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Comparative study of an Eden model for the irreversible growth of spins
and the equilibrium Ising model
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The magnetic Eden model ~MEM! @N. Vandewalle and M. Ausloos, Phys. Rev. E 50, R635 ~1994!# with
ferromagnetic interactions between nearest-neighbor spins is studied in (d11)-dimensional rectangular geom-
etries for d51,2. In the MEM, magnetic clusters are grown by adding spins at the boundaries of the clusters.
The orientation of the added spins depends on both the energetic interaction with already deposited spins and
the temperature, through a Boltzmann factor. A numerical Monte Carlo investigation of the MEM has been
performed and the results of the simulations have been analyzed using finite-size scaling arguments. As in the
case of the Ising model, the MEM in d51 is noncritical ~only exhibits an ordered phase at T50). In d52 the
MEM exhibits an order-disorder transition of second order at a finite temperature. Such transition has been
characterized in detail and the relevant critical exponents have been determined. These exponents are in
agreement ~within error bars! with those of the Ising model in two dimensions. Further similarities between
both models have been found by evaluating the probability distribution of the order parameter, the magneti-
zation, and the susceptibility. Results obtained by means of extensive computer simulations allow us to put
forward a conjecture that establishes a nontrivial correspondence between the MEM for the irreversible growth
of spins and the equilibrium Ising model. This conjecture is certainly a theoretical challenge and its confirma-
tion will contribute to the development of a framework for the study of irreversible growth processes.
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I. INTRODUCTION

The study of kinetic growth models such as directed per-
colation, Eden growth, ballistic deposition, diffusion limited
aggregation, random deposition with and without relaxation,
cluster-cluster aggregation, etc., is motivated by their interest
in many areas of scientific research and technology such as
polymer science, crystal and polycrystalline growth, gela-
tion, fracture propagation, epidemic spreading, bacterial and
fungi growth colonies, colloids, etc. @1–5#. Within this con-
text the Eden model @6# has become an archetype growth
model. Eden clusters are compact but the self-affinity that
characterizes the behavior of the growing interface is of
much interest ~see, e.g., @7–12#!. Few years ago Ausloos
et al. @13# have introduced an additional degree of freedom
to the Eden model, namely, the spin of the added particles.
More recently, the Eden growth of clusters of charged par-
ticles has also been studied @14#.

In the magnetic Eden model ~MEM! @13# with spins hav-
ing two orientations ~up and down! the growth of the cluster
starts from a single seed, e.g., a spin up seed, placed at the
center of the two-dimensional square lattice, whose sites are
labeled by their rectangular coordinates (i , j). Then, the
growth process of the resulting magnetic cluster consists in
adding further spins to the growing cluster taking into ac-
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count the corresponding interaction energies. By analogy to
the Ising model @15# one takes J as the coupling constant
between nearest-neighbor ~NN! spins Si j and the energy E is
then given by

E52
J
2 (

^i j ,i8 j8&

Si jSi8 j8 , ~1!

where ^i j ,i8 j8& means that the summation is taken over oc-
cupied NN sites. The spins can assume two values, namely,
Si j561. Throughout this work we set the Boltzmann con-
stant equal to unity (kB[1), we consider J.0 ~i.e., the fer-
romagnetic case! and we take the absolute temperature T
measured in units of J. In the MEM a spin is added to the
cluster with a probability proportional to the Boltzmann fac-
tor exp(2DE/T), where DE is the total energy change in-
volved. It should be noted that at each step all sites of the
perimeter are considered and the probabilities of adding up
and down spins have to be evaluated. After proper normal-
ization of the probabilities the growing site and the orienta-
tion of the spin are determined through a pseudorandom
number generator.

It is worth mentioning that the MEM has originally been
motivated by the study of the structural properties of mag-
netically textured materials @13#. While these previous stud-
ies of the MEM were mainly devoted to determine the la-
cunarity exponent and the fractal dimension of the set of
parallel oriented spins @13#, the aim of the present work is to
complement these previous investigations by studying the
critical behavior of the MEM using extensive Monte Carlo
simulations and applying a finite-size scaling theory. Also,
our study is performed in confined ~stripped! geometries that
resemble recent experiments where the growth of quasi-one-
©2001 The American Physical Society27-1
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dimensional strips of Fe on a Cu~111! vicinal surface @16#
and Fe on a W~110! stepped substratum @17# have been per-
formed. In fact, the preparation and characterization of mag-
netized nanowires is of great interest for the development of
advanced microelectronic devices @16–19#. Furthermore, the
growth of metallic multilayers of Ni and Co separated by a
Cu spacer layer has recently been also studied @20#.

Another goal of the present work is to compare the results
obtained for the MEM with the well-known behavior of the
classical Ising model @15,21#, an archetypical model in the
study of thermally driven ~reversible! phase transitions in
equilibrium systems. The Ising Hamiltonian (H) is given by

H52
J
2 (

^i j ,i8 j8&

Si jSi8 j8 , ~2!

where ^i j ,i8 j8& means that the summation runs over all NN
sites, Si j561 is the state of the spin at the site of coordi-
nates (i , j) and J is the coupling constant (J.0).

The MEM is also similar to a family of models for the
stochastic growth of crystals generically known as crystal
growth models ~CGM! @22–26#, for a review, see e.g., @27#.
As in the MEM, in the case of CGM each atom is adsorbed
with a given probability conditional to the actual configura-
tion of neighboring atoms on the previous layer~s!. However,
in contrast to the MEM, the crystal is supposed to grow layer
after layer. It should also be noticed that relationships estab-
lished between CGM and a special class of Ising models
@24,26,28# have allowed to derive exact results. Therefore,
useful comparisons with the MEM will be also discussed in
the presentation of our results.

This paper is organized as follows. In Sec. II we give
details on the simulation method, Sec. III is devoted to the
presentation and discussion of the results obtained for the
MEM in (111)-dimensions, while Sec. IV refers to results
corresponding to (211)-dimensions. In Secs. III and IV,
detailed discussions comparing our results with the behavior
of the Ising magnet are outlined. Finally our conclusions are
stated in Sec. V.

II. DESCRIPTION OF THE SIMULATION METHOD

The MEM in (111)-dimensions is studied in the square
lattice using a rectangular geometry L3M with M@L and
imposing periodic boundary conditions along the L direction.
The location of each site on the lattice is specified through its
rectangular coordinates (i , j), (1<i<M ,1< j<L). The
starting seed for the growing cluster is a column of parallel
oriented spins placed at i51. It should be noticed that pre-
vious simulations of the MEM were restricted to rather mod-
est cluster sizes, i.e., containing up to 8000 spins @13#, while
in the present work clusters having up to 109 spins have been
typically grown. We have also studied the MEM in
(211)-dimensions employing an L3L3M geometry (M
@L) with periodic boundary conditions along both L direc-
tions.
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III. STUDY OF THE MEM IN „1¿1…-DIMENSIONS:
RESULTS AND DISCUSSION

Magnetic Eden clusters grown on a stripped geometry of
finite linear dimension L at low temperatures show an inter-
esting behavior that we call magnetization reversal. In fact,
we have observed that long clusters are constituted by a se-
quence of well-ordered magnetic domains. Spins belonging
to each domain, of average length lD@L , have mostly the
same orientation and consecutive domains have opposite ori-
entation. Let lR be the characteristic length for the occur-
rence of the magnetization reversal. Since lR;L , we then
conclude that the problem has two characteristic length
scales, namely, lD and lR such that lD@lR .

In ordinary thermally driven phase transitions, the system
changes from a disordered state at high temperatures to a
spontaneously ordered state at temperatures below some
critical value Tc where a second-order phase transition takes
place. Regarding the Ising model, one has that, in the ab-
sence of an external magnetic field (H50), the low tempera-
ture ordered phase is a state with nonvanishing spontaneous
magnetization (6M sp). This spontaneous symmetry break-
ing is possible in the thermodynamic limit only. In fact, it is
found that the magnetization M of a finite sample can pass
with a finite probability from a value near 1M sp to another
near 2M sp , as well as in the opposite direction. Conse-
quently, the magnetization of a finite system, averaged over a
sufficiently large observation time, vanishes at every positive
temperature. The equation M (T ,H50)’0 holds if the ob-
servation time (tobs) becomes larger than the ergodic time
(terg), which is defined as the time needed to observe the
system passing from 6M sp to 7M sp . Increasing the size of
the sample the ergodic time increases too, such that in the
thermodynamic limit ergodicity is broken due to the diver-
gence of the ergodic time, yielding broken symmetry. Since
Monte Carlo simulations are restricted to finite samples, the
standard procedure to avoid the problems treated in the fore-
going discussion is to consider the absolute magnetization as
an order parameter @29#. Turning back to the MEM, we find
that the phenomenon of magnetization reversal also causes
the magnetization of the whole cluster to vanish at every
nonzero temperature, provided that the length of the cluster
lC ~which plays the role of tobs) is much larger than lD
~which plays the role of terg). Therefore, we have measured
the mean absolute column magnetization, given by

um~ i ,L ,T !u5
1
L U(j51

L

Si jU . ~3!

In the stripped geometry used in this work the bias intro-
duced by the lineal seed ~a starting column made up entirely
of up spins! can be avoided by calculating relevant properties
after disregarding spins within a distance approximately
equal to few times L from the seed. The procedure of column
averaging out from the transient region represents a signifi-
cant advantage of the stripped geometry used for the simu-
lation of the MEM. In fact, when a single seed at the center
of the sample is used, the definition of the average magneti-
zation of the whole cluster is strongly biased by the cluster’s
7-2
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kernel orientation at the early stages of the growing process.
In addition, using several randomly generated seeds we
could also establish that the system evolves into a given
stationary state independently of the seed employed.

The mean column magnetization is a fluctuating quantity
that can assume L11 values. Then, for given values of both
L and T, the probability distribution of the mean column
magnetization „PL(m)… can be evaluated, since it represents
the normalized histogram of m taken over a sufficiently large
number of columns in the stationary region @30–32#. In the
thermodynamic limit the probability distribution „P‘(m)… of
the order parameter of an equilibrium system at criticality is
universal ~up to rescaling of the order parameter! and thus it
contains very useful and interesting information on the uni-
versality class of the system @33–35#. Figure 1 shows the
thermal dependence of PL(m) for a fixed lattice size (L
5128) as obtained for the MEM. At high temperatures
PL(m) is a Gaussian centered at m50 but when the tem-
perature gets lowered, the distribution broadens and develops
two peaks at m51 and m521. Further decreasing the tem-
perature causes these peaks to become dominant while the
distribution turns distinctly non-Gaussian, exhibiting a mini-
mum just at m50. The emergence of the maxima at m
561 is quite abrupt. This behavior reminds us the order
parameter probability distribution characteristic of the one-
dimensional Ising model. In fact, for the well-studied
d-dimensional Ising model @32,36#, we know that for T
.Tc , PL(M ) is a Gaussian centered at M50, given by

PL~M !}expS 2M 2Ld

2Tx D , ~4!

where the susceptibility x is related to order parameter fluc-
tuations by

x5
Ld

T ~^M 2&2^M &2!. ~5!

FIG. 1. Plots of the probability distribution of the mean column
magnetization PL(m) versus m for the fixed lattice width L5128
and different temperatures. The sharp peaks at m561 for T
50.45 have been truncated in order to allow a detailed observation
of the plots corresponding to higher temperatures. This behavior
resembles that of the one-dimensional Ising model. More details in
the text.
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Decreasing temperature, the order parameter probability
distribution broadens, it becomes non-Gaussian, and near Tc
it splits into two peaks that get more separated at lower tem-
perature. For T,Tc and linear dimensions L much larger
than the correlation length j of order parameter fluctuations,
one may approximate PL(M ) near the peaks by a double-
Gaussian distribution, i.e.,

PL~M !}expF2~M2M sp!2Ld

2Tx G1expF2~M1M sp!2Ld

2Tx G ,

~6!

where M sp is the spontaneous magnetization, while the sus-
ceptibility x is now given by

x5
Ld

T ~^M 2&2^uM u&2!. ~7!

From Eq. ~4!, it turns out that the Gaussian squared width s2

associated with high temperature distributions is very close
to the second moment of the order parameter, i.e.,

s2’^M 2&. ~8!

Equation ~8! is a consequence of the Gaussian shape of the
order parameter probability distribution and, thus, it holds
for the MEM as well. From the known one-dimensional ex-
act solution for a chain of L spins @37,38# one can obtain

x5
1
T exp~2/T ! ~9!

then, Eqs. ~5! and ~9! lead us to

^M 2&5
1
L exp~2/T ! ~10!

~where it has been taken into account that ^M &50 due to
finite-size effects, irrespective of temperature!. From Eqs. ~8!
and ~10! we can see that the high temperature Gaussian prob-
ability distribution broadens exponentially as T gets lowered,
until it develops deltalike peaks at M561 as a consequence
of a boundary effect on the widely extended distribution. It
should be noticed that for d>2 this phenomenon is pre-
vented by the finite critical temperature that splits the Gauss-
ian, as implied by Eq. ~6!.

Turning back to the MEM, Fig. 1 strongly suggests that
an analogous mechanism should be responsible for the ther-
mal dependence exhibited by the MEM’s order parameter
distribution function. So, by analogy to Eq. ~9!, we assume
the relation

x5
1
T exp~a/T ! ~11!

to hold for the MEM, where we have introduced a phenom-
enological parameter a, and the susceptibility x is given by
Eq. ~5!. We find an excellent agreement to the data by choos-
ing the value a51.6 as observed in Fig. 2~a!, where ln-linear
plots of L^m2& versus 1/T are shown for strip widths varying
7-3
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in the range 16<L<1024. Figure 2~b! shows plots of ^umu&
versus T for the same lattices. This figure shows that by
increasing L, the order parameter curves approach the one
that corresponds to the thermodynamic limit ~i.e., ^umu&
5u(T), where u is the Heaviside function!.

However, it should be pointed out that the results obtained
for the (111)-dimensional MEM and the one-dimensional
~1D! Ising model do not exactly coincide for finite lattices, as
Fig. 3~a! shows for the case of the magnetization. Anyway,
this fact should not alarm us, since it can be seen that differ-
ences in the results obtained for both models are a direct
consequence of the finite-size nature of the lattices used in
the simulations and consequently they tend to vanish in the
thermodynamic limit. This is actually shown by Fig. 3~b!,
where log-linear plots of ^uM uIsing&(L ,T)2^umuMEM&(L ,T)
versus L21 for two different fixed values of temperature are
presented. Thus, we conclude that in view of the full quali-
tative and quantitative agreement between both models we
can safely establish that, as in the 1d Ising model, the (1
11)-dimensional MEM is not critical ~i.e., it also undergoes
a phase transition at Tc50).

We have also computed the number of already occupied
NN sites every time a new particle was added to the spin
system, and thus we have obtained the normalized probabil-
ity P(nNN) of having nNN occupied NN sites. Figure 4 shows

FIG. 2. Data for strip widths in the range 16<L<1024. ~a!
Log-linear plots of L^m2& versus T21. The slope of the solid line
~linear fit to the data! is a51.6. ~b! Plots of ^umu& versus T. More
details in the text.
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the behavior of P(nNN) as a function of temperature. Using
this probability we have evaluated ^nNN&52.0000(1) irre-
spective of the temperature. This result can be understood
considering that the growing process that leads to the assign-
ment of a spin Si j561 to each lattice site of coordinates
(i , j) can be studied by means of a bond model. In fact, we
can assign a bond to each pair of neighboring sites, pointing
from the earlier occupied site to the later occupied one. So,
the process that leads to a given spin configuration can be
specified by the fields bU(i , j) and bR(i , j), where subin-
dexes U and R refer to the upper bond of (i , j) @i.e., the bond
that connects the site of coordinates (i , j) with that of coor-
dinates (i , j11)], and to the right bond of the site of coor-
dinates (i , j), respectively @39#. We take b(i , j)511 if the

FIG. 3. Comparison of results corresponding to the
(111)-dimensional MEM and the d51 Ising model. ~a! Plots of
^umu& versus T obtained for a lattice of side L5128. ~b! Linear-log
plots of ^uM uI&(L ,T)2^umuMEM&(L ,T) versus L21 for T50.5 and
T51.0. Hence, differences in the magnetization due to finite-size
effects appear to vanish in the thermodynamic limit.

FIG. 4. Plots of P(nNN) versus T for nNN51,2,3,4. The lines are
guides to the eye. More details in the text.
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bond points outwards and b(i , j)521 if it is directed in-
wards. Therefore, the net bond flux at a given lattice site
(i , j) is given by

f~ i , j !5bU~ i , j !1bR~ i , j !2bU~ i , j21 !2bR~ i21,j !
~12!

and the possible values that f can take are f524,22,0,2.
After some algebra, it follows that nNN5 1

2 (42f) holds for
every site on the lattice. Moreover, it can be seen that, for an
arbitrary d-dimensional lattice of coordination number q,
nNN5 1

2 (q2f). Then,

^nNN&5
1
2 q ~13!

is the mean number of occupied NN, since ^f&50. For the
two-dimensional square lattice, q54 and Eq. ~13! yields
^nNN&52, in agreement with the result we have already ob-
tained by means of Monte Carlo simulations.

Further insights into the MEM’s growing process can be
gained by studying the mean energy change involved in the
addition of a new particle to the system. The process of
adding a new spin involves an energy change DE and from
the definition of the (111)-dimensional MEM, the possible
values that DE can take are 0,61,62,63,64 ~in units of J).
Figure 5 shows plots of the normalized probability P(DE)
versus T for each of these values. The nonequilibrium nature
of the MEM manifests itself through much more complex
probability distributions P(DE) ~see Fig. 5! than those cor-
responding to the equilibrium 1D Ising model where DE can
take only three different values, namely, 0,64 ~in units of
J). The results shown in Figs. 4 and 5 confirm the nontrivial
nature of the link established between the MEM at station-
arity and the Ising model in equilibrium.

It should be noticed that for the case of CGM @22–24# the
growing conditions are quite different than those of the
MEM. In fact, in CGM the crystal grows layer by layer in a
given direction @24,26#. Furthermore, the probability distri-
bution of the predecessor spin layer is sampled from the
equilibrium distribution, so will be the probability of spins in
subsequent layers. This particular growth mechanism allows

FIG. 5. Plots of P(DE) versus T for DE50,61,62,63,64 ~in
units of J). The lines are guides to the eye. More details in the text.
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to establish dual transformations with the kinetic Ising model
@25,26# and to extract some exact results. In contrast, the
growing interface of the MEM is self-affine and the system is
far from equilibrium. So, the link between the 1D Ising
model and the (111)-dimensional MEM is quite challeng-
ing.

IV. STUDY OF THE MEM IN „2¿1…-DIMENSIONS:
RESULTS AND DISCUSSION

A. The order parameter and its probability distribution
function

In order to compare the (211)-dimensional MEM and
the 2D Ising model, we have first studied the order parameter
probability distribution PL(m9), where m9 takes now L2

11 possible values ~see Fig. 6!. For high temperatures, the
probability distribution corresponds to a Gaussian centered at
m950. At lower temperatures we observe the onset of two
maxima located at m956M sp (0,M sp,1), which become
sharper and approach m9561 as T is gradually decreased.
Figure 7 shows the location of the maximum of the probabil-
ity distribution as a function of temperature for both (d
11)-dimensional MEM models with d51,2. While for the
d52 case we observe a smooth transition from the mmax9
50 value characteristic of high temperatures to nonzero
mmax9 values that correspond to lower temperatures, the curve
obtained for d51 shows, in contrast, a Heaviside-like jump.
As already discussed, the behavior exhibited by the
(211)-dimensional MEM ~e.g., as displayed by Figs. 6 and
7! is the signature of a thermal continuous phase transition
that takes place at a finite critical temperature.

The broken symmetry at a finite critical temperature Tc
implied by the thermal continuous phase transition can be
explained in terms of the broken ergodicity that occurs in the
system when we tend to the thermodynamic limit (L→‘)
making use of the temperature dependence exhibited by the
order parameter distribution function. In fact, if we set the
characteristic length of MEM’s domains lD equal to an er-

FIG. 6. Plots of the probability distribution PL(m9) versus m9
for the fixed lattice size L516 and different temperatures. The oc-
currence of two maxima located at m956M sp ~for a given value of
M sp such that 0,M sp,1) is the hallmark of a thermal continuous
phase transition that takes place at a finite critical temperature.
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godic length lerg , we can carry out a complete analogy with
the Ising model by associating lerg to terg ~the Ising model
ergodic time! and the cluster’s total length lC ~already de-
fined in Sec. III! to the Ising model observation time tobs . In
this way, we encounter that excursions of m9 from m9
51M sp to m952M sp and vice versa occur at length scales
of the order of lerg . When the cluster’s total length becomes
larger and larger (lC@lerg) the whole cluster’s magnetiza-
tion is averaged to zero. Furthermore, lerg diverges as the
strip’s width becomes larger and larger, and again broken
symmetry arises as the consequence of broken ergodicity.

B. Order-disorder phase transition in the „2¿1…-dimensional
MEM: Finite-size effects and scaling analysis

As already anticipated and as it follows from Figs. 6 and
7, the (211)-dimensional MEM exhibits a thermally driven
order-disorder transition at a finite temperature. In the ther-
modynamic limit (L→‘) we expect to determine a critical
temperature Tc such that ^um9u&50 for T.Tc while ^um9u&
remains nonvanishing at temperatures below Tc .

From the finite-size scaling theory, developed for the
treatment of finite-size effects at criticality and under equi-
librium conditions @40,41#, it is well known that if a ther-
mally driven phase transition occurs at a temperature Tc.0
in the thermodynamic limit, then in a confined geometry this
transition becomes smeared out over the temperature region
DT(L) around a shifted effective transition temperature
Tc(L), and the following relationships hold:

DT~L !}L2u, ~14!

and

uTc~L !2Tcu}L2l, ~15!

where the rounding and shift exponents are given by u5l
5n21, respectively ~recalling that n is the exponent that
characterizes the divergence of the correlation length at criti-
cality!.

FIG. 7. Plots showing the location of the maximum of the prob-
ability distribution as a function of temperature for both
(d11)-dimensional MEM models (d51,2). The lines are guides to
the eye. The smooth transition for d52 constitutes another evidence
of the finite critical point associated with the (211)-dimensional
MEM.
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Furthermore, from well-established finite-size scaling re-
lations, the following Ansätze hold just at criticality:

^um9~L ,T5Tc!u&}L2b/n ~16!

and

xmax~L !}Lg/n, ~17!

where b and g are the order parameter and the susceptibility
critical exponents, respectively. Note that xmax(L), as given
by Eq. ~17!, refers to the maximum of x(L ,T) as a function
of T for fixed lattice size L.

In view of the encountered analogies between the MEM
and the Ising model, it is natural to test the validity of Eqs.
~14!–~17! for the case of the MEM in (211) dimensions. It
should be noted that as in the case of equilibrium systems, in
the present case various ‘‘effective’’ L-dependent critical
temperatures can also be defined. In particular, we will de-
fine Tc1(L) as the value that corresponds to ^um9u&50.5 for
fixed L, and Tc2(L) as the one corresponding to the maxi-
mum of the susceptibility for a given L, assuming that the
susceptibility is related to order parameter fluctuations in the
same manner as for equilibrium systems @as given by Eqs.
~5! and ~7!#. Then, we should be able to obtain Tc from plots
of Tcn(L) versus L21 ~for n51,2) as is shown in Fig. 8.
Following this procedure we find that both Tc1(L) and
Tc2(L) extrapolate ~approximately! to the same value, allow-
ing us to evaluate the critical temperature Tc50.6960.01 in
the thermodynamic limit.

After determining Tc , the correlation length exponent n
can be evaluated by means of Eq. ~15!, making the replace-
ment l51/n . In fact, taking Tc at the mean, maximum, and
minimum values allowed by the error bars, we obtain six
log-log plots of uTcn(L)2Tcu versus L for n51,2. The slope
of each of these plots, not shown here for the sake of space,
yields a value for n . The obtained values are

n51.08~Tc50.68!, n51.00~Tc50.69!,

n50.88~Tc50.70! for n51, ~18!

FIG. 8. Plots of Tcn(L) versus L21 ~for n51,2). The solid lines
show the linear extrapolations that meet at the critical point given
by Tc50.6960.01.
7-6
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and

n51.20~Tc50.68!, n51.08~Tc50.69!,

n50.95~Tc50.70! for n52. ~19!

Thus our estimate is given by n51.0460.16, where the
error bars reflect the error derived from the evaluation of Tc ,
as well as the statistical error.

Figure 9 shows plots of the susceptibility versus T as ob-
tained using lattices of different side. It is found that the
susceptibility exhibits a peak that becomes sharper and shifts
towards lower temperatures when L is increased. This behav-
ior is, in fact, already anticipated by Eq. ~17!, and it allows
us to evaluate g/n from the slope of a log-log plot of xmax
versus L, as Fig. 10 shows. The linear fit yields g/n52.02
60.04. Using this value and the value formerly obtained for
n we thus determine g52.1060.36.

Figure 11 shows log-log plots of ^um9u&(T5Tc) versus L
for the mean, maximum, and minimum allowed values of
Tc . Considering only the larger lattices, the linear fits to the
data according to Eq. ~16! yield the following estimates:
b/n50.11, b/n50.16, and b/n50.19. We then assume the
value b/n50.1560.04, where the error bars reflect the error
derived from the evaluation of Tc as well as the statistical

FIG. 9. Behavior of the susceptibility as a function of tempera-
ture. Each curve shows a peak that becomes sharper and shifts
towards lower temperatures as L is increased. The inset shows in
greater detail the peaks corresponding to the smaller lattices (L
516,24,32).

FIG. 10. Log-log plot of xmax versus L. The linear fit ~solid line!
yields g/n52.0260.04.
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error. From this value and the value formerly obtained for n
we thus determine b50.1660.05.

The critical exponents of the MEM in (211) dimensions
as obtained using a finite-size scaling analysis are so far: n
51.0460.16, g52.1060.36, and b50.1660.05. If we re-
call the exactly known critical exponents of the d52 Ising
model, i.e. n51, g57/4, and b51/8, we find that the (2
11)-dimensional MEM has the same critical exponents
within error bars. These results further support our conjec-
ture on the connection between the MEM in (211) dimen-
sions and the Ising model in two dimensions.

As in the case of the MEM in d51, we have also com-
puted the number of already occupied NN sites every time
that a new particle was added to the spin system. We found
that the value ^nNN&53.0000(1) holds for all temperatures,
which is indeed the result given by Eq. ~13!, since q56 for
the three-dimensional square lattice.

At this stage, we may recall that for the
(111)-dimensional MEM ^nNN& equals the coordination
number of the d51 Ising model, and that we found that both
models have the same critical temperature and exhibit the
same critical behavior. Reasoning by analogy, we may ex-
pect a coincidence between the critical temperature for the
(211)-dimensional MEM and the corresponding one for a
d52 Ising model defined on a lattice of coordination number
q53. However, this comparison cannot be carried out, since
the critical temperature of an Ising model depends on both
the coordination number q and the topological structure of
the lattice, but for d>2 and a given value of q the topologi-
cal structure is not unique. For instance, for d52 and q53,
we can pass from the honeycomb lattice ~HL! to the ex-
panded kagomé lattice ~EKL! through the application of a
star-triangle transformation and obtain the exact values of
their critical points, which turn out to be @42# Tc51.5187
~HL! and Tc51.4530 ~EKL!.

V. CONCLUSIONS

In the present work we have studied the growth of mag-
netic Eden clusters with ferromagnetic interactions between
nearest-neighbor spins in a (d11)-dimensional rectangular
geometry ~for d51,2), using Monte Carlo simulations and

FIG. 11. Log-log plots of ^m9(T5Tc)& versus L21 for the
mean, maximum, and minimum allowed values of Tc . The linear
fits ~solid lines! yield an estimate b/n50.1660.05.
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applying a finite-size scaling theory. The results obtained
allow us to conjecture a nontrivial correspondence between
the MEM for the irreversible growth of magnetic materials
and the classical Ising model under equilibrium conditions.
In fact, we have found that the (d11)-dimensional MEM
and the d-dimensional Ising model behave identically ~ex-
cept for finite-size differences that vanish in the thermody-
namic limit! at criticality, i.e., that both models belong to the
same universality class. We also conjecture that this corre-
spondence would remain at higher dimensions (d.2). The
results obtained strongly suggest a link between the temporal
evolution of equilibrium systems and the stationary growth
of nonequilibrium systems. We thus believe that this work
will stimulate further developments in the field of nonequi-
librium kinetic growth models. A more precise numerical
06612
test of the posed conjecture will certainly require a consid-
erable computational effort but it will be of great interest.
Furthermore, analytical developments aimed to establish a
theoretical framework for the understanding of far from equi-
librium growth phenomena will become stimulated by the
reported findings.
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