed
line in panel (a): low-
concentration approximation
(LCA); in panels (b) and (c): CPA.
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at large concentrations as exemplified in the case of
dJR,0,dJL=0. The effects of impurity clusters are not taken
into account in the diagrammatic description.

C. Analytical results for small impurity clusters

Next we analyze the details of the peak structure of the
impurity levels arising from a variety of small impurity clus-
ters for the case of modified rung couplings. The clusters
analyzed include, e.g., the patterns s11d, s101d, s111d,
s1001d, s1101d, s1111d, and s10001d where, in this notation,
1 indicates a modified rung in the cluster sequence and 0
indicates no impurity placed on a rung site. For example,
s11d denotes two rung impurities on neighboring sites in an
otherwise clean system.

We find that the energy eigenvalues corresponding to the
main peaks outside the triplet band observed in the numerical
results for the density of states (see the previous section) can
be associated with the contribution of certain impurity clus-
ters. In particular, in Fig. 6, we show the matching between
the numerical bound state structure and the analytically com-
puted eigenenergies corresponding to different small clusters
placed in an otherwise clean system for the case of JL=0.1,
dJR=−0.1, and c=0.1 [see Fig. 4(b) for the full density of
states in the same case].

Let us now discuss the features inside the triplet band in
the presence of impurities. The density of states (DOS) nsEd
can be evaluated from

nsEd = −
1
p

Im Tr GsEd = n0sEd + nimpsEd , s23d

where the free density of states29 is n0sEd=
−s1/pdIm Tr G0sEd and the contribution from the impurities
nimpsEd can be written as

nimpsEd = −
1
p

Im
d

dE
lnfDetsI − G0sEdHeff8 dg . s24d

We use Eq. (24) to compute the contributions from par-
ticular impurity clusters to the DOS inside the triplet band.
Moreover, from the amplitudes of the different peaks outside
the one-triplet band, one can read off, at least qualitatively,
the distribution of probabilities for the presence of the differ-
ent clusters in a random sample of impurities for a given
concentration. This information is in turn used to weight the
influence of each cluster on the peak structure inside the
triplet band. In Fig. 7, we show an example where the main
peaks are associated with the corresponding cluster contribu-
tions. We are able to match, in this particular case, the central
peak, which is slightly shifted to the right of the band-center,
with the patterns s1101d and s101d, and the two ones, which
are almost symmetrical with respect to the band center, with
a contribution from the s1001d cluster. This analysis ex-
plains, on the one hand, the appearance of the various local-
ized modes and, on the other hand, it gives evidence that the
peaks inside the triplet band originate from the existence of
impurity clusters.

FIG. 6. Comparison of eigenenergies of bound states induced by
rung-impurity clusters in a clean system, derived analytically, with
numerical diagonalization of Heff on large systems with a finite
concentration of modified rung couplings. The density of states
(DOS) in the vicinity of the one-impurity level is shown. The pat-
terns in parenthesis denote different types of impurity clusters: with
1, we indicate the relative position of the rung impurities in the
cluster sequence. The numerical data (NAV, solid line) correspond
to JR=1,JL=0.1, dJR=−0.1 and c=0.1. The letters a–j relate the
peaks in the DOS to certain impurity clusters, which are listed in
the legend.

FIG. 5. Density of states (DOS) at finite concentration of modi-
fied couplings JL8: numerical data (NAV, solid line) for spin ladders
with N=103 rungs and JR=1,JL=0.1, and dJL=0.5 [concentration:
panel (a) c=0.01; panel (b) c=0.1; panel (c) c=0.9]. Dashed line in
panel (a): low-concentration approximation (LCA). Inset of panel
(a): structure of the DOS in the vicinity of the bound state. Panel
(c): one observes resonance modes inside the band for c=0.9; the
case shown here is equivalent to JL=0.6, dJL=−0.5,0, and c
=0.1.
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V. DISCUSSION AND CONCLUSIONS

In this paper we have studied the appearance of bound
states in the spin gap of spin ladders with bond impurities.
Both the cases of modified rung and leg couplings have been
considered. We have derived analytical results for the posi-
tion of bound states in the strong-coupling limit equivalent to
first order perturbation theory in JL /JR. The existence of im-
purity induced bound states has been verified by a Lanczos
study of finite spin ladders with one impurity and 0,JL

øJR and we find that our analytical results are quantitatively
correct for JL&JR /10 and that a qualitative agreement is still
found for larger JL. Recently discovered spin ladder materi-
als such as, for example, sC5H12Nd2CuBr4 (Ref. 13) or
CaV2O5 (Ref. 15) fall in this range of parameters.

Further, we have discussed the density of states in the
presence of a finite concentration of impurities in the limit of
JL!JR both numerically and analytically. The comparison of
the different approaches shows that diagrammatic methods
give quantitatively correct results for small impurity concen-
trations and, furthermore, a qualitatively correct picture is
obtained for large impurity concentrations. As the diagram-
matic approaches neglect the interference of impurities and
the effect of impurity clusters, we have presented a careful
analysis of systems with small impurity clusters which al-
lows us to understand details visible in the density of states.
Natural extensions of this work, i.e., the computation of ob-
servables and the discussion of systems with arbitrary ratios
of JL /JR, are left for future work. Nevertheless, our results
already imply the appearance of additional features in the
spin gap which could be observed by, e.g., optical experi-
ments on bond-disordered spin ladder materials.
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