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We investigate the nonequilibrium dynamics of the bosonic Hubbard model starting from inhomogeneous
superfluid or Mott insulator initial states using the truncated Wigner approximation (TWA). We find that the
relaxation of the system develops in two steps for sufficiently large interaction strengths: after a fast relaxation
the system gets caught in metastable prethermalized states that precede the true equilibrium state. We find that
the lifetime of these prethermalized states increases by several orders of magnitude as we increase the on-site
interaction strength beyond a threshold value. We show that the emergence of long-lived metastable states in the
quantum dynamics is associated with an ergodic (active) to nonergodic (inactive) dynamical phase transition in
the ensemble of classical trajectories that contribute to the semiclassical limit. This dynamical phase transition,
which is very similar to that found in different classical models of glasses, is closely related to the dynamic

heterogeneity of the classical relaxation.
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I. INTRODUCTION

The nonequilibrium dynamics of closed quantum systems
is nowadays a very active field of research [1]. The motivations
are manifold. On one hand, the determination of the require-
ments that the initial state and the nonequilibrium protocol
have to fulfill to ensure that a closed quantum system will
reach asymptotically a state of thermal equilibrium constitutes
a key issue in the study of the foundations of statistical
mechanics. On the other hand, with the advent of cold
atomic systems the manipulation of nearly perfectly isolated
quantum systems with large coherence times has become
experimentally feasible [2]. There are several theoretical and
experimental examples of systems that starting from nonequi-
librium conditions reach, on accessible time scales, a state that
is compatible with thermal equilibrium [3-6], at least at the
level of simple correlation functions. However, situations in
which thermal equilibration is elusive are clearly of particular
interest. For integrable systems, thermal equilibration is not
expected since the large number of constants of motion prevent
the system from erasing memory of the initial conditions.
However, there are examples of systems that are not integrable
(but are close to an integrable point) for which thermal
equilibration is not observed on the accessible time scales.
Maybe the first experimental example of a (nonintegrable)
closed quantum many-body system failing to reach thermal
equilibrium on accessible time scales was provided by the
famous experiment of Kinoshita et al. [7].

The phenomenon of prethermalization [8—15] is one pos-
sible explanation for the apparent lack of thermalization in
nearly integrable systems. Indeed, in certain situations it
can be shown that the relaxation of systems close to an
integrable point may proceed in two steps. The first step
is a fast relaxation whose main mechanism is dephasing
between some quasifree modes of the system [12]. Close to an
integrable point, where other relaxation mechanisms such as
inelastic collisions are extremely inefficient, such dephasing
relaxation often gives rise to a highly nonthermal metastable
state. Afterward, the remaining relaxation channels become
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relevant and the prethermal metastable state starts to decay
to the final state of the system [9,10,16]. One of the most
characteristic phenomenons associated with prethermalization
is the fact that certain observables reach its final, thermal
value in the short time scales of the dephasing relaxation. The
kinetic energy of the system is the most prominent example
of such behavior [8]. Prethermalization has been observed in
experiments with ultracold bosonic gases [13,17]. We must
also mention that finite-size systems close to an integrable
point may also show problems in thermalizing due to the break-
down of the eigenstate thermalization hypothesis (ETH) [18], a
phenomenon that is not related to prethermalization but whose
manifestations may be blended with it in the dynamics of small
systems.

Prethermalization may be behind the apparent breakdown
of thermalization in the Bose-Hubbard model, which, for
strong interactions, is close to the atomic limit integrable
point. Starting with the pioneering work of Kollath ez al. [19],
where using density matrix renormalization group (DMRG)
techniques it was shown that for sufficiently strong interactions
few-body correlation functions reached a quasistationary state
that was not compatible with thermal equilibrium, several
studies have focused on this system [20-22]. In Ref. [21] it
was shown that for strong interactions the system gets trapped
in long-lived inhomogeneous metastable states. Such kinetic
arrest was shown [21] to be associated with a dynamical
localization in the many-body Hilbert space. The Bose-
Hubbard model is also one of the most extensively realized
models in cold-atom experiments [2,23,24]. In particular,
experiments with inhomogeneous Bose-Einstein condensates
also demonstrate pronounced time-scale separation and slow
thermalization for strong interactions [25-27].

On the other hand, since the seminal work of Srednicki
about the ETH [28], semiclassical considerations have been
very important in our understanding of quantum thermaliza-
tion. Recently Cosme et al. [29] made a contribution in this line
through the truncated Wigner approximation (TWA) applied
to a two-site multiband bosonic Hubbard model. Since the
TWA allows us to consider the first-order quantum corrections

©2015 American Physical Society


https://core.ac.uk/display/479257174?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1103/PhysRevA.91.063601

I. SALAZAR LANDEA AND N. NESSI

to the classical action [30] the connection between quantum
physics and its classical limit becomes explicit. In particular,
it has been checked in Ref. [29] that the thermalization of the
quantum system comes along with the ergodicity of classical
trajectories. Also along these lines, of particular relevance
to the study presented here are the works in Refs. [31,32]
where the breakdown of thermalization for strong interactions
was linked with the chaotic properties of the mean-field
limit. More precisely, it was shown that the Lyapunov
exponent of the classical trajectories associated with the
solutions of the mean-field equations is suppressed for strong
interactions.

The appearance of long-lived prethermalized states in the
relaxation of isolated quantum systems is phenomenologically
very similar to the physics of classical glassy systems such
as spin glasses [33], atomistic glass formers [34,35], and
kinetically constrained models [36]. Such systems exhibits
a typical two-step relaxation: after a fast inertial regime
(analogous to the dephasing regime) they get caught in
metastable states whose lifetime can be astronomical in
certain parameter regions, for example, for sufficiently low
temperature or high density in the case of atomic models.
One of the most distinctive characteristics of glassy relaxation
is the appearance of dynamical heterogeneity [36], i.e., the
fact that the relaxation is spatially nonhomogeneous: fast and
slow regions are clustered together. One of the most appealing
theories to explain such a feature is that of a dynamical phase
transition between active and inactive phases taking place in
the ensemble of possible histories that the system can follow
in the relaxation [35,37-39].

In this work we revisit the problem of the apparent
breakdown of thermalization in the bosonic Hubbard model
from the semiclassical perspective provided by the TWA. For
large occupation numbers, this approach allows us to access
the dynamics of the quantum system performing weighted
averages over ensembles of classical (mean field) trajectories.
We explicitly show that prethermalized states can have a
huge lifetime that grows exponentially while increasing the
coupling strength, which prevents the observation of thermal
equilibration on any reasonable time scale. Moreover, we
find that the emergence of long-lived prethermalized states is
closely related to the appearance of nonergodic, glassy features
in the mean-field trajectories associated with the quantum
dynamics. More specifically, we find that the ensemble of
mean-field trajectories undergo a dynamical phase transition
between an active and an inactive phase, completely analogous
to that observed in classical models of glasses. We find that in
the present case this transition is also intimately correlated
with a remarkable phenomenon present in the mean-field
trajectories, dynamical heterogeneity. We shall go deeper into
these issues in the remaining sections of the paper, which are
organized as follows. In Sec. II we describe the model, the
initial conditions, and the semiclassical approximation used
to study the quantum dynamics and show the results for the
quantum dynamics, while in Sec. III we thoroughly investigate
the properties of the ensemble of mean-field trajectories that
contribute to the quantum dynamics and show that they show
clear signatures of glassiness as we increase the strength
of the interaction. In Sec. IV we briefly summarize our
results.
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II. QUANTUM DYNAMICS

Let us consider the one-dimensional bosonic Hubbard
model with Hamiltonian H = Hy + Hiy:

L
Hy=-J Z(a;aﬂ_l +a}+1aj),
j=1

(1)
L
Hiy = Uznjnjs
j=1

where L is the number of sites in the chain, the a’s
are canonical bosonic operators, and n; = a'j':a ;. We shall
consider periodic boundary conditions, af ., = a. We shall
analyze the dynamics generated by Eq. (1) starting from an
inhomogeneous initial state described by a density matrix
0o, which we left unspecified until the next section. In
particular, we shall focus on the relaxation of the density profile
(A ;1)) = Trlpoe' 't je=H'], where we have set i = 1. The
thermal density profile is given by (1) = N,/L = N for all
J, where N, is the total number of bosons.

When the average number of atoms per site N is large the
dynamics of the Bose-Hubbard model can be studied using
the TWA [30,40,41]. To calculate the time dependence of
expectation values within the TWA we have to consider the
solution of the classical equations of motion associated with
the quantum Hamiltonian (1). These are the standard lattice
Gross-Pitaevskii equations [30,40,41],

idll’j(f)

o =—J[Yj1(t) + Y1 (O + 20,001, (2)

where the classical fields are normalized to the total number
of particles Z]L:1 |1/fj(t)|2 = N,. Then the expectation value
of any given operator Q at time 7, (€(r)), can be calculated
averaging the corresponding classical observable 2 over an
ensemble of initial conditions weighted according to the
Wigner transform of the initial density matrix pg:

Q) = /d¢5d¢o PWo. Y)Y (). ¥ (@), (3)

where p is defined as

* 7o 7o
p(Wo.vy) = /dﬁédno<l//0 — 5 |Po|Yot 3>
x e~ WP =5l o 3 (gvo—movs) (4)

where [1o &= %) is a coherent state with eigenvalue v & %
with respect to the annihilation operator a. To lighten the
notation we have omitted the site index j. The measure is

L
dyrg do = l_[dlﬁ}‘(o)dwj(o)- (&)
j=1

The correspondence between classical and quantum ob-
servables can be formulated most easily using the coherent
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state Bopp representation, which makes the assignments

19
al — g — - — | (6)

20y
G w+1 i (7

a— - ,

29y

so that

Aj—n;=Iy;1"—1. (8)

The TWA is the leading-order approximation in an ex-
pansion in a small parameter that measures deviations from
classicality [30]. In the particular case of interacting bosons
this parameter is 1/N, the inverse of average number of
bosons per site. Thus, the most basic requirement to ensure
the accuracy of the TWA is to work in the regime of
high density [41,42], to which we shall circumscribe in the
following. The TWA is a controlled approximation in the
sense that it is possible to calculate higher order corrections
that take the form of stochastic perturbations to the classical
trajectories [30]. However, as with any approximation, be
it controlled or not, there are certain parameter regimes in
which it works better than others. To define when we expect
this approximation to be accurate we may introduce the
nonlinearity parameter A = Y which is the ratio between
the typical potential energy per site and the typical kinetic
energy per site [32]. When the interactions are strong enough,
A ~ N?, the system (in equilibrium) undergoes a quantum
phase transition to a Mott insulating state. In the vicinity of the
transition, quantum fluctuations become large and we cannot
expect the TWA to work well in this case, i.e., second-order
corrections become important in that regime. However, there
is a wide regime A < N2 (U/J < N) where the ground state
of the system is a superfluid (weakly or strongly interacting
depending on whether A < 1 or A > 1 respectively) where
we can expect the TWA to be a good approximation to the
dynamics. We shall work in that regime.

In parallel, the choice of the initial condition is also relevant
for the accuracy of the results. We shall work with two types of
initial states: coherent (superfluid) and Fock (Mott insulator).
The coherent state represents the initial condition that is closest
to a perfectly defined classical initial condition and therefore
we can expect the TWA to accurately capture the dynamics. In
particular, the Wigner function is

L

2 2
Pc(llfo,%‘) _ l_[ ;efﬂ‘//f*\/ﬁfl , 9)

j=1

where N; = (#;(0)). The Wigner function is a true probability
distribution and can be sampled efficiently as ¥; = \/ﬁj +
%(711 + iny), where n; and 1, are two real Gaussian random
variables with correlations ; = 0 and 77,7, = % [29,43].

The Fock initial state is the least classical initial state in the
sense that the initial phases are completely unspecified. The
Wigner function in this case is

L
e ) = [ 2672V Ly, (19,1, (10)

j=1
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where Ly (x) is the Nth-order Laguerre polynomial. Unfortu-
nately, this p generically is not definite positive and for large N
has a highly oscillatory behavior. This fact makes convergence
much slower when performing the integration over initial
conditions. To bypass this issue we shall approximate this
Wigner function by products of true distributions reproducing
the first moments of the Laguerre polynomials. The simplest
way to do this is just to reproduce the first moment by replacing
each factor pNj(l/fj,t//_,-) by a Dirac delta function 8(|1/f‘,~|2 —

% — N;) and averaging over random phases [29,43,44]. The
next step would be considering a distribution with two
moments, i.e., the Gaussian %e‘z(“/’/‘z‘%"v/)z. We will refer
to these two approximations as the delta and Gaussian Wigner
functions ps and p, respectively. We have checked that in the
particular cases that we investigated, both approaches give
very similar results. We shall therefore use the §-function
approximation due to computational convenience. For the
Fock initial state it was found that, in the worst case, the TWA
results quantitatively deviate from available exact solutions for
times larger than ¢, = J/U [40]. However, the predictions of
the TWA remain qualitatively valid for larger times.

We shall now proceed to investigate the quantum dynamics
of the density profile. We shall choose the coherent or Fock
initial states in such a way that the initial density profile is
(20,0,20,0, .. .) : an alternation of empty and highly occupied
sites. With this election N = 10. The system is on a ring of size
L = 30. This initial state may be experimentally relevant for
cold atomic gases loaded on optical lattices [3]. To calculate the
quantum dynamics we sample 10? different initial conditions
both for the coherent and for the Fock initial state, but in
order to test convergence we went up to 10* realizations. To
quantify the overall relaxation of the density profile to its
thermal configuration we introduce the dynamical distance

1 L
()= 7 Y A;0) = NI (11)
j=1

Clearly, thermal equilibrium implies d?(t) = 0. In Fig. 1 we
show the decay of d(t) for both the coherent and the Fock
initial states for different values of the coupling strength. In
both cases for low coupling strength the system thermalizes
quickly in a time scale of the order of one hopping [3,4].
As we increase the coupling strength a metastable state
emerges in between the initial relaxation and the final decay to
equilibrium. The lifetime of such a metastable state increases
with the coupling strength until it becomes larger than the
maximum time available in our simulation. For the Fock initial
state the increase of the lifetime of the metastable state is more
abrupt. In both cases, the density profile of the metastable state
is closer to that of the initial state as we increase the coupling
strength.

In Fig. 2 we show the relaxation of the kinetic energy
exin(t) = Tr[poe' 1" Hye '] for the coherent state initial
condition for several values of the interaction strength.
For the Fock initial state we obtain qualitatively the same
results. We observe that for weak interactions U/J < 0.1 the
kinetic energy prethermalizes in a time scale 7 ~ 10J 7",
For intermediate interaction strengths 0.2 < U/J < 0.7 the
kinetic energy also tends to a well-defined constant but with
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FIG. 1. (Color online) Dynamical distance d(¢) as a function of
time for the Fock (upper) and coherent (lower) initial states. Different
curves correspond to different interaction strengths U/J. Note the
logarithmic scale on the time axis.

a larger relaxation time of the order of z;;gt ~ 307" where
“int” stands for intermediate. Whereas for strong interaction
strengths U/J 2 0.7 the prethermalization time scale is
1" ~ 3J7!. The variety of prethermalization time scales
can be understood from the fact that the quasifree modes
behind the dephasing relaxation are qualitatively different

T
0 U/J=0.1 ]
5 U/1=0.3
Sﬁ U/I=0.5
E
-4 ‘,}i\ U/I=0.7 ]
'lm U/1=0.9
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FIG. 2. (Color online) Relaxation of the kinetic energy for the
coherent state initial condition. Different curves correspond to
different interaction strengths U/J. Curves are vertically shifted for
clarity.
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FIG. 3. (Color online) Logarithm of the relaxation time as a
function of coupling U/J for the Fock (upper) and coherent (lower)
initial state.

for strong and weak interactions. For weak interactions, the
quasifree modes are related to the momentum eigenmodes
that diagonalize H, and are completely delocalized in space.
For strong interactions, the quasifree modes are related to the
eigenmodes that diagonalize H;,, and are completely localized
excitations. For intermediate interactions there is a truly
nontrivial regime for which the quasifree modes are neither
completely localized nor delocalized. This suggests that the
effective models that describe the short time dynamics in the
three cases are completely different. However, a remarkable
fact is that for strong interactions the prethermalization time is
the same regardless the specific value of the coupling strength,
while the relaxation time scale of the density profile shows
large variations (see Fig. 3) due to the presence of metastable
states.

The crossovers from fast thermalization to the metastable
state dominated regime for the two different initial conditions
occur in different coupling ranges. To obtain a decay time
scale of d?(t) we fit an exponential to the tail of the decay.
In Fig. 3 we show the results for the decay time scales for
both initial conditions. We find that the decay time scales
increase by several orders of magnitude as we increase the
coupling strength in a small range. We find that the center of
the crossover region is around U/J ~ 0.7 for the Fock initial
state and U/J =~ 1 for the coherent state.

We should mention that while a detailed analysis of the
dependence of the relaxation time scales on the system size is
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beyond the scope of the present work, preliminary results show
that finite-size effects are almost negligible for the system size,
time scales, and observables considered above.

The emergence of prethermalized states with such large
lifetime may completely hinder the observation of the thermal
equilibrium state of the system after the quench and certainly
is at the root of the apparent lack of thermalization observed in
earlier works [19,21]. We find the situation rather similar to that
of glasses, systems that exhibit the typical two-step relaxation
as a consequence of getting caught in extremely long-lived
metastable states, whose lifetime can be astronomical for
sufficiently low temperatures or high densities. In the next
section we shall outline a more qualitative relation between
the emergence of long-lived metastable states and glassiness
by analyzing the properties of the mean-field trajectories
associated with the quantum dynamics.

III. GLASSY PROPERTIES IN MEAN-FIELD
TRAJECTORIES

In Ref. [29] it was proposed that the ability of a quantum
system to thermalize is related to the ergodicity of the classical
trajectories of the associated mean-field system, an idea that
is also implicit in previous studies, such as Refs. [31,32]. In
this section we shall show that the emergence of long-lived
prethermalized states in the quantum dynamics of the Hubbard
model is correlated with the lack of ergodicity of the classical
trajectories that are used to build up the quantum dynamics.

To qualitatively introduce the discussion, in Fig. 4 we show
a stroboscopic sampling of the position in phase space of the
field v, for two different couplings. We can see that for small
coupling (U = 0.5) the system explores the whole phase space
while for large coupling (U = 1.5) it remains captured in a
ring of finite width in the Re(y;) vs Im(y;) space. A similar
behavior is observed when analyzing the behavior of the phase-
space trajectory of the other sites. Going back to Fig. 1 we
can check that indeed for U/J = 0.5 the quantum density
profile is thermalized for +J = 40 while it is still trapped in
the metastable state for U/J = 1.5.

Additionally, we point out that the phase of the fields
0;(t) = arctan{Im[y/;(¢)]/ Re[v;(¢)]} turns out to be always
ergodic, in the sense that along the dynamic evolution it visits
all values between O and 27, irrespective of the value of
the coupling strength, for all trajectories. This fact is also
illustrated by Fig. 4 where, even for the strong coupling regime,
the phase of the field v, explores all values. The lack of
ergodicity is thus encoded in the dynamics of the particle
density at each site n;(¢) = |1pj(t)|2.

We will now proceed to make a more detailed and quan-
titative analysis of the properties of the classical trajectories.
To characterize them we introduce the mobility K of each
trajectory

fos N

K@= At Y Y it + AP — [y, (12)

=0 j=1

where 1., is the maximum observation time, i.e., the extension
of the trajectories and Ar is an UV cutoff that kills possible
small oscillations leaving just the actual displacement in the
phase space. K[y (¢)] is an extensive-in-time quantity that
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FIG. 4. (Color online) Position in the phase space Re(y) vs
Im(y) for the first site of the chain observed at every J At = 0.1 for
J tons = 40 for U/J = 0.5 (upper) and U/J = 1.5 (lower). The big
red dot corresponds to the initial configuration. Each site was chosen
to have a random phase as the initial condition as the initial condition.

will typically be large for ergodic trajectories, while it will
be generically small for nonergodic trajectories as can be
intuitively seen from Fig. 4. Thus, K[{(¢)] can be used
as an order parameter to distinguish ergodic (mobile) from
nonergodic (immobile) trajectories.

Since we are interested in assessing the properties of the
trajectories that are most relevant to the quantum motion we
will introduce a measure on the space of classical trajectories
given by the Wigner function of the quantum initial state
that we wish to consider. In the case of the coherent state,
the measure pc(¥o,v¥;) is well defined while in the case
of the Mott insulating state we can choose any well-defined
distribution that approximates pr(1o,¥), such as ps or p,.
For simplicity, we shall restrict the following analysis to the
coherent state case.

In Fig. 5 we show the mobility histogram from an ensemble
of 2 x 10* trajectories sampled according to pc(¥o,¥) for
four different values of U/J. The center of the distributions
monotonically shifts to lower values of the mobility as we
increase U/J, but the dispersion around the center decreases
for large coupling constants. In particular, for sufficiently large
coupling all the trajectories have a very small mobility with
a small dispersion, showing that all trajectories are freezed,
at least up to time scales of the order of f.,. However,
there is an intermediate coupling regime 0.3 < U/J < 0.6,
which corresponds to the intermediate regime described when
analyzing the relaxation of the kinetic energy in the previous
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FIG. 5. (Color online) Histogram of the mobility K[y ()] for
ensembles of 2 x 10° trajectories sampled according to the Wigner
function of the coherent state initial condition pc(vo,¥) for four
different values of U/J.

section, for which the dispersion almost does not change.
This confirms that inactive, nonergodic classical trajectories
are related to the existence of nonthermal metastable states
in the quantum dynamics. Moreover, since the shift of the
center of the histograms is continuous we may expect that
for intermediate couplings there should be a coexistence of
active and inactive trajectories, in which case the mobility
of the trajectories would depend on the details of the initial
conditions. This is indeed the case. This observation can be cast
in the language of a dynamical phase transition [35,37-39,45]
taking place in the ensemble of classical trajectories.

A dynamical phase transition can be defined in com-
plete analogy with equilibrium phase transitions [39]. In
the statistical mechanics description of an equilibrium phase
transition, one often considers an ensemble of microstates of
a system and an extensive-in-size quantity that characterizes
each microstate of the system, such as the energy of each
configuration in a classical Ising model. Then one introduces
a canonical probability distribution that gives a different
weight to each configuration, depending on the value that
the extensive parameter takes for each configuration. If the
extensive quantity that we choose is energy, the canonical
probability distribution is the familiar Le~##, where H is the
Hamiltonian; 8, the intensive conjugate field of the energy,
is the inverse temperature; and Z is the partition function. To
analyze a phase transition we consider the average of a given
order parameter, like the magnetization in the case of the Ising
model, among all microstates weighted with the canonical
probability distribution. We may observe the phase transition
as an abrupt change in the value of the weighted average of
the order parameter as a function of the intensive parameter .
Then we talk about a temperature-driven phase transition in the
ensemble of microstates. For the dynamical phase transition
we make statistical mechanics with the trajectories of the
system and consider them as the “microstates.” In the present
case, we choose the mobility K[y (¢)] as an extensive-in-time
quantity that characterizes each trajectory. We then construct
a canonical probability distribution defined over the ensemble
of trajectories coupling the extensive-in-time quantity K [/ (¢)]
with an intensive field s which is analogous to temperature in
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FIG. 6. (Color online) Dynamical phase transition in trajectory
space. Upper panel: Averaged order parameter K as a function of the
intensive field s for an ensemble of 103 trajectories sampled according
to the coherent state Wigner function for U/J = 0.53. Lower panel:
Dynamical susceptibility x;.

the example discussed before. This distribution will be

1
Py (0] = —= Poly (e VL, (13)
where Py[vy(¢)] is the s = O probability distribution that we
take as the Wigner function of the coherent state pc (Yo, %)
as discussed earlier and Z; is the partition function

Z, =Y Ply®)]. (14)
V()

We will compute expectation values in the ensemble of
trajectories by summing over all trajectories weighted with
P;[¥(2)] in the following fashion:

1
Q = (QYy®)])s = A Z Py®IQy @],  (15)
R0

where Q[ ()] is a trajectory functional. This way of averaging
will give a different weight to mobile and immobile trajectories
depending on the value of s: for larger s more relative weight
is assigned to inactive trajectories and viceversa.

To analyze the phase transition we take the mobility
K[y (1)] as the order parameter. In Fig. 6 we show the average
order parameter K; as a function of s for U/J =0.53, a
value of U/J for which we have observed coexistence of
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FIG. 7. (Color online) Correlation function C,(¢) as a function of
time for U/J = 0.53 in the active (s < 0) and inactive (s > 0) phases.
We also show, for comparison, the correlation function at coexistence
(s =0).

active and inactive trajectories. The behavior of K; mimics the
behavior of the order parameter in a finite-volume equilibrium
phase transition [39]: it shows a marked step between two
well-defined values corresponding to the two different phases
in the ensemble (active and inactive phases) and, moreover,
while increasing 7,5 (analogous to the volume in equilibrium)
the step in K; becomes more and more sharp. This can be
appreciated more clearly looking at the susceptibility:

K, 5
5 = (K[ ()] — Ks))s, (16)
which exhibits a peak that grows while increasing fops. A
similar scaling behavior can be observed with increasing
L [39]. The critical value is located around zero, s* = 0.
This dynamical phase transition is very similar to that found
first in kinetically constrained models of glasses [37] and
then in atomistic models of glass formers [39] and quantum
systems [45]. The main difference that we observe with respect
to the works [37,39,45] is that the present dynamic phase
transition does not seems to be of first order. In a first-order
(dynamic or static) phase transition the distribution of the order
parameter at coexistence is bimodal due to surface tension
effects between the coexisting domains of different phases. In
the case analyzed in this work the order parameter distribution
at coexistence (s ~ 0 for U/J = 0.5) is unimodal, as can
be inferred looking at Fig. 5, which is compatible with a
continuous phase transition.

To better characterize the physical properties of the phases
we will discuss an ergodicity measure. We define the overlap
correlation function

Xs = —

L

Cs() = Z((nj(t) — N)(n;(0) — N))s. a7

j=1

C,(?) quantifies the overlap between the configuration at time
t and the initial density configuration. The extent to which it
is nonzero in the limit of large 7 is a measure of nonergodicity.
In Fig. 7 we show the correlation function C(#) for the active
(ergodic) and inactive (nonergodic) phases. In the active phase
(s < 0) the correlation function rapidly relaxes to a small
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FIG. 8. (Color online) False color plot of the local mobility
Q;(t) for two representative trajectories corresponding to U/J = 0.6
(upper) and U/J = 0.1 (lower).

value, while for the inactive phase (s > 0) trajectories remain
trapped in a single state throughout the observation time.

In classical models of glasses such a dynamical phase
transition represents one of the main theories to account
for a striking and distinctive feature of glassy materials:
dynamic heterogeneity [35]. In contrast with normal fluids,
the relaxation of glasses is heterogeneous in space: fast and
slow regions are clustered together. We found that individual
mean-field trajectories (that correspond to single solutions
of the Gross-Pitaevskii equation) exhibit the phenomenon of
dynamical heterogeneity. We shall define a local measure of
mobility Q;(¢) as

Qi(t) = |ni(t) — ni(0)], (18)

which measures how much the in-site density differs from
the initial value. In Fig. 8 we show density plots of Q;(¢) for
representative trajectories corresponding to U/J = 0.1 and
0.6. For U/J = 0.1 (the weak coupling regime) the dynamics
of the system, as captured by the indicator Q;(¢), is fairly
homogeneous. For U/J = 0.6 (entering the strong coupling
regime), sites with high local mobility and low local mobility
are clustered together in space-time. This is the signature
of dynamic heterogeneity. It is remarkable that the simple
Gross-Pitaevskii equation is able to generate such complicated
dynamics.

The relation between the dynamical phase transition and
the dynamical heterogeneity can be explained using simple
reasoning: the dynamical phase transition picture implies that
for intermediate values of U/J different initial conditions may
trigger slow or fast dynamics, depending only on the details
of the initial condition; if we consider a sufficiently large
system with short-range interactions, distant regions in space
will not be correlated and if one region has a “fast” initial
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condition and the other a “slow” initial condition, dynamical
heterogeneity may arise. Moreover, by the same argument,
during the dynamical process slow regions may turn into
fast regions and vice versa. Contrary to what is observed in
Refs. [46,47], the quantum dynamics does not show dynamical
heterogeneity. The average needed to obtain the quantum
dynamics from the individual classical trajectories washes
out any initial condition dependent dynamical heterogeneous
pattern, which is associated with the fact that the density profile
has a well-defined relaxation time scale as seen before.

IV. CONCLUSIONS

We have studied the dynamics of the Bose-Hubbard model
following a quantum quench from an inhomogeneous initial
state. Using the TWA we have analyzed the dynamics of
the density profile of the system, which exhibits long-lived
prethermalization plateaus for moderate and large couplings.
We were able to relate this fact to the nonergodic properties
of the associated mean-field system. In particular, we have
shown that the ensemble of mean-field trajectories that are
relevant to the quantum motion undergoes a dynamic phase
transition from an active to an inactive phase, much like what
is found in classical models of glasses. We have also shown

PHYSICAL REVIEW A 91, 063601 (2015)

that this transition is related to the phenomenon of dynamic
heterogeneity in the classical trajectories, one of the hallmarks
of glassiness. In sum, we believe that our work opens a new
perspective on the dynamics of closed quantum systems by
relating the physics of classical glasses to the well-known
phenomenon of prethermalization.

As a direction for future work, we think that to disen-
tangle finite-size effects from prethermalization effects in the
determination of the thermalization time scales is of primary
importance. This goal is beyond the capabilities of standard
numerical techniques (which typically can deal either with
large systems and short times or with small systems and
arbitrary times) but may be within reach for the TWA.
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