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The nonmesonic weak decay of polarized A hypernuclei is studied with a microscopic diagrammatic formalism
in which one- and two-nucleon-induced decay mechanisms, AN — NN and ANN — NNN , are considered
together with (and on the same ground of) nucleon final state interactions. We adopt a nuclear matter formalism
extended to finite nuclei via the local density approximation. Our approach adopts different one-meson-exchange
weak transition potentials, while the strong interaction effects are accounted for by a Bonn nucleon-nucleon
interaction. We also consider the two-pion-exchange effect in the weak transition potential. Both the two-
nucleon-induced decay mechanism and the final state interactions reduce the magnitude of the asymmetry. The
quantum interference terms considered in the present microscopic approach give rise to an opposite behavior
of the asymmetry with increasing energy cuts to that observed in models describing the nucleon final state
interactions semiclassically via the intranuclear cascade code. Our results for the asymmetry parameter in }2C

obtained with different potential models are consistent with the asymmetry measured at KEK.
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I. INTRODUCTION

The study of hypernuclear physics provides the main source
of information on the baryon-baryon strangeness-changing
weak interactions. In particular, the nonmesonic weak decay
of A hypernuclei has shown two challenging issues presenting
some puzzling character [1,2]. First, we must mention the
disagreement between theory and experiment for the ratio
I,/ ', between the rates for the An — nn and the Ap — np
nonmesonic weak decay processes. Another more recent
problem concerns the asymmetry in the proton emission from
the nonmesonic weak decay of polarized hypernuclei, which
is our main concern in the present contribution.

A A hypernucleus can be produced with some degree of
polarization. Indeed, the n(zx™, KT)A reaction was used [3]
at p, = 1.05 GeV and small K+ laboratory scattering angles
to produce hypernuclear states with a substantial amount of
spin polarization, preferentially aligned along the line normal
to the reaction plane which identifies the polarization axis. The
dominant decay mechanisms for a polarized A hypernucleus
are the following neutron- and proton-induced processes:

An — nn, (N

]\p — np. 2)

It turns out that the number of protons emitted parallel to the
polarization axis is different from the same quantity measured
in the opposite direction. This asymmetric proton emission is a
consequence of the interference between the parity-conserving
and the parity-violating terms in the A p — np weak transition
potential [4].

Let us denote with a}" the intrinsic asymmetry, arising
from the one-nucleon-induced (1N) decay in Eq. (2). The
one-nucleon-induced decays take place within the nuclear
environment and the resulting nucleon pairs can interact
strongly with other nucleons of the medium before any nucleon
leaves the nucleus and is detected. As aresult of these final state
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interactions (FSI), the asymmetry measured in an experiment,
aM, differs from the intrinsic value a}" . Most of the theoretical
models result in a negative and rather mass-independent
intrinsic asymmetry. Instead, data favor a small a}!, compatible
with a vanishing value, for both 3 He and 12C. This shows a
clear disagreement between a}XN and a%.

The reason for this disagreement can be twofold. It can
be originated by the weak decay mechanism itself, which
might require some improvement and the consideration of
additional two-nucleon-induced processes, and it may also be
from nucleon FSI. Let us start by considering the various
mechanisms which contribute in the evaluation of al¥. The
theoretical models based on one-meson-exchange potentials
(OME) [5-10] and/or direct quark mechanisms [11] predict
a)N values in the range from —0.7 up to —0.4. By using an
effective field theory approach, a dominating central, spin- and
isospin-independent contact term was predicted in Ref. [12]
which allowed the authors to reproduce the experimental
total and partial nonmesonic decay widths for 3 He, }'B, and
12C, and the asymmetry parameter for 5 He. Motivated by
this work, a scalar-isoscalar o-meson exchange was added
to a (w + K)-exchange weak model also including a direct
quark mechanism [13]. Similarly, the o meson was considered
together with a full OME weak potential in Ref. [14]. Although
the addition of the o meson may improve the calculation of
alN it turned out to be not enough to reproduce consistently all
the decay data despite the freedom introduced by the unknown
coupling constants of the o meson. Later, the OME weak
potential was supplemented by the exchange of (uncorrelated
and correlated) two-pion pairs [15]. The two-pion-exchange
potential was obtained from a chiral unitary approach in a
study of the nucleon-nucleon interaction [16] and was adapted
to the weak sector in Ref. [17] for a study of the nonmesonic
decay rates, while the calculation of the asymmetry was also
carried out in Ref. [15]. The two-pion-exchange mechanism
turned out to introduce a significant central, spin- and isospin-
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independent AN — nN amplitudes and gave rise to a good
reproduction of the entire set of decay rates and asymmetry
data for 3 He and >C.

We now briefly comment on the effect of FSI on the
asymmetry parameter. First of all, it should be noted that
from a strictly quantum-mechanical point of view the only
observables in nonmesonic weak decay are the total non-
mesonic decay width I'ny, the spectra of the emitted nucleons,
and the asymmetry a)l [18]. It is the action of FSI which
prevents the measurement of any of the nonmesonic partial
decay rates and of the intrinsic asymmetry al¥. The link
between theory and experiment for both I,/ I", and a}\N is
not straightforward, because it is strongly dependent on FSI.
For instance, to obtain the I',/ I, ratio from experiments, one
should proceed to a deconvolution of the nucleon rescattering
effects contained in the measured nucleon spectra [19], which
requires the use of a theoretical approach for FSI. For the
asymmetry parameter the situation may seem more direct,
as experimental data for a% are available. However, for a
direct comparison with experiment, one must calculate the
asymmetry a)!, which also requires the inclusion of FSI effects.
Only a couple of approaches [9,15] calculated this observable
in an appropriate way. However, both these calculations
adopted a hybrid approach consisting in a shell model for
describing the weak decay and a semiclassical intranuclear
cascade (INC) model, for simulating FSI. The only kind of FSI
effects considered within the finite nucleus approach of [9,15]
are those between the two nucleons emitted in the nonmesonic
decay, which are represented by a wave function describing
their relative motion under the influence of a suitable NN
interaction [7]. Although a discrepancy with data still remains
for proton emission spectra [20,21], one can safely assert that
a formalism which takes care of FSI leads to a good agreement
between theory and experiment concerning I,/ ', and aX'.

In the present contribution we evaluate the asymmetry
aM employing an alternative approach to the hybrid one of
[9,15]. In our microscopic diagrammatic approach, which was
developed in Refs. [20,22,23], both the weak decay and the
nucleon FSI are part of the same quantum-mechanical problem
and are thus described in a unified way. Therefore, the present
formalism has a self-consistency that is not present in previous
approaches. The calculation is first performed in nuclear matter
and then extended to finite hypernuclei by means of a local
density approximation. Clearly, our nuclear matter wave func-
tions are less realistic than the shell model ones. However, FSI
are relevant and our quantum-mechanical approach describes
them more reliably than the INC. In Ref. [20] we showed that
quantum interference terms in the FSI are very important in the
calculations of the observable spectra for the emitted nucleons.
Moreover, in the same work we have called attention to the
fact that pure (i.e., nonquantum interference terms) FSI terms
and two-nucleon-induced (2N) decay contributions originates
from two different time orderings of the same Feynman
diagrams at second order in the weak transition potential.

Another contribution of the present work is the considera-
tion for the first time of the 2N decays, ANN — nNN, ina
calculation of the asymmetry. We will see that, although these
contributions represent almost 30% of the decay width, they
affect the asymmetry in a very moderate way.
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The work is organized as follows. In Sec. II we discuss
general aspects of the asymmetry in the proton emission from
the decay of polarized A hypernuclei. A formal derivation of
the expressions needed to evaluate the asymmetry parameter
is done in Sec. III when only 1N decays are included,
resulting in the intrinsic asymmetry a1V, and in Sec. IV when
2N decays and FSI are taken into account, resulting in an
approximation for the observable asymmetry a,l‘\/[. Numerical
results are presented and discussed in Sec. V and finally, our
conclusions are given in Sec. VI.

II. GENERAL CONSIDERATIONS ON THE
ASYMMETRY PARAMETER

Spin-polarization observables for baryon-baryon interac-
tions are important quantities which supply additional infor-
mation to the more usual total cross sections or decay rates
and thus facilitate the reconstruction of the interaction am-
plitudes from experimental data. For nucleon-nucleon elastic
scattering, a complete study of spin-polarization observables
is given, for instance, in Ref. [24]. The formal derivation of
the asymmetry parameter for the nonmesonic weak decay of
A hypernuclei is instead provided by [25]. Here we follow a
less conventional analysis to note some conceptual issues.

Let us denote with 6 the angle between the momentum of
the outgoing proton in the Ap — np weak process and the
polarization axis of the hypernucleus. The number of emitted
protons as a function of 8 can be written as

Np(©) = Np (1 + Ay (0))/7, 3)

where N, o is the total number of emitted protons in the decay
of the polarized A hypernucleus, while the function .A,(6)
introduces an asymmetry in the distribution. By construction,
it is evident that

/ dO Np(0) = Np, o1, “4)
0
therefore,
/ d6 A, (6) =0, )
0

Equation (5) allows one to express A,(f) as a series of
odd powers of cos 6. By keeping the first term in the series
expansion one has

Ay(0) = C cosb. (6)

This expression is exact for the scattering of two elementary
particles, as in the present hadronic description of the Ap —
np weak decay.

It is reasonable to write the constant C as the product of
the polarization of the hypernucleus P, times a remaining
constant, as follows:

C=PA,, @)

where the A, is the hypernuclear asymmetry parameter. Being
that the A nonmesonic decay in a nucleus is a complex process,
it is evident that also the two-body-induced decays Anp —
nnp and App — npp as well as FSI terms contribute to the
observable proton number N,(6) of Eq. (3).
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_ If we consider the protons originated from the elementary
Ap — np process, the shell model weak-coupling scheme
allows us to make the following replacement:

Py A, — paall, (8)

by introducing the A polarization p, and the intrinsic A
asymmetry a\V.! With these definitions, if the weak-coupling
limit provides a reliable description of the hypernucleus,
the intrinsic asymmetry all\N has the same value for any
hypernuclear species.

We can thus rewrite Eq. (3) as follows:

N;N(G) = N[i”\iot(l + paay cosd), 9)

where the index 1N refers to the fact that we are considering
only the one-nucleon-induced decay Ap — np. From this
expression, the intrinsic asymmetry is obtained as

v s NN(O%) — NN (180°)
b pa NIV(OO) + NIV(1800)

(10)

Once we consider the two-body-induced decay process and
FSI as well, the number of emitted protons takes the following
form:

Ny(60) = NV (0) + NV 50). (11)
As long as N2N*FS1(9) has a linear dependence on cos®,
it is possible to define an observable asymmetry parameter,
a)V NS given by a relation which is analogous to the one
in Eq. (10), which can be compared with the experimental data
for the asymmetry a%.

III. FORMAL DERIVATION OF THE INTRINSIC
ASYMMETRY

For computational purposes, we may assume that the
hypernucleus is completely polarized. The intrinsic asymmetry
is then given by Eq. (10) with py = P, = 1.

We now focus on the evaluation of the N,"(6) spectrum.
For our practical purpose, we can suppose that the polarized
A has its spin aligned with the polarization axis (which
thus coincides with the quantization axis). The evaluation
of N)V(6) is rather similar to the evaluation of the proton
kinetic energy spectrum N ,(7),) described in Refs. [20,22,23],
except for two points: (i) The angle 6 replaces the proton
kinetic energy T}, as variable and (ii) we no longer sum over
the two spin projections of the A, but retain only the up
component. This second point requires a new evaluation of
the spin summation. To build up an analytical expression for
NN (©), let us first express it in terms of the more familiar
decay widths as follows:

N, (©) = T)(®). (12)

'In the shell model weak-coupling limit it is easy to obtain p, =
—J/(J+ 1) Py for J =Jc—1/2 and pp = P, for J = Jc +1/2,
where J (J¢) is the total angular momentum of the hypernucleus (core
nucleus). For nuclear matter we have Jc = 0 and then p, = P,.
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FIG. 1. Direct Goldstone diagram corresponding to the square of
the Ap — np decay amplitude.

with [0 »(0) = I',(8)/ I'nvi, where I'vy is the total nonmesonic
weak decay rate and I' ,(0) is the proton-induced decay rate as
a function of 6.2 With these definitions, the N ;N (6) spectrum
is normalized per nonmesonic weak decay.

Before we give explicit expressions for the 6-dependent
proton spectrum, it is convenient to introduce first the weak
transition potential:

VAN*)NN(q): Z OTV;\N—)NN(q)’ (13)
7=0,1
where the isospin dependence is given by
1 for =0
sz{ryrz for 7 =1. (14)

The values 0 and 1 for 7 refer to the isoscalar and isovector
parts of the interactions, respectively. The spin and momentum
dependence of the weak transition potential is given by the
function:

VIN=NN(g) = (Grm2){Si(q@)o1 - G+ S.(q) 02+ §
+ PCr(q) + PL,r(q)o'l : @ o) é
+ Pr.(g)o1 x §)- (02 X §)

+iSy,(q)(o, x 02) - §}, 15)

where the index 1 (2) refers to the strong (weak) vertex. The
functions S;(q), S;(q), Pc.:(q), Pr.-(q), Pr(q), and Sy .(q),
which include short-range correlations, can be adjusted to
reproduce any weak transition potential. Explicit expressions
can be found in Ref. [26]. The S’s (P’s) functions are the
parity-violating (parity-conserving) contributions of the weak
transition potential.

In Fig. 1 we show the Goldstone diagram which has to be
evaluated in the calculation of N II)N (6). The spin summation
for this diagram is performed for all particles except for
the A, which is assumed to have spin up. This summation

*Note that the proton-induced decay rate is obtained as I', =

2 aoT ).
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reads

Stv (@) = 2(8:@)Se(@) + S/@)Sp (@) + Pro(@)Prr(q)
+ Pc.(q@)Pc.v(q) + 2Pr. (@) Pr.o(q)
+2 SV.I(Q)SV,I’(Q) -2 [SI(Q)PC,I’(Q)
+ Se(q@)Pe,o(q9) + S:(@) Pr(q)
+8:(q)Pr,(q) +2 Sy (q) Pr.o(q)
+2 Sy (@) Pr-(@)] 4} (16)
It is instructive to note that in the summation over the A spin
projection,
S @) + St @)
= 4 {S:(q)Sx(q) + S;(q)S;(q) + Pr:(q) P (q)
+ Pc.(q@)Pc,v(q) +2Pr. (@) Pr.o(q)
+2 8v,«(@)Sv,v (@)}, )
the terms between square brackets in Eq. (16) are no longer
present. These terms are responsible for the asymmetry
parameter and are clearly from interferences between parity-
violating and parity-conserving contributions of the weak
transition potential in Eq. (15).

Following [22,23], we introduce now a partial, isospin-
dependent decay width, Fi’l,(k, kr,0), where k is the mo-
mentum of the A and kr the Fermi momentum of nuclear
matter. This is done for the two isospin channels, 7, 7/ =

0, 1, contributing to the spectra. In Fig. 2 we depict the
charge-exchange and charge-conserving contributions. The

Ik, kr,0) = (Gpm?2)’

1 dir, 4
@) // dqdh S,
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FIG. 2. The two isospin contributions to the direct Goldstone
diagram for the A p — np decay. (a) is the charge-exchange con-
tribution, which is not vanishing only for t = 7’ = 1, while (b) is
the charge-conserving one. The double arrows represent the A and
carry a momentum k, while the dashed lines represent the weak
transition potential with momentum ¢. The momentum assigned to
each intermediate nucleon line is as follows: k — q for the left-most
nucleon line [p in (a) or n in (b)], h for p~!, and h + q for the
right-most nucleon line [z in (a) or p in (b)].

distinction between the two terms is important in the evaluation
of N}¥(0) as the kinematics of the proton attached to the
weak vertex is different from the one outgoing from the strong
vertex. The partial, isospin-dependent decay widths for the
two terms of Fig. 2 are

(q) 0(q0)0(|k — q| — krp)0(Ih +q| — kp)0(kr — [h])

x 8(qo — (En(h+ q) — En(h)))d(cos 6 — (k —q);/|k —q), (18)

and

I &k, kp,0) = (Grm2)’

@ny

1 ‘
// dqdh S ' (g) 0(q0)0(Ik — q| — kp)O(Jh + q| — kp)O(kr — |h])

x 8(qo — (En(h+q) — Ey(h)))é(cos € — (h + q):/|h +q)), 19)

where the kinematics is explained in Fig. 2. Label (a) refers
to the charge-exchange contribution (proton attached to the
A vertex) and label (b) represents the charge-conserving term
(proton attached in the strong vertex). In previous equations
one has gy = kg — Ey(k — q) — V, ko being the total energy
of the A, Ey the nucleon total free energy, and Vy the nucleon
binding energy. After performing the isospin summation we
obtain

b b b b
[, =40 + TV + 1) — Ty, =T}, (20)

where the (k, k¢, 6) dependence of all functions is omitted for
simplicity. Finally, the decay rates for a finite hypernucleus
are obtained by the local density approximation [i.e., after
averaging the above partial width over the A momentum
distribution in the considered hypernucleus, |1/ 5 (k)|?, and over
the local Fermi momentum, kr(r) = {37%p(r)/2}'/3, p(r)

being the density profile of the nuclear core]. One thus has
I'p0) = f dK [YA(K)[? / dr [y ATk, kp(r), 6), (21)

where 4 (r) is the Fourier transform of {EA (k). The A total
energy is given by kg = m 4+ k?/(2m,) + Vu, where V, isa
binding potential.

Finally, by inserting the quantities N)(0) =T ,(6) =
I'p(0)/'nu for 0% and 180° in Eq. (10) with p, =1, the
intrinsic asymmetry a}" is obtained.

IV. EFFECT OF THE STRONG INTERACTION
ON THE ASYMMETRY

The evaluation of the asymmetry ay" ¥ which in-

cludes the effects of both 2N and FSI-induced decay processes,
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hh ph

FIG. 3. The set of Feynman diagrams considered in this work for the in-medium A self-energy. The different time-ordering terms of these

diagrams contribute to 2N and FSI-induced decays.

is an involved task and, up to now, analytical expressions
were given only for the intrinsic asymmetry a}", while
numerical calculations were performed for a}\N I by using
the aforementioned hybrid approach incorporating the INC
[9,15]. In this section we present for the first time analytical
expressions for a )V T2V 5!,

We follow similar steps as in the last section to de-
rive N;N +F81(9), which provides the total proton spectrum
NNTVHESL ) = NN (0) 4+ NVTESI(9). This is done by in-
troducing the set of Feynman diagrams depicted in Fig. 3 to
take care of 2N decays and FSI effects which result from
the action of the nucleon-nucleon strong interaction involving
the nucleons produced by the weak decay and nucleons of
the medium. The choice of the set of diagrams in Fig. 3 is
motivated by previous calculations [20,22,23], which show
that these are the dominant contributions in the evaluation of
the nucleon emission spectra. Each Feynman diagram is the
sum of a number of time-ordering (i.e., Goldstone) diagrams.
It is in terms of these Goldstone diagrams that one can differ-
entiate among 1N, 2N, pure FSI, and quantum interference
terms (QIT) between 1N or 2N and FSI contributions. This
point is relevant as it shows that, from a quantum-mechanical
perspective, each of the above processes are included in a
unitary description. More details on this point are given in
Ref. [20].

Because in the evaluation with Goldstone diagrams the 2N
decays are separated contributions from FSI-induced decays
(which are divided in pure FSI and QIT terms), the 2N + FSI
proton spectrum reads

NMSO) = NV O) + N,O), (22)

where
NN(©) = Tp(0) + 2T 1, (0), (23)
NS O) = > Ny Ty 4(0). (24)

i f

Here, I' = I'/ I'ym stands for the decay rate of a particular
decay mode normalized per nonmesonic weak decay. The

functions 'y, and T, represent the Anp — nnpand App —
npp decay processes, respectively, while T'; s represent either
pure FSI Goldstone diagrams or QIT Goldstone diagrams,
accounting for the quantum interference among IN or 2N
and FSI-induced decay processes. The index i in I';  is used
to label a particular Goldstone diagram obtained from the
Feynman diagrams in Fig. 3, while f denotes the final physical
states of the Goldstone diagram and in the present case can
take the values f = np (cut on 2plh states) and f = npN
(cut on 3p2h states), with N = n, p, because we need at least
one proton in the final state to obtain N ¥ +2N*F51(9), Finally,
Ny is the number of protons contained in the multinucleon
state f.

At this point it is necessary to introduce the adopted
nucleon-nucleon strong potential:

Vi@ = 3" 0, VNV @),

'L’N=0,1

(25)

where ¢ is the momentum carried by the strong interaction, O;,,
is defined in Eq. (14), and the spin and momentum dependence
of the interaction is given by
fr P
VIN@®) = =% Ve, o () + Vi, (Do -tor -t (26)

mxz

+Vr o ()01 x ) - (02 x D),

where the functions V¢ ., (¢), Vi ., (t), and Vr ., () are
adjusted to reproduce any strong interaction.

In the calculation of the diagrams in Fig. 3 the isospin
summation is particularly complex as one has to differentiate
the isospin projection of each particle. We give details on this
aspect in the present section and in the Appendix. The main
features of the momentum dependence of the diagrams were
discussed in Ref. [20] and references therein. However, the
important point in the evaluation of the asymmetry is the spin
dependence of the diagrams.

We thus start by considering the spin summation for
each Goldstone diagram obtained from Fig. 3. This sum
is performed for all particles except the A, which again is
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assumed to have spin up with respect to the polarization axis.
For the diagrams pp and hh we obtain

Sliimwry @ D) =287 1(@) Ve o (DVe, 5, (1)
+ VL, rN(t)VL, rl’\,(t) + 2VT, T (I)VT, t,’\,(t)}a
@7
where S T(q) is given in Eq. (16). The spin summation is

more complex for the ph diagram. It is convenient to split it
in the sum of two terms:

Slereyey (@ D) = SIE " g 0 + ST @ . (28)
where
Sliiaven (@, 1)
= 4{(S:(9)Sc(q) + Pc..(q)Pc.o (@) WS 1 (1)
+(8:(q)S;(q) + Pr.(q)PL.(q)) mN(t)
+2(Sv,(@)Sv. (@) + Pr.o(@)Pr.o (@) WE .. (D},
(29)

represents the term which does not contribute to the asymmetry
and

Sl (q. 1)
= —8{(S:(q)Pc.+(q) + Sv(q)Pc..(q)) WS . ()
+ (@) P (q) + Sp(q) P (@) W . (D)
+2(Sv, (@) Pr(q) + Sy, (q) Pr.-(q)) WN(t)}qz,
(30)

is the term responsible for the asymmetry. In these expressions
we have introduced the functions:

WC o= VC ‘L'NVC 4% +VL,INVL,1'1’V +2VT,TNVT,‘L'1’\]5

WtNr N VC l’NVC T VT, ‘L’NVT, T
+ (=142 -D(Ve. Vi, = V.o Vrg,)
WrNr N VC TNVC IN + VT tNVT fN
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PA
A
|
p1 A p2
S hs
Do
A
PA

FIG. 4. Time-ordering term from Feynman diagram h# in Fig. 3
contributing to 2N decays. The momentum carried by the weak
transition potential (strong interaction) is q (t). The momentum of
each particle is k for ps, k — q for p;, k — t + q for p,, h + t for p},
h for i, h' + t for p;, and h' for h5.

representing the effect of the strong interaction. For simplicity,
the ¢ dependence in both the W’s and V’s was omitted in
these expressions. Although Eq. (30) is a more complicated
expression than the ones in Egs. (16) and (27), again the
asymmetry is originated from the interference between parity-
violating (S’s) and parity-conserving (P’s) terms of the weak
transition potential.

The next step is to implement the momentum and isospin
summation for each Goldstone diagram. In this section we
choose the Goldstone diagram in Fig. 4 as a representative
example for this evaluation and we leave to the appendix
the remaining contributions. This diagram is a particular
time-ordering contribution stemming from the 2k Feynman
diagram in Fig. 3. It contributes to the two-nucleon-induced
decay mechanisms Anp — nnp and App — npp with one
and two protons in the final states, respectively.

Protons in the final state can be in any of the nucleon lines
labeled by pi, p», and p; in Fig. 4. To deal with this matter, it is
again convenient to introduce some partial, isospin-dependent
decay widths. For the Anp — nnp Goldstone diagram of

+q- TV, o Ve o, = Vi Vro)s 3D Fig. 4 we define the following rates:
|
2)2 2\ 2
b, p (Grm3) (f2) L 2 / / f / :
r>o K kp,0)=—%) ——— | d dt [ dh | dh'0(gy)0(Kk —q| —kp)0(lh —t| — k
TT/INT N( F ) (27_[)5 (47[ m;;r (27_[)2 q (610) (| Q| F) (| | F)
x 0(lh —t+q| — kp)0(kp — [WDO(|W' +t| — kp)O(kp — |W']) S(cos b — (k — q);/|k — q])
x8(qo — (Ex(h —t +q) — Ey(h) + Ey(h' +t) — Ex(h')))
Shh ot
Al N(q ) 2 (32)
(EN(h —t)— Ex(h) + Exy(h’ +t) — Ey(h))
ronr, &kp,0) =Tinl . (K kp.0)l, 8(cost — (k—q)./[k —ql) > (cosf — (h—t+q).[h—t+q])., (33)
Fi’fi;f;r,]v(k, kp,0) = Z’Z;f;ﬂ,N(k, kr,0)|, 8(cos® — (k —q),/|k—q|) = 8(cos® — (W' +t),/|h" +t]), (34)
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each one for the final proton occupying the nucleon line py, p», or p3 in the diagram, respectively. In a similar way, for the
reaction A pp — npp, we have

, P15 D3 (GFm?T)Z fz? ? 1 2 ’
PP K K, 0) = S (E) m_indq /dt/dh/dh 6(q0)0(k — ql —kr)O(h —t] — kp)o(h — t+q| — kr)
x O(kp — [W)O(Ih 4 t| — kp) O(kp — [h'[)(8(cos 0 — (k — q)./|k — q[)
+8(cos& — (W' +t)./|h" +1]))/28(q0 — (Ex(h — t + q) — Ey(h) + Ex(h’ 4 t) — Ey(h")))

hh
STT/T’:NT/N (qv t)

* (En(h—t) — Ex(h) + Ex( + t) — Exy(h)R’

Trnr Pk, kp, 0) = Dot P (k. kp. 0),

Tttt N TtINT N

(35)

8(cos —(k —q)./Ik — q|) = (cos® — (h—t+q)./|h—t+q)), (36)

where the sum of the two delta functions in cos 6 in Eq. (35) is divided by two to retain this multiplicative factor in front of
I"pp(0) in Eq. (23). Note that charge conservation does not allow particles p; and p, to be two protons simultaneously.

The next step is to implement the isospin summation. For the An p — nnp decay we obtain

hh, p1 __ hh, p1 hh, py hh, py
L= 45T + Toooo — 200050 )

hh, py __ hh, p> hh, ps hh, pa hh, ps hh, ps
o 2 =500 +Toooo — 10T 11 + 50011 + Ty o

hh, p3s __ hh, p3 hh, p3 hh, p3 hh, p3 hh, p3
r _Srll.ll +F00,00 +1OFO],]1 +5F00,ll +F]1,00

np

where the (K, kr, 0) dependence in all the functions are omitted
for simplicity. For the A pp — npp decay we obtain instead
F%’; PPy — 4(F;11{1,,lll)l’p3 + Filfl:o.g],pa + zrllllfl:(][])l’p})’

hh, p, ps __ phh. pa. p3 hh, p2, p3 hh, p2, p3 hh, p2, p3
R =y + Tl +leir — +T1

11,00
hh, pa, p3 hh, p2, p3 hh, p2, p3
+200 0" = 20000 200
hh, p2, p3 hh, p2, p3
+ 200001 " — 400101 - (38)

The last step is to integrate over (k, kr) to implement the
local density approximation as seen in Eq. (21). We have,
then,

T0h (@) = ThwP1(0) 4+ T 72(0) + T (6),

(39)
FZZ(Q) = FZZ, PLP3(Q) 4 F%’, P2 P3 (),

In the Appendix, we show the derivation of some of the
other contributions. Once one normalizes per nonmesonic
weak decay, these expressions are inserted in Egs. (23) and
(24) to obtain the final result for N)¥*751(9) [see Eq. (22)].

Before presenting the results, we anticipate some elements
which emerge from the obtained analytical expressions and the
numerical calculation. First, the ph contribution of Fig. 3 turns
out to be negligibly small. In addition, we have checked that
the behavior of NV+F1(6) is approximately linear in cos 6.
We expect this result because for the dominant 2k and pp
terms [see Eq. (27)] the spin dependence which generates the
asymmetry is given by the same function Sflrr,’ T(q) of Eq. (16)
which enters the calculation of the intrinsic asymmetry. This
allows us to obtain the final expression for the asymmetry as
follows:

N’}N+2N+FSI(00) _ N]17N+2N+FSI( 1 800)

a IN+2N+FST __
A = .
N;N+2N+FSI(00) + N;N+2N+FSI(1 800)

(40)

hh, p> hh, pa hh, p> hh, py hh, py
—2T100 — 2000 =200 — 200001 + 400101 37)

hh, p3 hh, p3 hh, p3 hh, p3 hh, p3
+ 21—‘01,00 - 2r‘11,01 - 2r‘11,01 - 2r‘00,01 - 4F01,01 ’

Our predictions for all\N +2NFESE can be directly compared with
M

the data obtained for the observable asymmetry a, .

V. NUMERICAL RESULTS

The weak transition potential VAN=NN of Eq. (13) is
described in terms of the usual one-meson exchange (OME),
together with the uncorrelated and correlated two-pion ex-
change, which was shown to have a very important effect on the
asymmetry [15]. The OME potential is represented by the ex-
change of 7, n, K, p, w, and K* mesons within the formulation
of [6], with values of the coupling constants and cutoff param-
eters taken from [27] (Nijmegen89) and [28] (Nijmegen97f).
We present results for both Nijmegen89 and Nijmegen97f
weak transition potentials for the following reason. The
adopted two-pion-exchange potential was introduced within a
chiral unitary approach in Ref. [17], together with an important
compensatory w-exchange contribution with a ANw parity-
conserving coupling, g%y, = 3.69 G pm?2, which is the value
of the Nijmegen89 potential. At variance, in the Nijmegen97f
potential one has g%, = 0.17 Grm?2. One thus expects a
difference between the Nijmegen89 and Nijmegen97f results
for the asymmetry. Although the Nijmegen89-based weak
potential was the one originally employed in conjunction
with the two-pion-exchange mechanism, in a set of recent
contributions we have used the Nijmegen97f potential and
we believe that it is of interest to discuss this particular
parametrization, too.

For the nucleon-nucleon strong interaction V¥V of Eq. (25)
we have used the Bonn potential [29] in the framework of
the parametrization of [30], which contains the exchange of
w, p, o, and ® mesons and neglects the n and § mesons.
We present results for 2C, where the hyperon is assumed
to decay from the 1s;/, orbit of a harmonic oscillator well
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TABLE L. The nonmesonic decay widths predicted for }>C (in units of the free decay rate). The most recent data, from KEK-E508 [32]

and FINUDA [33,34], are also given.

Nijmegen89 Nijmegen97f KEK-E508 [32] FINUDA [33] FINUDA [34]
OME OME+27 OME OME+27

r, 0.19 0.15 0.16 0.23 0.23 +0.08

r, 0.65 0.61 0.47 0.65 0.45 £ 0.10

I 0.84 0.76 0.63 0.88 0.68 +£0.13

r, 0.17 0.26 0.17 0.37 0.27 +£0.13

Tnu 1.01 1.02 0.80 1.25 0.95 +0.04

r,/T, 0.29 0.25 0.34 0.35 0.51 £0.13 £0.05

'/ Txu 0.17 0.26 0.21 0.30 0.29 £0.13 0.24 £0.10 0.21 £ 0.07%9%3

with frequency iw = 10.8 MeV adjusted to the experimental
energy separation between the s and p A levels in }2C [31].

A. Nonmesonic decay rates

The two-pion-exchange potential is introduced in our
microscopic approach for the first time here. It is thus important
to start our discussion showing the numerical results for
the nonmesonic weak decay widths. These rates are given
in Table I for the two transition potentials, Nijmegen89
and Nijmegen97f, without (OME) and with (OME+2rx) the
two-pion-exchange contribution. Let us start by discussing the
independentrates I',, I',, and I';. For I', and I'; all predictions
agree with data within error bars; instead, apart from the OME
result with the Nijmegen97f potential, our predictions overes-
timate the data for I',. The origin of the agreement for I', and
the disagreement for I', is not known. However, it is the same
which leads to a good description of experimental emission
spectra involving only neutrons and an overestimation of data
on spectra involving at least one proton. This is proved by the
comparison of all the theoretical approaches [19-21] to the
single- and double-coincidence nucleon emission distributions
with the corresponding KEK [32] and FINUDA [33] data.
These nucleon spectra are the real observables in nonmesonic
decay, while the experimental values of the partial decay rates
Iy, T'p, etc., are obtained after a deconvolution of the FSI
effects contained in the measured spectra. The disagreement
on the spectra is thus the fundamental problem, which also
affects the above disagreement on the I', rate.

From Table I we also see that the effect of the two-pion-
exchange potential is different when added to the Nijmegen89
and Nijmegen97f OME potentials. This is because of the
different values of the g%, coupling constant previously
discussed. While there is a moderate reduction of I',, and I,
for Nijmegen89, an increase of these decay rates is observed in
the case of Nijmegen97f. The behavior in this later case agrees
with what was found in Refs. [15,36] with the same weak
transition potential.> The addition of the two-pion-exchange

3We note that the results of [15] have been recently revised using
more realistic form factors [36]. Although the numerical values have
slightly changed, the qualitative aspects of the two-pion-exchange
mechanism remain the same.

potential increases substantially the value of I'; for both the
Nijmegen89 and Nijmegen97f, the effect being stronger for
the latter case. There is a certain dispersion among the results
obtained with the different potentials. However, considering
the big error bars for data and the mentioned discrepancy
on the proton emission spectra, we believe that all the four
potential models of Table I should also be considered in the
analysis of the asymmetry parameter.

B. The asymmetry parameter

We start by discussing the intrinsic asymmetry a!¥. In
Table II we compare our predictions (first four lines) with
the results reported in the literature (last four lines), where the
updated results of the finite nucleus calculation of [15] have
been listed.

We obtain a rather sizable asymmetry parameter for the
OME Nijmegen89 and Nijmegen97f models, in agreement
with other works, especially with the nuclear matter result
of [5]. Note that our OME results are more moderate than
any of the values found by calculations performed in finite
nuclei. This is probably because of the more extended Fermi
motion effects in nuclear matter. The inclusion of the two-pion-
exchange mechanism strongly decreases the absolute value of
a}\N , especially for the Nijmegen97f model, in agreement with

TABLE II. Theoretical determinations of the intrinsic asymmetry
parameter for 1>C. The calculations reported from the literature were
performed within shell model approaches, except for the nuclear
matter result of Dubach et al. The results of the model of Chumillas
et al. [15] correspond to the ones updated in Ref. [36].

Model ayN (;ZC)
OME (Nijmegen§89) —0.39
OME (Nijmegen89) + 27 —0.23
OME (Nijmegen97f) —0.35
OME (Nijmegen97f) + 2w —0.071
Ref. and model

Dubach et al. [5], OME (NM) —0.44
Parrefio and Ramos [7], OME —0.55t0 —0.73
Barbero et al. [8], OME —0.53
Chumillas et al. [15,36], OME —0.48
Chumillas et al. [15,36], OME + 27 —0.0062
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_ TABLEIII. Effect of the nucleon-nucleon strong interaction on the asymmetry parameter for 12C. In addition to the contribution from the
Ap — np weak decay leading to the intrinsic asymmetry, we consider the action of 2N and FSI-induced decays. The most recent data are

also shown.
Ey (MeV) Asymmetry Nijmegen89 Nijmegen97f
OME OME+27 OME OME+27

0 aly —0.386 —0.225 —0.352 —0.071

0 alv N —0.366 —0.212 —0.318 —0.063
alNTrst —0.184 —0.009 —0.043 0.082
alNV NS —0.234 —0.071 —0.132 0.032

30 a\vtan —0.355 —0.197 —0.307 —0.060
ajV st —0.149 —0.003 —0.034 0.096
a\N NS —0.196 —0.056 —0.115 0.037

50 a\vtnN —0.319 —0.149 —0.255 —0.049
a Nt —0.123 0.019 0.014 0.112
alN NS —0.156 —0.018 —0.058 0.069

KEK-E508 [35] —0.16 £ 0287038

what was found by the finite nucleus calculation of Chumillas
etal. [15].

Finally, we note that the appreciable difference for the
intrinsic asymmetry results evaluated within our two OME +
27 models is a consequence of the different values for g%,
of the Nijmegen89 and Nijmegen97f OME potentials.

Before moving into the new effects explored in this work,
let us comment on the fact that our microscopic calculation
of the asymmetry parameter takes care of the two isospin
channels depicted in Fig. 2. In fact, these contributions are
automatically encoded within the antisymmetric character of
the final two-nucleon wave function used in finite-nucleus
calculations of the weak decay. However, the diagrammatic
approach employed here is useful in the sense that it allows one
to keep track of the importance of the different contributions
to the asymmetry parameter. It turns out that diagram (a) is the
dominant contribution. This can be explained as follows. Let
us denote with p, (pp) the momentum carried by the proton in
diagram (a) [(b)]. From the kinematics of diagrams (a) and (b)
we have

po=k-q=-q, pp=h+q=q, (41)
where, for the purpose of this explanation, it is a good
approximation to assume that k and h are much smaller than
q. The different sign but similar magnitude of p, and p, means
that a negative asymmetry from the charge-exchange diagram
(a) is reduced in magnitude by a positive asymmetry from
diagram (b). The competition between the diagrams (a) and (b)
produces a reduction in the absolute value of the asymmetry.
This type of analysis will be particularly useful for the 2N and
FSI effects discussed below.

In Table IIT we present our predictions for the asymmetry
when 2N- and FSI-induced decays are considered together
with 1N decays. Because any experiment is affected by a
kinetic energy threshold for proton detection Ey,, results are
also given for different values of Ey,.

The values obtained for the asymmetry depend on two
important effects. The first one is the dynamics of the
weak transition. In particular, one can consider or not the
two-pion-exchange potential. This was analyzed in detail in
Refs. [9,15], and our results confirm those findings. Moreover,
the asymmetry depends on what we call “kinematic effect.”
The introduction of the different 2N and FSI contributions
enlarges the available phase, leading to a particular kinematics
for each contribution; the weight imposed by the nucleon-
nucleon strong interaction on the different kinematics (and also
the restrictions from Ey,) modifies the relation between N, (09
and N,(180°). The microscopic model is particularly suitable
for the study of this kinematic effect. Note that the division
between the dynamic and the kinematic effects is possible
because the spin summation representing the interference
between parity-violating and parity-conserving terms of the
transition potential has the same expression, given by Eq. (16),
for the intrinsic asymmetry and for the dominant 2N and FSI
contributions to the observable asymmetry.

It is instructive to recall that the value of the asymmetry
parameter is a consequence of a delicate balance between
parity-conserving and parity-violating amplitudes governed by
the dynamics of the weak decay mechanism, and also depends
on the phase space allowed for the emitted nucleons which
might be enhanced or decreased in some places by strong
interaction effects or kinematical cuts. Any new contribution
to the decay process will introduce changes in the number of
protons emitted parallel, N ,,(00), and antiparallel, N ,,(1800),
to the polarization axis, therefore affecting the value of the
asymmetry which is determined by the difference N,(0°) —
N,(180°) measured relative to the sum N,(0°) + N,(180°),
as seen in Eq. (40). It is therefore illustrative to represent
the function N,(6) as a function of cos, as seen in Fig. 5
for the OME Nijmegen89 model, including the 1N-induced
decays (dotted line), adding the 2N-induced modes (dashed
line), adding only FSI effects (dash-dotted line), and finally
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FIG. 5. N," (dotted line), N )" +2N (dashed line), N f +FST (dash-
dotted line), and total N,"*2¥ +i51 (solid line), as functions of cos 6,
in the the case of the OME Nijmegen89 weak transition potential.

incorporating all the contributions together (solid line). Similar
plots are obtained for the other three potential models
employed in this work.

It is clear that the 2N mechanism enhances the number
of emitted protons at all emitted angles but having a slight
preference for directions opposite the polarization axis, hence
the size of the slope of the dashed line in Fig. 5 is a little
bit larger than that of the dotted line. This would increase the
magnitude of the asymmetry but the larger number of protons
gives finally rise to a slight decrease, as seen in Table III.
Diagrammatically speaking, we know that, for 1N decays,
the asymmetry receives the main (negative) contribution
when the proton is attached to the A vertex [diagram (a)
of Fig. 2]. The other (positive) contribution, with a neutron
outgoing from the A vertex [diagram (b) of Fig. 2], tends to
reduce the absolute value of the asymmetry. In the case of 2N
decay diagrams, one has npp and nnp final states, where the
proton(s) can be located at the A vertex or in any of the two
remaining positions. It is the increased number of positions for
the final proton(s) that produces a further reduction (although
small) of the asymmetry parameter. We note that the small
effect of 2N decays on the asymmetry parameter corroborates
the assumption done in Ref. [9].

As far as FSI effects are concerned, we observe in Fig. 5
that they remove antiparallel protons and, on the other hand,
more strength is added at parallel kinematics. Because the
total number of protons is almost unchanged, this reduction
of slope observed for the dot-dashed line also translates in a
substantial decrease in the magnitude of the asymmetry. To
analyze further the different FSI contributions, it is convenient
to write

NYS(0) = NP™O) + NP*0), (42)

where each of the two terms on the right-hand side receive
contributions from each of the diagrams in Fig. 3, by cutting on
the 2p1h or 3p2h states, respectively. By construction, N,%P”‘(e)
originates from a QIT between 1N and FSl-induced decays,

while N;*"(6) may come either from a 2N-FSI QIT term

PHYSICAL REVIEW C 85, 024321 (2012)

or from a pure FSI-induced decay. The microscopic model
allows us to inspect the behavior of each term. We find that the

term N ;th(e) is positive definite and has a similar behavior
to the one already discussed for N2V (9) (i.e., slightly more
protons are emitted antiparallel to the polarization axis). On the

contrary, N,z,plh(e) turns out to be negative while its kinematic
behavior is very similar to the 1N-induced decays, which
produce a large negative asymmetry parameter. Therefore,
the effect of the negative N;p lh(9) contributions goes in the
direction of inverting this behavior, giving rise to a substantial
decrease in the size of the asymmetry or even reverting its sign,
as in the case of the Nijmegen97f+2s model.

We now pay attention to the behavior of the asymmetries
of Table III with the energy cut Ey. We observe that the size
of the asymmetry all\N +2N" decreases slightly for increasing
En. This reduction can be explained from a microscopic point
of view by inspecting the momentum distribution predicted
by our approach for the three particles, p; (particle outgoing
from the A vertex), p,, and ps3, stemming from 2N decays,
shown in Fig. 12 of Ref. [21]. Particles are named in that
figure with the same notation as in Fig. 4 of the present work.
The distributions for particles p; and p3 are very similar to
each other and are peaked at a lower momentum than the
distribution for p,. Because of isospin reasons, the main
(negative) contribution to the asymmetry is obtained when
a proton is located in p;, while protons in p, and/or p;
reduce the magnitude of the asymmetry. The effect of Ey,
is to reduce the importance of the particle p; with respect to
p>. This explains the reduction in the magnitude of allXN N
for increasing Ey,. Note, however, that the decrease is much
stronger in the case of the a}\N 8L asymmetry, and this is
also the behavior of the complete calculation, a)¥ ¥ *FS!,
To understand this behavior, we recall that the energy cut
removes nucleons, making N ,,(00) + Np( 180°) smaller and,
consequently, the magnitude of the asymmetry larger. But the
final consequence of the Ey cut on the asymmetry will be
determined by whether the increase in size from the removal
of nucleons is counterbalanced by the changes in the slope
N,(0% — N,(180°). In Fig. 6 we show the effect of this cut
for N)N+2N(0) (dashed lines) and N)NT>N+F51(9) (solid lines)
as functions of cos @, for the OME Nijmegen89 model. We
clearly see a reduction in the number of protons as well as a
decrease in the slope with increasing Ey,. These two effects
modify the asymmetry parameter in opposite ways and the
results of Table III show that, within our models, the reduction
of the asymmetry from the decrease in the slope dominates
over the increase associated with the removal of particles. The
reduction in the slope is much more pronounced for the FSI
contributions. The final result is that we observe a substantial
reduction in the magnitude of the asymmetry a 11\1\/ FINFEST (with
an increasing energy cut.

This behavior contrasts with the INC results of [9,15],
where, for increasing Ey,, the size of the asymmetry a}\N HESI
increases and tends to the intrinsic value. We note that the
INC model for FSI originates from a semiclassical description
which has an intuitive interpretation. Nucleons are tracked in
their way out of the nucleus as classical particles. Sometimes
a nucleon leaves the nucleus without any interaction with the
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FIG. 6. The functions NV +2N (dashed lines) and NN +2N+FSI
(solid lines) for different energy cuts, Ey, = 0,30 and 50 MeV, in the
case of the OME Nijmegen89 weak transition potential. The dotted
line corresponds to N ’}N at Ey, = 0 MeV.

medium; in other cases it scatters one or more times with the
other bound nucleons. Therefore, a nucleon emerging from
an elementary nonmesonic decay can change momentum,
direction, and charge; other nucleons can be emitted as well,
etc. Clearly, the random character of these FSI processes is
responsible for the strong reduction of aJ\N S by about a
factor two or more with respect to the intrinsic asymmetry
a}\N [9,15]. The introduction of an energy cut Ey, affects mainly
those nucleons which have suffered scattering processes. For
increasing Ey,, the nucleons coming from elementary decays
(not affected by FSI) become dominant and the asymmetry
tends to the intrinsic value. This is also reflected in Fig. 2
of Ref. [9] by the tendency of N} ¥*™!(9) |, to move toward
N II)N (0) as the energy cut is increased, both functions becoming
very similar (in size and slope) at around Ey = 50 MeV.

The situation for our microscopic approach is different as it
is based on quantum mechanics, where QIT play an important
role. It was shown in Ref. [20] that the 2p1h and 3p2h terms
of the proton kinetic energy spectra N53'(T,) = NP™T,) +

N ,3,p2h(Tp) have a different behavior from each other. While
N;PZh(T,,) gives a positive distribution, has its maximum for
T, = 0, and decreases for increasing T, the QIT N?*'"(T,)isa
negative bell-shaped distribution with the minimum at 7, = 80
MeV. Thus, a nonvanishing energy cut Ey, appreciably reduces
NP" while leaving N*'™ almost unchanged, and this latter
contribution is the one producing a significant decrease in the
slope of N II)N +2N4ESI(9) . Therefore, as Ey, is increased, the
magnitude of the asymmetry parameter decreases.

We end our discussion by comparing our results with exper-
iment. The asymmetry data reported in Table III was obtained
by KEK-E508 for a kinetic energy threshold Ey, of about
30 MeV. Despite the noticeable differences among the whole
set of predictions, they are all compatible with experiment
because of the large error bar of data. By considering our results
for Ey, = 30 MeV and the central value of the experimental
data, the best agreement is obtained for both Nijmegen89 and
Nijmegen97f models when the two-pion-exchange potential is
not included. Certainly, our calculation shows that the effect
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of the two-pion exchange is very important in asymmetry
calculations, but to establish definite conclusions on the effect
of this potential more detailed studies are required. In general,
the addition of any new contribution to the weak transition
potential has to be done consistently with the rest of the
potential itself (which might require some readjustment to
reproduce the observables) and with the approach adopted
in the calculation. However, to obtain fruitful information
from these studies new and more precise data are needed
to constrain the unknown parameters of the weak decay
models.

VI. REMARKS AND CONCLUSIONS

We have discussed a microscopic diagrammatic formalism
to evaluate the asymmetry in the distribution of protons
emitted in the nonmesonic decay of polarized hypernuclei.
The calculation is performed in nuclear matter and then
extended to finite hypernuclei (}\ZC) by means of the local
density approximation. Our approach takes into account both
the 2N decay mechanism and the nucleon FSI in a unified
many-body scheme. The effect of the 2N decays on the
asymmetry parameter is evaluated here for the first time. The
present work is also the first one to implement the FSI on
the asymmetry parameter by means of a quantum-mechanical
microscopic approach. In addition to the usual OME weak
transition potentials, which we take from the Nijmegen89
and Nijmegen97f parametrizations, we have also considered
the effect of the two-pion-exchange potential introduced in
Ref. [17]. We give results for both the intrinsic asymmetry
parameter, a}\N , and for the asymmetry parameter modified
by the 2N -induced mechanisms and FSI effects, a/l\N +2N +FSI,
which is the one that can be compared to the observed
asymmetry a}l.

While the effect of 2N is predicted to be rather limited,
the nucleon FSI turned out to be very important: They
reduce the magnitude of the asymmetry parameter, making
all the weak transition potential models adopted in this work
capable of describing consistently the experimental data for
aX and for the nonmesonic weak decay rates. In particular,
the large error bars in the observable asymmetry do not
allow us to determine which of the two potential models,
OME or OME+2r, provides the best description of the
experiments.

To the best of our knowledge, the only former work
which evaluated the intrinsic asymmetry in nuclear matter is
from Dubach et al. [5], where an approximate scheme rather
different from ours (neglecting 2N decays and nucleon FSI)
was employed. The action of FSI was considered within a
semiclassical description in Refs. [9,15], by means of an INC
model. In a former calculation [20], it was shown that the INC
model and the present microscopic approach provide similar
results for the nucleon emission spectra in the nonmesonic
weak decay of unpolarized A hypernuclei. Our results for aI'\N
and a}\N *+FSI Wwith a vanishing proton kinetic energy cut, Eg, =
0, fairly agree with each other, too. However, the situation
changes for nonvanishing values of Ey,. For increasing Ey,, the
negative asymmetry of the INC model increases in magnitude,
while a decrease is observed in the microscopic model. One
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should note that the two schemes represent rather different
approaches to the problem of dealing with nuclear correlations
after the weak decay takes place. The microscopic model of the
present work provides a reliable method that can be improved
systematically. It however ignores multinucleon processes that
are accounted for, semiclassically and via multistep processes,
in the INC model. To determine which is the most realistic
approach, an accurate experimental determination of the
asymmetry parameter, possibly exploring its Ey, dependence,
would certainly be welcome.

One should always keep in mind that the main motivation
in the study of the nonmesonic weak decay of hypernuclei
is to extract information on strangeness-changing baryon-
baryon interactions. The understanding of the I',/ ", ratio
and the asymmetry parameter suggests that a fairly reasonable
knowledge of nonmesonic decay was achieved. However,
we have obtained agreement with all the experimental data
employing different parametrizations of the weak transition
potential. Because of the lack of precise data for the asymmetry
parameter, we find that the role of the two-pion-exchange
mechanism, which was essential to reproduce this observable
in some models [15], cannot even be firmly established here.
In any case, what is certain is the agreement that the set of data
can only be achieved after a proper development of approaches
that take care of nucleon FSI. Because of the special nature
of the in-medium nonmesonic weak decay, these are complex
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models, but they are required to establish a link between theory
and experiment.

Finally, we recall that there still remains an important
disagreement between theory and experiment for the hyper-
nuclear nonmesonic weak decay: Theoretical evaluations of
nucleon emission spectra involving protons strongly overesti-
mate the experimental distributions. This discrepancy may not
be isolated but hidden behind the errors bars in the data for the
decay rates. An additional aspect that has not yet been studied
but which could lead to a non-negligible contribution to the
nucleon spectra is the inclusion of the A(1232) resonance in
our many-body Feynman diagram scheme. We intend to study
this problem in the future.
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APPENDIX

Here we present the explicit expressions needed in the evaluation of NI%N (0) starting from the Feynman diagrams pp and ph in
Fig. 3. We omit the derivation of the expressions for N ;SI(G) obtained from the same diagrams, as they can be obtained from the

N[%N (0) ones after some simple changes: The spin-isospin structures are the same, as well as the general expressions, except for

some step functions and energy denominators.

We begin with the contribution of the diagram pp of Fig. 3. First, we introduce the partial, isospin-dependent decay widths

for Anp — nnp:

2
E / dq / dt f dh / W00k — gl — kr)0kr— Th+ qDOh — t+ g — kr)

x 0(kp — [hDO(Ih" +t| — k) O(kp — [W']) 8(cos — (k — @)./|k —aD)3(g0 — (En(h — t +q) — En(h)
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Str’;rNr/N(q’ t)

2 2
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Ffff;fljt/,v(k, kFa 9) = F‘f‘f”;‘g\:r’/\/ (k7 kF’ 9)'7
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Fn’;rNt’N

(&, kp,0) =T70 0 (K kr, 0)],

Tt INT N

(En(th—t+q — Evth+ @ + Ex( +t) — Ey(h))*’

(AD)

8(cosf — (k —q);/|k —q|) = 8(cos —(h—t+q);/[h—t+q)), (A2)

3(cost — (k — q);/|k — q|) > 8(cos& — (' +t)./|h" + t)), (A3)

where p;, p», and p3 indicate the position of the final proton. In a similar way, for the reaction A pp — npp we have

2 2
PG k) = 900) <f_2> l

@y \ar) mt @n)

2
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Lo (K ke, 0) =TI Pk, kr, 0)], 8(cosf — (h+q—1t)./[h+q—t]) — 8(cosd — (W' +1)./[h' +t]), (AS)

TT/5INT N Tt/TNT N
L2025k, ke, 0) = TP00 (K kp 0)], 8(cos6 — (k — q)./|k — q]) — 8(cos§ — (W +t),/[h +t). (A6

The next step is to implement the isospin summation to obtain
T = 4(CI T + Togon' +207T0)
iy 7 = ST + oo’ + Titoo” + 5Too’n” = 207001™ + 6011 — 2Tgor” — 20g70” + 4or 1™ (A7)
Py ™ = ST + Togo’ + Dio0’ +5T00'1 — 20 — 6Forin” — 2logn” + 2Toto0” — 4Toron ™
where the (k, kr, 0) dependence of all these functions was omitted for simplicity. In a similar way, for the A pp — npp reaction
we have

pp,p1s P2 PP P1s P2
FPP - 161—‘11,11 ’

pp, P, D3 pp, P1s P3 pp,P1,pP3 __ pp, P1s P3

Fpp = 4(Fll,ll + Fll.()() 2F11,01 )’ (A8)
pp, D2, p3 _ 1TPPs P2, P3 pp, D2, P3 PP, P2, P3 pp, p2, P3 PP, P2, P3 pp, p2, P3 pp, P2, P3 pps P2, P3

o =T o000 +Too i + 20 o 20111 + 200001 2T01 00 4To1 01 -

The final point is to employ Eq. (21) to implement the local density approximation. We have, then,
L@ =00 Pie) + Iy P20) + Iy P20),  Tpi@) =100 Phr) + Tk P@) + 0P P (0). (A9)

Finally, the pp contribution to NI%N (0) is obtained by Eq. (23).
We then consider the 2N decay contribution from the ph diagram of Fig. 3. We follow the same steps of the former contributions.
We start by introducing the partial, isospin-dependent decay widths for Anp — nnp:

Grm2)Y /> 1 2
rein (ko kg, 6) = %({—Q ol f dq / dt / dh / dW'6(qo)0(|k — q| — k)0(|h —t| — k)O(h — t+q| — k)
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x 8(qo — (Ex(h — t+q) — En(h) + Ey(h' +t) — Ex(h)
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1
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(A10)

Flpimrey (6 kp 0) = DLl (K kp, 0)], 8(cos 0 — (k — @):/Ik — q)) = 8(cos6 — (h—t+q)./lh —t+aql).  (ALD)

T2l (kkp, ) =700 (K kg, 0)], 8(cos6 — (k — q)./k — q|) — 8(cos 6 — (' + 1), /|0 +1]), (A12)

where p;, p», and p3 indicate the position of the emitted proton. In a similar way, for the reaction A pp — npp we have

Gem2)? (f2\* 1 2
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PP K, ki, 0) = DI P (K ke, 6)], 8(cos O — (k — q)-/|k — q]) — 8(cos® — (h—t+q)-/lh —t+q)). (Al4)

Tt/ TNT N Tt INT N

The next step is to implement the isospin summation to obtain
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where the (k, kr, ) dependence of all these functions was omitted for simplicity. In a similar way, for the A pp — npp reaction

we have

ph, p1,p3s _ __ pPh.p1p3 ph,pi,ps ph, p1, p3
Fpp - 4( F11,11 + l_‘11,00 21—‘11,01 )’

ph, p2, ps _ Ph P2, P3 ph, p2, p3 ph, p2, ps Ph, p2.p3 _ APh. P2 P3 A Ph P2 p3 ph, p2, p3 Ph, p2.ps _ gpph. P2, p3
| B =T "+ 000 o1 1000 20000 2001007 7 20017 + 20001 4o o1 -

(Al6)

One thus has to perform the local density approximation, through Eq. (21), to obtain
heny — 1Ph, h, p h, p3
L@ =T 7@+ O)+ )70,
hgy — T Ph, p1sp3 h, p2, p3
r‘;}’p(g) = F;))p p Pz(g) + ng D2 Pz(@)’

and finally the ph contribution to NZN (0) is obtained by Eq. (23).
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