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Markov-chain approach to the distribution of ancestors in species of biparental reproduction
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We studied how to obtain a distribution for the number of ancestors in species of sexual reproduction. Present
models concentrate on the estimation of distributions repetitions of ancestors in genealogical trees. It has been
shown that it is not possible to reconstruct the genealogical history of each species along all its generations by
means of a geometric progression. This analysis demonstrates that it is possible to rebuild the tree of progenitors
by modeling the problem with a Markov chain. For each generation, the maximum number of possible ancestors
is different. This presents huge problems for the resolution. We found a solution through a dilation of the sample
space, although the distribution defined there takes smaller values with respect to the initial problem. In order to
correct the distribution for each generation, we introduced the invariance under a gauge (local) group of dilations.
These ideas can be used to study the interaction of several processes and provide a new approach on the problem
of the common ancestor. In the same direction, this model also provides some elements that can be used to
improve models of animal reproduction.
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I. INTRODUCTION

Until now, previous attempts aiming to calculate the number
of ancestors in species of sexual reproduction have not been
totally successful. Present models concentrate on the estima-
tion of distributions of ancestors repetitions in genealogical
trees [1–3]. It has been shown that it is not possible to
reconstruct the genealogical history of each species along
all its generations by means of a geometric progression [4].
The reason is that the geometric progression is determined
by a sequence of independent events. We postulate that blood
relationship is a kind of interaction that connects the events.
It is possible to rebuild the tree of progenitors by modeling
the problem with a Markov chain. If we consider a random
variable that represents the number of ancestors present in a
given generation, the size of the sample space depends on each
generation. This brings serious complications on the solution
of the problem, not only of a mathematical nature. We propose
submerging the original sample space into a larger one. This
dilution modifies the probability distribution. We show the
need to implement a covariant derivative, due to a gauge
transformation, which leaves the evolution equation invariant
and corrects the probability distribution.

The main goal of the present work is to describe the
distribution of ancestors for species with sexual reproduction,
but also to show the novel method used here to solve other
stochastic problems.

There are two important assumptions about the biology
of the considered system. The first one is that the species
described here has no specific behavior of sexual partner
selection (random mating reproduction) [5,6]. Many species
or population groups exhibit this kind of reproduction. This is
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the most simple case to perform the calculation. The second
assumption is about the population size. The distribution of
ancestors for a given generation is contained in a population
large enough to not force the selection of blood-related sexual
partners. The partners could be blood related or not, randomly.
Current model presents a random mating in nonoverlapping
generations with negligible mutation and selection. These
two assumptions are common to develop population genetic
models; in particular, these are present in the Hardy-Weinberg
principle [7,8].

In this work we show a way to calculate a probability
distribution to get a certain number of ancestors for each
generation. We have obtained its first two cumulants: the
expected value of the number and its dispersion.

Specific conditions about small-size populations or specific
sexual behavior can be considered later as modifications of the
general case described here.

The present work will be useful in order to understand the
origin of species extrapolating the individual genealogy for
all members at the beginning of the species. It is possible
to go one step further, to establish how populations can be
affected by certain conditions, such as isolation or migration
of individuals, by studying population groups with different
genetic pools [9]. These ideas can be used to perform more
realistic models in animal populations and also to improve
estimations about extinction processes.

II. A MARKOVIAN APPROACH TO THE
ANCESTORS PROBLEM

To calculate the number of ancestors of an individual it is
necessary to use a statistical approach. If we simply accept
that 2t+1 allows us to calculate the number of ancestors in the
t generation, where t = 0 is the generation of progenitors of
the first order (or parents for short) and so forth, we arrive at an
absurdity. As we turn to past generations, the probability that
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FIG. 1. (Color online) Examples of three kinds of genealogical
trees (only the first few g generations). (a) No restrictions by blood
relationship. (b, c) Two kinds of restriction in third generation:
ancestors sharing one parent (b) or ancestors sharing two parents
(c). The restriction by blood relationship increases according to the
degree of endogamy.

some ancestors have been relatives is significantly larger [1–3].
This implies a restriction on the number of ancestors with
respect to 2t+1. This last quantity corresponds to the maximum
possible number of ancestors in each t generation.

There are several examples showing different ways in
which the number of ancestors is reduced with respect to the
maximum number in each generation. As stated in Ref. [4],
the reduction of the number of ancestors, compared to 2t+1, is
caused by blood relationship. Figure 1 shows, as an example,
only the three first generations of a genealogical tree with two
different ways to constrain the number of ancestors. There
is a way to weigh the blood relationship using a statistical
approach that includes all possible kinds of relationship in each
generation. In this approach the only constraint in the number
of ancestors is caused by random blood relationship between
individuals of the same generation. We considered a population
of ancestors whose maximum size in each t generation is given
by the geometric progression 2t+1.

We did not consider any restriction for the number of
ancestors generated by issues related to culture, in the human
case, ethological in the animal case, or isolation of populations,
etc. If we want to study the distributions of ancestors of
individuals from populations where there are less or equal
individuals than 2t+1 for the t generation, there is an additional
restriction on the number of ancestors. Blood relationship
interconnects the events in the original process that leads

to 2t+1, which was generated by independent events and no
relation between ancestors of each generation.

Derrida’s model [1,2] is based on numerical simulation
under the same assumptions (closed population evolving under
sexual reproduction with nonoverlapping generations). The
population size is fixed for all generations and equally divided
into two groups, representing males and females. At every
generation, they form random heterosexual pairs and assign
them a certain number of descendants according to a Poisson
distribution. This is done by choosing for each male or female
one pair of parents at random in the previous generation.

In our work the population size is not fixed, but always
bigger than 2t+1 for each t generation.

We defined two random variables y(t) and x(t), which
represents the number of individuals who are inside and outside
to the set of ancestors, with respect to the maximum possible
number of ancestors in each t generation. For this definition
we have

x(t) + y(t) = 2t+1. (1)

We considered each generation as a link of the chain
that forms a first-order Markov process [10,11]. This process
is constructed on a given set of individuals ordered by
generations. We take the current generation and we count its
parents. Then we take all selected individuals and remake the
previous question and so forth. There exists a generation in
which the question or previous classification makes no more
sense, in which case the process ends after a given generation.
This kind of process is widely used to describe the evolution
of traits that adopt a finite number of states [12].

From Eq. (1) we have

y(t) = 2t+1 − x(t), (2)

if y(t) describes a Markov process, then that implies x(t)
describes another Markov process.

We do not distinguish the different kinds of blood relation-
ship between the ancestors of a particular generation such as
brothers or cousins, and so forth. We simply consider them as
indistinguishable and we just count how many there are. For
the purpose of the calculations we consider t as a continuous
variable. Finally, we associate a discrete-time Markov process
to the continuous-time Markov process {x(t) : t > 0} called a
skeleton process [13] defined as {x(g) : g > 0}, where g is the
generation number.

The time evolution of this process is determined by the
knowledge of the probability distribution in each t generation,
denoted by

pn(t) = P[x(t) = n], (3)

for all (n,t) ∈ St × R, where St is the sample space of x(t),
which corresponds to the interval [0,nt ], nt = b2t+1c − 2 and
bzc is the integer part of a real number z.

An equivalent way to describe the process is through
an initial value pn(0) and the conditional probability given
by Pnm(t,s) = P[x(t) = n|x(s) = m], which represents the
transition matrix elements of the states (m,s) 7−→ (n,t).

For each generation the events are mutually exclusive.
Consequently, at the time t + ² the probability of finding n

restrictions is given by the transition from m restrictions at
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time t ; in this way,

pn(t + ²) =
X
m∈St

Pnm(t + ²,t) pm(t). (4)

After some elementary operations (see Appendix A) we get

dtpn(t) =
X
m∈St

Qnm(t) pm(t), (5)

where dt denotes the total time derivative d
dt

, Qnm(t) =
∂tPnm(t,s)|s=t is called the infinitesimal generator and δnm

is the Kroneker delta.
We defineϕϕϕ(t) as an |St |-tuple of the probability distribution

as ϕϕϕ(t) = [p0(t),p1(t), · · · ,pnt
(t) ]|, where |St | denotes the

cardinal number of St and | represents the transposition.
The evolution equation for the process can be expressed in

a matrix form as

dtϕϕϕ(t) = QQQ(t) ϕϕϕ(t). (6)

We denote the expectation number of ancestors by α(t) =
hy(t)i and from Eq. (2),

α(t) = 2t+1 − hx(t)i, (7)

where hxk(t)i is the expectation value of x(t) raised to the
positive integer power k (or k moment for short) of the
distribution pn(t) and by definition is hxk(t)i = P

n nk pn(t).
The quantity hx(t)i represents a constraint caused by blood
relationship, which affects the expectation number of ancestors
in each generation.

III. DILUTION OF SAMPLE SPACE VIA GAUGE
GROUP OF DILATIONS

The sample space of x(t) is different for each t generation,
thus there is enormous difficulty to solve Eq. (6). We
considered a dilution of St within a larger set S ⊇ St , for
all t , consisting of replacing the endpoint nt by a huge number
N . This dilution can be viewed as a dilation represented
with the substitution rule nt 7−→ N , such that S = [0,N ].
On the other hand, we know that there exists a certain T

generation that can be considered as the end of the process.
The existence of a limit generation, T , allows us to choose
N = nT . Consequently, we can solve the problem in this
dilated sample space and then recover the lost endpoint caused
by the dilation through a suitable transformation. The price to
pay for it is the need of renormalization of the distribution
defined on S to compensate for the dilution effect. The
renormalization takes place by a linear transformation, which
modifies the norm of the distribution for each generation. This
local transformation (i.e., depends on each t), is structured
as a gauge group, specifically the group of local dilations.
Essentially, the distribution defined on St is equivalent to
the renormalized distribution, which is defined on the dilated
sample space S.

In summary, we can interpret that the process on St is the
result of a process on this larger set S, which interacts with
another process on the complement of St , denoted by S − St .
This interaction is represented by the renormalization of the
distribution defined on S, in an effective theory context. As
long as the process onS becomes much simpler, the description

on S − St will be more complex. This is the basis for the
dilation transformation, which is discussed in Appendices E
and F.

We considered a version in which the sample space St

is dilated to the set of natural numbers N, including the 0
element. Then we have only one boundary condition for the
state n = 0. This allows us to focus on time homogeneous
processes; i.e., the infinitesimal generator is independent of t .
Another consideration is the spatial homogeneity, i.e., the case
where the infinitesimal generator does not depend on the state
of the random variable X(t).

The Markov process in this larger sample space N requires
us to consider two new random variables {X,Y }, defined
on N and related in a similar way to the old random
variables {x,y} from Eq. (2). The associated probability
distribution is denoted by Pn(t) = P[X(t) = n] and defines
φφφ(t) = [P0(t),P1(t), · · · ]|, which satisfies the equation

dtφφφ(t) = Q φφφ(t). (8)

Knowing the initial conditions φφφ(0) = (1,0, · · · )| and the
infinitesimal generator Q, we can write the formal solution
of Eq. (8) as

φφφ(t) = exp(tQ) φφφ(0). (9)

In order to establish the matrix Q, we study the time evolution
t 7−→ t + ² for small value of ². Therefore, only transitions
to the nearest states are allowed, because the infinitesimal
time evolution only has a finite variety of transition states.
For n 6= 0, these transitions are n 7−→ {n − 1,n,n + 1} and
n 7−→ {n,n + 1}, for n = 0.

Considering this brief discussion, the dynamics described
by Eq. (8) and the imposed conditions represents a time
homogeneous birth-death process. A naive way to picture the
process in the context of queueing theory [14] is through one
queue representing all ancestors waiting to be classified if they
are blood related or not by one server.

In Appendix D, we show how to choose a numerical matrix
Q. Finally, the evolution equations takes the form

dtPn(t) = Pn+1(t) − 2Pn(t) + Pn−1(t),
(10)

dtP0(t) = P1(t) − P0(t),

and together with the initial condition, which is Pn(0) = δn0,
we obtain the explicit solution [14]

Pn(t) = e−2t [In(2t) + In+1(2t)], (11)

where In(x) is the modified Bessel function [15]. A brief
description to obtain the solution Eq. (11) is also present in
Ref. [14]. There is a construction of the generatrix function
g(t,z) = P

n∈N Pn(t) zn; see Eq. (D2), where from Eq. (8) we
derive an equation for g(t,z).

Equation (10) is the generic expression for all Markov
processes on denumerable sample spaces and continuous time
with a particular value of Q.

IV. THE GAUGED DISTRIBUTION OF ANCESTORS

As we have previously argued, before using this distribution
to calculate the moments, it is necessary to perform a
renormalization process. The reason is that the solution given
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by Eq. (11) is normalized over N. We perform a gauge
transformation [16], denoted by gt , which is applied to the
probability distributions as

gt : Pn(t) −→ λ(t) Pn(t). (12)

The transformation Eq. (12) leaves the evolution Eq. (8) in-
variant and allows both distributions to describe a Markov pro-
cess. We denote pn(t) = λ(t) Pn(t) as the gauge-transformed
distribution of Pn(t). The action of the group gt applied to
the distribution Pn(t) leads to a distribution pn(t) defined over
St . This idea can be understood in the context of conditional
probabilities, with which we can obtain a projection of the
distribution on N into St , keeping the correct normalization.

In other words, the transformation gt leads to a new random
variable X, which is the gauge transformation of X.

To preserve the invariance of Eq. (8) under gt , we introduce
a covariant derivative

Dt = dt − ω(t), (13)

where ω(t) = dtλ(t)[λ(t)]−1. See the Appendix for a more
extensive explanation.

The expectation value of X raised to a positive integer power
k is hXk(t)i = P

n nk pn(t). This allows us to write a general
relation between hXk(t)i and hXk(t)i:

hXk(t)i = λ(t)hXk(t)i. (14)

Rescaling the process described by X(t) and using the
solution Eq. (11), we calculated the first two cumulants:

hX(t)i = λ(t)hX(t)i,
(15)

h[X(t) − hX(t)i]2 i = λ(t)[2t − hX(t)i − hX(t)i2],

where

hX(t)i = e−2t

·
2t I1(2t) +

µ
2t + 1

2

¶
I0(2t)

¸
− 1

2
. (16)

From Eq. (2) the variance of x is equal to the variance of y.
The same argument is valid for X and Y .

We define the standard deviation of Y(t) = 2t+1 − X(t),
denoted by σ (t), as the square root of the second equation
of Eqs. (15), which quantifies the statistical fluctuation.

As we consider a constant function ω(t), then

λ(t) = 2at+b. (17)

We have obtained a family of functions for the expectation
number of ancestors,

α(t) = 2t+1 − λ(t)hX(t)i, (18)

parametrized by the real numbers a and b of Eq. (17).
If the expected value satisfies α(t1) = α1 and α(t2) = α2, for

two generations t1 and t2 such that t1 6= 0 6= t2, the parameters
a and b can be obtained by

a = 1

t2 − t1
log2

·
2t2+1 − α2

2t1+1 − α1

hX(t1)i
hX(t2)i

¸
,

(19)

b = 1

t2 − t1

½
t2 log2

·
2t1+1 − α1

hX(t1)i
¸

− t1 log2

·
2t2+1 − α2

hX(t2)i
¸¾

,

where naturally αi 6 2ti+1, for i = 1, 2, to ensure good
definition of a and b.

FIG. 2. (Color online) The four values of {a,b} are obtained from
(19) and parametrized from (t1,α1,t2,α2) = (t1,ξ 2t1+1,T ,2), where
0 6 ξ 6 1. In t1 the curve reaches the fraction ξ of the total number of
possible ancestors for that generation, while t2 defines the maximum
generation range denoted by T . The geometric progression 2t+1

is in dash black line. The {a,,,b,,,c,,,d} ({blue,,, green,,, orange,,, red})
lines can be obtained respectively from (t1,α1,t2,α2) ∈ {(3,0.4 ×
24,12,2),,,(3,0.7 × 24,10,2),,,(3,0.9 × 24,10,2),,,(3,0.7 × 24,12,2)}.

The gauge transformation modulates the amplitude of
hX(t)i. This allows us to define the notion of horizontal and
vertical range of α(t). One important point of the curve α(t)
is the maximum generation range, this is a nonzero generation
T in which α becomes equal to 2. Another interesting point
is the maximum of α(t), which determines the intensity of the
process. Without loss of generality we can choose t2 = T , in
which case α(t2) = 2, and α(t1) = sup{α(t) : t ∈ [0,T ]}. For
any pair of different points, (t1,α1) and (t2,α2), considered
relevant, we select one and only one curve of the family,
parametrized by a and b given by Eq. (19). The gauge
transformation gt , through the a and b parameters, controls
both horizontal range and vertical range of the process. This
T may not be a realistic value, but fix a maximum number of
generations a particular species may have.

For illustrative purposes, in Fig. 2 we have selected four
curves to the expectation number of ancestors α(t) given by
Eq. (18) and parametrized by different values of {a,b}. We
include a geometric progression 2t+1, which corresponds to the
maximum possible number of ancestors in each t generation.

Figure 3 shows three realizations of the number of ancestors
in terms of the expectation value α(t) and a measure of the
dispersion given by σ (t), for particular values of a and b.

This model may be employed in order to recognize a
possible threshold to identify high endogamic populations as
well as its possible causes. Using the genealogical tree, the
model can be used to indicate which living species may be
near to extinction.

V. FINAL COMMENTS AND POSSIBLE
MODEL EXTENSIONS

The model explained above allows us to calculate the ex-
pectation number of ancestors in each generation, considering
the possibility of blood relationship between individuals of the
same generation and a population of ancestors of maximum
size 2t+1. But there are two possible generalizations. The
model can be extended to take into account relationships
between individuals of other adjacent generations using a
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FIG. 3. (Color online) A band of curves, defined by the set B =
{α̂(t) : α̂(t) ∈ [α(t) − σ (t),α(t) + σ (t)]}, contains the expectation
value α(t) given by the equation (18) and its statistical fluctuation
at 1-σ . The {a,,,b,,,c} ({blue,,, green,,, red}) lines corresponds to the
realization of {α(t) − σ (t),α(t),α(t) + σ (t)}, with the values of
(t1,α1,t2,α2) = (6,0.9 × 27,10,2), respectively.

similar idea, simply considering higher-order Markov chains.
By introducing the corresponding terms in the infinitesimal
generator Q, for example an absorbing barrier [17], the same
model can be used to calculate the expectation number of
ancestors in a specific population with additional restrictions
such as isolation, immigration, specific reproductive behavior,
or cultural restrictions for the human case.

In future applications we could generalize the model
through a new constraint to fix the maximum number of
individuals at a certain generation. This proposal implies a
generalization of this work in which the maximum number
of ancestors will be given by a piecewise function γ (t)
instead of 2t+1. This leads us to slightly modify the process
defined at the beginning in Eq. (2) as y(t) = γ (t) − x(t) and
the endpoint of the sample space for x(t) be comes nt =
γ (t) − 2. This generalization includes a time inhomogeneity
in the infinitesimal generator Q and preserves an appropriate
renormalization.

We can include these possible extensions using the process
{X(t)} and study a most general gauge gt transform given by
a linear transformation,

gt : {Pm(t)}m∈N −→ pn(t) =
X
m∈N

λnm(t) Pm(t), (20)

where λλλ = {λnm} is a nonsingular matrix. We can express the
last expression in a matrix form,

gt : φφφ −→ φφφ0 = λφλφλφ, (21)

where φφφ0(t) = [p0(t),p1(t), · · · ]|.
In order to preserve the invariance of Eq. (8) under this

generalization of gt , we introduce the corresponding covariant
derivative:

Dt = dt − ωωω(t), (22)

where ωωω(t) = dtλλλ(t)[λλλ(t)]−1.
The evolution equation for φφφ0(t) is also invariant under the

local dilation group,

Dtφφφ
0(t) = Q0(t)φφφ0(t), (23)

and the gauged infinitesimal generator is now

Q0(t) = λλλ(t) Q [λλλ(t)]−1, (24)

which corresponds to a similarity transformation of Q.
This model can be applied to describe other biological or

physical systems with similar dynamics. Statistical models
of biparental reproduction have already been compared with
physical systems, such as spin-glass systems [18]. In this
regard the evolutionary graph theory is an approach to study
how topology affects the evolution of a population [19].

Other analogous processes to the biparental reproduction
in physics are described with similar statistical or Markovian
models [10]. In high-energy physics the production of a
cascade by a cosmic ray is described by the Heitler model [20].
Although this model is different from the one presented here,
we could compare the number of ancestors with the number of
particles in each generation and reinterpret the results in terms
of these kinds of phenomena.

It is possible to estimate the maximum generation range,
T , searching in the fossil record the first time that a particular
species appears and use its reproductive rate. In this way we are
classifying each species not in terms of lifetime on Earth (time
units), but according to the notions of generational patterns.

The interaction of various processes can be combined with
universal common ancestor’s models [21] to understand the
development of a certain species. The ideas in the current
model can be used in biology, population ecology, and
genetics. An important achievement of the model is that based
on the previous knowledge of the lifetime of a certain species,
we can calculate the number of ancestors in each generation
of this species.

More fundamental uses of this idea can be found in
mathematics, in particular in theory of stochastic processes
and in the physics area connected with the theory of stochastic
processes. Future research through a Lagrangian description
may find novel applications of the present proposal. In this
case we will consider the probabilities {pn(t)} as the set of
generalized coordinates.
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APPENDIX A: ON THE EVOLUTION EQUATION IN S

We defined the random variable y(t) associated with the
number of ancestors as

y(t) = 2t+1 − x(t), (A1)

where St is the sample space of x(t) and t is a continuous
variable. Then, according to a discretization process, the
distribution of ancestors is obtained and the variable t will
be the number of generations.
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We denoted by α(t) the expectation number of y(t) as

α(t) = 2t+1 − hx(t)i, (A2)

where hx(t)i constrains the number of ancestors under the
blood-relationship hypothesis. We will focus on the process
of this random variable x(t) and our probability distribution
denoted by pn(t) = P[x(t) = n].

In the problem of counting ancestors the sample space
St is different for each t generation. For this reason we
introduced a fictitious process on a larger sample space S
than the original St . Therefore, we have solved the problem
in S and renormalized the distribution to take into account
the interaction with the lost boundary of St . In other words,
we have considered a dilution of St into S. In particular,
we used the set of natural numbers S = N, including the 0
element.

We considered the study of the evolution over a generic
denumerable sample space S = [0, N] ⊂ N with the random
variable X(t) and probability distribution Pn(t) = P[X(t) =
n]. This evolution is governed by the conditional probability
given by

Pnm(t,s) = P[X(t) = n|X(s) = m]. (A3)

The matrix P(t,s) satisfies the Chapman-Kolmogorov equa-
tion [11,17],

P(t,s) = P(t,u)P(u,s), (A4)

for 0 6 s 6 u 6 t . Also the sum of the elements of each
column is X

n∈S
Pnm(t,s) = 1. (A5)

For the general case we develop a power series of the matrix
P(t + ²,s); for a fixed value of s, we have

Pnm(t + ²,s) = Pnm(t,s) + ² ∂tPnm(t,s) + . . . , (A6)

where ∂t is a simplified notation of partial time derivative
∂
∂t

In order to obtain Eq. (4) we study the time evolution t 7−→
t + ², for small value of ². We need to know Pnm(t + ²,t) then
Eq. (A6) becomes

Pnm(t + ²,t) = δnm + ² ∂tPnm(t,s)|s=t + . . . (A7)

We recognize the second term of Eq. (A.8) as the infinitesimal
generator Qnm(t):

Qnm(t) = lim
²→0

Pnm(t + ²,t) − δnm

²
. (A8)

We assumed that t is continuous. This allows us to evaluate
the process at any t between two generations, but it also reduces
the number of possible states in an infinitesimal evolution.
Therefore, only transitions to the nearest states are allowed.
For the ancestry problem, the infinitesimal time evolution has a
finite number of transition states. These transitions are denoted
by n 7−→ n0, where n0 ∈ Tn; i.e., n0 depends on the initial state
n. We write explicitly T0 = {0,1}, TN = {N − 1,N} and for
n 6= 0,N : Tn = {n − 1,n,n + 1}. Furthermore, if |n0 − n| > 1
the corresponding transition probability is zero.

From Eq. (A5) the matrix P(t + ²,t) is normalized for all
t and small ² as X

n0∈Tn

Pn0n(t + ²,t) = 1. (A9)

Note that n0 runs over Tn, depending on whether n is equal to
0, N , or any other value of S − {0,N}.

We express Pn0n(t + ²,t) for these three cases from
Eq. (A.8):

Pn−1 n(t + ²,t) = μn(t)² + Ot (²),

Pn+1 n(t + ²,t) = νn(t)² + Ot (²),
(A10)

Pn0n(t + ²,t) = 0, |n0 − n| > 1,

Pnn(t + ²,t) = 1 − [νn(t) + μn(t)]² + Ot (²),

where Ot (x) represents a type of function that goes to zero
with x faster than x, for a given t , that is

lim
x→0

Ot (x)

x
= 0. (A11)

The fourth equation of Eqs. (A10) is obtained through the
first three of them. In the general case we proceed as follows
from Eq. (A5),

Pn n(t,s) = 1 −
X

n0∈S−{n}
Pn0n(t,s), (A12)

then from an infinitesimal time evolution s ≡ t 7−→ t + ² and
Eq. (A9),

Pnn(t + ²,t) = 1 −
X

n0∈Tn−{n}
Pn0n(t + ²,t),

Pnn(t + ²,t) = 1 − Pn+1 n(t + ²,t) − Pn−1 n(t + ²,t),

which is the fourth equation of Eqs. (A10).
Replacing Eqs. (A10) in Eq. (4) and written for n 6= 0, we

have

Pn(t + ²) = [νn−1(t)² + Ot (²)] Pn−1(t)

+ [μn+1(t)² + Ot (²)] Pn+1(t)

+ [1 − νn(t)² − μn(t)² + Ot (²)] Pn(t),

then

Pn(t + ²) − Pn(t)

²
=

·
νn−1(t) + Ot (²)

²

¸
Pn−1(t)

+
·
μn+1(t) + Ot (²)

²

¸
Pn+1(t)

−
·
νn(t) + μn(t) + Ot (²)

²

¸
Pn(t),

taking the limit ² → 0,

dtPn(t) = νn−1(t)Pn−1(t)

+μn+1(t)Pn+1(t) (A13)

− [νn(t) + μn(t)]Pn(t).

The stochastic process described by Eq. (A13) corresponds
to the general class of stochastic dynamics called birth and
death process, which includes the queueing process [11,14].

022125-6



MARKOV-CHAIN APPROACH TO THE DISTRIBUTION OF . . . PHYSICAL REVIEW E 90, 022125 (2014)

The functions μn(t) and νn(t) are part of the infinitesimal
generator Q(t). From the first equation of Eqs. (A10) we have

μn(t) = lim
²→0

Pn−1 n(t + ²,t)

²
, (A14)

which is exactly the element Qn−1 n(t) of Eq. (A.8).
In summary, we list all the elements of Q(t):

Qnn(t) = −[νn(t) + μn(t)], Qn−1 n(t) = μn(t)
(A15)

Qn+1 n(t) = νn(t), Qn0n(t) = 0, |n0 − n| > 1.

We write Eq. (A13) in a matrix form as

dtφφφ(t) = Q(t)φφφ(t), (A16)

where φφφ(t) = [P0(t), · · · ,PN (t)]| and Q(t) = {Qn0n(t)} is
given by Eq. (A15).

It should also be pointed out that the coefficients μ0 and νN

must be zero; otherwise, we require more states than [0,N ] in
S. In other words, if μ0 or νN are not equal to zero, the left
side of Eq. (A9) is not equal to one.

APPENDIX B: HOMOGENEOUS HYPOTHESIS

In this section we show how the hypothesis of spatial and
temporal homogeneity are used working in the dilated sample
space.

We have already said that if there exists a certain T

generation that can be considered as the stop of the process,
the upper limit of the dilated space S, denoted by N , can be
chosen as

N = nT , (B1)

where nT = sup{n : n ∈ St ,∀t ∈ [0,T ]}.
Also, we considered a dilution of St into N, i.e., the generic

dilated space S is equal to N, or N −→ ∞. This assumption
is true from St ⊆ N, no matter how big nT is. In this case,
the space-time on the process is infinite and we have an
infinitesimal generator on N, independent of the state of the
random variable X and time-independent, and the process is
space-time homogeneous.

However, the effect of these hypotheses can be compen-
sated with an interaction with the process on N − St ; see
Appendix D for more details.

Essentially, we will say that the renormalized distribution
defined on N is equivalent to the distribution defined on
St . This equivalence is based on the invariance of evolution
equation. In this way both distributions correspond to a Markov
process; see Appendix D.

APPENDIX C: ON THE SPACE-TIME HOMOGENEOUS
SOLUTION IN N

The evolution equation in the dilated sample space N under
the space-time homogeneity is

dtφφφ(t) = Qφφφ(t), (C1)

with φφφ(t) = [P0(t),P1(t), · · · ] and identify the matrix Q as

Q =

⎛
⎜⎜⎜⎜⎜⎜⎝

−ν μ 0 . . .

ν −μ − ν μ . . .

0 ν −μ − ν . . .

0 0 ν . . .

0 0 0 . . .
...

...
...

. . .

⎞
⎟⎟⎟⎟⎟⎟⎠

. (C2)

Under the initial condition φφφ(0) = (1,0, . . .)|, the solution
of Eq. (C1) with Eq. (C2) is

Pn(t) = e−(ν+μ)t

·
ρn/2In(ζ t) + ρ(n−1)/2In+1(ζ t)

+ (1 − ρ)ρn

∞X
j=n+2

ρ−j/2Ij (ζ t)

¸
(C3)

where In(x) is the modified Bessel function [15], ρ = ν/μ

and ζ = 2
√

νμ. The first solution of Eq. (C1) appeared in the
1950s; see Refs. [22–25]. A description to obtain the solution
Eq. (C3) is also presented in Ref. [14].

APPENDIX D: MOMENTS OF THE DISTRIBUTION

In this section we calculate the first two cumulants of the
distribution obtained in Eq. (C3).

First of all we demonstrated the existence of all k moments
of the distribution Pn(t) defined by

hXk(t)i =
X
n∈N

nk Pn(t), (D1)

with k ∈ N. It is possible to demonstrate that all series defined
above converge uniformly ∀t . To demonstrate this, we define
the generatrix function

g(t,z) =
X
n∈N

Pn(t) zn, (D2)

for z ∈ R. If it converges, g(t,z) is well defined. For our case,
we know that

X
n∈N

In(x) −→ 1

2
[ex + I0(x)] (D3)

converges uniformly [15]. This allows us to write the distribu-
tion’s norm and demonstrate that it converges uniformly:

X
n∈N

Pn(t) −→ 1. (D4)

Another argument for the general birth-death process, based
on the nature of the coefficients {(νn,μn+1) : n ∈ N}, leads us
to the same conclusion [17].

For each t , we demonstrated that g(t,1) −→ 1 uniformly,
then for the Abel’s theorem [26],

X
n∈N

Pn(t) zn −→ g(t,z), (D5)

uniformly for each z ∈ [0,1].
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Therefore, Eq. (D2) can be derived term by term keeping
the uniform convergence ∀(t,k):

X
n∈N

n!

(n − k)!
Pn(t) −→ ∂zkg(t,z)|z=1. (D6)

Finally, hXk(t)i can be obtained as a combination of the
series given by Eq. (D6), which converges to ∂zkg(t,z)|z=1,
and this completes the demonstration.

We can use two methods for the calculation of the first two
moments, given the solution Eq. (C3).

The first one is by definition Eq. (D1) and using the
identity [15]

nIn(x) = x

2
[In−1(x) − In+1(x)]. (D7)

The second one is based on the series Eq. (D1) converging
uniformly. We can derive term by term the series Eq. (D1).
Using the evolution Eq. (C1) with Eq. (C2), we can obtain
a differential equation for the expectation value hX(t)i and
hX2(t)i:

dt hX(t)i = (ν − μ) + μP0(t), (D8)

dt hX2(t)i = 2ν − dt hX(t)i + 2(ν − μ)hX(t)i. (D9)

For the initial condition Pn(0) = δn0 then hXk(0)i = 0 and
integrate the last two equations:

hX(t)i = (ν − μ)t + μ

Z t

0
P0(τ )dτ, (D10)

hX2(t)i = 2νt − hX(t)i + 2(ν − μ)
Z t

0
hX(τ )idτ. (D11)

Equation (D10) shows that to determine hX(t)i it is
sufficient to know the distribution of probability of no blood
relationship P0(t) from Eq. (C3). Also, Eq. (D11) shows that
to determine hX2(t)i it is sufficient to know hX(t)i.

These two methods arrive at the same result for hX(t)i.
We are interested in computing the first two cumulants. The

first one is the expectation value and the second one is defined
as a function of the first two moments by h[X(t) − hX(t)i]2i =
hX2(t)i − hX(t)i2, respectively.

We have said that this is due to dilation of the sample space
St 7−→ N. This implies that distributions defined on N takes
smaller values than they should take on St .

Also, we show how hX(t)i is small compared to 2t+1, for
any value of ν > 0 and μ > 0.

Using Eq. (D10) and 0 6 P0(t) 6 1, we can express

|hX(t)i| 6 |ν − μ|t + μ

Z t

0
P0(τ )dτ 6 |ν − μ|t + μt.

(D12)

This shows that hX(t)i is subordinated to a linear function
in t , for all μ, ν, then the expected value of ancestors
hY (t)i = 2t+1 − hX(t)i will grow indefinitely with t as 2t+1.
We can consider by ignorance ν = μ, in the sense of not
knowing the functional form of the trend of the number of
ancestors. Although the knowledge of any particular trend
can be introduced in the gauge transformation. And, finally,

without loss of generality we can take μ = 1 = ν, since
the problem of nonsaturation will be solved by dilating the
distribution to compensate for the dilution of the sample space,
as we shall see in the next section. This dilation can be seen
as a renormalization. In the first place, we considered the case
where X(t) is defined on N with no renormalization at all.
In this way, the renormalization is interpreted as an operation
where the correct scale of the interaction is retrieved modifying
hX(t)i, as if we had solved the problem in the original sample
space St .

APPENDIX E: ON THE INTERACTION WITH A
FICTITIOUS ENVIRONMENT

We analyzed one of the main concepts: the dilution of the
sample space involves the study of an interaction between
the initial sample space with the fictitious environment. The
introduction of the dilution takes into account the interaction
with the lost boundary of St , under the condition that S is large
enough to include St for all t .

We can view the process onSt as the result of a process onS
that interacts with another process defined on the complement
set Rt = S − St . This point of view can be described in a
mathematical precise sense. We define the associated vector
spaces {S,St ,Rt } to the sets {S,St ,Rt }, where φφφ is a vector in
S, which dim(S) = N + 1. If the sample space St has nt + 1
number of states, we define ϕϕϕ as the first nt + 1 component
of φφφ, i.e., ϕϕϕ is vector of St . We expressed these vectors in a
canonical basis {eeen}n=0, ··· , N , such that

φφφ(t) =
X
n∈S

Pn(t)eeen

(E1)
φφφ(t) =

X
n∈St

Pn(t)eeen +
X
n∈Rt

Pn(t)eeen,

then we have

φφφ(t) = ϕϕϕ(t) + ψψψ(t), (E2)

where eee0 = (1,0, · · · ,0)|, eee1 = (0,1, · · · ,0)|, and so forth.
For construction, St is orthogonal to Rt . The dimensions of
these vector spaces are determined by dim(S) = N + 1 and
dim(St ) = nt + 1.

From Eq. (E2), we see, roughly speaking, that the process
on St is the result of interaction between the process on S and
Rt through

ϕϕϕ(t) = φφφ(t) − ψψψ(t). (E3)

We can write down the evolution Eq. (A16) in the form

dtϕϕϕ(t) = Qss(t)ϕϕϕ(t) + Qsr (t)ψψψ(t), (E4)

dtψψψ(t) = Qrs(t)ϕϕϕ(t) + Qrr (t)ψψψ(t), (E5)

where Qab is the a × b block matrix of Q, for a,b ∈ {s,r},
s = nt + 1, and r = N − nt , explicitly

Q =
µ

Qss Qsr

Qrs Qrr

¶
. (E6)

We see that the equations for ϕϕϕ and ψψψ are coupled, hence
the interaction character that was noted above. To be more
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specific, we write a relation of two partial solutions ψψψ and ϕϕϕ,

ψψψ(t) =
Z
R

Krs(t,t
0)ϕϕϕ(t 0)dt 0, (E7)

where Eq. (E7) satisfies Eq. (E5) and Krs(t,t 0) is the kernel of
this transformation defined as

Krs(t,t
0) = T

½
exp

· Z t

t 0
Qrr (τ )dτ

¸¾
Qrs(t

0) θ (t − t 0),

(E8)

and θ (t) are the unit step distribution and T is the time-ordered
operator defined as

T [A(t)A(u)] =
½

A(t)A(u) : t > u

A(u)A(t) : u > t
. (E9)

We can obtain another expression for Eq. (E4),

dtϕϕϕ(t) =
Z
R

Kss(t,t
0)ϕϕϕ(t 0)dt 0, (E10)

where Kss is the kernel of the integrodifferential Eq. (E10)
defined as

Kss(t,t
0) = Qss(t

0)δ(t − t 0) + Qsr (t)Krs(t,t
0), (E11)

and δ(t) is the δ distribution.
The same argument allows us to obtain an inverse relation

of Eq. (E7),

ϕϕϕ(t) =
Z
R

Ksr (t,t 0)ψψψ(t 0)dt 0, (E12)

simply interchange in Eqs. (E8), (E10), and (E11) the quanti-
ties ϕϕϕ ←→ ψψψ , r ←→ s.

The mathematical construction presented here shows how
a process in S can be described by the interaction of two
subprocesses in St and Rt . Specifically, this interaction can be
viewed in the relation Eq. (E7) or its inverse Eq. (E12).

In other words, the process on St can be seen as the
interaction between the processes on S and Rt = S − St ;
this interaction emerges from the elements of infinitesimal
transition probabilities present in Kss(t,t 0) through Eqs. (E11)
and (E8).

APPENDIX F: DILATION-DILUTION TRANSFORMATION

The dilution operation of St into a larger sample space
S can also be understood as an dilation represented by
the substitution rule nt 7−→ N . In a general sense, every
dilution-dilation transformation involves a renormalization of
the distribution obtained above.

To illustrate this point let us consider two distributions,
{pn : n ∈ S} and {Pn : n ∈ S}, defined over the sample spaces
S and S, respectively, such that S ⊂ S and both are normalized
in each sample space. By definition we have

X
n∈S

Pn =
X

n∈S−S

Pn +
X
n∈S

Pn = 1. (F1)

Since all terms of Eq. (F1) are positive, there exists a subset of
S in which the distribution Pn, restricted to S, is smaller than

{pn : n ∈ S}. We can see it in this fromX
n∈S

Pn <
X
n∈S

pn. (F2)

We want to describe the process {pn : n ∈ S} through the
process of {Pn : n ∈ S} projecting the distribution Pn over S.
Since there are values of S for which Pn is less than pn, that
projection should amplify Pn to improve the stated description.
This amplification corresponds to a dilation transformation.

We had mentioned that the renormalization is performed
through a linear time-dependent transformation. As we con-
serve the linearity of Eq. (A16) and since the original sample
spaceSt is time-dependent, the norm must be corrected locally.
This local transformation is structured as a gauge group,
specifically a group of local dilations.

On the other hand, this transformation can be viewed
through a projection of the distribution Pn(t) onSt , which filter
a subset of states and renormalizes the distribution. We used
the concept of conditional probability to relate and motivate
the renormalization through a gauge transformation. To be
more clear, we distinguish the gauge transformed distribution
pn(t) and the projected distribution qn(t).

We used a dilation on a generic sample space S = [0,N ],
for a natural number N .

Let’s consider the following example. If qn(t) is defined as

qn(t) = P[X(t) = n|X(t) ∈ St ], (F3)

this distribution is equal to zero for all states such that n ∈
S − St . Applying the Bayes identity [17], we have

P[A|B]P[B] = P[B|A]P[A], (F4)

and we can express qn(t) as

qn(t) = 3(t)Pn(t), (F5)

where

3(t) = P[X(t) ∈ St |X(t) = n]

P[X(t) ∈ St ]
. (F6)

The numerator of Eq. (F6) is only equal to 0 or 1 depending on
whether n ∈ S − St or n ∈ St , respectively. The denominator
of Eq. (F6) is P[X(t) ∈ St ] = P[X(t) 6 nt ] and for the
mutually exclusive events we have

P[X(t) ∈ St ] =
X
n∈St

Pn(t) < 1, (F7)

which implies qn(t) > Pn(t), for n ∈ St . Equation (F5) in-
volves a probability fraction that can be viewed as a projection
operator that transforms distributions defined on S into
distributions defined on St , by filtering selected states and
redefining the correct normalization.

The last discussion about the conditional probability as
a projection operation motivates the following construction.
Given a process in S described by φφφ(t) = [P0(t), · · · ,PN (t)]|,
which satisfies a general equation, similar to Eq. (A16),

dtφφφ(t) = Q(t)φφφ(t), (F8)

and the dilation transformation

gt : Pn(t) −→ pn(t), (F9)
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where pn(t) = λ(t)Pn(t) are the components of φφφ0(t) =
[p0(t), · · · ,pN (t)]|. We showed that the covariance require-
ment is satisfied if gt is a gauge transformation, this implies
the addition of a covariant derivative. To prove this statement
we transform a general evolution Eq. (F8) through a local
dilation group gt :

dtφφφ
0(t) − dtλ(t)[λ(t)]−1φφφ0(t) = Q(t)φφφ0(t). (F10)

In order to keep the shape of Eq. (A16) when we transformed
by gt , we need to introduce an affine connection that can be
implemented through a covariant derivative given by

Dt = dt − ω(t), (F11)

where ω(t) = dtλ(t)[λ(t)]−1 is the gauge function.
In this case, the evolution equation for φφφ0(t) is

Dtφφφ
0(t) = Q(t)φφφ0(t), (F12)

which is invariant under the local dilation group.
The definition Eq. (F11) allows that the distributions Pn(t)

and pn(t), related by gauge, corresponds to a Markov process.
For the case of this work, the gauge function ω(t) is

independent of the t generation, then λ(t) = 2at+b, for a,b

are real constants. Otherwise, the time dependence of ω(t)
introduces a time inhomogeneity in the process.

The example used to motivate the definition Eq. (F9) can be
extended to describe a rich variety of cases. If we generalized
qn(t) as

qn(t) = P[X(t) = n|X(t) ∈ St ,Z], (F13)

where Z is an extra condition and eventually space-time
dependent. The distribution Eq. (F13) is equal to zero for

n ∈ S − St . Then, for the Bayes identity Eq. (F4) applied to
Eq. (F13),

qn(t) = 3n(t)Pn(t), (F14)

where

3n(t) = P[X(t) ∈ St ,Z|X(t) = n]

P[X(t) ∈ St ,Z]
. (F15)

In a more abstract sense, we consider a partition of S =
{Bn : n ∈ S}, and let us consider the event An written in the
following way:

An =
[
m∈S

An ∩ Bm. (F16)

Therefore, we use the law of total probability,

P[An] =
X
m∈S

P[An|Bm]P[Bm], (F17)

for a particular case of the partition Bm = {m} and P[An] =
qn(t), then

qn(t) =
X
m∈S

3nm(t)Pm(t), (F18)

where

3nm(t) = P[An|X(t) = m]. (F19)

But, of course, Eq. (F18) contains the example presented
in this work if we take 3nm(t) ≡ λ(t)δnm. Equation (F18)
motivates the natural generalization of a gauge transformation
proposed in Eq. (20).
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