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Abstract

One of the most useful tools for distinguishing between chaotic and stochastic time series
is the so-called complexity-entropy causality plane. This diagram involves two complexity
measures: the Shannon entropy and the statistical complexity. Recently, this idea has been
generalized by considering the Tsallis monoparametric generalization of the Shannon entropy,
yielding complexity-entropy curves. These curves have proven to enhance the discrimination
among different time series related to stochastic and chaotic processes of numerical and
experimental nature. Here we further explore these complexity-entropy curves in the context
of the Rényi entropy, which is another monoparametric generalization of the Shannon entropy.
By combining the Rényi entropy with the proper generalization of the statistical complexity,
we associate a parametric curve (the Rényi complexity-entropy curve) with a given time
series. We explore this approach in a series of numerical and experimental applications,
demonstrating the usefulness of this new technique for time series analysis. We show that
the Rényi complexity-entropy curves enable the differentiation among time series of chaotic,
stochastic, and periodic nature. In particular, time series of stochastic nature are associated
with curves displaying positive curvature in a neighborhood of their initial points, whereas
curves related to chaotic phenomena have a negative curvature; finally, periodic time series
are represented by vertical straight lines.

Keywords: time series, Rényi entropy, complexity measures, ordinal patterns probabilities

1. Introduction

Quantifying the degree of complexity of a system is a common task when studying the
most diverse complex systems. This task usually starts by constructing a time series and then
considering a complexity measure. Since there is an inherent difficulty in defining the concept
of complexity, researchers have employed several approaches/theories as possible complexity
measures. A non-exhaustive list includes entropies [1], relative entropies [2], algorithmic
complexities [3], fractal dimensions [4], Lyapunov exponents [5], and other tradicional nonlinear
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time series methods [6]. However, most of these approaches suffer from the drawbacks of
being strongly sensitive on tuning parameters, hindering the reproducibility of results.

A possible way to overcome these difficulties is to employ the permutation entropy,
introduced by Bandt and Pompe [7]. This complexity measure is basically the Shannon
entropy of the distribution of the permutations associated with d-dimensional partitions
(xk, xk+1, . . . , xk+d−1) of a time series (x1, . . . , xm). It is common to choose d ∈ {3, 4, 5, 6, 7}
in most practical applications, in such a way that the number of permutations d! is much
smaller than m. For this reason, the computational cost of computing the permutation
entropy is usually lower than the ones related to other complexity measures. Also, the idea
of associating permutations with finite-dimensional partitions of a time series allows the
application of this method to time series of arbitrary nature. These remarks agree with
the fact that the method of Bandt and Pompe is already widely spread over the scientific
community [8, 9, 10, 11, 12, 13, 14, 15, 16, 17].

In some cases, the permutation entropy can distinguish among time series of regular, chaotic
and stochastic behavior. However, Rosso et al. [18] have demonstrated that this complexity
measure alone is not enough for properly performing this task. For instance, they have shown
that time series related to the logistic map at fully developed chaos and time series associated
with power-law correlated noises can display practically the same value of permutation entropy.
Mainly because of that, Rosso et al. have employed the joint use of the permutation entropy
and another complexity measure, called the statistical complexity [19, 20, 21]. The statistical
complexity is basically the product of the permutation entropy by a distance between the
distribution of the permutations and the uniform distribution. Having the values of the
permutation entropy H and the statistical complexity C associated with a given time series,
Rosso et al. have represented this series by a point (H,C) in a diagram of C versus H. This
diagram is the so-called complexity-entropy causality plane, where the term causality refer to
the fact that temporal correlations are taken into account by the Bandt and Pompe approach.
In this representation space, time series of chaotic and stochastic nature are represented by
points located in different regions, that is, noise and chaos can be distinguished by using the
complexity-entropy causality plane.

However, we have recently depicted several situations in which the values of H and C
are not enough for distinguishing among time series of distinct nature [22]; for instance,
the points (H,C) can become very close to each other for time series displaying different
periodic and chaotic behaviors. Motivated by this fact, we have extended the causality plane
for considering the Tsallis [23] monoparametric generalization of the Shannon entropy [22].
The values of the parameter of the Tsallis entropy give different weights to the probabilities
associated with the permutations; consequently, different dynamical scales of the system are
accessed by varying the entropy parameter. In that article, we associated parametric curves
with time series based on the different values of (H,C) obtained by changing the Tsallis
entropy parameter, a representation that we call the complexity-entropy curve. These curves
have proven to enhance the differentiation of time series of regular, chaotic and stochastic
nature even in cases in which the usual complexity-entropy causality plane does not provide
useful information.

On the other hand and similarly to what happens with the concept of complexity, there are
several other entropy definitions in the context of information theory [24, 25, 26]. These differ-
ent entropies allow us to explore, capture and quantify different forms of complexity, leading
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us to more suitable descriptions for characterizing the most diverse complex systems addressed
by physicists. Here we further explore this idea by considering the Rényi entropy [27] in place
of the Tsallis entropy [23]. The Rényi entropy is also a monoparametric generalization of the
Shannon entropy, which has been employed in several contexts such as medical/diagnostics
applications [28], time-frequency analysis [29], quantum entanglement measures [30, 31], and
image thresholding [32]. Therefore, in analogy to the Tsallis entropy case, we shall associate
a parametric curve with a given time series (the Rényi complexity-entropy curve), and by
exploring some properties of this curve, we can characterize the time series under study.
Among other findings, we show that the curvature of these curves identifies whether a time
series is of a stochastic or a chaotic nature, and that periodic time series are represented by
vertical straight lines.

The organization of the article is as follows. Section 2 provides the definitions of the Rényi
entropy and the Rényi statistical complexity. Section 3 gives a brief description of the method
of Bandt and Pompe for defining the ordinal probabilities from a given time series. We also
work out a list of general properties of the Rényi complexity-entropy curves. In Section 4, we
analyze several time series of chaotic and stochastic nature, obtained by numerical procedures
or by experimental measurements. Finally, we conclude in Section 5.

2. A definition of a statistical complexity based on the Rényi entropy

The Rényi entropy of a discrete probability distribution p = (p1, . . . , pn) is defined as [27]

Sα(p) =
1

1− α
ln

n∑
i=1

pαi , α > 0 , α 6= 1 . (1)

From this definition, we immediately note that Sα(p) recovers the Shannon entropy of p
when α tends to 1. We can further verify that the maximum value of the Rényi entropy is
equal to lnn (as in the Shannon entropy case), which happens when the uniform distribution
u = (1/n, . . . , 1/n) is considered. This enables us to define the normalized Rényi entropy of p
as

Hα(p) =
Sα(p)

lnn
. (2)

By following Martin, Plastino and Rosso [33], we define the Rényi statistical complexity
of p as

Cα(p) =
Dα(p)Hα(p)

D∗α
, (3)

where

Dα(p) =
1

2(α− 1)

[
ln

n∑
i=1

pαi

(
pi + 1/n

2

)1−α

+ ln
n∑
i=1

1

nα

(
pi + 1/n

2

)1−α
]

(4)
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and

D∗α =
1

2(α− 1)
ln

[
(n+ 1)1−α + n− 1

n

(
n+ 1

4n

)1−α
]
. (5)

The quantity Dα(p) is always non-negative [34] and can be interpreted as a distance between
the distribution p = (p1, . . . , pn) and the uniform distribution u = (1/n, . . . , 1/n). In fact,
Dα(p) is a generalization of the Jensen-Shannon divergence of p and u [35]. The quantity
D∗α represents the maximum value of Dα(p), which is reached when p has only one non-zero
component. By combining this fact with Eq. (3), we have that 0 ≤ Cα(p) ≤ 1.

3. Rényi complexity-entropy curves in the framework of Bandt and Pompe

We start by briefly describing the method of Bandt and Pompe [7] for defining the ordinal
probabilities from a given time series (x1, . . . , xm). Fixed an integer d > 1 such that d!� m,
we consider the set E of all d-dimensional vectors (xk, . . . , xk+d−1), where k = 1, . . . ,m−d+1.
We next define a mapping Π from E into the set of all permutations of the set {0, . . . , d− 1}
such that Π(xk, . . . , xk+d−1) = π, where the permutation π, which can be represented as a
vector (π(0), . . . , π(d− 1)), satisfies the conditions

(i) xk+π(0) ≤ . . . ≤ xk+π(d−1);

(ii) if xk+π(j) = xk+π(j+1), then π(j) < π(j + 1).

Finally, we define the probabilities

p(π) =
#{v ∈ E : Π(v) = π}

m− d+ 1
, (6)

where the symbol # denotes cardinality.
To illustrate the procedure described above, let us consider the hypothetical time series

(3, 5, 1, 6, 6, 4). By choosing d = 2, the vectors in E are (3, 5), (5, 1), (1, 6), (6, 6) and (6, 4).
Then, Π(3, 5) = Π(1, 6) = Π(6, 6) = (0, 1) and Π(5, 1) = Π(6, 4) = (1, 0). Hence, we have the
probabilities p(0, 1) = 3/5 and p(1, 0) = 2/5.

Having the probability distribution associated with the time series (x1, . . . , xm), we
calculate the normalized Rényi entropy and the statistical complexity by using Eqs. (2)
and (3) with n = d!. In this manner, for each embedding dimension d, we construct a
parametric curve Cα(p) versus Hα(p), considering α as a real parameter that takes values in
the interval (0,∞). We call these curves as the Rényi complexity-entropy curves by analogy
with the q-complexity-entropy curves obtained using the Tsallis entropy [22]. Since Hα(p) is
a monotonically non-increasing function of α [34, 36], Rényi complexity-entropy curves are
never closed, i.e., they do not form loops, in contrast with q-complexity-entropy curves, which
are likely to form loops for time series related to stochastic processes.

We can prove the following general properties of the Rényi complexity-entropy curves
associated with an arbitrary time series in the framework of Bandt and Pompe, considering
an embedding dimension d (see Appendix A for details):

(i) If only one permutation occurs — for instance, if the time series is strictly monotonic —
the Rényi complexity-entropy curve reduces to the single point (0, 0).
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(ii) If all the allowed permutations occur, the Rényi complexity-entropy curve begins at
the point (1, 0), corresponding to α ↓ 0 (that is, when α tends to zero from the right),
and ends at the point (hf , cf ), corresponding to α→∞. From hf , we obtain the value
of the maximum component pM of the probability distribution by using the simple
relation pM = (d!)−hf . The ending point (hf , cf ) also gives us the value of the minimum
component pm of the probability distribution by the relation

pm =
4pM

d!pM + 1

(
d! + 1

4d!

)cf/hf
− 1

d!
. (7)

(iii) If r permutations occur, with 1 < r < d!, then the Rényi complexity-entropy curve
begins at a point (hi, ci) and ends at a point (hf , cf). The starting point gives us the
value of r by means of the simple relation r = (d!)hi . From the ending point, we obtain
the value of the maximum component pM of the probability distribution by using the
relation pM = (d!)−hf . In this case, the minimum component of p is clearly zero.

An interesting consequence of item (iii) happens when the r permutations that actually
occur have the same probability, namely 1/r. In this case, we have that pM = 1/r, and from
r = (d!)hi and pM = (d!)−hf , we obtain that hf = hi = ln r/ ln d!. Thus, the corresponding
Rényi complexity-entropy curve is a vertical straight line — we can verify straightforwardly
that the statistical complexity still depends on the parameter α in this case. This situation
can arise from the analysis of a time series displaying a periodic behavior.

4. Characterization of time series via Rényi complexity-entropy curves

In this section, we explore the Rényi complexity-entropy curves associated with several
time series using the procedure described in the previous section. In our analysis, we consider
time series obtained by numerical procedures (such as chaotic maps) and experimental
measurements (such as fluctuations of crude oil prices).

4.1. Fractional Brownian motions

A stochastic process (BHt )t≥0, characterized by a parameter H ∈ (0, 1), is called a fractional
Brownian motion [37, 38] if it is a Gaussian process with null expectation and covariance
function

E(BHt B
H
s ) =

1

2
(t2H + s2H − |t− s|2H) . (8)

The parameter H is usually called the Hurst parameter or the Hurst exponent. If H = 1/2,
the increments BHt2 − B

H
s2

and BHt1 − B
H
s1

, with s1 < t1 < s2 < t2, are independent and the
usual Brownian motion is recovered. If H > 1/2 (H < 1/2), these increments are positively
(negatively) correlated. This means, roughly speaking, that positive increments in the past
are likely to generate positive (negative) increments in the future and vice versa. Moreover, if
1/2 < H < 1, the fractional Brownian motion exhibits long-range correlations, in the sense
that [39]

∞∑
n=1

|E((BHn+1 −BHn )(BH1 −BH0 ))| =∞ . (9)
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We numerically generate time series of length 217 from fractional Brownian motions
with different Hurst exponents using Hosking’s procedure [40]. Figure 1 shows the Rényi
complexity-entropy curves related to fractional Brownian motions with Hurst exponents
H ∈ {0.1, . . . , 0.8}. In the left panels, an embedding dimension d = 3 has been considered
whereas d = 4 has been used for the right panels. Each colored curve in Fig. 1 represents
the mean Rényi complexity-entropy curve over 100 realizations associated with a given Hurst
parameter, and the shaded areas are obtained by considering two standard deviations in both
the Hα and Cα values. The dashed lines were obtained using the analytical expressions for the
probabilities of the permutations when d = 3 and d = 4, obtained by Bandt and Shiha [41]
(see also Appendix B of Ref. [22]).
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Figure 1: The Rényi complexity-entropy curves related to fractional Brownian motions with Hurst exponents
H ∈ {0.1, . . . , 0.8}. We have considered the embedding dimensions d = 3 for the left panels, and d = 4 for the
right panels. The colored lines represent the mean Rényi complexity-entropy curves over 100 realizations,
and the shaded areas are obtained by considering two standard deviations in both the Hα and Cα values.
The dashed lines are the Rényi complexity-entropy curves obtained analytically using the exact probabilities
given in Ref. [41]. The markers + and ◦ indicate the beginning and the end of each curve respectively. The I
markers indicate the ordered pair associated with the usual permutation entropy and statistical complexity
values obtained when α tends to 1.

We note immediately from Fig. 1 that all Rényi complexity-entropy curves start at the
point (1, 0), indicating that all permutations occur for embedding dimensions d = 3 and d = 4.
We further observe a good agreement between the numerically obtained curves and the exact
results. Another common characteristic of these curves is that they have a positive curvature
in a neighborhood of the starting point (1, 0). In other words, the derivative dCα/dHα is a
monotonic increasing function of α in a neighborhood of α = 0, as shown in Fig. 2. Putting
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H∞ = limα→∞Hα, we observe from Fig. 1 that H∞ is a monotonically decreasing function
of the Hurst parameter. Moreover, the points associated with these values (indicated by
◦ markers) are more distant from each other than the ones related to the usual Shannon
entropy (indicated by I markers). Thus, these points associated with H∞ enable a better
differentiation of time series related to fractional Brownian motions with different Hurst
exponents, as it was also discussed in Ref. [42].
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Figure 2: Representation of the derivative of the statistical complexity Cα with respect to the entropy
Hα as a function of the Rényi parameter α for the fractional Brownian motions with Hurst parameter
H ∈ {0.1, . . . , 0.8}, the same considered in Fig. 1.

4.2. Chaotic maps at fully developed chaos

In addition to time series obtained from stochastic processes, we also investigate time series
associated with chaotic phenomena. In particular, we construct time series of length 104 + 217

by the iteration of eight different chaotic maps, namely: Burgers, cubic, Gingerbreadman,
Henon, logistic, Ricker, sine, and Tinkerbell maps, at fully developed chaos. Details about
each map are provided in Appendix C of Ref. [22]. For the two-dimensional chaotic maps of
Burgers, Gingerbreadman, Henon and Tinkerbell maps, we have considered the time series of
the square of the sum of the two components. To avoid any possible transient behavior, we
have removed the first 104 iterations in all simulations.

Figure 3 shows the Rényi complexity-entropy curves associated with the eight chaotic
maps mentioned in the previous paragraph. For each map, we have considered the embedding
dimensions d ∈ {3, 4, 5, 6}. In contrast with the curves associated with fractional Brownian
motions, the Rényi complexity-entropy curves related to chaotic maps begin at points different
from (1, 0), at least for embedding dimensions d > 4. This feature indicates that there
are permutations that do not occur. We further note that, at least for d = 6, the Rényi
complexity-entropy curves have negative curvature in a neighborhood of their initial point, i.e.,
the derivative dCα/dHα is a decreasing function of the Rényi parameter α in the neighborhood
of α = 0, as shown in Fig. 4.
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Figure 3: Rényi complexity-entropy curves of various chaotic maps at fully developed chaos. The embedding
dimensions d ∈ {3, 4, 5, 6} were considered for each chaotic map. The markers + and ◦ indicate the beginning
and the end of each curve respectively. The I markers indicate the ordered pair associated with the usual
permutation entropy and statistical complexity obtained when α tends to 1.
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a function of the Rényi parameter α for the chaotic maps considered in Fig. 3.
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4.3. The logistic map

Among the chaotic maps considered in the previous subsection, the logistic map is
undoubtedly one of the most famous. This map is defined by the recurrence formula

yk+1 = ayk(1− yk) , (10)

where a is a real parameter, whose values of interest are in the interval [0, 4]. A modification
of the value of a changes the behavior of the logistic map. For instance, this map exhibits
simple periodic behavior for a = 3.05, stable cycles of period 4 for a = 3.5 and of period 8
for a = 3.55, and chaos for most values of a > 3.56994567 . . . and for a = 4 (fully developed
chaos).

Figure 5a shows the Rényi complexity-entropy curves associated with the logistic map for
a ∈ {3.05, 3.5, 3.55, 3.593, 4} and embedding dimension d = 4. We note that all curves begin
at points different from (1, 0), indicating the lack of some permutations. Moreover, the Rényi
complexity-entropy curves for a = 3.593 and a = 4, which correspond to two chaotic regimes
of the logistic map, show negative curvature in a neighborhood of their starting points. On
the other hand, for the other values of a, for which the logistic map has a periodic behavior,
the Rényi complexity-entropy curves are almost vertical lines. This indicates that, for each
a ∈ {3.05, 3.5, 3.55}, the permutations that actually occur have the same probability. This
can be verified directly using the representation of the corresponding time series. Moreover,
the Rényi complexity-entropy curves for a = 3.5 and a = 3.55 coincide, suggesting that both
time series have the same probability distribution of the permutations. In fact, a detailed
inspection of these time series reveals that the permutations that actually occur are the same
for both of them. Another curious fact from Fig. 5a is that the point associated with the usual
permutation entropy and statistical complexity for a = 3.55 and a = 3.593 almost coincide
even when these two values correspond to completely different regimes of the logistic map.

The logistic map specially attracts our interest because the probabilities of the permutations
obtained from its time series within the Bandt and Pompe approach can be found analytically
when a = 4 and d = 3. In fact, Amigó et al. [43, 44, 45, 46] have shown that the list
(yk, yk+1, yk+2) corresponds to the permutation (0, 1, 2) if 0 < yk < 1/4. In the same way,

the permutation (0, 2, 1) occurs if 1/4 < yk <
5−
√
5

8
, (2, 0, 1) if 5−

√
5

8
< yk < 3/4, (1, 0, 2)

if 3/4 < yk <
5+
√
5

8
, (1, 2, 0) if 5−

√
5

8
< yk < 1, and no list (yk, yk+1, yk+2) corresponds to

the permutation (1, 0, 2). Combining this information with the fact that the logistic map
with a = 4 has an invariant distribution concentrated in the interval (0, 1) with density
π−1y−1/2(1− y)−1/2 [47], we obtain the probabilities of the permutations by integrating this
density in each interval for which each permutation occurs. Thus, we obtain the distribution
p = (1/3, 1/15, 4/15, 2/15, 1/5, 0) (following the order of appearance of the permutations),
from which we analytically compute Hα(p) and Cα(p). Figure 5b shows a comparison between
the numerical and the analytical Rényi complexity-entropy curves associated with the logistic
map for a = 4 and embedding dimension d = 3, where we note that both curves practically
coincide.

4.4. Empirical data

The analyses performed in the previous subsections suggest that the Rényi complexity-
entropy curves enable the distinction of time series associated with stochastic processes, chaotic
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Figure 5: (a) The Rényi complexity-entropy curves associated with the logistic map for typical values of the
parameter a and embedding dimension d = 4. The + and ◦ markers represent the beginning and end of the
curves respectively. The I marker identifies the point associated with the usual permutation entropy and
statistical complexity, obtained when α tends to 1. (b) The Rényi complexity-entropy curve associated with
the logistic map for a = 4 and d = 3. The dotted curve was analytically obtained using the exact values of
the probabilities of the permutations. The meanings of the +, ◦ and I markers are the same as in panel (a).

phenomena, and periodic behaviors. More precisely, a positive curvature of this curve in a
neighborhood of its starting point indicates that the associated time series is of a stochastic
nature, whereas a negative curvature, at least for large embedding dimensions, expresses that
the time series may be of a chaotic nature. Also, a vertical Rényi complexity-entropy curve
indicates that the time series has a periodic behavior. To further explore these affirmations, we
now consider time series obtained by experimental measurements. In particular, we consider
the time series generated from the intensity pulsations of a laser [48], which is of a chaotic
nature, and the one associated with the fluctuations of the crude oil price, which is of a
stochastic nature.

The time series associated with the chaotic intensity pulsations of a laser has 9093 terms
and is freely available on the Internet [49]. The time series related to the crude oil prices refers
to the daily closing spot price of the West Texas Intermediate from January 2, 1986, to July
10, 2012. This time series has 7788 terms and can also be obtained freely on the Internet [50].
The Rényi complexity-entropy curves for both time series and their derivatives as functions of
the Rényi parameter α are represented in Fig. 6 for embedding dimensions d ∈ {3, 4, 5, 6}.
We note that the Rényi complexity-entropy curves associated with the intensity pulsations of
a laser start at points different from (1, 0) for embedding dimensions d > 3, indicating the
lack of some permutations. Moreover, the curvature of these curves in a neighborhood of
their initial point is negative for embedding dimensions d ≥ 5, in agreement with the chaotic
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nature of the corresponding time series. The Rényi complexity-entropies associated with
the fluctuations of the crude oil price begin at the point (1, 0), except for the embedding
dimension d = 6. A possible justification for this fact is that the length of the series is not
great enough — note that 6! = 720, which is not too much less than 7788. On the other
hand, the curvature of these curves in a neighborhood of their starting points is positive, in
agreement with the stochastic nature of the corresponding time series.

In addition to time series with a well-defined nature, we also analyze the time series of the
monthly smoothed sunspots index, for which there is still no consensus about its stochastic or
chaotic nature [51, 52, 53, 54, 55, 56, 57]. This time series is freely available on the Internet [58]
and was generated by analyzing the 13-month smoothed monthly sunspot index from 1974 to
2016, yielding a time series with 3202 terms. The Rényi complexity-entropy-curves associated
with this time series and their derivatives as functions of the Rényi parameter α for embedding
dimensions d ∈ {3, 4, 5, 6} are represented in Fig. 6. We note that the Rényi complexity-
entropy curves start at the point (1, 0), except for the embedding dimensions d = 5 and d = 6.
Moreover, the curvature of these curves are positive for embedding dimensions d ∈ {3, 4, 5}
and is negative for d = 6. For these reasons, we are not in a good position to state anything
about the nature of the corresponding time series mainly because of its small length.

5. Conclusions

We have considered a generalized definition of the statistical complexity based on a
monoparametric generalization of the Shannon entropy, namely the Rényi entropy. We have
used this generalized statistical complexity Cα in combination with the normalized Rényi
entropy Hα to construct a parametric curve Cα versus Hα, taking the Rényi parameter α > 0
as the parameter of the curve. From this approach, we have analyzed several time series
obtained from numerical simulations and experimental measurements. Our study has revealed
that the use of Rényi complexity-entropy curves enables the differentiation of time series of
chaotic and stochastic nature. More precisely, time series of stochastic nature are associated
with Rényi complexity-entropy curves that have positive curvature in a neighborhood of their
initial points. On the other hand, the curves related to chaotic phenomena have negative
curvature in a neighborhood of their initial points, at least for large embedding dimensions.

The use of Rényi complexity-entropy curves enhances the detection of time series that have
periodic behavior since for them the Rényi complexity-entropy curves are vertical lines. This
feature is absent in the framework of q-complexity-entropy curves [22], which are based on the
Tsallis entropy. Thus, Rényi complexity-entropy curves may give complementary information
about time series that are not properly taken into account by the q-complexity-entropy curves.
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Figure 6: (Left panels) Rényi complexity-entropy curves for time series associated with the chaotic intensity
pulsations of a laser, the fluctuations of the crude oil price, and the monthly smoothed sunspot index. The
embedding dimensions d ∈ {3, 4, 5, 6} were considered for each time series. The + and ◦ markers denote the
beginning and the end of each curve. The I markers represent the ordered pairs corresponding to the usual
permutation entropy and statistical complexity, obtained when α tends to 1. (Right panels) Representation
of the derivative of Cα with respect to Hα as a function of the Rényi parameter α for the time series and
embedding dimensions considered in the left panels.
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Appendix A. Limit values of Hα and Cα

Theorem. Given an arbitrary discrete probability distribution p = (p1, . . . , pn), let r be the
number of non-zero components of p. If r = 1, then

(i) Hα(p) = 0 and Cα(p) = 0;

if r > 1 and pM , pm ∈ [0, 1] denote the maximum and minimum components of p respectively,
then

(ii) limα↓0Hα(p) = ln r/ lnn;

(iii) limα→∞Hα(p) = − ln pM/ lnn;

(iv) limα↓0Cα(p) = ln r
lnn

ln(n+r)−ln 2n
ln(n+1)−ln 2n

;

(v) limα→∞Cα(p) = ln[(npM+1)(npm+1)]−ln 4npM
ln 4n−ln(n+1)

ln pM
lnn

.

Proof. Items (i) and (ii) follow directly from the definitions of Hα and Cα.

(iii) We have pαM ≤
∑n

i=1 p
α
i ≤ rpαM and, consequently, ln pαM ≤ ln(

∑n
i=1 p

α
i ) ≤ ln(rpαM).

Hence, for α > 1,

α

1− α
ln pM
lnn

≥ 1

(1− α) lnn
ln

n∑
i=1

pαi

≥ α

1− α
ln pM
lnn

+
ln r

(1− α) lnn
. (A.1)

Letting α increase without bound, we obtain Hα(p)→ − ln pM/ lnn.

(iv) We verify immediately that

lim
α↓0

D∗α = −1

2
ln
n+ 1

2n
(A.2)

and

lim
α↓0

Dα(p) = −1

2
ln

(
1

2
+
r

n

)
. (A.3)

Hence,

lim
α↓0

Cα(p) =
ln r

lnn

ln(n+ r)− ln 2n

ln(n+ 1)− ln 2n
. (A.4)

(v) We have

Dα(p)

D∗α
=

ln[
∑n

i=1 pi(
pi+1/n

2pi
)1−α

∑n
j=1

1
n
(
pj+1/n

2/n
)1−α]

(α− 1) ln 4n
n+1

+ ln (n+1)1−α+n−1
n

. (A.5)

To find the limit of Eq. (A.5) as α→∞, we start by obtaining convenient upper and lower
bounds of Dα(p)/D∗α. With this in mind, we note that

pi + 1/n

pi
= 1 +

1

npi
≥ 1 +

1

npM
(A.6)
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and, consequently, for α > 1,

n∑
i=1

pi

(
pi + 1/n

2pi

)1−α

≤
(
pM + 1/n

2pM

)1−α

. (A.7)

On the other hand, using the fact that

pi + 1/n

1/n
= npi + 1 ≥ npm + 1 , (A.8)

we obtain that
n∑
i=1

1

n

(
pi + 1/n

2/n

)1−α

≤
(
npm + 1

2

)1−α

. (A.9)

Since the denominator in Eq. (A.5) is positive for sufficiently large α, using Eqs. (A.7)
and (A.9) in Eq. (A.5), we have

Dα(p)

D∗α
≤

(α− 1) ln 4npM
(npM+1)(npm+1)

(α− 1) ln 4n
n+1

+ ln (n+1)1−α+n−1
n

(A.10)

for sufficiently large α. To obtain a lower bound, we note immediately that

pM

(
pM + 1/n

2pM

)1−α

≤
n∑
i=1

pi

(
pi + 1/n

2pi

)1−α

(A.11)

and that
1

n

(
pm + 1/n

2/n

)1−α

≤
n∑
i=1

1

n

(
pi + 1/n

2/n

)1−α

. (A.12)

Hence,

Dα(p)

D∗α
≥

(α− 1) ln 4npM
(npM+1)(npm+1)

+ ln pM
n

(α− 1) ln 4n
n+1

+ ln (n+1)1−α+n−1
n

(A.13)

for sufficiently large values of α. Then, it follows from Eqs. (A.10) and (A.13) that

lim
α→∞

Dα(p)

D∗α
=

ln 4npM − ln[(npM + 1)(npm + 1)]

ln 4n− ln(n+ 1)
. (A.14)

The product of this result with the one obtained in item (iii) is equal to the limit of Cα(p) as
α increases without bound. �
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