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Chaotic systems share with stochastic processes several properties that make them almost undistin-
guishable. In this communication we introduce a representation space, to be called the complexity-entropy
causality plane. Its horizontal and vertical axis are suitable functionals of the pertinent probability
distribution, namely, the entropy of the system and an appropriate statistical complexity measure,
respectively. These two functionals are evaluated using the Bandt-Pompe recipe to assign a probability
distribution function to the time series generated by the system. Several well-known model-generated time
series, usually regarded as being of either stochastic or chaotic nature, are analyzed so as to illustrate the
approach. The main achievement of this communication is the possibility of clearly distinguishing
between them in our representation space, something that is rather difficult otherwise.
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Although being of a quite different physical origin, time
series arising from chaotic systems (CS) share with those
generated by stochastic processes (SP) several properties
that make them almost undistinguishable: (1) a wide-band
power spectrum (PS), (2) a delta-like autocorrelation func-
tion, (3) an irregular behavior of the measured signals, etc.
In fact this similitude has made it possible to replace SP by
CS in many practical applications. We attempt here to
distinguish between SP and CS by recourse to an appro-
priate representation whose starring role is played by a so-
called complexity measure. We deal with well-known
models that generate time series according to prespecified
rules. This is to be contrasted with the situation posed by
real data, however, that always possess a stochastic com-
ponent due to omnipresent dynamical noise [1,2]. Indeed,
Wold proved [1] that any (stationary) time series can be
decomposed into two different parts. The first (determinis-
tic) part can be exactly described by a linear combination
of its own past; the second part is a moving average
component of a finite order. Hence it may seem superfluous
to ask whether a time series generated by ‘‘natural pro-
cesses’’ is either deterministic, chaotic, or stochastic.
However, having in mind Wold’s theorem [2] it makes
sense to ask, with respect to the deterministic part (pre-
dictable from the past), whether (i) it is dominant vis-à-vis
the unpredictable stochastic part or (ii) it is of a regular or
chaotic nature. CS always produce time series with a
physical structure. Looking for this physical structure is
our leifmotif. In order to do this several statistical complex-
ity measures have been recently introduced in the litera-
ture, based on the notion of the so-called ‘‘disequilibrium’’

[3–5]. In Ref. [5] it was advanced a statistical complexity
measure version that is (i) able to grasp essential details of
the dynamics, (ii) an intensive quantity, and (iii) capable of
discerning among different degrees of periodicity and
chaos. This measure, to be referred to as the intensive
statistical complexity measure CJS�P�, is a functional of
the probability distribution P associated with the time
series. CJS writes

 CJS�P� � QJ�P;Pe�HS�P�; (1)

associating, to the probability distribution P � fpj; j �
1; . . . ; Ng, the entropic measure

 HS�P� � S�P�=Smax (2)

with Smax � S�Pe� � lnN, (0 � HS � 1). We denote by
Pe � f1=N; . . . ; 1=Ng the uniform distribution while
S�P� � ÿ

PN
j�1 pj ln�pj� stands for the Shannon’s entropy.

QJ, the above referred disequilibrium, is defined in terms
of the extensive Jensen-Shannon divergence (it induces a
squared metric, in contrast to the Kullback-Leiber diver-
gence [5]) as follows:

 QJ�P;Pe� � Q0fS��P� Pe�=2� ÿ S�P�=2ÿ S�Pe�=2g;

(3)

with Q0 a normalization constant (0 � QJ � 1). The dis-
equilibrium QJ is an intensive quantity being different
from zero only if there exist ‘‘privileged,’’ or ‘‘more
likely’’ states among the accessible ones [3–5]. A critical
point is that of using the methodology proposed by Bandt
and Pompe [6] for evaluating the probability distribution P
associated to the time series under study. This requires
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suitable partitions of a D-dimensional embedding space
that will, it is hoped, reveal important details concerning
the ordinal structure of a given one-dimensional time
series. For the time series fxt: t � 1; . . . ;Mg and an em-
bedding dimension D> 1, one is interested in ‘‘ordinal
patterns’’ of order D [6,7] generated by

 �s�° �xsÿ�Dÿ1�; xsÿ�Dÿ2�; . . . ; xsÿ1; xs�; (4)

which assign to each time s a D-dimensional vector of
values pertaining to the times s; sÿ 1; . . . ; sÿ �Dÿ 1�.
By the ordinal pattern related to the time (s) we mean the
permutation � � �r0; r1; . . . ; rDÿ1� of (0; 1; . . . ; Dÿ 1) de-
fined by xsÿrDÿ1

� xsÿrDÿ2
� � � � � xsÿr1

� xsÿr0
. In or-

der to get a unique result we consider that ri < riÿ1 if
xsÿri � xsÿriÿ1

. Thus, for all the D! possible permutations
� of order D, the probability distribution P � fp���g is
defined by (Y � MÿD� 1)

 p��� � ]fsjs � Y; �s� has type �g=Y: (5)

In this expression, the symbol ] stands for ‘‘number.’’ The
Bandt-Pompe method [6] for evaluating the probability
distribution P is based on the details of the attractor-
reconstruction procedure and causal information is duly
incorporated in the construction process that yields P 2 

(with 
 the probability space) [8]. A notable Bandt-Pompe
result is a clear improvement in the performance of the
information quantifiers obtained using their P-generating
algorithm. One must assume with them that the system
fulfills a very week stationary condition (for k < D, the
probability for xt < xt�k should not depend on t) [6] and
that enough data are available for a correct attractor recon-
struction. The advantages of the Bandt-Pompe method
reside in (a) its simplicity, (b) the concomitant extremely
fast calculation process, (c) its robustness, and (d) its in-
variance with respect to nonlinear monotonous transforma-
tions. Also, it can be applied to any type of time series
(regular, chaotic, noisy, or reality based) [6]. Finally, it is
important to remark that calculations made with the Bandt-
Pompe prescription are robust in the presence of observa-
tional and dynamical noise [6]. Of course, the embedding
dimension D plays an important role for the evaluation of
the appropriate probability distribution, since D deter-
mines the number of accessible states D! and tells us about
the necessary lengthM of the time series needed in order to
work with a reliable statistics. Concerning this last point in
all calculations reported here the condition M� D! is
satisfied. It is essential for our present purposes to consider
rather small D values. In particular, Bandt and Pompe
suggest for practical purposes working with 3 � D � 7,
and this is what we do here (in the present work we used
D � 6). If we allow D to grow without bounds, significant
(and important from a theoretic viewpoint) consequences
ensue [10]. We remark that the above statistical complexity
measure quantifies not only randomness but also the degree
of correlational structures, and consequently it is not a
trivial function of the entropy in the sense that, for a given

HS value, there exists a range of possible CJS’s values
between a minimum Cmin and a maximum Cmax [3].
Thus, evaluating CJS provides one important additional
piece of information regarding the peculiarities of a proba-
bility distribution, not already carried by the entropy. The
additional information disappears if, for example, a proba-
bility density function (PDF) based on histograms is used.
A general procedure for obtaining the bounds Cmin and
Cmax corresponding to the statistical complexity measures’
family is given by Martı́n, Plastino, and Rosso in Refs. [4].
One may content oneself with using justQJ, instead ofCJS.
If so doing, the advantage of having a quantifier guarantee-
ing (as CJS does) (1) a zero value for both regular and
completely random series and (2) maximum values for
systems with ‘‘immersed’’ (or hidden) structures [4],
would be lost. In order to study the time evolution of
CJS, a diagram of CJS versus HS can be used, the CH
plane (in this case, HS can be regarded as an arrow of time
[12]). Also, this kind of diagram has been used to study
changes in a system’s dynamics originated by modifica-
tions of some characteristic parameters [3,5,13–16].
Processes here studied were selected as illustrative ex-
amples of (a) CS and (b) SP, two different classes of
processes in the sense indicated in the introduction.

We dealt with the following five kinds of CS: (1) The
logistic map: [17] defined by

 xn�1 � rxn�1ÿ xn�: (6)

Note that for r � 4 this map has a nonuniform natural
invariant PDF.

(2) The skew tent map: one has [17]

 

� x=! for x 2 �0; !�

�1ÿ x�=�1ÿ!� for x 2 �!; 1�
: (7)

For any ! value this map has a uniform natural invariant
PDF (! � 0:1847 is here considered).

(3) Henon’s map: it is a 2D extension of the logistic map
[17] given by

 

�
xn�1 � 1ÿ ax2

n � yn
yn�1 � bxn

: (8)

The values used here, a � 1:4 and b � 0:3, correspond to a
chaotic attractor with a nonsmooth PDF.

(4) The Lorenz map of Rossler’s oscillator: for the 3D
continuous Rossler oscillator [17] one has

 

8><
>:

_x � ÿyÿ z

_y � x� ay

_z � b� z�xÿ c�

; (9)

where a � 0:2, b � 0:2, and c � 5:7 correspond to a
chaotic attractor. The Lorenz map is obtained by storing
only x-minimal values [17].

(5) Schuster maps: Schuster and co-workers [17] intro-
duced a class of maps which generate intermittent signals
with chaotic bursts that also display 1=fz noise,
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 xn�1 � xn � xzn; Mod 1: (10)

In particular, results for z � 5=2, 2, and 3=2 are reported.
We considered the following two kinds of SP here:

(6) Noises with fÿk PS generated as follows: (a) The
MATLAB©RAND function is used to produce pseudo ran-
dom numbers in the interval (ÿ 0:5, 0.5) with an (i) almost
flat PS, (ii) uniform PDF, and (iii) zero mean value.
(b) Then, the fast Fourier transform (FFT) y1

k is obtained
and multiplied by fÿk=2, yielding y2

k; (c) Now, y2
k is sym-

metrized so as to obtain a real function and then the
pertinent inverse FFT xi is obtained, after discarding the
small imaginary components produced by our numerical
approximations. The ensuing time series xi has the desired
PS and, by construction, is representative of non-Gaussian
noises.

(7) Fractional Brownian motion (FBM) and fractional
Gaussian noise (FGN): FBM is the only family of pro-
cesses which is (a) Gaussian, (b) self-similar, and
(c) endowed with stationary increments (see Ref. [16]
and references therein). The normalized family of these
Gaussian processes, fBH �t�; t > 0g, is endowed with these
properties: (i) BH �0� � 0 almost surely, i.e., with proba-
bility 1, (ii) E�BH �t�� � 0 (zero mean), and (iii) co-
variance given by

 E �BH �t�BH �s�� � �t2H � s2H ÿ jtÿ sj2H �=2 (11)

for s, t 2 R. Here E��� refers to the average computed with
a Gaussian PDF. The power exponent 0<H < 1 is com-
monly known as the Hurst parameter (exponent). These
processes exhibit ‘‘memory’’ for any Hurst parameter ex-
cept for H � 1=2, as one realizes from Eq. (11). The
H � 1=2 case corresponds to classical Brownian motion
and successive motion increments are as likely to have the
same sign as the opposite (there is no correlation among
them). Thus, Hurst’s parameter defines two distinct regions
in the interval (0, 1). When H > 1=2, consecutive incre-
ments tend to have the same sign so that these processes are
persistent. For H < 1=2, on the other hand, consecutive
increments are more likely to have opposite signs, and we
say that they are antipersistent. Let us introduce the quan-
tity fWH �t�; t > 0g (FBM ‘‘increments’’)

 WH �t� � BH �t� 1� ÿ BH �t�; (12)

so as to express our Gaussian noise in the fashion
 

��k��E�WH �t�WH �t�k��

�
1

2
��k�1�2H ÿ2k2H �jkÿ1j2H �; k>0: (13)

Note that for H � 1=2 all correlations at nonzero lags
vanish and fW1=2�t�; t > 0g thus represents white noise.
The FBM and FGN processes are continuous but non-
differentiable processes (in the classical sense). As a non-
stationary process, they do not possess a spectrum defined
in the usual sense; however, it is possible to define a

generalized power spectrum of the form: � / jfjÿ�, with
� � 2H � 1, 1<�< 3 for FBM and, � � 2H ÿ 1,
ÿ1<�< 1, for FGN. Because of their Gaussian nature,
and other characteristics above enumerated, the Bandt-
Pompe ideas are applicable to the FBN and FGN dynami-
cal process [18]. For evaluating the FBM and FGN time
series we adopt the Davies-Harte algorithm [19], as re-
cently improved by Wood and Chan [20], which is both
exact and fast.

For all the cases we studied here 10 time series of 215

data each were analyzed, each series starting at a different
initial condition. The concomitant mean values of both HS

and CJS are plotted in Fig. 1.
All the CS under scrutiny have entropies that, in our

causality plane, are seen to be (i) in the entropy region
lying between 0.45 and 0.7, (ii) located near to the maxi-
mumCJS. This entails that highCJS values are produced by
structures immersed in chaotic time series. Higher HS

values may be obtained using randomizing techniques to

FIG. 1 (color online). Continuous lines represent minimum
Cmin and maximum Cmax complexities. The area enclosed by
them is the CH plane. (a) Localization of different CS and SP in
the CH plane. (b) Enlargement near the ideal point HS � 1,
CJS � 0. D � 6 is used. The graph illustrates the fact that, in the
case of textbook models usually regarded as being of either
stochastic or deterministic nature [17], our numerical results
place them at clearly different planar locations.
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increase the mixing and destroying correlational structures,
as will be reported elsewhere. For the logistic map the
effect of a control parameter r < 4 was also studied. We
found that, in our causality plane, the pertinent points lie in
a low entropy region, although they always remain near the
maximum complexity curve, in agreement with what hap-
pens in the case of a binary PDF [5]. For the Henon map
both the X and Y coordinates have the same ordinal struc-
ture and they have the same point in the CH plane.
Schuster maps have also low entropy values HS < 0:6. In
this case the reason is that these maps exhibit laminar
regions separated by chaotic bursts. Their complexity is
lower than that of the chaotic case. When the parameter z
decreases, HS increases and the representative trajectory
always remains below (but close) to that for chaotic maps.
This is so because the size of laminar regions diminishes,
entailing that the system becomes more similar to a fully
chaotic one.

Noises with fÿk power spectrum, and 0 � k � 3, ex-
hibit medium-high entropy values (0:45<HS < 1) and
CJS values almost equidistant between the curves of maxi-
mum and minimum complexity. In particular, their CJS are
much lower than those for deterministic noises (Schuster
and chaotic). For the small k values k � 0 and k � 1 they
become almost ideal noises withHS ’ 1 and CJS ’ 0. As k
increases, correlations among different values become ap-
parent and, consequently, HS decreases. FBM (1<�< 3)
exhibits entropies near those of fÿk PS, but with a lower
CJS in relation to that of a non-Gaussian process. The
associated FGN (ÿ1<�< 1) has higher entropic values
(0:97<HS < 1) and complexity values between 0 and 0.1.
In addition these two kinds of value are higher in compari-
son to those for a fÿk PS [see Fig. 1(b)]. We associate this
behavior with either the Gaussian or non-Gaussian nature
of the respective processes. Ordinary Brownian motion
(� � 2) is characterized by a relative high entropy and
low CJS (HS ’ 0:9 and CJS ’ 0:18). Also, persistent FBM
(2<�< 3)—long memory processes—are more com-
plex than FBM antipersistent (1<�< 2)—short memory
ones—in agreement with the intuitive idea for this kind of
behavior. Complexity values for FGN are higher than those
corresponding to a fÿk PS. In particular, persistent and
antipersistent (0< j�j< 1) FGN display quite similar val-
ues [see Fig. 1(b)]. Maximum entropy and minimum com-
plexity values are observed for � � 0, which corresponds
to white Gaussian noise. Note that, in the causality plane,
this situation can be located in a position that lies below
that corresponding to the case k � 0 of fÿk PS.

Summing up, our representation plane is here shown,
with regards to signals generated by well-known models, to
accommodate noise and chaos at different planar locations.
Such representational property could be useful when deal-
ing with real data (that always have a stochastic component
due to omnipresent dynamical noise) so as to classify
different degrees of ‘‘stochasticness.’’

Our representation also distinguishes (a) Gaussian from
non-Gaussian process and, (b) among different degrees of
correlations (colored noises). Consequently, this represen-
tation plane is an effective tool for revealing the sometimes
subtle difference between noise and chaos.
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