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We analyze the effect of flavor changing neutral currents within 331 models. In particular, we
concentrate on the so-called economical models, which have a minimal scalar sector. Taking into account
the experimental measurements of observables related to neutral K and B meson mixing, we study the
resulting bounds for angles and phases in the mixing matrix for the down quark sector, and the mass and
mixing parameters related to the new Z0 gauge boson.
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I. INTRODUCTION

In the standard model (SM), processes mediated by
flavor changing neutral currents (FCNC) are forbidden at
the tree level, occurring only through diagrams with one or
more loops. This is consistent with experimental observa-
tions, which show that the corresponding physical observ-
ables appear to be highly suppressed. Now, it is important
to determine if the experimental results are in fact in
agreement with SM predictions, and to establish what
room is available for the presence of new physics.

We analyze here this problem in the framework of the
so-called 331 models, in which the SM gauge symmetry
group is enlarged to SU�3�C 
 SU�3�L 
U�1�X [1–3].
These models have the important feature of relating the
number of quark families with the number of colors,
through the requirement of anomaly cancellation. As a
by-product, the extension of the gauge group implies the
presence of a new neutral gauge boson Z0, which in general
gives rise to flavor changing neutral currents at the tree
level. In addition, 331 models show other interesting as-
pects, such as the presence of neutrino masses, neutral and
charged scalars, exotic quarks, etc., which can be inves-
tigated in the next generation of colliders like the LHC and
the ILC. For example, the nonstandard neutral current
could be identified at the LHC by looking at the process
pp! Z0 ! e�eÿ: performing specific kinematic cuts on
the outgoing electrons, it would be possible to reduce
background so as to distinguish the Z0 current within the
331 model from other theories that include physics beyond
the SM [4].

Concerning the presence of FCNC, it is important to
point out that in 331 models it is not possible to fit all quark
families in multiplets having the same quantum numbers.
As a consequence, while the Z couplings to ordinary
quarks and leptons remain the same as in the SM, the
corresponding Z0 couplings are not universal for all quark
families. This gives rise to tree-level flavor violation when
rotating from the current quark basis to the mass eigenstate
basis. The size of the couplings depends on the angles and
phases of the (left-handed) up and down quark mixing
matrices VuL and VdL, which therefore become separately

observable (in the framework of the SM, only the elements
of the matrix VCKM � VuyL V

d
L can be measured). Because

of the unitarity of these mixing matrices, predictions for
FCNC observables in the 331 models are in general related
to each other. In order to establish bounds for this new
physics, the most interesting sector is that of the down-like
quarks d, s, and b, where there are several well-measured
observables at our disposal. Here we concentrate on FCNC
processes in which flavor changes by two units. These
typically show the most important suppression within the
SM, and consequently the most stringent bounds for new
physics. We will restrict ourselves to the down quark
sector, taking into account the following experimental
data for five �F � 2 observables, where F � S, B [5]:
 

�mK � mKL ÿmKS � �5:292� 0:009� � 10ÿ3 psÿ1

�md � mB0
H
ÿmB0

L
� 0:507� 0:005 psÿ1

�ms � mB0
sH
ÿmB0

sL
� 17:77� 0:12 psÿ1

j"Kj � �2:232� 0:007� � 10ÿ3

sin�d � 0:687� 0:032

(1)

Here �K and �d are CP-violating parameters, defined in
connection with K0– �K0 and B0

d– �B0
d mixing, respectively,

(in fact, �d arises from the interference between CP
violation in Bd mixing and decay, the latter usually as-
sumed to be negligible). It is important to stress that the
measurement of �ms, recently obtained [6], is the first
accurate experimental value of a �S � �B � 2 observ-
able, and has attracted significant theoretical interest [7,8].
As stated, the Z0 contribution to this quantity in the 331
model can be directly related with the contributions to the
other observables in Eq. (1), allowing us to perform a
global fit of the allowed region for the down-like quark
mixing parameters. This represents the main motivation for
the present work.

In the literature there are different versions of the 331
models, according to the fermion content and quantum
numbers, and the number of scalar SU�3�L multiplets
needed to break the gauge symmetry so as to provide
fermion masses. In general, these theories also include
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exotic quarks of nonstandard charges. The first versions of
the models included three scalar triplets and one scalar
sextet [1], and new ‘‘quarks’’ with electric charges 5=3 and
ÿ4=3 (in fact, exotic fermions can carry both quark and
lepton numbers different from zero). For definiteness and
simplicity we will consider here a particular 331 model that
has been called ‘‘economical’’ [9], since it deals with a
minimal scalar sector of only two triplets, and does not
include fermions with nonstandard charges, i.e., other than
2=3,ÿ1=3 for quarks and 0 orÿ1 for ‘‘leptons’’. Recently,
the ability of this model to reproduce the observed neutrino
mass pattern has been discussed [10], and a supersymmet-
ric version of the model has been presented [11].

The paper is organized as follows: in Sec. II we present
an overview of 331 models, focusing on the Z0-mediated
neutral currents. In Sec. III we derive the expressions for
the new contributions to �F � 2 observables. Our numeri-
cal analysis, including a comparison with the expected
results using a definite ansatz for quark mass matrices, is
presented in Sec. IV. Finally, in Sec. V we summarize our
results.

II. NONUNIVERSAL COUPLINGS IN
ECONOMICAL 331 MODELS

As stated earlier, in 331 models the SM gauge group is
enlarged to SU�3�C 
 SU�3�L 
U�1�X. The fermions are
organized into SU�3�L multiplets, which include the stan-
dard quarks and leptons, as well as exotic particles usually
called Ji, Ei, and Ni. Though the criterion of anomaly
cancellation leads to some constraints in the fermion quan-
tum numbers, still an infinite number of 331 models is
allowed. In general, the electric charge can be written as a
linear combination of the diagonal generators of the group,

 Q � T3 � �T8 � X; (2)

where � is a parameter that characterizes the specific 331
model particle structure and quantum numbers.

The organization of the three fermion families in 331
models is sketched in Table I, where i labels the quark
family in the interaction basis, and� � e,�, �. Notice that
the charges of the exotic particles depend on the chosen
value of the parameter �. As stated in the Introduction, the
so-called economical 331 models [9] are defined as those
that do not include fermions with nonstandard charges.
Given the structure in Table I, this is possible only if one
takes � � �1=

���
3
p

, plus and minus sign corresponding to
exotic leptons of charge ÿ1 and 0 (the correspondence is
convention dependent). Concerning the scalar sector, in the
economical models it is possible to give masses to all
fermions and to reproduce the desired symmetry breaking
pattern with only two scalar triplets, usually called � and
�. Choosing � � 1=

���
3
p

, the vacuum expectation values of
these scalar fields can be written as h�i � 1=

���
2
p
�0; u; w�T

and h�i � 1=
���
2
p
�v; 0; 0�T , while for � � ÿ1=

���
3
p

one has
h�i � 1=

���
2
p
�u; 0; w�T and h�i � 1=

���
2
p
�0; v; 0�T . The

spontaneous gauge symmetry breaking proceeds into two
steps: a first breaking SU�3�L 
U�1�X ! SU�2�L 
U�1�Y
at the energy scale given by the VEV w, and a second SM-
like breaking at a scale v� 250 GeV. As usual, fermion
masses are obtained from Yukawa-like couplings with the
scalar fields. It is seen that the model is able to provide the
observed fermion mass pattern, where the VEV w sets the
mass scale for the exotic fermions [12]. Bounds for the
SU�3�L 
U�1�X breaking energy scale provide a lower
value for w in the TeV range [13].

Because of the enlarged group structure of the 331
models, one finds three neutral gauge bosons W3, W8,
and B. It is convenient to rotate these states into a new
basis where one can identify the usual SM gauge fields A
and Z, together with a new Z0 state. The corresponding
transformation for arbitrary � reads
 

A� � SWW
3
� � CW��TWW�

8 �
����������������������
1ÿ �2T2

W

q
B��

Z� � CWW
3
� ÿ SW��TWW�

8 �
����������������������
1ÿ �2T2

W

q
B��

Z0� � ÿ
����������������������
1ÿ �2T2

W

q
W8
� � �TWB�;

(3)

where we have introduced a Weinberg angle (SW � sin�W ,
etc.). This angle can be written in terms of the coupling
constants g and g0, corresponding to the SU�3�L and U�1�X
groups, respectively, as

 TW �
g0�����������������������

g2 � �2g02
p : (4)

With this definition of �W the couplings of A and Z
bosons to ordinary fermions are the standard ones. We
are interested now in the couplings of the new Z0 state to

TABLE I. Fermion representations and quantum numbers in
331 models.

Fermion Representation Q X

d1

u1

J1

0
@

1
A
L

,
d2

u2

J2

0
@

1
A
L

3�
ÿ 1

3
2
3

1
6�

��
3
p
�

2

0
B@

1
CA ÿ 1

6ÿ
�

2
��
3
p

u3

d3

J3

0
@

1
A
L

3

2
3
ÿ 1

3
1
6ÿ

��
3
p
�

2

0
B@

1
CA 1

6ÿ
�

2
��
3
p

uiR 1 2
3

2
3

diR 1 ÿ 1
3 ÿ 1

3

J1R, J2R 1 1
6�

��
3
p
�

2
1
6�

��
3
p
�

2

J3R 1 1
6ÿ

��
3
p
�

2
1
6ÿ

��
3
p
�

2

��
l�
F�

0
@

1
A
L

3�
0
ÿ1

ÿ 1
2ÿ

��
3
p
�

2

0
B@

1
CA ÿ 1

2ÿ
�

2
��
3
p

l�R 1 ÿ1 ÿ1

F�R 1 ÿ 1
2ÿ

��
3
p
�

2 ÿ 1
2ÿ

��
3
p
�

2
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ordinary quarks, in particular, to down-like quarks d, s and
b, since we will deal here with neutral K, Bd, and Bs
mesons. In terms of the electroweak current eigenstates
D � �d1d2d3�

T , it can be seen [3] that the corresponding
interaction Lagrangian is given by

 L �d�
NC �

g0

2SWCW

�X2

i�1

�Di�

�
C2
W���
3
p ÿ �QdS

2
W

�
PLDi

� �D3�

�
ÿ
C2
W���
3
p ÿ �QdS2

W

�
PLD3

�
X3

i�1

�Di�2�QdS
2
WPRDi

�
Z0�; (5)

where PL;R � �1� 5�=2 and Qd � ÿ1=3. An important
feature shown in Eq. (5) is the fact that Z0 couplings to left-
handed quarks are not flavor-diagonal. This is a conse-
quence of the group structure of the 331 models shown in
Table I: the requirement of anomaly cancellation is satis-
fied only if one of the quark families is in a different
SU�3�L representation than the other two, which leads to
different quark-Z0 couplings. On the other hand, it is worth
noticing that the Z0 couplings to right-handed quarks turn
out to be flavor diagonal. Moreover, notice that in the case
of left-handed quarks the nondiagonal part of the interac-
tion depends on the choice of � only through the value of
the global coupling constant g0=2SWCW . In terms of �W
and g, one has

 

g0

2SWCW
�

g

2CW
����������������������������������
1ÿ �1� �2�S2

W

q : (6)

In this way, since phenomenologically the value of SW at
the electroweak breaking scale is close to 1=4, the choices
� � �

���
3
p

leads to an enhancement of the quark-Z0 cou-
plings. For example, the ratio between the couplings g0 in
the economical (� � �1=

���
3
p

) and original (� � ÿ
���
3
p

)
versions of the 331 models at the mZ scale is given by

 

g0
���1=

��
3
p

g0
���

��
3
p
�

�
1ÿ 4S2

W

1ÿ 4
3S

2
W

�
1=2
’ 0:33: (7)

In the particular case of economical 331 models, the cou-
plings in Eq. (5) can be written as
 

L�d�NC � ÿ
g0���

3
p
SWCW

�X3

i�1

�Di���
0d���
L PL � �

0d���
R PR�Di

� �D3�C2
WPLD3

�
Z0�; (8)

where

 �0d���L � ÿ
1

2
�

3� 1

6
S2
W; �0d���R � �

1

3
S2
W; (9)

� and ÿ signs in ��� corresponding to � � 1=
���
3
p

and
� � ÿ1=

���
3
p

, respectively.
Finally, let us point out that in general the states Z and Z0

are only approximate mass eigenstates, while the true
physical states Z1 and Z2 can be obtained from the former
after a rotation. The corresponding mixing angle � is
expected to be small, since it becomes suppressed by a
factor r2 � �v=w�2, i.e., the square of the ratio between
the SU�3�L 
U�1�X ! SU�2�L 
U�1�Y and SU�2�L 

U�1�Y ! U�1�em symmetry breaking scales. In the case
of economical 331 models, at leading order in r one finds
[3,14]

 � �

������������������
3ÿ 4S2

W

q
4C4

W

�v2 � �2S2
W ÿ 1�u2�

w2 : (10)

Though this angle will be in general small, Z–Z0 mixing
will induce flavor changes. Thus, in principle, this mixing
has to be taken into account when looking for observable
effects of FCNC [see Eqs. (15)–(18) below].

III. THEORETICAL EXPRESSIONS FOR �F � 2
OBSERVABLES

In order to derive the theoretical expressions for the
neutral meson mixing observables in the above introduced
economical 331 model, we take into account the general
analysis carried out in Ref. [15], considering the 331 theory
as a particular case. Thus we write the neutral current
Lagrangian as

 L NC � ÿeJ
�
emA� ÿ g1J�1��Z� ÿ g2J�2��Z0�; (11)

where g1 � g=CW , and the currents associated with the Z
and Z0 gauge bosons are

 J�1�� �
X
i

�qi���
q
LPL � �

q
RPR�qj; (12)

 J�2�� �
X
ij

�qi��G
q
LijPL �G

q
RijPR�qj: (13)

As in the previous section, here the fermions qi as well as
the gauge bosons Z and Z0 are assumed to be gauge
eigenstates. We will restrict again to the couplings involv-
ing the down-like quark sector, where �dL;R are given by
�dL � ÿ

1
2�

1
3 S

2
W , �dR �

1
3S

2
W , whereas Gd

L;R are in general
3� 3 matrices.

Let us consider now the effective four-fermion interac-
tion Lagrangian for the down quark sector in the mass
eigenstate basis Di, with D � �dsb�T . As stated in
Ref. [15], one has

 L eff � ÿ
4GF���

2
p

X
ijkl

X
XY

CijklXY � �Di�PXDj�� �Dk�PYDl�;

(14)

where X and Y run over the chiralities L, R, and i, j, k, l
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label the quark families. Assuming a small Z–Z0 mixing
angle �, the coefficients CijklXY are given by [15]

 CijklXY � �eff�ij�kl�
d
X�

d
Y � y�ij�

d
XB

d
Ykl � y�kl�

d
YB

d
Xij

� z�
�
g2

g1

�
2
BdXijB

d
Ykl; (15)

where

 �eff ’ � �
m2
W

m2
ZC

2
W

(16)

 y ’
g2

g1
� sin� cos� (17)

 z �
�

sin2��
m2
Z

m2
Z0

cos2�
�
: (18)

The presence of flavor changing neutral currents arises
from the nondiagonal elements of the 3� 3 matrices
BdL;R. Denoting by VuL;R and VdL;R the transformation matri-
ces that diagonalize the mass matrices for up and down
quarks, one has

 BdX � VdyX Gd
XV

d
X; (19)

and the usual Cabibbo-Kobayashi-Maskawa (CKM) quark
mixing matrix is given by

 VCKM � VuyL VdL: (20)

From these general expressions it is immediate to obtain
the effective interaction Lagrangian in the economical 331
models. For � � �1=

���
3
p

, and introducing the definition

 g2 �
g0���

3
p
SWCW

; (21)

from Eq. (8) one hasGd
R � �0d���R 13�3, Gd

L � �0d���L 13�3 �
diag�0; 0; cos2�W�, and

 BdR � �0d���R 13�3

BdL � �0d���L 13�3 � cos2�WV
dy
L diag�0; 0; 1�VdL:

(22)

The contribution of Leff to �S � 2 and �B � 2 processes
is driven by the coefficients CijklXY with i Þ j, k Þ l, which
are proportional to the nondiagonal elements of the BdX;Y
matrices. Therefore, for the economical 331 model, the
corresponding effective interaction will be given by

 L eff � ÿ
4GF���

2
p �

�
g2

g1

�
2
z� �Di

�PLB
d
LijDj�

� � �Dk�PLB
d
LklDl�; (23)

with i Þ j, k Þ l. The nondiagonal elements of BdL read

 BdLij � cos2�WV
d�
L3iV

d
L3j; (24)

whereas the coupling constant ratio can be written in terms
of the Weinberg angle as

 

�
g2

g1

�
2
�

1

3ÿ 4sin2�W
: (25)

In order to deal with phases, one can write without loss
of generality [16]

 VdL � P ~VK (26)

where P � diag�ei�1 ; 1; ei�3�, K � diag�ei�1 ; ei�2 ; ei�3�,
while the unitary matrix ~V can be written in terms of three
mixing angles �12, �23, and �13 and a phase ’ using the
standard parametrization [17]

 

~V �
c12c13 s12c13 s13eÿi’

ÿs12c23 ÿ c12s23s13e
i’ c12c23 ÿ s12s23s13e

i’ s23c13

s12s23 ÿ c12c23s13ei’ ÿc12s23 ÿ s12c23s13ei’ c23c13

0
@

1
A: (27)

Let us proceed to write down the theoretical expressions
for the �F � 2 observables under consideration. In gen-
eral, they will receive both SM contributions arising from
standard one loop diagrams, together with the new 331
contributions from tree-level FCNC. Denoting by MP

12 the
matrix element hP0jH effj �P0i, one obtains

 �mK � 2 Re�MK�SM�
12 �MK�331�

12 � (28)

 �md � 2jMBd�SM�
12 �MBd�331�

12 j (29)

 �ms � 2jMBs�SM�
12 �MBs�331�

12 j (30)

 "K �
ei�=4���
2
p

�mK

Im�MK�SM�
12 �MK�331�

12 � (31)

 �d � ÿ arg�MBd�SM�
12 �MBd�331�

12 �: (32)

The corresponding SM contributions are well known
[18]. One has
 

MK�SM�
12 �

G2
F

12�2 m
2
WmKf

2
KB̂K��1S0�xc��

2
c � �2S0�xt��

2
t

� 2�3�c�tS�xc; xt�� (33)
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 M
Bq�SM�
12 �

G2
F

12�2 m
2
WmBqf

2
Bq
B̂Bq�BS0�xt��VtqV

�
tb�

2; (34)

where S0�xq� are Inami Lim functions [19] arising from
box diagram contributions, and B̂P, �i, �B are parameters
that account for theoretical uncertainties related with both
long- and short-distance QCD corrections.

On the other hand, from the effective interaction in
Eq. (23) it is easy to obtain the relevant expressions for
the 331 contributions. These are given by

 MP�331�
12 �

2
���
2
p

3
GF�mPf2

PB̂P

�
g2

g1

�
2
cos4�Wz�2

P; (35)

where

 �K � s13s23c13ei��1ÿ’� (36)

 �Bd � s13c23c13e
i��1ÿ�3ÿ’� (37)

 �Bs � s23c23c
2
13e
ÿi�3 : (38)

Thus, it is seen that the 331 contributions to the five
observables in Eqs. (28)–(32) are given in terms of five
unknown parameters, namely, the suppression factor z
defined in Eq. (18), the angles �13, �23 and two
CP-violating phases coming from the VdL mixing matrix.
We choose here as independent parameters the phases
�0 � �1 ÿ�3 ÿ ’ and �00 � �1 ÿ ’, the remaining
phase in Eq. (38) being �3 � �00 ÿ�0.

IV. INPUTS, NUMERICAL PROCEDURE, AND
RESULTS

As stated, our aim is to take into account the present
experimental data for the above mentioned �F � 2 ob-
servables in order to constrain the values of the 331 pa-
rameters. Clearly, in order to perform this analysis it is
necessary to take into account both the theoretical and
experimental uncertainties in the determination of the re-
spective SM contributions.

In our analysis, the experimental values of particle
masses in Eqs. (28)–(34), as well as the kaon decay con-
stant and the value of sin�W at the electroweak breaking
scale have been taken from the PDG Review [5], while for
the quark masses entering the SM box diagrams we have
used mc � 1:3� 0:1 GeV and mt � 168:5 GeV. The
theoretical estimations for the short-distance QCD correc-
tions �i and �B in Eqs. (33) and (34) have been taken as
�1 � 1:32� 0:32, �2 � 0:57� 0:11, �3 � 0:47� 0:05,
and �B � 0:55 [20]. For the value of the parameter BK
we have used the recent lattice result BK � 0:83� 0:18
[21], while the values of the parameters BBd and BBs , as
well as the Bd and Bs decay constants, have been obtained
by averaging results of unquenched lattice calculations
[22,23]. This leads to fBd

��������
BBd

p
� 0:21� 0:03, fBs

��������
BBs

p
�

0:25� 0:03.

Now, special care has to be taken when dealing with the
parameters of the CKM quark mixing matrix. The reason is
that present global fits are strongly dependent on theoreti-
cal results based on one loop SM processes, which could be
modified by the effect of 331 contributions. In this sense,
our procedure is similar to that in Ref. [24]: instead of
using full CKM angle fits, we just take into account the
experimental constraints obtained from tree-level domi-
nated processes. Thus, from the Particle Data Group analy-
sis we take [5]
 

jVudj � 0:9738� 0:0003 jVusj � 0:226� 0:002

jVubj � 0:0043� 0:0003 jVcdj � 0:230� 0:011

jVcsj � 0:957� 0:095 jVcbj � 0:0416� 0:0006

(39)

Then, as a further experimental input we take into account
the value of the CP-violating parameter  �
arg�ÿVudV�ub=VcdV

�
cb� obtained from tree-level dominated

B! D���X decays. From the analyses carried out by
CKMfitter [25] and UTfit [26] collaborations we get

  � 78� � 17�: (40)

Taking into account this set of experimental values, we
proceed to estimate the allowed range for the 331 model
parameters appearing in Eqs. (28)–(32) compatible with
the experimental measurements of the five observables of
interest. The VCKM matrix parameters are treated as fol-
lows: in order to decide the compatibility of a given set of
331 parameter values, we consider a manifestly unitary
parametrization of the VCKM matrix [as that in Eq. (27)],
and let the values of the mixing angles and the complex
phase vary freely. The 331 parameter set is kept only if the
experimental constraints (1) are satisfied and at the same
time the corresponding set of VCKM parameters is found to
be compatible with the ranges in Eqs. (39) and (40). In this
way, we take care of the correlations between the error bars
in the 331 parameters and the error bars in the experimental
constraints on VCKM arising from tree-level dominated
processes. Constraints on VCKM elements involving the
top quark as well as the CP-violating angle � will arise
directly from the experimental values of �F � 2 observ-
ables and the unitarity of the VCKM matrix in presence of
the 331 contributions.

Let us turn now to present our results. We begin by
considering the 331 parameter region by demanding com-
patibility with the experimental values (1) at the level of
2�. At this level the data can be reproduced by the SM
alone (i.e. the values �13 � �23 � 0 lie within the allowed
range). In order to deal with the five-parameter space, let us
first fix the value of z as z1 � �mZ=1 TeV�2, and take the
mixing angle �13 � 0. In this case the only constraint
arises from Eq. (38), which determines a region for s23

and �3 � �00 ÿ�0. This is represented in Fig. 1, where it
is found that there is an upper bound js23j � 0:038 [27].
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We will not consider here the other possible solution,
js23j ’ 1, jc23j � 0:038, following the common belief
that assumes a correlation between the hierarchies in quark
masses and mixing angles. Then we consider the case
�23 � 0, in which the constraint arises from Eq. (37), and
one finds an allowed region in the s13 and �0 plane, as
shown in the left panel of Fig. 2. We see here that the value
of js13j can be as large as 0.0035, depending on the value of
the phase �0. Considering nonzero values of s23, it is seen
that this region remains unchanged if s23 is relatively low,
while it becomes reduced when s23 approaches the upper
bound of 0.038. Close to this bound, only certain ranges for
the phase �0 are allowed, depending on the value of �00.
This is shown in the central panel of Fig. 2, where we have

taken s23 � 0:036 and some representative values of �00.
Let us now consider the dependence on the SU�3�L sym-
metry breaking scale, increasing the value of z from z1 to
z2 � �mZ=5 TeV�2. As expected, for low values of s23 the
bounds for s13 are just increased by a factor five, and the
same happens with the upper bound for s23. In the right
panel of Fig. 2 we show the allowed regions in the s13 ÿ
�0, taking now s23 � 5� 0:036 � 0:18. While the ranges
for �0 are approximately the same as in the central panel
for s13 � 0, the combined effects of all five experimental
constraints produce some distortions for larger values of
s13.

Finally, we present the results corresponding to a con-
fidence level of 1� in the experimental data. Once again,
for low values of �23 the parameter range allowed for �13

and�0 is independent of �23 and�00. The results are shown
in the left panel of Fig. 3, where black and shadowed areas
correspond to z � z1 and z � z2, respectively. We find now
that for z � z1 the value of �23 is constrained by js23j �
0:027. As in the previous case, close to this upper bound for
�23 the allowed regions appear to be further constrained,
and the corresponding reduced zones depend on the value
of �00. This is shown in the right panel of the figure, where
we show the allowed s13 ÿ�

0 parameter space for z � z1

taking now s23 � 0:025 and �00 � 0, 45, 90 and 135 de-
grees (the latter leads to no solution). It is seen from this
analysis that the values s13 � s23 � 0 are not allowed,
which means that the SM is not able to reproduce the full
set of experimental data at the level of 1 standard deviation,
requiring the presence of some new physics.

It is worth noting that our analysis can be also applied to
other versions of the 331 model, differing in the choice of
the parameter �. Though these versions would present
different scalar and fermion quantum numbers, the effect
of this change on FCNC’s driven by the Z0 boson can be
trivially taken into account. Indeed, as stated in Sec. II,
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FIG. 2. Allowed s13 ÿ�
0 regions considering a 2� confidence level in the experimental errors of �F � 2 observables. Left panel

corresponds to z � z1 and low values of s23, whereas central and right panels correspond to z � z1, s23 � 0:036, and z � z2, s23 �
0:18, respectively.
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FIG. 1. Allowed s23 ÿ�3 region for s13 � 0, z �
�mZ=1 TeV�2, considering a 2� confidence level in the experi-
mental errors of �F � 2 observables.
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from Eq. (5) it is seen that the change of � affects the
nondiagonal part of Z0 currents just by rescaling the value
of the coupling g0. In the general case, one has for the 331
contributions to MP

12 [see Eq. (35)]

 

�
g2

g1

�
2
z�2

P �
1

3

1

1ÿ �1� �2�S2
W

�
mZ

mZ0

�
2
j�VdL�i3�V

d�
L �j3j

2;

(41)

thus one could take �g2=g1�
2z as the relevant 331 model

parameter. In this way it is possible to complement our
results with those obtained in Ref. [24], where the authors
consider the effect of FCNC’s in the original version of the
331 model (i.e. taking � � ÿ

���
3
p

, within our sign conven-
tions). Since in this model the ratio g2=g1 is approximately
enhanced by a factor of 3 [see Eq. (7)], we should repro-
duce their results just by scaling the value of z by a factor
’ 9. Our results for z � z1 would correspond to those
obtained in Ref. [24] for mZ0 � 3 TeV (notice that in
Ref. [24] the authors consider only some particular values
for the angles �0 and �00, and the Z–Z0 mixing angle is
neglected). Indeed, considering only the constraints im-
posed by the experimental values of �mK and "K, in this
way we find good agreement with the results obtained in
Ref. [24] for the bounds on s13 and s23. In our paper the
results are presented in a different way, since we are
considering the correlation between all five experimental
constraints in Eq. (1).

To conclude, let us analyze qualitatively the bounds
obtained for s13 and s23. We recall that the down-like quark
mixing angles �13 and �23 are hidden parameters in the
SM, where the only observable quantities are the entries in
the VCKM matrix. In order to get some insight on the
expected sizes of these mixing angles, it is interesting to
consider the values of s13 and s23 arising from a definite
ansatz for the mixing matrix VdL. For the sake of illustra-
tion, we consider here the case of Hermitian quark mass
matrices having a four-zero texture [28]. This is a simple
and widely studied ansatz, in which the down quark mass

matrix has the form [30]

 

~Md �
0 Cd 0
C�d ~Bd Bd
0 B�d Ad

0
@

1
A; (42)

where (owing to the quark mass hierarchy md � ms �
mb) one expects jAdj � j ~Bdj, jBdj, jCdj. The mixing ma-
trix VdL can be written in terms of the quark masses and
some additional parameters. In particular, the matrix ele-
ments ~V13 and ~V23, defined according to Eqs. (26) and (27),
are approximately given by [30,31]

 j ~V13j ’

����������������������������������
mdms�mb ÿ Ad�

Adm2
b

s
; j ~V23j ’

������������������
mb ÿ Ad
mb

s
: (43)

where the value of Ad=mb is constrained by the experi-
mental value of the ratio of VCKM elements jVub=Vcbj.
From this constraint one obtains 0:88 & Ad=mb & 0:98
[31]. Noting that js13j ’ j ~V13j and js23j ’ j ~V23j, one ob-
tains

 0:001 & js13j & 0:003; 0:15 & js23j & 0:35: (44)

If one compares these bounds with the constraints obtained
in the framework of the economical 331 models from the
experimental values of �F � 2 observables (1), one
achieves consistency with the bounds for js23j only if
new physics shows up at a scale larger than a few TeV,
namely z & �mZ=5 TeV�2. In this case the range of s13 in
(44) would be somewhat low to reproduce the experimen-
tal values in Eq. (1) at the level of 1 standard deviation (see
Fig. 3), and consistency would be obtained at the 2� level
(see right panel of Fig. 2). In the case of the original version
of the 331 model, according to the previous discussion the
bound for the new scale should be extended to about
15 TeV.
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0 region for low values of s23 (left) and s23 � 0:025 (right). In the left panel, black and shadowed regions

correspond to z � �mZ=1 TeV�2 and z � �mZ=5 TeV�2, respectively. The regions in the right panel correspond to z � �mZ=1 TeV�2

and different values of �00.
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V. SUMMARY

We have analyzed here tree-level flavor changing neutral
currents in the context of economical 331 models, in
particular, considering the phenomenological bounds on
model parameters arising from experimental values of
�F � 2 observables. In general, 331 models include the
presence of exotic fermions and gauge bosons, which
could be observed in forthcoming experiments such as
LHC and ILC. At lower energies, one of the most stringent
tests for the model is provided by the effect of FCNC’s,
which arise at tree level owing to the presence of nonun-
iversal couplings of a neutral gauge bosonZ0. Here we have
concentrated on the study of flavor mixing in the down
quark sector, where �F � 2 observables provide a set of
experimental data that allows one to obtain the bounds for
the relevant model parameters.

Our parameter space includes five variables, namely, the
angles �13, �23 and the CP-violating phases �0, �00, com-
ing from the VdL mixing matrix, and the scale parameter z
[or, in general, the combination �g2=g1�z]. In the economi-
cal model, taking z � �mZ=1 TeV�2, we have found upper
bounds for the mixing angles j�13j & 0:003 and j�12j &

0:035. These bounds are in fact correlated, and depend on

the values of the phases �0 and �00. The allowed region for
�23 with �13 � 0 is shown in Fig. 1, while the allowed
regions for �13 taking extreme values of �23 are shown in
Figs. 2 and 3 (2� and � confidence level, respectively). In
general, these last regions are found to depend both on �0

and �00. We have also shown how these bounds scale with
the value of z increasing the SU�3�L 
U�1�X breaking
scale by a factor five. Finally, for the sake of illustration
we have compared these results with the expected values of
the down quark mixing angles within a four-zero texture
ansatz for the mass matrices. We have found that imposing
such an ansatz in the context of economical 331 models
would be compatible with experimental data for FCNC
observables at 2� level, provided that the SU�3�L 
U�1�X
symmetry breaking occurs at a scale above 5 TeV.
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