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In this paper, we study gauged solutions associated with a massive vector field representing a spin-1
condensate, namely, the Proca field. We focus on regular spherically symmetric solutions which we
construct either using a self-interaction potential or general relativity in order to glue the solutions together.
We start generating nongravitating solutions—so-called Proca Q-balls and charged Proca Q-balls. Then
we turn on backreaction on the metric, allowing gravity to hold together the Proca condensate, to study the
so-called Proca stars, charged Proca stars, Proca Q-stars, and charged Proca Q-stars.
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I. INTRODUCTION

Boson stars are gravitationally bounded macroscopic
states made up of bosons. First introduced in [1,2] as
spherically symmetric solutions of the Einstein-Klein-
Gordon equations, they continue to be objects of study
[3,4]. Of particular interest are their possible astrophysical
applications, running from black-hole mimickers [5–8] and
black-hole hair and clouds [9–15] to dark matter candidates
[16]. Being simple tractable objects, they serve also as toy
models helpful for understanding the interplay between
field theory and general relativity and its possible exten-
sions [17].
In order to construct boson stars, a fundamental aspect to

be considered is the existence of an internal Uð1Þ sym-
metry, which will introduce an associated conserved charge
that may give rise to classical solutions with nonzero total
charge. Thus, a natural step forward is to gauge the global
Uð1Þ symmetry. This was first done in [18], giving birth to
the so-called charged boson stars.
An important family of classical objects was intro-

duced in [19], where regular solutions for the nongravi-
tating Klein-Gordon equation of motion were found,
known as Q-balls. These objects also rely on the exist-
ence of a conserved charge and can be obtained through
the minimization of their corresponding free energy.
Since gravity does not glue these solutions together,
the parameters of their self-interaction potentials must
have the right values in order to achieve actual solutions.
Some interesting general properties were presented in
[20–22]. Gauged extensions to these particular classes
were presented in [23].
When coupled to gravity, Q-balls become Q-stars

[24,25]. Several other potentials that would not give regular

spherical solutions if not coupled to gravity but that are of
theoretical importance in other field theoretical contexts
were also studied under this framework [26–30].
Recently, new models of boson stars and Q-balls where

presented in [31,32]. In these works, a vector field
representing a spin-1 condensate is studied, namely, the
Proca field. Hence, those particular solutions are the Proca
stars and Proca balls, respectively. In this paper, we study
gauged extensions to these models, the so-called charged
Proca balls and stars. For completeness, we also consider
self-interacting gauged and nongauged gravitating solu-
tions, which we shall call Proca Q-stars.
Real vector solutions were also studied in the literature

[33,34] in the context of dark matter cores and accretion
in compact objects. Without an internal symmetry, these
solutions cannot be static and correspond to the vector
equivalent of the scalar oscillatons introduced in [35].
The paper is organized as follows: in Sec. II, we present

our general model; in Sec. III, we study nongravitating
solutions, i.e., Proca Q-balls and charged Proca Q-balls;
and, in Sec. IV, we turn on backreaction in the metric,
allowing gravity to glue together the Proca condensate,
giving rise to solutions named Proca stars, charged Proca
stars, Proca Q-stars, and charged Proca Q-stars. Finally,
in Sec. V, we summarize our results and propose some
possible future directions.

II. THE MODEL

By means of introducting a vector field representing a
spin-1 condensate—namely, the Proca field—we arrive at
the Maxwell-Einstein-Proca model, whose action reads

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
R −

1

2
B̄μνBμν −UðB̄μBμÞ −

1

4
FμνFμν

�
;

ð1Þ
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where Fμν ¼ ∇μAν −∇νAμ is the Uð1Þ gauge-field
strength and Bμν ¼ DμBν −DνBμ, with Dμ ¼ ∇μ − iqAμ.
A similar Lagrangian with a negative cosmological con-
stant was recently studied in [36,37] in the context of
AdS/CFT duality as a model for holographic p-wave
superfluids.1

Varying the action introduced above (1), we derive the
following equations of motion:

DνBνμ − U0ðB̄μBμÞ ¼ 0; ð2Þ

∇νFνμ − iqðBνB̄νμ − B̄νBνμÞ ¼ 0; ð3Þ

Rμν −
1

2
Rgμν ¼ TðBÞ

μν þ TðFÞ
μν ; ð4Þ

where Rμν is the Ricci tensor and Tμν the energy-momentum
tensor of the matter fields.
The energy-momentum tensor has two different compo-

nents. The first one, associated with the Proca field, reads

TðBÞ
μν ¼ −BμλB̄λ

ν − B̄μλBλ
ν þ

1

2
gμνBσλB̄σλ

−U0ðB̄μBμÞðBμB̄ν þ B̄μBνÞ þUðB̄μBμÞgμν; ð5Þ

while the second one, associated with the Maxwell field,
is

TðFÞ
μν ¼ −FμλFλ

ν þ
1

2
gμνFσλFσλ: ð6Þ

Since the model is invariant under Uð1Þ, a Noether
current associated with this symmetry arises. This current is
defined by

jμ ¼ 1

2
ðB̄μνBν − BμνB̄νÞ: ð7Þ

III. CHARGED PROCA BALLS

In this section we study nongravitationally bounded
solutions commonly called “balls” [19] in the literature.
For this purpose, we consider a fixed Minkowski metric
associated with a background flat space given by

ds2 ¼ −dt2 þ dr2 þ r2dΩ2
2: ð8Þ

In order to achieve actual solutions for these nontopo-
logical solitons, a self-interacting potential U is needed,
which we define

UðB̄μBμÞ ¼ m2B̄μBμ þ
λ

2
ðB̄μBμÞ2 þ

h
3
ðB̄μBμÞ3: ð9Þ

Here,m is the mass of the boson, while λ and h are coupling
constants. The simplest spherically symmetric ansatz that
admits nontrivial radial profiles reads

B ¼ eiωtðuðrÞdtþ ivðrÞdrÞ; A ¼ AtðrÞdt: ð10Þ

In this case, the equations of motion reduce to

u00 − ðωþ qAtÞ
�
2

r
vþ v0

�
þ 2

r
u0 − hu5 þ ðgþ 2hv2Þu3 − ðm2 þ gv2 þ hv4Þu − qvAt ¼ 0;

ð−m2 þ ω2 þ qAtð2ωþ qAtÞÞvþ ððu2 − v2Þðg − hðu2 − v2ÞÞÞv − ðωþ qAtÞu0 ¼ 0;

A00
t þ

2

r
A0
t þ 2qvu0 − 2qðωþ qAtÞv2 ¼ 0: ð11Þ

Under these assumptions, it follows that, near the origin, the fields must behave as

uðrÞ ≈ uð0Þ −
1

6
ððqAtð0Þ þ ωÞ2 þ gu2ð0Þ − hu4ð0Þ −m2Þuð0Þr2 þOðr4Þ;

vðrÞ ≈ −
1

3
ðqAtð0Þ þ ωÞuð0ÞrþOðr3Þ;

AtðrÞ ≈ Atð0Þ −
1

90
qðgA2

tð0Þ − hA4
tð0Þ −m2ÞA2

tð0ÞðqAtð0Þ þ ωÞr4 þOðr6Þ: ð12Þ

Then, in order to shoot to the desired asymptotic behavior at a fixed ω, we can use the free parameters uð0Þ, Atð0Þ at the
origin, naturally setting the constraint ω2 < m2, as the asymptotic behavior reads

1A nonminimal coupling term iqγBμB̄νFμν characterizing the magnetic moment of the vector field could be an interesting extension
to this model (see, for instance, [14,37]).
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uðrÞ → c∞e−
ffiffiffiffiffiffiffiffiffiffi
m2−ω2

p
;

vðrÞ → c∞ω

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 − ω2

p e−
ffiffiffiffiffiffiffiffiffiffi
m2−ω2

p
;

AtðrÞ →
A∞

r
: ð13Þ

To ensure that the trivial solution is an absolute minimum
of the energy E ¼ R

d3x
ffiffiffiffiffiffi−gp

ϵ ¼ R
d3x

ffiffiffiffiffiffi−gp
T0
0, the poten-

tial parameters must satisfy the relation

h >
λ2

4m2
: ð14Þ

We are interested in solutions with a fixed value of
the Noether charge Q ¼ R

d3x
ffiffiffiffiffiffi−gp

ρ ¼ R
d3x

ffiffiffiffiffiffi−gp
j0,

where the nontopological solitons are the extrema of the
F ¼ E − ωQ functional.

A. Results

Considering m2 ¼ −λ ¼ h ¼ 1 for the numerics, we
found solutions with charges up to qmax ¼ 0.03. On

Fig. 1 we show the field profiles obtained for two such
typical cases: q ¼ 0 and q ¼ 0.02.
Writing explicity the charge and the energy density, we

obtain

ϵ ¼ u02 þ ω2v2 − 2ωvu0 þm2ðu2 þ v2Þ

þ λ

2
ð−3u4 þ 2u2v2 þ v4Þ

þ h
3
ðu2 − v2Þ2ð5u2 þ v2Þ þ 1

2
A0
t
2; ð15Þ

ρ ¼ 2ðωþ qAtÞv2 − vu0: ð16Þ

In Fig. 2, we plot ρ and ϵ profiles for the same cases
described above.
On the other hand, the dependences of E and Q are

presented in Fig. 3 as functions of the soliton frequency.
In this figure we present the entire range for ω that we
managed to reach by means of our numerical code. There
are two particular limits at which the energy and the
Noether charge tend to infinity. These limits correspond
to the so-called thin-wall regime (when ω → ωmin) and the
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FIG. 1. Profiles for the uncharged (left panel) and charged (right panel, q ¼ 0.02) solutions for ω ¼ 0.980.
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FIG. 2. Charge (left panel) and energy (right panel) density profile for the charged (q ¼ 0.02, red curves) and uncharged (blue curves)
solutions for ω ¼ 0.980.
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thick-wall regime (when ω → 1). We found ωmin ≈ 0.915
for q ¼ 0 and ωmin ≈ 0.953 for q ¼ 0.02.
As the soliton solutions could still decay into free

bosons, it follows that an important magnitude to be
analyzed is the energy difference between these two
solutions, i.e., E −mQ. The Q dependence of this magni-
tude is shown in the right panel of Fig. 3. The curve
obtained for E −mQ consists of two branches, developing
a spike at the junction point where the energy and the
Noether charge of the soliton attain their minimum values.
This happens at ω ≈ 0.980 for q ¼ 0 and ω ≈ 0.985 for
q ¼ 0.02. Roughly speaking, the plot shows that both
charged and uncharged solitons are unstable to the decay in
the free bosons in the thick-wall regime, while stable to this
decay in the thin-wall regime.

IV. PROCA STARS

In this section, we focus on the study of spherically
symmetric static stars. We analyze four different types of
stars—depending on the choice of the values of the
Lagrangian parameters—which we name as follows:

(i) Proca stars (PS): this model was introduced in [32]
and corresponds to q ¼ 0,m2 ≠ 0, λ ¼ 0, h ¼ 0. For
the numerics, we fix m2 ¼ 1.

(ii) Charged Proca stars (CPS): for these, we gauge the
Uð1Þ symmetry of the Proca stars by setting q ≠ 0.

This is equivalent to the gauged scalar case studied
in [18] with respect to the nongauged works [1,2].
Just as in the scalar case, the maximum charge is
q2 ¼ 1

2
. For the numerics, we take q ¼ 0.5, m2 ¼ 1,

λ ¼ 0, h ¼ 0.
(iii) Self-interacting Proca stars (IPS): these solutions are

gravitating solutions of Proca balls, introduced in
[31] and reviewed in Sec. III, when setting q ¼ 0.
We will also call them Proca Q-stars since they are
the Proca version ofQ-stars [24]. In this case, for the
numerics, we consider m2 ¼ −λ ¼ h ¼ 1.

(iv) Charged self-interacting Proca stars or charged
Proca Q-stars (CIPS): the gauged version of the
solutions described in the previous item. Their scalar
version was studied in [25]. Again, for the numerics,
we assume m2 ¼ −λ ¼ h ¼ 1, q ¼ 1

2
.

For the gravitationally bounded solution, we start by
assuming an ansatz for the metric

ds2 ¼ −σ2ðrÞNðrÞdt2 þ 1

NðrÞ dr
2 þ r2dΩ2

2: ð17Þ

As in the balls case studied in the previous section, we
consider the ansatz (10) for the matter fields and the
expression (9) for the potential.
In this case, the derived equations of motion read

d
dr

�ðu0 − ðωþ qAtÞr2Þ
σ

�
−

r2u
N3σ5

ð−hu4 þ ðgþ 2hNv2ÞNu2σ2 − ðm2 þ ðgþ hNv2ÞNv2ÞN2σ4Þ ¼ 0;

ðωþ qAtÞu0 þ ðm2 þ ðgþ hNv2ÞNσ2v2ÞNσ2v − ðωþ qA0Þ2v −
1

Nσ2
ð−hu4vþ ðgþ 2hNv2Þσ2Nu2vÞ ¼ 0;

A00
t þ

�
2

r
−
σ0

σ

�
A0
t þ 2qvu0 − 2qðωþ qAtÞv2 ¼ 0;

0 500 1000 1500 2000 2500
40

30

20

10

0

Q

E
Q

0.92 0.94 0.96 0.98 1.00
0

500

1000

1500

2000

2500

3000
E

FIG. 3. (Left panel) Energy as a function of the frequency for uncharged solutions with q ¼ 0 (blue curve) and charged solutions with
q ¼ 0.02 (red curve). The total charge follows closely the energy curve. (Right panel) Difference between the energies corresponding to
the soliton and the free-boson solution as a function of the total charge (for m ¼ 1). While both solitons are unstable to the decay of the
free bosons in the thick-wall regime, they remain stable to this decay in the opposite thin-wall regime.
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N0 þ 1

2
grN2v4 þ 1

3
hrN2v6 þ rA0

t
2

2σ2
þ ru02

σ2
þ rv

σ2
ðððωþ qAtÞ2 þm2Nσ2Þv − 2ðωþ qAtÞu0Þ

þ ru2

6N3σ6
ð10hu4 − 9ðgþ 2hNv2ÞNu2σ2Þ þ ru2

Nσ2
ðm2 þ ðgþ hNv2ÞNv2Þ ¼ 0;

σ0

σ
þ r
2Nσ2

�
1

2
A0
t
2 þ σ2N0

r

�
þ N − 1

2rN
þ r
2Nσ2

ðu0 − ðωþ qAtÞÞ2 þ
1

2
m2r

�
−v2 −

u2

N2σ2

�

þ gr
4N3σ4

ðu4 þ 2N2u2v2σ2 − 3N4v4σ4Þ − rh
6N4σ6

ðu2 − N2v2σ2Þ2ðu2 þ 5N2v2σ2Þ ¼ 0: ð18Þ

Near the origin, the solutions must behave as

u ≈ uc −
uc
6σc

ð−hu4c þ σcð−m2σ2c þ λu2c þ ðωþ qAtcÞ2ÞÞr2

þOðr4Þ;
v ≈ −

uc
3σ2c

ðωþ qAtcÞ2rþOðr3Þ;

σ ≈ σc þ
1

2σ5c
ðm2σ4cu2c − σ2cλu4c þ hu6cÞr2 þOðr4Þ;

N ≈ 1 −
1

18σ6c
ð6m2σ4cu2c − 9σ2cλu4c þ 10hu6cÞr2 þOðr4Þ;

At ≈ Atc þ
qu2c
90σ6

ðm2σ4c − λσ2cu2c þ hu4cÞðωþ qAtcÞr4

þOðr6Þ: ð19Þ
Here, we have three free parameters, uc, σc, Atc, which we
shall use to shoot into the proper behaviors at infinity: that
is, regularity for the matter fields u, v and the gauge field
At, and asymptotic flatness σðr → ∞Þ → 1.

A. Results

Considering the values of m, q, λ, and h described above
for the numerics, we found different sets of stars. In Fig. 4,
we show the field profiles obtained for two typical cases: an
interacting Proca star with ω ¼ 0.876 and a charged Proca

star with ω ¼ 0.926. Later, in Fig. 5, we plot ρ and ϵ
profiles for the same cases.
In the left panel of Fig. 6, we plot the Arnowitt-Deser-

Misner (ADM) masses M and Noether charges Q obtained
for a whole set of uncharged (q ¼ 0) and charged (q ¼ 0.5)
Proca stars considering field frequencies in the ω ∼ 0.80–
1.0 range. For all cases, as ω → 1, both M and Q of the
solutions vanish, while Q=M → 1. In this limit, Proca stars
become large and light, with very low mean densities, with
trivial results at ω ¼ 1. On the other hand, for smaller ω’s,
Proca stars get more compact. Both in the uncharged and
charged cases, M and Q follow a spiral, towards different
central configurations depending on the choice of q. For
q ¼ 0, this critical configuration is located around ω ≈ 0.89
[32], while, for q > 0, this critical value becomes larger.
Moreover, while for q ¼ 0 the maximum of both M and Q
occurs at ωmax ≈ 0.875, with Mmax < Qmax ≈ 1, all of the
critical values increase for q > 0. Regarding the stability of
these solutions, in the lower part of the spirals,M > Q, and
thus the binding energy E ¼ 1 −M=Q becomes negative,
making all of these regions unstable against perturbations
[32]. An analogue behavior is found for the self-interacting
cases, which follow similar trends in all cases, as can be
seen in the right panel of Fig. 6.
Finally, in the left panel of Fig. 7, we show the total

ADM mass M as a function of the central density uð0Þ for
the four cases considered in this section: (un)charged Proca
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FIG. 4. (Left panel) Profiles of an interacting Proca star with ω ¼ 0.876. (Right panel) Profiles of a charged interacting Proca star of
ω ¼ 0.926.

CHARGED PROCA STARS PHYSICAL REVIEW D 94, 104006 (2016)

104006-5



0 5 10 15

0.00

0.05

0.10

0.15

0.20

0.25

r
0 5 10 15

0.00

0.05

0.10

0.15

0.20

0.25

r

FIG. 5. Charge and energy-density profiles of (left panel) the interacting Proca star of ω ¼ 0.876 and (right panel) the charged
interacting Proca star of ω ¼ 0.926.
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stars and (un)charged self-interacting Proca stars. In the
right panel of Fig. 7, we plot the mass-radius profiles of the
same solutions. In order to do so, we define the radius of
the Proca Star as [18]

R ¼
Z

d3x
ffiffiffiffiffiffi
−g

p
rj0: ð20Þ

While uncharged and charged versions of both Proca and
self-interacting stars show very similar trends in the mass-
radius diagrams for the same parameters, they show a very
different dependence on the central density, as the left
panel of Fig. 7 evidences. In both families, the gauged-star
versions are more massive and less compact than the
uncharged ones.
Weworked innatural units but alsowhile settingm ¼ 1. In

order to recoverphyscalunits, aphysicalvalue for theparticle
massmustbeassumed. InTable I,weshowmaximummasses
and minimum radii for a canonical case. Note that both the
mass and the radius are measured in units ofM2

pl=m, where
Mpl is the Planck mass. Then the compactness η ¼ 2M

R is
independent of the particle mass (for each of the families
considered). For our solutions, we find ηmax ¼ 0.30 (PS),
0.32(IPS),0.24 (CPS),and0.23(CIPS),whichare,ofcourse,
less than the Schwarzschild black-hole value η ¼ 1.

V. CONCLUSIONS

We studied a broad class of spherically symmetric
regular solutions involving a complex massive vector.
First, we studied Proca Q-balls, that is, nongravitating

solutions with a self-interaction potential which acts to hold
the system together. We found both charged and uncharged
solutions of this particular class of Q-balls below a critical
charge, depending on the choice of the free parameters
available. For both charged and uncharged cases, we found
that solutions are only allowed in a limited range of
frequencies ωmin < ω < m, with divergent energy in both
minimum and maximum frequencies. This extrema defined

the so-called thin-wall (ω → ωmin) and thick-wall (ω → m)
regimes. Moreover, analyzing in detail the E −mQ rela-
tion, we concluded that, in the thick-wall regime, the
solutions are unstable and will decay into free “procons”
or free Proca states.
Second, we also studied Proca stars and Proca Q-stars,

that is, self-gravitating solutions. At that point, we extended
the results of [32] for a broader class of potentials showing
that the self-gravitating solutions were indeed robust. In
this sense, since it is reasonable to assume that dark matter
in the Universe could be composed of different kinds of
fundamental entities, condensates as vector Proca stars
studied here, as scalar boson stars analyzed elsewhere
represent another viable dark component.
Looking forward, the next steps in this study could come

from extending our spherically symmetric solutions to
allow for rotation in order to investigate spinning Proca
Q-balls, which could be done by considering a vector
version of spinning nontopological solitons made of scalar
fields [38–42]. In the same direction, it would also be
interesting to find solutions where these fields act like a
Kerr black-hole hair or clouds following the steps of
[9–13,15]. On the other hand, clouds may also exist
surrounding static black holes [14]. Extending the solutions
found in this paper for our self-interacting model would
then be a promising future approach to this field as well.
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