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We compute the spectrum of photons emitted by the finite-temperature large-N SUðNÞ N ¼ 4

supersymmetric Yang-Mills plasma coupled to electromagnetism, at strong yet finite ’t Hooft coupling.

We work in the holographic dual description, extended by the inclusion of the full set of Oð�03Þ type IIB
string theory operators that correct the minimal supergravity action. We find that, as the t’ Hooft coupling

decreases, the peak of the spectrum increases, and the momentum of maximal emission shifts toward the

infrared, as expected from weak-coupling computations. The total number of emitted photons also

increases as the ’t Hooft coupling weakens.
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I. INTRODUCTION

The analysis of data from heavy ion collision experi-
ments at RHIC and LHC indicates that the quark-gluon
plasmas (QGPs) produced are in the strongly coupled
regime [1], where the ’t Hooft coupling (�) governing
the interactions of the microscopic constituents of the
plasma is larger than 1. Being electrically charged, these
microscopic constituents will emit photons. The number of
photons emitted with a given momentum, i.e. the photo-
emission spectrum, yields valuable information about the
structure of the plasma. A theoretical study of this spec-
trum at strong coupling is therefore an essential step for
investigating the QGP. Gauge/string duality lends itself
perfectly to such a computation, because it allows the
investigation of strongly coupled gauge theories in terms
of their weakly coupled supergravity dual description [2].
Although there is no complete string theory dual model
which accounts for all the relevant properties of QCD, the
microscopic theory governing the behavior of plasma pro-
duced at RHIC and LHC, one can attempt to approach the
real world using the holographic dual of the large-N SUðNÞ
N ¼ 4 super Yang-Mills (SYM) plasma. Moreover, hol-
ography stipulates that � in the gauge theory maps to �0�2

in the string dual, so that the minimal supergravity (i.e. the
zeroth-order string theory description in a small-curvature
expansion), obtained for �0 ! 0, corresponds to the gauge
theory at � ! 1. With these two caveats in mind, the work
of [3] considered two limits: photoemission from infinitely
strongly coupled SYM plasma, tackled via minimal type
IIB supergravity on the anti de Sitter (AdS)-Schwarzschild
black hole (BH) AdSBH � S5, and photoemission from

weakly coupled SYM plasma, computed using the tradi-
tional tools of perturbative quantum field theory. The real-
world QGP lies somewhere in between these two illumi-
nating yet unrealistic regimes. Our aim in this letter is to
compute the photoemission rate of N ¼ 4 SYM plasma
at large finite �. We work in the holographic dual extended
by the inclusion of the full Oð�03Þ type IIB string theory
corrections to the supergravity action. The relation
�� �0�2 immediately dictates that the corrections to the

� ! 1 result start atOð��3=2Þ. We compute characteristic
properties of the photoemission spectrum at large finite �,
such as the evolution of the height and position of the
photoemission peak as a function of �. We thereby quan-
tify the interpolation between the photoemission spectrum
from strongly coupled plasma and that from weakly
coupled plasma.

II. PHOTOEMISSION RATE AND
SPECTRAL FUNCTION

N ¼ 4 SYM theory is a supersymmetric gauge theory
with gluons, fermions, and scalars all in the adjoint repre-
sentation of SUðNÞ, and a (global) R-symmetry group
SUð4Þ. To model electromagnetism in this theory, one of
the Uð1Þ subgroups of the R-symmetry group is gauged
with coupling e. The Lagrangian can then be written as [3]

L ¼ LSYM þ eJem� A� � 1
4F

2; (1)

where LSYM is the Lagrangian ofN ¼ 4 SYM theory, and
the interactions internal to this Lagrangian are governed by
the ’t Hooft coupling � ¼ g2YMN. The field A� is the
photon (introduced by hand), with kinetic term F 2, and
Jem� is the electromagnetic current. The number of photons

produced by a thermally equilibrated plasma per unit time
per unit volume is given by
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d��

dk
¼ �em

�
knbðkÞ������ðkÞ; (2)

where k is the 3-momentum of the (on-shell) photon,

nbðkÞ ¼ 1=ðek=T � 1Þ, T is the temperature, and �em �
e2=4�. This holds to all orders in �, and to leading order
in e. The quantity ���ðkÞ is the lightlike spectral density of
the plasma defined via the retarded electromagnetic current
correlator R�� as ��� ¼ �2 ImR��, where

R��ðkÞ ¼ �i
Z

d4xeiK:X�ðtÞ< ½Jem� ðxÞ; Jem� ð0Þ�>; (3)

�ðtÞ is the step function, and K ¼ ðk; ~kÞ, with k ¼ j ~kj.
We wish to compute R�� using holography, but we do

not have the holographic dual of the theory defined by
Eq. (1); we do, however, have the holographic dual of pure
N ¼ 4 SYM. The crucial point is that, to leading order in
e, the electromagnetic current Jem� ¼ J�, where J� is purely
the R-symmetry current associated with the Uð1Þ sub-
group. Therefore, the two-point function of the electro-
magnetic current can be replaced by the two-point function
of the R-symmetry current, computed entirely within the
N ¼ 4 SYM itself [3]. Our aim in this paper is to com-
pute the retarded correlator of the R-symmetry currents of
N ¼ 4 SYM at strong ’t Hooft coupling, retrieve the
spectral function ���, and insert the latter into Eq. (2) to

obtain the photoemission rate. Given that we wish to keep
� strong yet finite, we must therefore work in the super-
gravity dual to N ¼ 4 SYM plasma extended by the
addition of finite �0 corrections.

III. TYPE IIB STRING THEORY SETUP AT Oð�03Þ
The type IIB supergravity action corrected to Oð�03Þ is

SIIB ¼ S0IIB þ S�
0

IIB, where

S0IIB¼
1

2	2
10

Z
d10x

ffiffiffiffiffiffiffiffi�G
p �

R10�1

2
ð@
Þ2� 1

4:5!
ðF5Þ2

�
; (4)

where 
 is the dilaton, F5 the five-form, and R10 is the
curvature. The leading ’t Hooft coupling corrections are

contained in S�
0

IIB, and given schematically by [4,5]

S�
0

IIB ¼ �R6

2	2
10

Z
d10x

ffiffiffiffiffiffiffiffi�G
p

e�3
2
ðCþT Þ4; (5)

where � ¼ 1
8 �ð3Þð�0=R2Þ3 ¼ 1

8 �ð3Þ��3=2, with R4 ¼
g2YMN�02 and � is the Riemann Zeta function. C is the
ten-dimensional (10D) Weyl tensor, andT abcdef is defined

as

iraF
þ
bcdef þ 1

16ðFþ
abcmnF

þmn
def � 3Fþ

abfmnF
þmn
dec Þ;

where the right-hand side is antisymmetrized in ½a; b; c�
and ½d; e; f� and symmetrized with respect to interchange
of abc $ def [5]. Also, Fþ ¼ 1

2 ð1þ �ÞF5. The operators

in Eq. (5) are dimension-eight operators obtained by

various independent contractions of C and T that can be
found in [5]. The background solution to this action is the
corrected metric GMN [6], with fðuÞ ¼ 1� u2,

ds2 ¼
�
r0
R

�
2 1

u
ð�fðuÞK2ðuÞdt2 þ d~x2Þ

þ R2

4u2fðuÞP
2ðuÞdu2 þ R2L2ðuÞd�2

5; (6)

where d�2
5 is the line element on the S5, and

KðuÞ¼e�½aðuÞþ4bðuÞ�; PðuÞ¼e�bðuÞ; LðuÞ¼e�cðuÞ;

where the exponents are given by the expressions

aðuÞ ¼ �1625
8 u2 � 175u4 þ 10 005

16 u6;

bðuÞ ¼ 325
8 u

2 þ 1075
32 u

4 � 4835
32 u

6;

cðuÞ ¼ 15
32ð1þ u2Þu4:

(7)

The extremality parameter is r0 ¼ �TR2=ð1þ 265�=16Þ,
where T is the physical equilibrium temperature of the
plasma. The boundary of the AdS space is at u ¼ 0, and
the horizon of the black hole at u ¼ 1. In addition, both F5

and the dilaton have nontrivial background solutions, but
their explicit forms are of no consequence in this work, as
we explain shortly. The crucial point is that the tensorT is
zero for the background solution [4].

IV. THE VECTOR PERTURBATION

We now pursue the usual recipe involved in all holo-
graphic computations: firstly, perturb the supergravity
background along the directions c which are dual to the
field theory operators J whose correlation functions we
are interested in, and plug the perturbed background into
SIIB. This yields the action Sðc Þ of the perturbation c .
Then, solve the equations of motion (EOM) of Sðc Þ sub-
ject to c ¼ c 0 on the boundary of the space u ¼ 0, and
evaluate the on-shell action for these solutions, giving
Zðc 0Þ, the generating functional of correlation functions
of the operators J . Differentiating Zðc 0Þ twice with re-
spect to c 0 yields<J :J > , and we are done. The details
of this prescription in real time are described in [7]. For the
present case, the perturbation field c dual to the
R-symmetry currents J� of the four-dimensional theory

is the vector perturbation A� of the gravitational back-

ground obtained as a solution of the EOM of SIIB. The
vector perturbation A� perturbs the metric and the F5

solution, yielding

ds2¼gmndx
mdxn

þR2LðuÞ2X
3

i¼1

�
d�2

i þ�2
i

�
d
iþ 2ffiffiffi

3
p A�dx

�

�
2
�
; (8)

where gmn ¼ Gmn for m; n 2 ½0; 4� and �i are the direc-
tion cosines for the sphere, and
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F5 ¼ � 4

R
��þ R3LðuÞ3ffiffiffi

3
p

�X3
i¼1

d�2
i ^ d
i

�
^ ��F2; (9)

where F2 ¼ dA is the Abelian field strength of A� and �� is

a deformation of the volume form of the metric of the
AdSBH. The Hodge duals � and �� are taken with respect to
the 10D metric and five-dimensional-AdSBH metric, re-
spectively. Notice that the � ! 0 limits of Eqs. (8) and
(9) are known exactly, see for instance [8]. We assume that
Eqs. (8) and (9) are correct to linear order in the gauge
fields.

We will insert these Ansätze of Eqs. (8) and (9) into

SIIB ¼ S0IIB þ S�
0

IIB below, obtaining an effective
Lagrangian for A� which is at most quadratic in A�.

Two important points must be stated to this end, dictated
by the fact that we work strictly to linear order in �. For
insertion into S0IIB, we require the Ansätze to linear order in
�. However, S0IIB only contains quadratic powers of F5 and,
therefore, the �� part of the F5 Ansatz cannot contribute to
the quadratic effective Lagrangian of A�. On the other

hand, S�
0

IIB contains operators which are higher than qua-
dratic in F5, so here �� can contribute to the quadratic

Lagrangian for A�, but the crucial point is that S�
0

IIB con-

tains an explicit factor of � already, and so we only require
�� to zero order in �. This is of course nothing but the
volume form on the AdS space [8]. The incredibly simpli-
fying upshot of these observations is that we do not require
theOð�Þ terms in �� for our computation. This is why we do
not care to state the explicit form of ��. All we need to know
is lim�!0 �� . The same observations can be made for the

contribution to the effective Lagrangian of A� of operators

containing the dilaton (and in fact any other field which is
trivial in the zero-order background supergravity solution).
These statements make the following work possible.

V. THE EFFECTIVE LAGRANGIAN OF THE
VECTOR PERTURBATION

Without loss of generality, we may set the photon mo-
menta to ðk; 0; 0; kÞ. In order to study the photoemission
rate, we only need to consider the transverse fluctuation
Axðt; x; uÞ. Inserting the Ansätze of Eqs. (8) and (9) into
SIIB, and integrating out the S5, we obtain a complicated
Lagrangian for Axðt; x; uÞ. This action can be coverted into
a more useful form by use of the following field redefini-

tions: write �ðuÞ ¼ AkðuÞ=ð
ffiffiffiffiffiffiffiffiffi
fðuÞp ½1þ �pðuÞ�Þ, where

pðuÞ is a polynomial in u beginning at Oðu2Þ and AkðuÞ
is the Fourier transform of Axðt; x; uÞ. This takes us into the
Schrödinger basis, such that the action is given by

S ¼ � N2r20
16�2R4

Z d4k

ð2�Þ4
Z 1

0
du

�
1

2
�L�þ @u�

�
; (10)

where L�ðuÞ ¼ 0 is the EOM�00ðuÞ ¼ VðuÞ�ðuÞ, where
the Schrödinger-like potential is given by

VðuÞ¼� 1

f2ðuÞ
�
1þq2u� �

144
fðuÞ½�11700þ2098482u2

�4752055u4þ1838319u6þq2uð�16470

þ245442u2þ1011173u4Þ�
�
; (11)

and q ¼ k=ð2�TÞ. The boundary term can be simplified to
� ¼ �0ðuÞ�ðuÞ. We solve the Schrödinger equation ana-
lytically for the region k � T, the so-called hydrodynamic
regime of the plasma, and the high-energy regime k � T.
In the intermediate momentum region, we resort to a
numerical solution of the EOM. Once we have the solution
of the Schrödinger equation, the trace of the spectral
function is given by

��
�ðkÞ ¼ N2T2

2

�
1� 265

8
�

�
Im

�
�0ðuÞ
�ðuÞ

���������u¼0
; (12)

with ð1� 265
8 �Þ coming from the factors of r0 in Eq. (10).

A. The EOM of the vector perturbation

We solve the Schrödinger equation using perturbation
theory. Write�ðuÞ ¼ �0ðuÞ þ ��1ðuÞ, and insert into the
Schrödinger equation, separating the powers of �. The
equation for �0ðuÞ is given by �00

0 ðuÞ ¼ ð�f�2ðuÞ�
ð1þ q2uÞÞ�0ðuÞ, and solves to give

�0ðuÞ ¼ ð1� uÞ�1
2ð1þiqÞð1þ uÞ�1

2ð1þqÞ
2F1

�
1� ð1þ iÞq

2
;

� ð1þ iÞq
2

; 1� iq;
1� u

2

�
: (13)

The equation for �1ðuÞ is solved numerically (if neces-
sary). The trace of the spectral function ��

�ðkÞ is

N2T2

2
Im

��
1� 265

8
�

�
�0

0

�0

þ �

�
��0

0

�0

�1

�0

þ�0
1

�0

����������u¼0

which is exact to linear order in �. We note that �
�
�ðkÞ at

� ! 1 is known [3], so our task here is to compute the ’t
Hooft coupling corrections to that result.

VI. ASYMPTOTIC LIMIT OF THE
SPECTRAL FUNCTION

The trace of the spectral function ��
�ðkÞ can be evaluated

analytically for low and high momentum, and numerically
for the remaining momentum domain. We do not discuss
the details of the computations, referring the reader to [3],
and we simply display the results:

��
�ðqÞ

1
2N

2T2
¼

8>>><
>>>:

�
1þ 14 993

9 �

�
qþOðq3Þ q � 1

35=6

2

�ð23Þ
�ð13Þ

ð1þ 5�Þq2=3 þOð1Þ q � 1:

(14)
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The coefficient of q in the low-q regime of Eq. (14) means
that the electrical conductivity of the strongly coupled
plasma is enhanced by a factor (1þ 14 993

9 �) due to the

finite � corrections [9]. This is as expected from the
perturbative computations in [3]: the weakly coupled
plasma has a larger mean-free-path per collision, allowing
more efficient diffusion of electric charge, and hence a
higher electrical conductivity. The high-q region however,
poses a question that we (as of yet) cannot answer: the
authors of [3] claim that the spectral function at weak

coupling should go like q1=2 in the UV. Given that the

spectral function at � ! 1 goes like q2=3, in that regime
one would have expected our result in Eq. (14) to display

some smooth interpolation between q1=2 and q2=3. We do
not obtain such an interpolation, finding instead that the
finite coupling corrections do not change the q dependence
in the UV. Moreover, we find an enhancement by a factor
(1þ 5�) in that regime (see also [10]). The fact that the
leading q behavior is unchanged by the corrections could
have been seen from the Schrödinger-like potential in
Eq. (11): the only q dependence is q2, identically to the
� ! 1 case. Terms like q4, which could have changed the
high-q functional dependence of ��

�ðqÞ, vanish. We shall
revisit this point below.

VII. THE PHOTOEMISSION SPECTRUM

We plug the obtained ��
�ðkÞ into Eq. (2) to give the

photoemission spectrum. We display the results in Fig. 1.
Clearly, the corrected result at strong coupling approaches
the weakly coupled result (taken from Ref. [3]). Firstly, the
corrected curves exhibit a steeper tangent at the origin, due
to the enhancement of the electric conductivity by the
factor (1þ 14 993

9 �) in Eq. (14). Secondly, the peak of

the photoemission is enhanced by the corrections, and
the momentum of maximal emission shifts toward the IR,

taking the corrected curves closer to the weakly coupled
result. Simple numerical analysis on the lightlike spectral
function yields that the maximal rate is given by

d��

dk

��������max
’0:0156695

�
1þ

�
1115:3�265

8

�
�

�
þOð�2Þ;

(15)

in units of �emN
2T3, where we have made explicit the

factor�265=8� coming from the overall normalization of
the action. The position of the peak kmax is

kmax ’ 1:484 69ð1� 842:425�ÞT þOð�2Þ: (16)

This quantity can analytically be shown to be independent
of the overall normalization of the action, making it an
excellent candidate for comparing disparate gauge theo-
ries. One more quantity which is of interest is the total
number of photons emitted, given by the area under the
curves in Fig. 1. This is enhanced by a factor

Ntotalð�Þ
Ntotalð0Þ

’ 1þ
�
461:941� 265

8

�
�þOð�2Þ; (17)

due to the fact that the weakly coupled theory dominates in
the IR, where Bose suppression [due to nbðkÞ] is small.
It is interesting to notice that the corrections we find to

the spectral function and also for the electrical conductiv-
ity, both 14 993=9�, and to the photoemission rate,
ð1115:3� 265=8Þ�, are significantly large compared
with corrections found for observables which do not de-
pend on correlation functions of the electromagnetic cur-
rents, and thus are not influenced by terms depending on
F5. For instance, we may compare the correction to the
spectral function which is about 100% and the one to the
photoemission rate about 64% for � ¼ 40, with the small
correction received by quantities such as the shear viscos-
ity which was found to be about 100% for values of � as
small as 7 [4]. Also, for example, the free energy receives a
similar order correction (about 100%) when �� 2. This
suggests that the strong coupling expansion converges
especially slowly for the spectral function, the electrical
conductivity, and the photoemission rate, all obtained from
the correlation functions of electromagnetic currents. This
is an important finding of our work which shows the effects
of the terms arising from the supersymmetric completion
to the C4 term (only depending on the 10D Weyl tensor).
We finally make two comments about the behavior of

the photoemission rate for high q. Firstly, there is a
(�-independent) crossover point around k=T � 2:92,
where the corrected curves dip below the � ! 1 result.
This is expected from the weak-coupling computations of
[3]. What is surprising, as we mentioned above, is that the
asymptotic values of the �-corrected curves for large k=T
are given by (1þ 5�) times the infinite coupling result, as
in Eq. (14) (note that the domain of Fig. 1 does not extend
to cover this asymptotic behavior). This means that the
finite-� corrections enhance the photoemission rate in the

0 1 2 3 4 5 6 7
k

T

0.5

1.0

1.5

2.0

2.5

R
at

e

FIG. 1. The photoemission rate d��=dk in units of
0:01�emN

2T3 for different values of �, as a function of k=T.
Solid, dashed, and small-dashed lines correspond to decreasing
values of � ! 1, 75, and 50, respectively. The dotted line to the
extreme left is the weak-coupling result at � ¼ 0:5 taken from
[3].
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deep UV regime, contrary to the expectations of [3].
Obviously, we are not guaranteed that the weakly coupled
result should be approached by strongly coupled correc-
tions computed in perturbation theory, especially not for a
situation where the functional dependence on momenta is
expected to be different, so we are not unduly concerned by
this apparent discrepancy. It would be very revealing
to understand these crossover points, as well as their scal-
ing with �. An important extension of our work would be
to determine if the universality found in [11] for the

energy-momentum spectral functions operates for the
R-symmetry current spectral function computed here.

ACKNOWLEDGMENTS

We thank Gert Aarts, Alex Buchel, Carlos Núñez,
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