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Abstract. When large models are used for a classification task, model compres-
sion is necessary because there are transmission, space, time or computing con-
straints that have to be fulfilled. Multilayer Perceptron (MLP) models are tradi-
tionally used as a classifier, but depending on the problem, they may need a large
number of parameters (neuron functions, weights and bias) to obtain an accept-
able performance. This work extends the evaluation of a technique to compress an
array of MLPs, through the outputs of a Volterra-Neural Network (Volterra-NN),
maintaining its classification performance. The obtained results show that these
outputs can be used to build an array of (Volterra-NN) that needs significantly less
parameters than the original array of MLPs, furthermore having the same high ac-
curacy in most of the cases. The Volterra-NN compression capabilities have been
tested by solving several kind of classification problems. Experimental results are
presented on three well-known databases: Letter Recognition, Pen-Based Recog-
nition of Handwritten Digits, and Face recognition databases.

1 Introduction

Model compression aims to find a fast and compact model to approximate a function
learned by, for example, a classifier, preferably without significant loss in performance
[1]. Complex and large classifiers are often needed to obtain the best performing models
when supervised learning is used. In some situations, however, a classifier not only
has to be highly accurate but also has to meet some requirements regarding on-line
execution time, storage space and limited computational power [2].

Multilayer Perceptron (MLP) models are usually considered as a powerful classifi-
cation model, but they easily become large models, which has a direct effect over the
number of model weights. The increment of the model complexity can be caused by
introducing more information to the model. That is to say, the introduction of more in-
put variables in order to better learn the training data and to improve its classification
ability, or the addition of hidden neuron in order to improve the learning process.

From the parameters of a trained Neural Network (NN) it is possible to extract a
Volterra model [3], which is formed by Volterra kernels associated with these parame-
ters, being useful for reproducing the nonlinear and dynamic behavior of new wireless
communications devices [4], for instance. In [5] the Volterra kernels extraction proce-
dure has been used to build a Volterra-Neural Network (V-NN) model, which is a com-
pressed version of a trained MLP model over a simple classification task, maintaining
the same recognition rate than the original model but with fewer parameters.
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Often, better results can be reached by using arrays or ensembles of neural classifiers
than single models [6][7]. For instance, an array of Multi Layer Perceptrons (aMLP)
model was proposed in [8] for a complex classification task, consisting of one MLP for
each class, with a final decision made over the network outputs of the complete array.
The classification was performed by the maximum output calculation among all the
networks outputs. This configuration has achieved improvements over the performance
of a classic MLP. However, the use of this new neural configuration implies much more
parameters, and therefore, a larger and more complex classification system.

Since it is possible to obtain a Volterra-NN model from a single trained MLP model,
this work show that it is also feasible to compress an aMLP using Volterra-NNs. Thus,
the same methodology applied to build a Volterra-NN model from a single MLP can be
used to obtain an array of V-NN models (aV-NN) from an aMLP. Extending the evalu-
ation of the method for compressing a classification model based on the application of
the V-NN method to an array of MLP, it will be shown how an aMLP model that has
learnt a classification problem with a certain (high) accuracy can be compressed into a
more compact representation using an aV-NN model. This representation involves less
parameters, maintaining however a high recognition accuracy. Three different databases
have been used to show the effectiveness of the proposed method in classification prob-
lems of different level of complexity, number of classes and types of applications.

The paper is organized as follows. Section 2 explains in detail the proposed Volterra-
NN model and its use as a classifier. The materials and methods used in the study are
presented on Section 3. Results of the model evaluation through three public databases
as well as a discussion of the experiments are shown in Section 4. Finally, Section 5
presents the conclusions and future work.

2 Model compression by using Volterra-Neural Network

The Volterra series and Volterra theorem was developed in 1887 by Vito Volterra. It is
a model for representing nonlinear dynamic behavior frequently used in system identi-
fication [9]. The formulas for the extraction of Volterra weights, independently of the
neural model topology, number of variables involved in the problem and nonlinearity of
the system have been presented in [3]. Those equations are based on architectures hav-
ing an hyperbolic tangent activation functions in the hidden nodes, trained with a clas-
sical backpropagation algorithm [10], for multi-input, multi-output systems. The MLP
model is trained using the available training data and, after that, the Volterra weights
are obtained from the trained network parameters.

This section presents the aV-NN model for an aMLP model compression, extend-
ing the simple algorithm for classification proposed in [5]. The following subsection
presents the neural model used; after that, some basics concepts on Volterra models
necessary to understand the proposed approach are explained. Finally, it is shown how
the aV-NN can perform as a classifier when an aMLP is used.

2.1 Neural model for classification

It has been proved that arrays and ensembles of single multilayer perceptron networks
can reach better results in classification problems than single models [11][12][8]. The
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Algorithm 1: Volterra weights extraction, based on formulas presented in [3], in
which NH is the number of hidden neurons, NI is the number of input neurons,
wh and bh are the weight and the bias associated with a hidden sigmoidal neuron.

Data:
D: training data

Results:
v(0) : 0-order Volterra weight

v(1) : 1st -order Volterra weigths

v(2) : 2nd -order Volterra weigths

v(3) : 3rd-order Volterra weigths
begin1

M ← train MLP model with D2
v(0)← calculate zero-order Volterra weight from M using the formula: h0 = bo +

PNH

h=1
w2

h
1

(1+e−bh )3
for 1 ≤ i ≤ NI do4

v
(1)
i
← calculate first-order Volterra weight from M using the formula: h1(·) =

PNH

h=1
w2

h
w1

h,i
e−bh

(1+e−bh )25

Assign each v
(1)
i

extracted to v(1)6
for 1 ≤ i ≤ NI do7

for 1 ≤ j ≤ NI do8
v
(2)
i,j
← calculate second-order Volterra weight from M using the formula:9

h2(·) =

PNH

h=1
w2

h
w1

h,i
w1

h,j

e−bh (e−bh−1)

(1+e−bh )3

2!

Assign each v
(2)
i,j

extracted to v(2)10
for 1 ≤ i ≤ NI do11

for 1 ≤ j ≤ NI do12
for 1 ≤ k ≤ NI do13

v
(3)

i,j,k
← calculate third-order Volterra weight from M using the formula:14

h3(·) =

PNH

h=1
w2

h
w1

h,i
w1

h,j
w1

h,k

−e−bh (−e−2bh+4e−1−1)

(1+e−bh )4

3!

Assign each v
(3)

i,j,k
extracted to v(3)15

end16

final classifier model is an array of MLPs where there is one MLP model for each class
k to be identified, with k=1..K, being K the total number of classes. Therefore the aMLP
model is formed by K networks, whose outputs takes a value of 1 if the class is identified
or 0 otherwise. The first layer of each MLP in the aMLP is a set of NI input neurons and
there are NH hidden neurons. When a class has to be determined, its input is presented
to all the k networks defined for the aMLP model, and the maximum output obtained
among all network outputs is assigned as class label. If a pattern of the kth-class has
been presented to the model, a value of (near) 1 is expected at the kth network.

In [5] was presented the application of the Volterra weights extraction method for
model compression of a classical multilayer perceptron classifier. It was shown how a
MLP model which has learnt a classification problem with a certain (high) accuracy,
can be compressed into a more compact representation using a Volterra model and its
parameters, named Volterra weights. Several MLP topologies can be well-compressed
into the first, second and third order Volterra weights, which can be used to build a
Volterra model that needs less parameters than the original MLP model and, at the
same time, has a similar high accuracy. This work proposes to apply and extend the
compression procedure based on Volterra models to an array of MLPs to solve many
kind of different classification problems. The next subsection presents the details of the
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Algorithm 2: 3rd-order Volterra-NN outputs forward computation.
Data:

x: input point to classify
K: number of elements in the array

v(0) : 0-order Volterra weights for the array

v(1) : array 1st -order Volterra weights

v(2) : array 2nd -order Volterra weights

v(3) : array 3rd-order Volterra weights
Results:

s(1) : V (1) − NN outputs for the array

s(2) : V (2) − NN outputs for the array

s(3) : V (3) − NN outputs for the array
begin1

for each element in the array do2
s(1) ← v(0)3
for 1 ≤ i ≤ NI do4

s(1) = s(1) + v
(1)
i

xi5

s(2) ← s(1)6
for 1 ≤ i ≤ NI do7

for 1 ≤ j ≤ NI do8
s(2) = s(2) + v

(2)
i,j

xixj9

s(3) ← s(2)10
for 1 ≤ i ≤ NI do11

for 1 ≤ j ≤ NI do12
for 1 ≤ k ≤ NI do13

s(3) = s(3) + v
(3)

i,j,k
xixjxk14

Assign each s(1) calculated to s(1)15
Assign each s(2) calculated to s(2)16
Assign each s(3) calculated to s(3)17

Determine upper and lower thresholds for each array element (class)18
end19

algorithm proposed for the procedure of obtaining different order Volterra-NN outputs
from an array of MLPs used for classification.

2.2 Volterra-NN model forward computation

Volterra weights extraction procedure is shown in detail in Algorithm 1. Training data
are the input and Volterra weights are the outputs. The first step consists in training a
MLP classifier model with the training data D as it is possible to see in line 2. From the
trained neural model M , the Volterra weights can be calculated: the zero-order Volterra
weight is obtained in line 3, as well as the first (line 5), second (line 9) and third-order
(line 14) Volterra weights. The formulas that allow to compute the zero, first, second
and third order Volterra weights were defined in [3] to calculate the zero, first, second
and third-order Volterra kernel from a trained MLP having sigmoidal hidden units.

In the same way, higher order V-NN outputs can be calculated. Each high order
Volterra model includes its own parameters (Volterra weights) plus the lower order ones.
The new algorithm for an array of V-NN models forward computation is presented in
detail in Algorithm 2. It receives a point from where the number of input variables NI

is determined, the number of elements in the array and the Volterra weights for each
element in the array, obtained by using Algorithm 1. The output of this algorithm is an
array of third-order (V (3) −NN) Volterra outputs, but it is also possible to obtain only
the first-order (V (1)−NN) (lines 3 to 5) and second-order (V (2)−NN) outputs (lines
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Fig. 1. Model output signal analysis for classification. Full and dotted lines: output signal cor-
responding to the MLP and V-NN models, respectively, for training data. Dashed lines: class
thresholds.

7 to 10), thus providing different compressed versions of the original aMLP classifier.
The next subsection shows how the compressed model can be used as a classifier.

2.3 Classifying by using Volterra-NN.

Different classes can be recognized from the output signal by applying the Volterra-NN
model. After the compression of an array of MLP models by using V-NN, each V-NN
model is specialized on a class and the output signal analysis determines if the pattern
is part of the class. That is, it is possible to identify only a class from each of the output
signals. During the training phase, those patterns beloging to the class associated to
the model are shown first. In this way, the model output can be considered as a signal
having two levels, with a bound between levels corresponding to the class limit [13].
For instance, if we have a three classes problem, the first model is trained with data
where the patterns corresponding to the first-class are activated (they have a 1 as target)
and other patterns, which do not represent the first class, are not activated (they have a 0
as target). Similarly, training data for learning the second and third classes are presented
to their corresponding models.

Output signal analysis that has to be performed for determining upper and lower
thresholds for each class is shown in Figure 1. It is possible to see the output signal
corresponding to the MLP (full line) and V-NN (dotted line) models, both for the train-
ing data. The lower and the upper threshold (dashed lines) of the class are measured in
order to determine the output-signal level change for the V-NN model, considering the
values obtained for the training set. These changes (thresholds) will allow us to identify
a new data point received for classification as belonging (or not) to the class. The mem-
bership of a new pattern (test point) to the class is identified by analyzing if the output
associated to this pattern has a value between the lower and upper class thresholds.

Since we are analyzing the output of an aMLP model, a different signals, each one
corresponding to a class, must be considered in order to identify which class is activated
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Table 1. Datasets.

Dataset k p train test
Pendigits 10 16 8400 2100
Letters 26 16 15184 3796
Feret 40 37 24 66

as a result. First of all, each individual signal must be evaluated as it was presented in
the above paragraph. Secondly, it is necessary to discover if more than one class model
was activated for each pattern. If this situation occurs, a max criteria is applied. That is
to say, the higher value of the activated classes for each pattern will be determined as
the winner class.

3 Materials and Methods

3.1 Databases and aMLP architecture

Three independent classification databases have been used in this study: Letter Recog-
nition1 (Letters), Pen-Based Recognition of Handwritten Digits2 (Pendigits), and Face
recognition database FERET 3). These well known databases provide typical experi-
mental setups for classification problems.

Table 1 presents the three databases mentioned before in detail. The name of the
databases are shown in the first column, meanwhile in the second and third column the
number of classes (k) and the number of variables (p) of the databases are presented,
respectively. The number of patterns in the training dataset are shown in the fourth
column (train), as well as the number of patterns in testing dataset is presented in the
fifth column.

To avoid overfitting, a k-fold cross-validation procedure [14] has been used, using
the standard setup of splitting the available patterns into 80% of each class for training
and 20% for testing. The complete dataset has been randomly split into k = 3 mutually
exclusive subsets of equal size, repeating the experiments three times in each fold. The
cross validation estimate of the overall accuracy of a model has been calculated by
simply averaging the accuracy measures over the test datasets. In each experiment and
repetition, MLP and V-NN models having less than 95% classification rate for each
class of the training dataset have not been considered in this study. This restriction was
imposed to the classifier performance in order to be able to measure precisely any loss
of accuracy originated by the proposed Volterra-NN compression method.

Figure 2 shows the neural network topology used in this study, an array of MLP
models, each one associated with a class to recognize. Several MLP topologies have
been evaluated from where the corresponding Volterra weights have been extracted after
training, in order to build the V-NN models. For each input signal arriving at the array,

1 http://archive.ics.uci.edu/ml/datasets/Letter+Recognition
2 http://archive.ics.uci.edu/ml/datasets/Pen-Based+Recognition+of+Handwritten+Digits
3 http://www.itl.nist.gov/iad/humanid/feret
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Fig. 2. Array of V-NN for classification problems.

a V-NN output of a certain order can be obtained. For example, to obtain a first order
V (1)−NN output, the maximum s(1) from the array is selected. The model parameters
(weights and biases) are initialized with random values uniformly distributed between
0 and 1. Neurons in the hidden and output layers have sigmoid activation functions.
All the MLPs are trained with the Levenberg-Marquardt algorithm [15] in order to
guarantee a fast convergence.

3.2 Performance measures

For comparing each output from the proposed V-NN models against the corresponding
original MLP classifier, two performance measures are used: recognition rate (RR) and
data space savings (SS), adapted here for an aMLP classifier. In classification problems,
the primary source of performance measurements is the overall accuracy of a classifier
estimated through the classification or recognition rate [16]. For measuring compres-
sion, data compression ratio can be used to quantify the reduction in data representation
size produced by a compression algorithm. However, the space saving measure is given
here instead, defined as the reduction in size relative to the uncompressed space [17],
often reported as a percentage, which gives a better idea of compression power. For
both cases, the greater the rate, the better the result.

To estimate how much is the compression level obtained, SS is calculated as the re-
lation between the number of parameters needed for a Volterra-NN output (the Volterra
weights) and the number of parameters of each corresponding MLP architecture (the
weights and biases). It is well-known that for a MLP model, the number of model pa-
rameters can be calculated as PMLP = NI×NH+NBH+NH×NO+NBO, where NI ,
NH and NO are the number of neurons at input, hidden and output layers, respectively;
and NBH and NBO are the number of bias for each neuron in the hidden and output
layers, respectively. In an array of MLP models, these measures are affected by the ar-
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ray length a. Hence, the number of model parameters for an aMLP can be calculated as
PaMLP = a × PMLP .

From each MLP that is part of the array of MLPs, a Volterra-NN output (of a partic-
ular order) can be extracted: s(1) includes only the zero and first-order Volterra weights;
s(2) includes up to the second-order Volterra weights; and s(3) corresponds to a third-
order model output. The following equations show the number of parameters necessary
to build each of these outputs, for a given training set.

For the V (1) − NN model output we have Ps(1) = NI . In this case, the number of
parameters necessary to build s(1) are each first-order Volterra weight that multiplies
each input variable.

For the second-order model V (2)−NN we have the following output Ps(2) = Ps(1)+

N2
I −

N2
I−NI

2 . The number of parameters necessary to build s(1) are summed up together
with the number of parameters necessary for s(2) (the second-order Volterra weights).
There is a second-order weight for each input variable squared, plus the cross-products
between each input variable. With respect to these last ones, since the symmetrical
weights are equivalent, they are considered only once. That is why half of the cross-
product weights are counted.

The number of parameters necessary to build V (3) − NN are Ps(3) = Ps(2) + N2
I ,

that is to say, the number of weights associated with s(2) plus the product of each third-
order weight corresponding to each input variable, counting only once the symmetrical
weights.

As Volterra-NN can be applied to the compression of an aMLP model, the output
now will be an array of V-NN outputs of different order. That is to say, for example, for
each MLP inside the array three different order V-NN outputs can be obtained. In this
case, the number of V-NN models parameters has to be redefined as Pas(i) = a × Ps(i) ,
where i = 1,2,3. Therefore, the space saving measure SS is calculated as

SS = 1− Pas(i)

PaMLP
. (1)

4 Results and discussion

The experimental results obtained on three well-known classification problems are shown
in this section. For simplicity in the analysis of the results, in particular which respects
the performance of the V-NN compression capabilities, the tables show only global RR
of each database (the average RR value over all classes) and the space savings rate for
the models discussed in this paper.

From each array of MLPs model, with I number of inputs neurons, H number of
hidden neurons, and O outpus neurons (aMLPI,H,O) considered in this study, their cor-
responding zero-order, first-order, second-order and third-order Volterra weights have
been extracted according to Algorithm 1 and their corresponding array of Volterra-NN
outputs s(1), s(2) and s(3) have been obtained using Algorithm 2. Table 2 presents the
results to the global recognition rate (RR) and the space savings rate (SS), calculated
over the Pen-Based Recognition of Handwritten Digits test dataset; whereas Table 3 and
4 show similar results but calculated over the Letter Recognition and FERET database,
respectively.
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Table 2. Global recognition rate (RR) and space saving(SS) comparison for three aV-NN (a=10)
classifiers and their corresponding first-order s(1), second-order s(2) and third-order s(3) outputs,
for the Pen-Based Recognition of Handwritten Digits Database.

10MLP16,16,1 10MLP16,32,1 10MLP16,48,1

PaMLPI,H,O
→ 3040 6080 9120

RR[%]→ 98.47 98.61 98.58

10V-NN Pas(i) RR[%] SS[%] RR[%] SS[%] RR[%] SS[%]

10V-NN
s(1)

160 84.20 94.74 83.92 97.37 82.46 98.25
10V-NN

s(2)
1520 83.18 50.00 84.01 75.00 81.73 83.33

10V-NN
s(3)

4080 84.14 −34.21 84.56 32.89 84.35 55.26

Table 3. Global recognition rate (RR) and space saving(SS) comparison for three aV-NN (a=26)
classifiers and their corresponding first-order s(1), second-order s(2) and third-order s(3) outputs,
for the Letter Recognition Database

26MLP16,16,1 26MLP16,32,1 26MLP16,48,1

PaMLPI,H,O
→ 7904 15808 23712

RR[%]→ 97.41 97.70 97.67

26V-NN Pas(i) RR[%] SS[%] RR[%] SS[%] RR[%] SS[%]

26V-NN
s(1)

416 92.37 94.74 92.93 97.37 92.78 98.25
26V-NN

s(2)
3952 92.81 50.00 93.17 75.00 93.25 83.33

26V-NN
s(3)

10608 92.83 −34.21 93.24 32.89 92.70 55.26

Table 4. Global recognition rate (RR) and space saving(SS) comparison for three aV-NN (a=40)
classifiers and their corresponding first-order s(1), second-order s(2) and third-order s(3) outputs,
for the Facial Recognition Technology (FERET) Database.

40MLP37,37,1 40MLP37,74,1 40MLP37,111,1

PaMLPI,H,O
→ 59200 118400 177600

RR[%]→ 97.16 96.76 96.23

40V-NN Pas(i) RR[%] SS[%] RR[%] SS[%] RR[%] SS[%]

40V-NN
s(1)

1480 96.69 97.50 95.90 98.75 96.51 99.17
40V-NN

s(2)
29600 96.34 50.00 96.49 75.00 96.35 83.33

40V-NN
s(3)

84360 96.19 −42.50 96.60 28.75 96.29 52.50

The upper part of each table shows the number of parameters and global RR mea-
sure for the three aMLP topologies. The second part of the table shows parameters
and performance measure values related to the Volterra-NN outputs. First of all, the
number of parameters needed for each neural classifier architecture (PaMLP ) involved
in this study is shown at the first row, while the number of Volterra weights needed
for each Volterra-NN model (Pas(i) ) is shown in the first column. The values which
fill the RR and SS columns are the average recognition rate and space saving capabili-
ties, respectively, for each combination between a MLP classifier and the corresponding
Volterra-NN output for all the 3 folds used.

As stated before (see subsection 3.2), the number of parameters required for the
neural classifier depends not only on NI but also on the number of neurons at the
hidden layer NH , as well as in the number of elements in the array. Therefore, con-
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sidering the pendigits database the number of parameters for 10MLP16,16,1 is 3040,
for 10MLP16,32,1 it is 6080, and the 10MLP16,48,1 model has a total of 9120 pa-
rameters (see Table 2). Regarding the letters database, the number of parameters for
26MLP16,16,1 is 7904, for 26MLP16,32,1 it is 15808, and the 26MLP16,48,1 model has
a total of 23712 parameters (see Table 3). Finally, taking into account the FERET
database, the number of parameters are 59200 for the 40MLP37,37,1 model, 118400
for 40MLP37,74,1, and 177600 for 40MLP37,111,1 (see Table 4).

In the case of the different order Volterra-NN outputs, the number of parameters
only depends on the number of inputs, as it is possible to see in subsection 3.2. However,
for an array, this number must be multiplied by the array size. Therefore, the number
of parameters for 10V-NNs(1) is 160 in the Pendigits database model, and the number
of parameters needed for 10V-NNs(2) and 10V-NNs(3) are 1520 and 4080, respectively.
Regarding Letters database, the number of parameters are 416, 3952 and 10608 for
the 26V-NNs(1) , 26V-NNs(2) and 26V-NNs(3) , respectively. In the FERET database,
the number of parameters for 40V-NNs(1) is 1480, for 40V-NNs(2) is 29600 and for
40V-NNs(3) is 84360.

Focusing on Table 2, it is possible to see that when using 10V-NNs(1) instead of
the 10MLP16,16,1 classifier, a global recognition rate of 84.20% can be obtained and a
compression or space saving rate of 94.74% can be achieved. Almost half of this space
saving rate is obtained if the 10V-NNs(2) output is used, and there is no compression
when using 10V-NNs(3) . For the 10MLP16,32,1 model, the compression achieved by
the Volterra-NN models is higher because of the amount of parameters associated with
this model; in this case, the SS value achieves a maximum of 97.37% when the small-
est possible number of parameters is considered (a first-order Volterra-NN output). A
similar case is related to 10MLP16,48,1 model, where this trend is also verified.

From Table 3, it is possible to see that a global recognition rate of 92.37% can be
obtained and a compression or space saving rate of 94.74% can be achieved when the
26V-NNs(1) is used instead of the 26MLP16,16,1 classifier in the Letter Recognition
case (see Table 3). Considering the 26MLP16,32,1 case, the best RR value is associated
with the 26V-NNs(2) output, which has only a SS of 75%. But if a better compression
is necessary for this topology, it is possible to choose the 26V-NNs(1) which has a SS
of 97.37% and preserves a very high RR value of 92.93%. The best RR value for the
26MLP16,48,1 model is associated with the 26V-NNs(2) Volterra-NN model and it is
possible to achieve a SS of 83.33%. But, if 26V-NNs(2) Volterra-NN model is chosen,
the value of RR worsens just a few tenths, and a very high SS value of 98.25% is
obtained. This is a very interesting result, because with approximately less than 2% of
the parameters of the original aMLP classifier, the classification capacity of 26V-NNs(1)

is very high (92.78%) and very close to the aMLP model. This particular case can be
considered as the best overall result obtained in this study, where the 26MLP16,48,1

classifier can be compressed in a 98% using the corresponding 26V-NNs(1) Volterra-
NN output without significantly loosing recognition capability

Taking into account Table 4, when the 40MLP37,37,1 is replaced by the 40V-NNs(1)

classifier, a RR of 96.69% and a SS as high as 97.50% are achieved. If it is considered
the model 40MLP37,74,1, the best RR (96.60%) is obtained if the 40V-NNs(3) is chosen,
but having the worst SS value (28.75%). But if the best SS value of 98.75% is selected,
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corresponding to the 40V-NNs(1) , a very high recognition of 95.90% is preserved. As
regards the 40MLP37,111,1 classifier, it is possible to state that the best overall result
obtained in this case is related to the 40V-NNs(1) Volterra-NN output, in which the
classifier can be compressed in a 99.17%, maintaining almost a 96.51% of RR.

From the three tables analyzed above, it is possible to conclude that an array of
MLPs for classification, in several different tasks, can be well-compressed by using an
array of Volterra-NN models; and this compression rate can be, in some cases, even
higher than 90%. Moreover, in most cases, very high recognition rates are achieved.
In fact, the aMLP model architecture can be more and more complex, can have many
more hidden units, but the number of weights needed to build each Volterra-NN output
will remain the same while the number of input variables of the problems are the same,
and this will certainly be reflected in even higher space saving rates.

As can be generally expected, in the case of the Pendigits database, high space sav-
ings value are achieved but paying the cost of lower recognition rates. For example, for
the three models shown in Table 2, SS values between 95% and 98% aproximately, are
related to RR values between 82.46% and 84.20%. Despite these results, it is possible
to see that the values of RR are still high. It is important to highlight that, in most of
the cases studied, these high compression rates have not to be payed by lower model
classification rates. For example, for the 26MLP16,16,1 model in the Letters database,
the best RR value is related to the 26V-NNs(2) output, achieving 92.81%, and hav-
ing a space saving rate of 50%. But, if the best SS result (94.74%) is chosen in the
same model, a RR value of more than 92% is obtained (see Table 3). In the case of the
FERET Database, in Table 4, the 40MLP37,37,1 model acchieves an the best RR value
of 97.16%, having a space saving rate of 97.50% by selecting the 40V-NNs(1) , which
has an RR of 97% approximately.

It is important to clarify that there are same SS values for all of the cases in Tables
2 and 3. As was stated in Subsection 3.2, the SS value is obtained from the number
of parameters of each V-NN model, which is based on the number of input parameters
for the MLP model. As it is possible to see in Table 1, for both Pendigits and Letters
databases, the number of parameters (p) is 16. Thus, independently of the number of
classes present in both databases, the SS value is exactly the same when the number of
input parameters is the same.

After the analysis of the results, it is possible to think that the best overall results
are always obtained in models with high, and possibly innecesary, amount of hidden
neurons. But undoubtedly, in the three classification problems here studied, if the model
aMLP with the same number of hidden neurons than the inputs is replaced with the aV-
NNs(1) output, the RR values are closed to the original one, and the space saving rates
are definetly high.

5 Conclusions and future work

This paper has presented an extended evaluation of a method to obtain a compact rep-
resentation of an array of MLPs using different-order aV-NN model outputs. Three
different and well known databases were used to test the aV-NN model, proving that it
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is possible to apply this method to classification problems of increasingly complexity,
and covering a wide area of application.

Experimental results demonstrate the capabilities of the proposed aV-NN model
to compress a solution for different classification problems with very high recognition
and space savings rates. It has been proved that this model is capable of solving sev-
eral classification problems, obtaining almost the same accuracy than three different
configurations of aMLP classifiers. Furthermore, these aMLP classifiers have been sig-
nificantly compressed into simpler models, allowing to use less parameters to obtain
similar results.

Future work involves further application of the proposed method to more complex
problems, involving data having an evolution on time. Besides, the V-NN compression
capabilities could be tested on ensembles of different neural network models. These
different NN classifier topologies should be further studied in order to establish their
impact on the compression capabilities offered by the proposed V-NN model approach.
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