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Position-momentum uncertainty relations based on moments of arbitrary order
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The position-momentum uncertainty-like inequality based on moments of arbitrary order for d-dimensional
quantum systems, which is a generalization of the celebrated Heisenberg formulation of the uncertainty principle,
is improved here by use of the Rényi-entropy-based uncertainty relation. The accuracy of the resulting lower
bound is physico-computationally analyzed for the two main prototypes in d-dimensional physics: the hydrogenic
and oscillator-like systems.
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I. INTRODUCTION

The uncertainty relations play a fundamental role not only
in the foundations of quantum mechanics [1,2] but also for the
quantum description of the internal structure of d-dimensional
physical systems [1–5], as well as for the development of
quantum information and computation [6,7]. The (position-
momentum) uncertainty principle has attracted considerable
attention since the early days of quantum mechanics [8,9] up to
the present [1,2,10–12] because of its numerous scientific and
technological implications. The first mathematical relation that
expressed this principle in an exact and quantitative form is the
celebrated Heisenberg relation [8,9], which uses the standard
deviation or its square, the variance of position and momentum,
as a measure of uncertainty; assuming hxi = hpi = 0 for
notational simplicity, it reads

hr2ihp2i > d2

4
(1)

for d-dimensional quantum-mechanical states.
However, this relation is not only too weak but it is

also often inadequate [12–16]. To overcome these problems,
various alternative formulations of the uncertainty principle
have been proposed by use of some information-theoretic
uncertainty measures such as the Shannon entropy [17],
Rényi entropies [18–20], Tsallis entropies [21,22], entropic
momenta [23], and Fisher information [24–26], as recently
surveyed [5,12,27].

Not so well known are the moment-based uncertainty
relations developed by Angulo [28,29] in 1993, which can

*steeve.zozor@gipsa-lab.grenoble-inp.fr
†portesi@fisica.unlp.edu.ar
‡pablos@ugr.es
§dehesa@ugr.es

be recast [5] under the form
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valid for all (a,b) ∈ R2
+ = (0, + ∞)2. These relations, which

offer a more general and versatile formulation of the uncer-
tainty principle [note that it reduces to the Heisenberg inequal-
ity (1) in the particular case a = b = 2], has not received much
attention despite the fact that the moments often completely
characterize a probability density. Strictly speaking, in the
d-dimensional case and when the characteristic function
admits a Taylor expansion at any order, the assertion that the
moments characterize a distribution is true concerning all the
moments of the form

R
Rd ρ(x)

Qd
i=1[xki

i dxi] for all ki ∈ N.
The assertion is no longer true when (some of) these moments
do not exist and/or dealing only with fractional moments.
For example, this appears for laws that are not exponentially
decreasing (e.g., a power law such as Lévy noise). This is
known as the Hamburger moment problem ([30], Chap. III,
Sec. 8). Other similar relationships for particular values of
the parameters have also been published [10,31,32]. Note
also that quantities hrai 2

a hpbi 2
b are insensitive to a stretching

factor in the position (or equivalently in the momentum).
Moreover, for specific values of a and/or b, the moments
are linked to physical quantities (e.g., atomic Thomas-Fermi
or Dirac exchanges [5]). Thus, it may offer a useful tool to
quantify complexity for atomic or chemical systems that can
be complementary to those proposed, e.g., in [5,33–35].

In this work, we deal with relations (2) and improve them
by use of a Rényi-entropy-based approach, in a way similar
to the procedure followed by Bialynicki-Birula and Mycielski
(BBM in short) [17] and Angulo [28,29] to obtain the relations
(1) and (2), respectively, from the Shannon entropy. For this
purpose, we first fix notations and briefly review the entropic
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uncertainty relations in Sec. II. Then, in Sec. III, we find
moment-based formulations of the uncertainty principle that
extend and generalize the relations (1) and (2). In Sec. IV,
we carry out a computational analysis of our moment-based
uncertainty relation for hydrogenic and oscillator-like systems,
not only because they are the two main quantum prototypes
in d-dimensional physics, but also because their position and
momentum moments have known analytical expressions in
terms of the hyperquantum numbers at all orders [36]. Finally,
some conclusions are given in Sec. V. In the Appendixes,
we provide help to clearly discuss the proof of the moment
uncertainty relation described in Sec. III.

II. ENTROPIC UNCERTAINTY RELATIONS:
A BRIEF REVIEW

Let us denote by 9(x) and b9(p) the wave functions of
a d-dimensional quantum-mechanical system in the position
and momentum spaces, respectively, so that

b9(p) = (2π )−d/2
Z
Rd

9(x) exp(−ıxtp) dx,

where the units with h̄ = 1 are used. The correspond-
ing position and momentum probability densities will be
denoted as

ρ(x) = |9(x)|2 and γ (p) = |b9(p)|2,
respectively. These two density functions are known to be
completely characterized by the knowledge of the moments
hrai and hpbi of all orders, respectively, where r = kxk and
p = kpk denote the Euclidean norms of the d-dimensional po-
sition and momentum single-particle operators, respectively.
The position expectation value hf (r)i is defined as

hf (r)i =
Z
Rd

f (kxk)ρ(x) dx,

and similarly for the expectation value hf (p)i with the
momentum density γ (p).

For notational simplicity, we assume that x and p have
zero mean, so that the variance-based Heisenberg uncertainty
relation takes the form (1). Nowadays it is well known that
there exist other uncertainty relations that are much more
stringent. They are based on information-theoretic quantities
such as the Shannon and Rényi entropies and the Fisher
information, which provide complementary measures of the
position and momentum probability spreading. Let us recall
here the definition of the Rényi entropy of (real) index λ > 0,
λ 6= 1 [37,38],

Hλ(ρ) = 1

1 − λ
ln
Z
Rd

[ρ(x)]λdx = 2 λ

1 − λ
ln k9k2λ, (3)

which represents an alternative generalized measure of un-
certainty (lack of information) of a random variable with
probability density ρ = |9|2. Here, k · ks denotes the Ls

norm for functions k9ks = [
R
Rd |9(x)|sdx]1/s . Note that

limλ→1 Hλ(ρ) = H (ρ) = − R
Rd ρ(x) ln ρ(x)dx is the Shannon

entropy, which can thus be viewed as a special case of the
family of Rényi entropies (we will write H = H1).

To derive an entropic formulation of the uncertainty
relation, the point to start with is the Beckner relation that

links the Ls norm of a (wave) function 9(x) to the Lq norm
of its Fourier transform b9(p), where x and p are continuous
in Rd , d being the dimension, and s and q being conjugated
numbers in the Hölder sense: 1/s + 1/q = 1. This relation
states that for any s ∈ [1; 2] and q = s/(1 − s),

kb9kq 6 (Cs,q)dk9ks , (4)

where

Cs,q =
µ

2π

s

¶− 1
2s
µ

2π

q

¶ 1
2q

(5)

is the Babenko-Beckner constant. Thus, by taking the loga-
rithm of the relation (4) with s = 2α and q = 2α∗, one achieves
the relation [18,19]

Hα(ρ) + Hα∗ (γ ) > d

µ
ln(2π ) + ln(2α)

2(α − 1)
+ ln(2α∗)

2(α∗ − 1)

¶
,

(6)

where α and α∗ are two real parameters related by 1
α

+ 1
α∗ = 2,

from which we define α∗(α) = α/(2α − 1). In principle, α ∈
[ 1

2 ; 1], but it can be seen that by symmetry (exchanging the
roles of 9 and b9), this relation holds for any α > 1/2. When
α → 1, then α∗ → 1 and thus the BBM relation [17] dealing
with Shannon entropies is recovered,

H (ρ) + H (γ ) > d[1 + ln(π )]. (7)

The entropic uncertainty relations given in (6) and (7) can be
recast in the more convenient product form,

Nα(ρ)Nα∗ (γ ) > B(α), (8)

with

B(α) = α
1

α−1 α∗ 1
α∗−1

4e2
for α 6= 1 and B(1) = 1

4 , (9)

using the so-called Rényi λ-entropy power

Nλ = 1

2πe
exp

µ
2

d
Hλ

¶
, (10)

where the limiting case λ → 1 corresponds to the Shannon
entropy power N = N1. BBM showed also that his primary
relation (7) using Shannon entropies does imply the Heisenberg
relation (1). To show this, it suffices to search for the maximizer
of N (ρ) under variance constraint hr2i fixed, which is known
to be a Gaussian of covariance matrix hr2i

d
I for which the

entropy power is hr2i
d

[38,39]. The same work is then done
(separately) for the momentum, i.e., for N (γ ) subject to hp2i
fixed, to finally achieve

hr2ihp2i > d2N (ρ)N (γ ) > d2

4
(11)

and thus the Heisenberg relation. The Heisenberg inequality
is known to be sharp and, fortunately, nothing is lost in
this process. Indeed, equality between the entropy and its
maximal value is reached if and only if ρ is Gaussian.
Furthermore, if (and only if) ρ is Gaussian, γ is also
Gaussian with the “appropriate” variance, and thus simul-
taneously in the momentum space the maximum entropy is
achieved. In other words, the sum of the maximum entropies
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corresponds to the maximum of the sum here. Simultane-
ously, the BBM inequality becomes an equality if and only
if ρ is Gaussian, and thus the succession of inequalities
are equalities.

Note now that the relation (8) with Rényi entropies given
above concerns only indexes α and α∗ so that 2α and 2α∗ are
conjugated in the Hölder sense: 1

2α
+ 1

2α∗ = 1. Zozor et al. [20]
then showed that the relation (8) extends for any pair (α,β)
in R2

+ such that β 6 α∗(α), simply noting that Nλ viewed
as a function of λ is decreasing (and after decomposing
the allowed domain for the parameters into three regions).
This leads to

Nα(ρ)Nβ(γ ) > Z(α,β), (12)

where the bound is

Z(α,β) =
(

1/e2 for (α,β) ∈ [0; 1/2]2,

B( max(α,β)) otherwise
(13)

with B defined in Eq. (9).
Note that on the “conjugation curve” β = α∗(α) =

α/(2α − 1), the bound is sharp and attained if (and only if)
ρ is Gaussian, since it is the (only) case of equality in the
Babenko-Beckner relation (see Lieb’s paper [40]). Finally, let
us also mention that Zozor et al. [20] showed that for β > α∗
no uncertainty principle exists, in the sense that the product of
Rényi entropy powers is just trivially non-negative. But below
the conjugation curve, i.e. for β < α∗, neither the sharpest
bound nor the states that saturate the uncertainty relation are
known yet.

III. THE MOMENT-BASED UNCERTAINTY RELATIONS

The uncertainty relations (2) based on the moments hrai and
hpbi were obtained in [28,29,41] by use of two elements: the
Shannon-entropy-based BBM relation (7) and the maximizer
[41] of the Shannon entropy of the position (momentum)
density subject to (s.t.) the constraint hrai (hpbi). Let us remark
that such a bound cannot be sharp. If we denote by 9max,a the
wave function that gives the maximizer of N (ρ) s.t. hrai and bye9max,b the wave function that maximizes N (γ ) s.t. hpbi, then
these two functions are not linked by a Fourier transformation,
namely e9max,b 6= b9max,a , except for the particular case a =
b = 2. Or, in other words, the sum of the maximal entropies
here is not the maximum of the sum. When deriving the Heisen-
berg relation from the Bialynicki-Birula relation, although the
maximization is made separately on each Shannon entropy,
it appears that the square roots of the two maximizers are
precisely linked by a Fourier transformation. Without going
into detail here, let us consider the example of ρmax,a =

arg max H (ρ) s.t. hrai, which is a generalized Gaussian of
index a [42,43]. Its square root is thus a generalized Gaussian
of index a and its Fourier transform is not a generalized
Gaussian (i.e., its square is not the maximizer of the other
Shannon entropy): it is linked to an α-stable law of stability
index a [44].

In this section, we improve the relations (2) in a similar way
but using the Rényi entropy (3), which includes the Shannon
entropy as a particular case. Our procedure has the following
steps:

(i) Start with the Rényi-entropy-based inequality (12),
namely Nα(ρ)Nβ(γ ) > Z(α,β), with the bound Z defined in
Eq. (13).

(ii) Search for the maximum Rényi entropy power Nα(ρ)
s.t. hrai. This will give rise to a relation of the form hrai2/a >
Nα(ρ)M(a,α), where the boundM has to be obtained in terms
of a and α (see Appendixes A and B).

(iii) Similarly (and separately) for the momentum, one will
arrive at the relation hpbi2/b > Nβ(γ )M(b,β).

(iv) These will lead to hrai 2
a hpbi 2

b > Nα(ρ)Nβ(γ )M(a,α)
M(b,β) > M(a,α)M(b,β)Z(α,β) for every pair (a,b) ∈
R2

+.
(v) Finally, the best bound we can find is

C(a,b) = maxα,β M(a,α)M(b,β)Z(α,β), where β 6 α∗(α)
[other restrictions come out that considerably reduce
the (α,β) domain for searching the maximum; see
Appendix C].

It can be shown (see Appendix C1) that the desired
maximum is on the conjugation curve β = α∗(α), and then
C(a,b) = max

α
M(a,α)M(b,α∗)B(α).

As previously mentioned, the bound must be at least
the same as the case of Dehesa et al. [5], since the latter
corresponds to the particular situation α = β = 1 in our
computations.

The main result of the present effort is summarized
here (and proved in the appendixes): For any a > b > 0,
there exists an uncertainty principle that can be stated
in the following way for arbitrary-order moments of
the position and momentum observables in d-dimensional
systems:

hrai 2
a hpbi 2

b > C(a,b) = max
α∈D

B(α)M(a,α)M(b,α∗),

(14)

where B(α) is defined in Eq. (9), α∗ = α/(2α − 1),

D =
µ

max

µ
1

2
,

d

d + a

¶
; 1

¸
, (15)

and the function M has the form

M(l,λ) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
2πe

¡
l

ÄB( d
l
,1− λ

λ−1 − d
l
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¢2
d
¡ −d (λ−1)

d(λ−1)+lλ

¢2
l
¡

lλ
d(λ−1)+lλ

¢ 2
d(λ−1) , 1 − l

l+d
< λ < 1,

2πe
¡

l

Ä 0( d
l
)

¢2
d
¡

d
le

¢2
l , λ = 1,

2πe
¡

l

Ä B(d
l
, λ

λ−1)

¢2
d
¡

d(λ−1)
d(λ−1)+lλ

¢2
l
¡

lλ
d(λ−1)+lλ

¢ 2
d(λ−1) , λ > 1,

(16)

with Ä = 2πd/2

0(d/2) and B(x,y) the beta function.
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FIG. 1. Bound C(a,b) (solid line) given in (14) compared to D(a,b) in (2) (dashed line), vs b, for given a = 0.1,0.5,1,2, and 4, respectively,
with d = 5. For each value of a, the new bound C is always above D; both functions coincide when b = a.

Let us denote by αopt(a,b) the index that maximize C(a,b),
i.e.

αopt(a,b) = arg max
α∈D

B(α)M(a,α)M(b,α∗). (17)

The case b > a > 0 can be treated using the symmetry (proved
in the Appendixes)

αopt(b,a) = [αopt(a,b)]∗ (18)

and then

C(b,a) = C(a,b). (19)

The symmetry on αopt allows us also to conclude that
αopt(a,a) = 1 and thus the optimal bound from our approach
coincides with that of Angulo, given in (2). Unfortunately,
except for the case a = b, we have not been able yet to obtain
an analytical expression for C(a,b).

Figure 1 depicts the bound C(a,b) for given values of a as a
function of b compared to the bound D(a,b). From the figure,
we see that the bound is substantially improved when b 6= a,
especially as b departs considerably from a.

Figure 2 depicts the optimal α = αopt as a function of b in
the same configurations as in Fig. 1. The curves illustrate that
only for a = b is the optimal bound obtained for αopt = 1. For
a 6= b, a finer study of M could allow us to even reduce the
domain D where αopt lies.

IV. APPLICATION TO CENTRAL POTENTIAL PROBLEMS

Let us now apply and discuss the minimal uncertainty bound
(14) for the two main prototypes of d-dimensional physics:
hydrogenic and oscillator-like systems. But first, let us give a
brief review on eigensolutions for quantum systems in central
potentials.

A. Eigensolutions for central potentials: A brief review

In both hydrogenic and oscillator cases, the quantum sys-
tems are described by the physical solutions of the Schrödinger
equation, £− 1

2∇2 + V (r)
¤
9 = E 9, (20)

where V (r) is a radial potential and where, without loss of
generality, the mass is set to unity. It is well known [45] that
the wave functions of a Hamiltonian with central potential
can be separated out into a radial, RE,l(r), and an angular,
Y{µ}(Äd−1), part as

9E,{µ}(x) = RE,l(r)Y{µ}(Äd−1). (21)

The position x = (x1, . . . ,xd ) is given in hyperspherical
coordinates as (r,θ1,θ2, . . . ,θd−1) ≡ (r,Äd−1), where
naturally kxk = r = √Pd

i=1 x2
i ∈ [0 ; +∞) and xi =

r(
Qi−1

k=1 sin θk) cos θi for 1 6 i 6 d and with θi ∈ [0 ; π ),i <

d − 1, θd−1 ∈ [0 ; 2π ). By convention, θd = 0 and the empty
product is the unity. The angular part, common to any central
potential, is given by the hyperspherical harmonics [45,46]
Y{µ}(Äd−1), which are known to satisfy the eigenvalue
equation

32
d−1Y{µ}(Äd−1) = l (l + d − 2)Y{µ}(Äd−1),

associated with the generalized angular momentum operator
given by

32
d−1 = −

d−1X
i=1

(sin θi)i+1−d³Qi−1
j=1 sin θj

´2

∂

∂θi

·
(sin θi)

d−i−1 ∂

∂θi

¸
.

The angular quantum numbers {µ} = {µ1 ≡ l ,µ2 , . . . ,

µd−1 ≡ m} characterize the hyperspherical harmonics
and satisfy the chain of inequalities l ≡ µ1 > µ2 >
· · · > µd−2 > |µd−1| ≡ |m|.

The radial part RE,l(r) fulfills the second-order differential
equation·

−1

2

d2

dr2
− d − 1

2r

d

dr
+ l(l + d − 2)

2r2
+ V (r)

¸
RE,l(r)

= E RE,l(r),

which only depends on the eigenenergy E, the dimensionality
d, and the largest angular quantum number l = µ1.

Then, the quantum-mechanical position probability density
for central systems is given by

ρE,{µ}(x) = |9E,{µ}(x)|2 = |RE,l(r)|2 |Y{µ}(Äd−1)|2. (22)

It is worth remarking that this density function is normalized
to unity. Let us note here thatZ +∞

0
rd−1|RE,l(r)|2 dr = 1

and Z
[0;π)d−2×[0:2π)

|Y{µ}(Äd−1)|2 dÄd−1 = 1,
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FIG. 2. αopt(a,b) (solid line) given in (17), vs b, for given a = 0.1,0.5,1,2, and 4, respectively, with d = 5. The dotted vertical line indicates
b = a. Thus, left to this line, a > b > 0 and αopt has to be searched in D, Eq. (15). This domain is indicated by the dashed lines. At the opposite,
to the right of the vertical dotted line, b > a. Thus, symmetry Eq. (18) is used and αopt(b,a) = [αopt(a,b)]∗ is sought. Since b > a > 0, this
parameter is also in domain D, Eq. (15) (where b replaces a); the dotted curve represents αopt(b,a) [the solid curve being αopt(a,b)] and domain
D is still represented by the dashed lines.

and that the volume element can be expressed in hyperspherical
coordinates as

dx = rd−1 dr dÄd−1 = rd−1 dr

⎛⎝d−2Y
j=1

(sin θj )d−j−1 dθj

⎞⎠ dθd−1.

Thus, the moment hrai for the d-dimensional density ρE,{µ}(x)
has the expression

hrai =
Z +∞

0
rd+a−1|RE,l(r)|2 dr, (23)

which is only characterized by the position radial wave
function RE,l(r) of the particle.

From the Fourier transform of 9E,{µ}, it is revealed that in
the momentum domain the wave functionb9E,{µ} also separates
under the formb9E,{µ}(p) = ME,l(p)Y{µ}(Äd−1)

(see, e.g., [36,46,47]) with the same hyperspherical part, and
the radial part is expressed from RE,l through the Hankel
transform (e.g., [48,49]),

ME,l(p) = p1− d
2

Z +∞

0
r

d
2 RE,l(r)Jl+ d

2 −1(pr) dr (24)

(Jν is the Bessel function of the first kind and of order ν).
Immediately, in the momentum space, the moment hpbi has
the expression

hpbi =
Z +∞

0
pd+b−1|ME,l(p)|2 dp, (25)

which is only characterized by the momentum radial wave
function ME,l(p) of the particle.

These expressions have allowed to find numerous
information-theoretic properties [24,25,36,45,50,51] of gen-
eral central potentials, particularly the Heisenberg [25] and
Fisher-information [24,25] uncertainty relations, as recently
reviewed [5].

B. Application to d-dimensional hydrogenic systems

Let us now examine the accuracy of the moments-
based uncertainty relations (14) for the main prototype of
d-dimensional systems, namely the hydrogenic atom. This

system has been recently investigated in Ref. [36] in full
detail from the information theory point of view. In this
case, the potential has the form V (r) = − 1

r
(without loss

of generality, the atomic number is taken to be 1) and the
energies are

E = − 1

2η2
, η = n + d − 3

2
, n = 1,2, . . . ,

where η denotes the grand principal quantum number. The
radial part of the eigenfunctions is completely calculable
[36,50,51]. The radial wave function in position domain is
expressed as

RE,l(r) =
³η

2

´− d
2

s
0(η − L)

2η0(η + L + 1)
r̃L− d−3

2

× exp

µ
− r̃

2

¶
L2L+1

η−L−1(r̃), (26)

where L = l + d−3
2 , l = 0, . . . ,n − 1 is the grand orbital

quantum number, r̃ = 2r
η

is a reduced (dimensionless) posi-

tion, and Lq
p are the Laguerre polynomials. As is shown in

Refs. [36,50,51], after the Hankel transform (24), the radial
wave function in the momentum domain is expressed as

ME,l(p) = 22L+3

s
0(η − L)

2π0(η + L + 1)
0(L + 1) η

d+1
2

× p̃l

(1 + p̃2)L+2
GL+1

η−L−1

µ
1 − p̃2

1 + p̃2

¶
,

where p̃ = ηp is the reduced (dimensionless) momentum and
Gq

p are the Gegenbauer polynomials. From these expressions
together with (23) and (25), it is shown [36] that the position
and momentum moments of arbitrary orders, corresponding
to a given eigenstate characterized by an energy E and an
angular quantum number l (or equivalently by η and L), have
the expressions

hrai = ηa−10(2L + a + 3)

2a+10(2L + 2)
× 3F2(−η + L+ 1,−a − 1, a + 2 ; 2L+ 2, 1 ; 1)

(27)
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and

hpbi = 4 0(η + L + 1) 0
¡
L + b+3

2

¢
0
¡
L + 5−b

2

¢
ηb−1 0(η − L) 02

¡
L + 3

2

¢
0(2L + 4)

×5F4

µ
L−η+1 , L+η+1 , L+1 , L+ b+3

2
, L+ 5−b

2
; 2L+2 , L+ 3

2
, L+2 , L+ 5

2
; 1

¶
(28)

for b < 2L + 5, where pFq are the generalized hypergeometric
functions (see, e.g., [52], Sec. 2.19.14, Eq. (15) and reflective
properties of hypergeometric functions). Note that the momen-
tum wave function is not exponentially decreasing. The direct
consequence is that not all moments exist in the momentum
domain, which is reflected in the restriction for the values of b.

Thus, the uncertainty product hrai 2
a hpbi 2

b can be computed
and therefore studied analytically for hydrogenic systems in
d dimensions. As an illustration, Fig. 3 depicts the product
hrai 2

a hpbi 2
b computed from (27) and (28) for (a,b) = (1,2)

and Fig. 4 plots the case (a,b) = (1,4) (both for d = 3) when
the system is in the state (E,l), together with the corresponding
bound C(a,b) given in (14)–(16).

We can see from both figures that, although not sharp,
the bound C(a,b) is close to the product hrai 2

a hpbi 2
b for the

ground state (n = 1 and l = 0). However, when n increases,
the discrepancy from the bound increases (and decreases with
l for fixed n). The same behavior occurs for other pairs (a,b)
regardless of the dimensionality d. Since hydrogenic systems
belong to the family of radial potential systems, this suggests
that a refinement can be found in the context of radial systems,
as already done for the usual variance-based Heisenberg
inequality and for Fisher information-based versions [24,25].
To give a further illustration, Fig. 5 depicts hrai 2

a hpbi 2
b as a

function of b for fixed a, and for the ground state (n = 1,
l = 0) in three dimensions. In all the cases shown, we observe
the existence of a value of b that is “optimum” in the sense that
the uncertainty product is close to the bound proposed here,
corresponding to a situation of low generalized uncertainty.
As b increases (up to 2L + 5 = 5 for the ground state in three
dimensions), the uncertainty departs from our bound. Finally,
one observes for the tested values of a that the lower bound
has a concave behavior versus b, while the product hrai 2

a hpbi 2
b

exhibits a convex behavior. This suggests the existence of an
optimal value of b (function of a) in terms of low discrepancy
from the bound.

C. Application to d-dimensional oscillator-like systems

Let us consider now a potential of the form V (r) = 1
2 r2

(without loss of generality, the product mass squared pulsation
is taken as unity). In this case, the energies are

E = 2n + l + d

2
, n = 0,1, . . . and l = 0,1, . . .

and the radial parts of the wave functions are again known [53].
They are expressed as

RE,l(r) =
s

20(n + 1)

0(n + l + d/2)
rl exp

µ
− r2

2

¶
Ll+d/2−1

n (r2)

(29)

and ME,l(p) = RE,l(p). Comparing (29) with (26), after a
change of variables r̃ = r2, one can easily show from (27) that
the statistical moments read

hrai = 0
¡
l + d+a

2

¢
0
¡
l + d

2

¢ 3F2

µ
−n, − a

2
,
a

2
+ 1 ; L + d

2
,1 ; 1

¶

and

hpbi = 0
¡
l + d+b

2

¢
0
¡
l + d

2

¢ 3F2

µ
−n, − b

2
,
b

2
+ 1 ; L + d

2
,1 ; 1

¶
(30)

(see also Ref. [54] for special cases).
Figure 6 describes the moments product hrai 2

a hpbi 2
b using

(30) for (a,b) = (1,2), and Fig. 7 exhibits the case (a,b) =
(1,4) (both for d = 3) together with the corresponding bound
C(a,b) given in (14)–(16).

We can see from these figures also that even if not sharp,
the bound C(a,b) is very close to the product hrai 2

a hpbi 2
b for

the ground state (n = 0 and l = 0). The global behavior is
similar to what happens for the hydrogenic systems: there
is a discrepancy from the bound as n increases. But here,

10
1

n=1
l=0

n=2
l=0

n=2
l=1

n=3
l=0

n=3
l=1

n=3
l=2

n=4
l=0

n=4
l=1

n=4
l=2

n=4
l=3

n=5
l=0

n=5
l=1

n=5
l=2

n=5
l=3

n=5
l=4

r
2
p
2

FIG. 3. Product hri2hp2i, i.e., (a,b) = (1,2) in Eqs. (27), (28) (circles) for the lowest-energy states and lower bound C(1,2), Eqs. (14)–(16),
of this product (squares), for three-dimensional hydrogenic systems (d = 3).
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10
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l=1

n=3
l=0

n=3
l=1

n=3
l=2

n=4
l=0

n=4
l=1

n=4
l=2

n=4
l=3

n=5
l=0

n=5
l=1

n=5
l=2

n=5
l=3

n=5
l=4

r
2
p
4

1 2

FIG. 4. Product hri2hp4i 1
2 , i.e., (a,b) = (1,4) in Eqs. (27), (28) (circles) for the lowest-energy states and lower bound C(1,4), Eqs. (14)–(16),

of this product (squares), for three-dimensional hydrogenic systems (d = 3).

the discrepancy increases also with l when n is fixed. The
same behavior occurs for other pairs (a,b) and whatever the
dimension d. In fact, when observing more finely hri2hp2i and
hri2hp4i 1

2 , it appears that these products depend essentially on
the energy level, i.e., the values of these products for a fixed
value of 2n + l are very close (see, e.g., n = 0,l = 2 or n = 1,

l= 0). This was true also for the hydrogenic systems, but it
is more strongly pronounced for the harmonic oscillator. All
these observations reinforce our “conjecture” that refinement
can be found in the context of radial systems, for moments’
orders other than a = b = 2, at least in terms of energy
levels.

A further illustration is given by Fig. 8, where hrai 2
a hpbi 2

b

versus b is depicted, for different fixed values of a in the case
of the ground state (n = 0, l = 0).

Globally, the behavior of the moments’ product compared
to the bound observed here is similar to that of the hydrogenic
systems. However, the discrepancy from the bound is less
pronounced for the harmonic oscillator (in the ground state)
than for the hydrogen systems. Note that the bound is achieved
in the case in which a = b = 2. This case corresponds to the
classical variance-based Heisenberg inequality. Moreover, the
ground state of the oscillator leads to the Gaussian probability
density function ρ (and γ ): in this case, the variance-based
Heisenberg inequality is saturated. One can again observe the
convexity of the product hrai 2

a hpbi 2
b (in fact almost linear):

together with the observed concavity of the lower bound,
this reinforces our conjecture on the existence of an optimal
value of b(a) in terms of low discrepancy from the bound.
This remains to be studied more systematically and more
deeply.

V. DISCUSSION AND CONCLUSIONS

In this paper, we have proposed an improved version of
the moment-based mathematical formulation of the position-
momentum uncertainty principle for quantum systems that
generalizes the seminal variance-based formulation of Heisen-
berg. The main result of this contribution is formalized in
Eq. (14) together with Eqs. (9), (15), and (16): hrai 2

a hpbi 2
b >

C(a,b). In contrast to the entropic uncertainty relations [like
Eq. (12)], the present formulation is based on spreading
measures that describe physical observables. The present
approach suffers, however, from the fact that the lower
bound C(a,b) found here for the product of the position and
momentum moments for arbitrary a and b is not sharp. To
tackle this issue, a variational approach may be envisaged,
although it is a difficult task. Another alternative might be
to employ appropriate Sobolev-like inequalities, as done for
entropic formulations (see, e.g., Ref. [17–19,21]).

Our moment-based uncertainty relation is physico-
computationally analyzed in some d-dimensional quantum
systems. More specifically, the bound of the moment-based
uncertainty relation is compared to the product of the moments
for hydrogenic and oscillator-like systems. In both cases,
analytic expressions of the moments exist in terms of hyper-
geometric functions [Eqs. (27), (28) and (30), respectively].
Our results suggest that the improvement of this relation for
general central potentials seems possible regardless of the
orders a and b of the moments, at least in terms of energy levels.
Such an improvement exists in the variance-based context
a = b = 2 [24,25], but for moments of arbitrary order this
issue is a fully open problem that deserves to be variationally
solved for both fundamental and applied reasons. This suggests
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FIG. 5. Product hrai 2
a hpbi 2

b (solid lines) in the ground state (n = 1, l = 0), for fixed a = 0.1, 0.5, 1, 2, and 4, respectively, and lower bound
(dashed lines) for three-dimensional hydrogenic systems (d = 3).
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FIG. 6. Product hri2hp2i, i.e., (a,b) = (1,2) in Eqs. (30) (circles) for the lowest-energy states and lower bound C(1,2), Eqs. (14)–(16), of
this product (squares) for three-dimensional harmonic oscillators (d = 3).

also that the product hrai 2
a hpbi 2

b can be envisaged as a useful
tool to quantify the complexity and organization of various
physical systems. However, the properties of such a complexity
measure should be analyzed in more detail.
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APPENDIX A: EVALUATION OF THE MAXIMIZERS OF
THE RÉNYI ENTROPY POWER UNDER

MOMENT CONSTRAINT

In Sec. III [steps (ii) and (iii)], we established the necessity
of searching for the maximum of the Rényi entropy power
Nα(ρ) subjected to given moment hrai and Nβ(γ ) s.t. hpbi.
This variational problem has been tackled and partially
solved by Dehesa et al. [55]. Similar to what is done for
variance constraint, the problem is to maximize the frequency
entropic moment of order λ > 0, an increasing function
of the entropy power,

R
Rd f (x)λdx s.t.

R
Rd f (x)dx = 1 andR

Rd kxklf (x)dx = hrli, with l > 0 and where kxk = r is the
Euclidean norm of x. Note that we work here with the
variables x and r , but the results obtained will be valid in
the momentum domain, changing x to p and r to p. Then, we
have to maximize

R
Rd [f (x)λ − µf (x) − νkxklf (x)]dx, where

µ and ν are the Lagrange factors. From the corresponding
Euler-Lagrange equation, one obtains that f must be of

the form f (x) = (µ+νkxkl

λ
)

1
λ−1
+ , where (y)+ = max(y,0). With

integrability arguments (f must be a probability density
function (pdf) and thus positive and integrable), µ > 0 and
ν must have the sign of 1 − λ, and thus the pdf that maximizes
the entropy power Nλ s.t. hrli can be recast under the form

fλ,l(x) = C[1 − (λ − 1)(kxk/δ)l]
1

λ−1
+ . (A1)

This pdf is sometimes called a generalized Gaussian [56,57],
but this terminology is not adequate. Indeed, when λ → 1,
this pdf tends to f1,l(x) = C exp(−kx/δkl), which is also
sometimes called a generalized Gaussian (or also Kotz-type)
[43,58,59] (and also sometimes a stretched exponential or a
power exponential [59,60]). Furthermore, when l = 2, one can
recognize in (A1) the well known q-Gaussian (also known
as Student-t or Student-r depending on the sign of 1 − λ),
where q = 2 − λ and thus the generalization (A1) is known
under the terminology of stretched q-exponential [55,61] or
even generalized q-Gaussian of parameter q = 2 − λ and
(stretching) parameter l.

Constants C and δ are to be determined so that the
constraints are satisfied. The normalization constraint reads

1 = C

Z
Rd

£
1 − (λ − 1)(kxk/δ)l

¤ 1
λ−1

+ dx

= C Ä

Z +∞

0
rd−1

£
1 − (λ − 1)(r/δ)l

¤ 1
λ−1

+ dr

= C Äδd

l|λ − 1|d/l

Z +∞

0
td/l−1

£
1 − sgn(λ − 1) t

¤ 1
λ−1

+ dt,
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FIG. 7. Product hri2hp4i 1
2 , i.e., (a,b) = (1,4) in Eqs. (30) (circles) for the lowest-energy states and lower bound C(1,4), Eqs. (14)–(16), of

this product (squares) for three-dimensional harmonic oscillators (d = 3).
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FIG. 8. Product hrai 2
a hpbi 2

b (solid lines) in the ground state (n = 0, l = 0), for fixed a = 0.1, 0.5, 1, 2, and 4, respectively, and lower bound
(dashed lines) for three-dimensional oscillators (d = 3).

where the second line comes from [62], Eq. 4.642, with
Ä = 2πd/2

0(d/2) , which is the surface of the d-dimensional unit
sphere and where the third line comes from the change of
variable r = δ(t/|1 − λ|)1/l . The integral term, which we will
denote B1(l,λ), is expressed via the beta function B(x,y) =
0(x)0(y)/0(x + y), from [62], Eqs. 8.380-1 and 8.380-3, and
one finally obtains

1 = C Äδd

l |λ − 1|d/l
B1(l,λ), (A2)

where

B1(l,λ) =
(

B
¡

d
l
, λ

λ−1

¢
if λ > 1,

B
¡

d
l
, 1 + λ

1−λ
− d

l

¢
if 1 − l

d
< λ < 1.

(A3)

Indeed, the integral converges provided that λ > 1 − l/d.
In the same vein, the power moment constraint reads

hrli = C

Z
Rd

kxkl[1 − (λ − 1)(kxk/δ)l]
1

λ−1
+ dx

= C Ä

Z +∞

0
rl+d−1[1 − (λ − 1)(r/δ)l]

1
λ−1
+ dr

= C Äδl+d

l|λ − 1|d/l+1

Z +∞

0
td/l[1 − sgn(λ − 1) t]

1
λ−1
+ dt,

where the integral term, denoted Bm(l,λ), is expressed via the
beta function from [62], Eqs. 8.380-1 and 8.380-3, leading to

hrli = C Äδl+d

l|λ − 1|d/l+1
Bm(l,λ), (A4)

where

Bm(l,λ) =
(

B
¡

d
l
+ 1 , λ

λ−1

¢
if λ > 1,

B
¡

d
l
+ 1 , λ

1−λ
− d

l

¢
if 1 − l

d+l
< λ < 1.

(A5)

Note that the existence of the latter integral implies a stronger
restriction to λ than the one coming from the normalization.
That is, we require now

λ > 1 − l

d + l
= d

d + l
. (A6)

In both constraints, the case λ = 1 can be recovered by
letting λ → 1+ or λ → 1− from [63], Eq. 6.1.47 or [62],
Eq. 8.328-1, limy→∞ B(x,y)xy = 0(x)]: it is not necessary
to treat this case separately.

APPENDIX B: MAXIMAL ENTROPY POWER Nλ AND
BOUND FOR THE MOMENT hr li

Following the procedure proposed in Sec. III, we discuss
here the bounds for the moments hrai and hpbi. From (A1),
the maximal λ-norm of fλ,l(x) to the power λ takes the form

kfλ,lkλ
λ = Cλ

Z
Rd

[1 − (λ − 1)(kxk/δ)l]
λ

λ−1
+ dx

= Cλ Ä

Z +∞

0
rd−1[1 − (λ − 1)(r/δ)l]

λ
λ−1
+ dr

= Cλ Äδd

l|λ − 1|d/l

Z +∞

0
td/l−1[1 − sgn(λ − 1) t]

λ
λ−1
+ dt.

Then, from [62], Eqs. 8.380-1 and 8.380-3 we obtain

kfλ,lkλ
λ = Cλ Äδd

l|λ − 1|d/l
Bh(l,λ), (B1)

where we have defined

Bh(l,λ) =
(

B
¡

d
l
, λ

λ−1 + 1
¢

if λ > 1,

B
¡

d
l
, λ

1−λ
− d

l

¢
if 1 − l

d+l
< λ < 1,

(B2)

which adds no new restriction on λ. Thus, the maximal value
of the Rényi entropy power is

Nλ(fλ,l) = 1

2πe

µ
kf k

λ
1−λ

λ

¶ 2
d

= 1

2πe

"
C

λ
1−λ

µ
Äδd

l|λ − 1|d/l

¶ 1
1−λ

B
1

1−λ

h

# 2
d

= 1

2πe

"
C−1

µ
CÄδd

l|λ − 1|d/l
B1

¶ 1
1−λ

µ
Bh

B1

¶ 1
1−λ

# 2
d

= 1

2πe

"
C−1

µ
Bh

B1

¶ 1
1−λ

# 2
d

from (A2) and where the arguments of B1 and Bh are omitted
for simplicity. Taking the ratio hrlid/l

1d/l+1 from (A2) and (A4), one
obtains

C−1 = Ä

l
B1

µ
B1

Bm

¶d/l

hrlid/l,
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which gives

Nλ(fλ,l) = 1

2πe

"
ÄB1

l

µ
B1

Bm

¶d/l µ
Bh

B1

¶ 1
1−λ

hrlid/l

# 2
d

.

One can simplify this expression a bit by considering the
parameter

µ = µ(λ) = λ

λ − 1
(B3)

that governs the maximal entropy power, with µ > 1 or µ <

−d/l. Noting that

B1

Bm

= sgn(µ)
d + lµ

d
and

Bh

B1
= lµ

d + lµ
(B4)

so that

Nλ(fλ,l) = 1

2πe

"
ÄB1(l,λ)

l

µ
d + lµ

sgn(µ) d

¶ d
l

×
µ

d + lµ

lµ

¶µ−1

hrlid/l

# 2
d

. (B5)

We finally obtain that the Rényi entropy power of any pdf ρ,

Nλ(ρ) = 1
2πe

(kρk
λ

1−λ

λ )
2
d , s.t. fixed hrli, is bounded from above

by the maximum value Nλ(fλ,l). Therefore, we can write

hrli2/l > Nλ(ρ)M(l,λ), (B6)

where the function M is expressed as

M(l,λ) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
2πe

¡
l

Ä B( d
l
,µ)

¢ 2
d
¡

d
d+lµ

¢ 2
l
¡

lµ

d+lµ

¢ 2(µ−1)
d if λ > 1,

2πe
¡

l

Ä 0( d
l
)

¢ 2
d
¡

d
le

¢ 2
l if λ = 1,

2πe
¡

l

Ä B( d
l
,1−µ− d

l
)

¢ 2
d
¡− d

d+lµ

¢ 2
l
¡

lµ

d+lµ

¢ 2(µ−1)
d if 1 − l

l+d
< λ < 1,

(B7)

with

µ = λ

λ − 1
(B8)

and where M(l,1) = limλ→1 M(l,λ) from the first and/or
second expression of M and [63], Eq. 6.1.41.

APPENDIX C: GENERALIZED HEISENBERG-
LIKE UNCERTAINTY RELATION

Using (B6) applied to r with l = a and λ = α and applied
to p with l = b and λ = β, respectively, and using (12), we
achieve the relation established in point (iv) of Sec. III,

hrai 2
a hpbi 2

b > Z(α,β)M(a,α)M(b,β) (C1)

for all a,b > 0, α > d
d+a

, β > d
d+b

, β 6 α
2α−1 and with the

bounds Z and B given in Eqs. (13) and (B7).

A. The maximal bound is on the conjugation curve β = α∗

We will now show that the pair (α,β) that maximizes
Z(α,β)M(a,α)M(b,β) is on the conjugation curve, namely
for β = α∗ = α/(2α − 1), for any values of a and b (under the
existence condition for M).

1. Function M(l,λ) is increasing with λ

Let us first consider the derivative of M(l,λ) versus λ.

For λ > 1, i.e., µ = λ
λ−1 > 1,

∂

∂µ
lnM = ∂

∂µ

·
− 2

d
ln 0(µ) + 2

d
ln 0

µ
µ + d

l

¶
− 2

l

× ln(d + lµ) + 2(µ − 1)

d
ln

µ
lµ

d + lµ

¶¸
= 2

d

·
−ψ(µ) + ψ

µ
µ + d

l

¶
+ l

d + lµ
− 1

µ

+ ln

µ
lµ

d + lµ

¶¸
,

where ψ(x) = d
dx

ln 0(x) is the digamma function.
Similarly, for λ ∈ (1 − l

l+d
; 1), i.e., µ < −d/l,

∂

∂µ
lnM= ∂

∂µ

·
− 2

d
ln 0

µ
1 − µ − d

l

¶
+ 2

d
ln 0(1 − µ)

−2

l
ln(−d − lµ) + 2(µ − 1)

d
ln

µ
lµ

d + lµ

¶¸
= 2

d

·
−ψ(1 − µ) + ψ

µ
1 − µ − d

l

¶
+ l

d + lµ

− 1

µ
+ ln

µ
lµ

d + lµ

¶¸
= 2

d

·
ψ

µ
−d + lµ

l

¶
− ψ(−µ) + ln

µ
lµ

d + lµ

¶¸
,

the last simplification coming from [62], Eq. 8.365-1.
To summarize, noting that ∂µ/∂λ = −1/(λ − 1)2,

∂

∂λ
lnM(l,λ) = 2

d(λ − 1)2

£
ψ(µ) + 1

µ
− ln µ − ψ

¡
µ + d

l

¢− 1

µ + d
l

+ ln
¡
µ + d

l

¢¤
if λ > 1, (C2)

∂

∂λ
lnM(l,λ) = 2

d(λ − 1)2

£
ψ(−µ) − ln(−µ) − ψ

¡− µ − d

l

¢+ ln
¡− µ − d

l

¢¤
if 1 − l

l + d
< λ < 1. (C3)
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Taking the limit λ → 1+ in Eq. (C2), or λ → 1− in
Eq. (C3), and M being continuous in λ = 1, we achieve
∂
∂λ

lnM(l,λ)
¯̄
λ=1

= 1
l
.

Let us consider now the terms in the parentheses on the
right-hand side Eq. (C2). They can be written as g(µ) − g(µ +
d/l), with

g(µ) = ψ(µ) + 1

µ
− ln µ. (C4)

Then, from [63], Eq. 6.4.1,

g0(µ)=ψ 0(µ) − 1

µ
− 1

µ2

=
Z +∞

0

t

1 − e−t
e−µtdt −

Z +∞

0
e−µtdt −

Z +∞

0
t e−µtdt

=
Z +∞

0

−1 + e−t + te−t

1 − e−t
e−µtdt.

Now, it is easy to show that −1 + e−t + te−t 6 0 for t >
0, which permits us to conclude that g0 6 0 and thus that g

is decreasing. As a conclusion, g(µ) − g(µ + d/l) > 0 and
thus ∂

∂λ
lnM > 0: M is increasing in (1 ; +∞).

Similarly, the terms in parentheses on the right-hand side of
Eq. (C3) (µ < −d/l < 0 here) read h(µ) − h(µ + d/l), with

h(µ) = ψ(−µ) − ln(−µ),

and they give from [63], Eq. 6.4.1

h0(µ) = −ψ 0(−µ) − 1

µ

=
Z +∞

0

−t

1 − e−t
eµtdt +

Z +∞

0
eµtdt

=
Z +∞

0

1 − t − e−t

1 − e−t
eµtdt.

Then, it is easy to show that 1 − t − e−t 6 0 for t > 0, which
permits us to conclude that h0 6 0 and thus that h is decreasing.
As a conclusion, h(µ) − h(µ + d/l) > 0 and thus also for
λ ∈ (1 − l

l+d
; 1) we have ∂

∂λ
lnM > 0: M is increasing.

2. B(λ) increases with λ ∈ [1/2 ; 1] and decreases with λ > 1

From (9) and λ∗ = λ/(2λ − 1), the derivative of B(λ) reads

∂

∂λ
lnB(λ) = ∂

∂λ

µ
ln λ

λ − 1
+ ln λ∗

λ∗ − 1

¶
= ∂

∂λ

µ
ln λ

λ − 1

¶
+ ∂

∂λ∗

µ
ln λ∗

λ∗ − 1

¶
∂λ∗

∂λ

=
µ

1

λ(λ − 1)
− ln λ

(λ − 1)2

¶
−
µ

1

λ∗(λ∗ − 1)
− ln λ∗

(λ∗ − 1)2

¶
1

(2λ − 1)2
,

that is,

∂

∂λ
lnB(λ) = 1

(λ − 1)2

µ
2 − 2

λ
− ln(2λ − 1)

¶
. (C5)

A short study of the right-hand side shows that this quantity
is positive if λ ∈ [1/2 ; 1] and negative if λ > 1: B increases
with λ in [1/2 ; 1] and then decreases for larger values of λ.

3. Domain where the maximal bound has to be searched

Recall that starting from (C1), namely hrai 2
a hpbi 2

b >
Z(α,β)M(a,α)M(b,β), the best bound is then so that
Z(α,β)M(a,α)M(b,β) is maximized as a function of α and
β. Let us now consider the following sets in the (α,β) plane:

Dα = {(α,β) ∈ R2
+|α > 1,β 6 α∗},

Dβ = {(α,β) ∈ R2
+|β > 1,α 6 β∗},

Sα = {(α,β) ∈ [0 ; 1]2|β 6 α},
Sβ = {(α,β) ∈ [0 ; 1]2|α 6 β},
S1 = Sα ∪ Sβ,

where α∗ = α
2α−1 and β∗ = β

2β−1 . These sets are represented
in Fig. 9.

To study the best bound, we consider each subset:
(i) We first consider domain Dα and fix α. From Eq. (13),

the bound is then
Z(α,β)M(a,α)M(b,β) = B(α)M(a,α)M(b,β) and

from the previous study of M we can know that it increases
with β. Thus, the bound is maximum precisely on the
conjugation curve β = α∗.

(ii) By symmetry, in domain Dβ and fixing β, one shows
again that the bound is maximal on the conjugation curve
α = β∗.

(iii) In the domain S1 we discuss the following cases:
(a) The maximum bound must be achieved on the line

segment α = β. Indeed, in Sα , the bound is given by
B(α)M(a,α)M(b,β) if α > 1/2 and M(a,α)M(b,β)/e2

otherwise. Again, fixing α, the bound is increasing with β and
thus is maximum for β = α. This remains valid, by symmetry,
in Sβ , and thus in all S1.

(b) For α 6 1/2, on the line segment α = β the bound is
M(a,α)M(b,α)/e2 and thus increases with α: it is maximum
for α = 1/2.

(c) For α ∈ (1/2 ; 1], the bound is expressed as
B(α)M(a,α)M(b,α) and tends to M(a,α)M(b,α)/e2 for
α → 1/2, B being an increasing function in [1/2 ; 1], and
since M is increasing, the bound is then maximum for α = 1.

In conclusion, on S1 the maximum bound is achieved when
α = β = 1, which is again on the conjugation curve.

Sβ

α

β

1

β = α∗

1

Dβ

Sα

Dα

FIG. 9. Sets Dα , Dβ , Sα , and Sβ in the plane (α,β). The solid
curve represents the pairs of conjugated parameters, i.e., β = α∗.
The dotted arrows indicate that Z(α,β)M(a,α)M(b,β) increases
when the pair (α,β) moves along their directions in the sets where
they are plotted.
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B. Maximal bound and properties

The best bound of the generalized Heisenberg relation one
can achieve by our approach is then

C(a,b) = max
α∈D(a,b)

B(α)M(a,α)M(b,α∗), (C6)

where the domain of search D is ruled by the restriction on the
domain of existence of M. We will come back to this domain
later.

1. Symmetries

Let us denote by αopt(a,b) the index that leads to C(a,b),
i.e.,

αopt(a,b) = arg max
α

B(α)M(a,α)M(b,α∗). (C7)

Noticing that B(α) = B(α∗), one immediately observes
from (C7) that

C(b,a) = C(a,b), (C8)

αopt(b,a) = [αopt(a,b)]∗. (C9)

Thus, without loss of generality, one can restrict the study
to the case with a > b.

2. Reduced domain of search

Consider the situation in which a > b.
If α > 1, then α∗ < 1. We will show that the bound

B(α)M(a,α)M(b,α∗) decreases with α, thus the maximum
must satisfy α 6 1.

We have already seen that B(α) decreases when α >

1. Consider then the part M(a,α)M(b,α∗). Remembering
that α∗ = α

2α−1 , one has ∂α∗
∂α

= − 1
(2α−1)2 . Moreover, one has

1
(α∗−1)2 = (2α−1)2

(α−1)2 and µ(α∗) = α∗
α∗−1 = − α

α−1 = −µ(α) from
Eq. (B3). Then, from (C2)–(C3),

∂

∂α
ln[M(a,α)M(b,α∗)]

= ∂

∂α
lnM(a,α) + ∂α∗

∂α

∂

∂α∗ lnM(b,α∗)

= 2

d(α − 1)2

µ
1

µ
− 1

µ + da

− ψ(µ + da)

+ψ(µ − db) + ln(µ + da) − ln(µ − db)

¶
,

where µ stands for µ(α), da = d/a, and db = d/b. The goal
is then to show the negativity of

k(µ,da,db)= 1

µ
− 1

µ + da

−ψ(µ + da) + ln(µ + da)

+ψ(µ − db) −ln(µ − db), (C10)

keeping in mind that da 6 db. To this end, we can view
this function in terms of da for instance, and thus the
sense of variation of k(µ,da,db) = −g(µ + da) + g(µ −
db) + 1/µ − 1/(µ − db) is the same as the sense of varia-
tion of −g(µ + da) = −ψ(µ + da) − 1

µ+da
+ ln(µ + da), in-

troduced in Eq. (C4), versus da . We have shown that function g

is decreasing and thus k is increasing with da . Since da 6 db,
to show that k is negative, it is then sufficient to show that
k(µ,db,db) is negative. From [62], Eq. 6.4.1,

∂k(µ,db,db)

∂db

= 1

µ + db

+ 1

(µ + db)2
− ψ 0(µ + gg) + 1

µ − db

− ψ 0(µ − db)

=
Z +∞

0

·µ
1 + t − t

1 − e−t

¶
e−dbt +

µ
1 − t

1 − e−t

¶
e+dbt

¸
e−µtdt

=
Z +∞

0
[(1 − e−t − te−t )e−dbt + (1 − t − e−t )e+dbt ]

e−µt

1 − e−t
dt.

Now, it is quite easy to show that the term in square brackets
is decreasing with db since the derivative in db is negative (the
factors of e±dbt are negative). For db = 0, it is not difficult to
show that the square bracket is negative, which permits us to
conclude that for any db, the square bracket term is negative:
k(µ,db,db) decreases with db.

Finally, k(µ,0,0) = 0 and thus k(µ,db,db) 6 0, implying
that for any da 6 db one has k(µ,da,db) 6 0.

As claimed, ∂
∂α

ln[M(a,α)M(b,α∗)] 6 0 for α > 1. To-
gether with the decrease of B when α > 1, we conclude

that the maximum of B(α)M(a,α)M(b,α∗) is attained
for α < 1.

As a conclusion, when a > b, the maximum is attained for
α < 1. Since we are on the conjugated curve, one also have
α > 1/2. Finally, from (C2) we must have α > d

d+a
.

In summary, for a > b,

C(a,b) = max
α∈(max( 1

2 , d
d+a ) ; 1

¤B(α)M(a,α)M(b,α∗), (C11)

where B and M are given by (9) and (B7), respectively.
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