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Abstract The development of accessible Web software is complicated for several reasons.
Though some of them are technological, the majority are related with the need to compose
different and, many times, unrelated design concerns which may be functional as in the case
of most of the specific application’s requirements, or non-functional such as Accessibility
itself. In this paper, we present a novel approach to conceive, design and develop
Accessible Web applications in an aspect-oriented manner. In order to reach our goal, we
provide some modeling techniques that we specifically developed for handling the non-
functional, generic and crosscutting characteristics of the Accessibility concerns. Specif-
ically, we have enriched User Interaction Diagrams with integration points, which are used
to reason and document Accessibility for activity modeling during user interface design.
Then by instantiating a Softgoal Interdependency Graph template with association tables,
we work on an abstract interface model (composed by ontology widgets) to obtain a
concrete and accessible interface model for the Web application being developed. We use a
real application example to illustrate our ideas and point out the advantages of a clear
separation of concerns throughout the development life-cycle.
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1 Introduction

Developing accessible Web applications is usually hard for several reasons. Most
developers do not have the necessary skills or training in designing and coding for
Accessibility, and most Accessibility specialists have, in turn, limited developing practice
[11]. Thus, although there are many available tools [17] and published sources of
information on Web Application Accessibility, existing Web Accessibility guidelines and
principles (and therefore, experts on these guidelines) do not address additional design
issues that may typically arise when developing complex Web applications. In most cases,
Accessibility is regarded as a programming issue or even dealt with when the Web
application is already fully developed and, consequently, the process of making this
application accessible involves significant redesign and recoding, which might be out of the
scope of the project and/or hardly affordable [11]. The proliferation of Web-based
information services reinforces the need for Web content Accessibility [13]; developing
accessible Web applications is no longer a matter confined to persons with disabilities, but a
key issue to the entire universe of Web users. As we will show next, the main problem with
Accessibility is that it is a non-functional software concern [25], which affects (crosscuts)
other application concerns. Moreover, Accessibility is a generic concern that may comprise
dozens of specialized concerns and, therefore, many requirements associated with these.

As a motivating example, suppose a Web page whose purpose is the student’s login for
his/her identification in his/her university system, like the one shown in Figure 1
corresponding to the SIU Guaraní registration system, which is used by many public
universities in Argentina. It offers online information and/or diverse registration
functionalities to their students. Since this kind of online systems gives support to an
educational organization, Accessibility is an outstanding feature for students with
disabilities.

As shown in Figure 1, the page for the student’s login provides a user interface com-
posed of HTML elements, like labels and textFields. To ensure an accessible interaction,
these HTML elements must fulfill some Accessibility requirements and, it is not surprising
that all of these requirements crosscut the same software artifact (the Web page for student’s
login). For example, and as we see in detail later, an HTML label element is, at the
presentation, a basic layout Accessibility requirement for many others HTML elements. In
particular, the HTML label element is critical to the Accessibility of an HTML textField
element for people using screen readers. Since a Web page for student’s login requires at
least two textField elements (for student’s ID and password respectively), the presence of
their respectively label elements must be tested. So, to ensure an accessible interaction on
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Figure 1 The student’s login Web page at the SIU Guaraní registration system.
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behalf of the student, this layout requirement must crosscut the same software artifact (the
Web page) more than once, according to the number of textField elements included in the
presentation. It seems natural therefore to address Accessibility using the Aspect-Oriented
Software Development (AOSD) approach. The AOSD perspective states that different
application concerns should be treated as first-class citizens early from requirements
elicitation and specification, modeled separately and then weaved together by using
specialized tools. By using the AOSD approach we can avoid typical problems of
crosscutting concerns, such as those shown in the previous example.

The main thesis of this paper is that Accessibility manifests mainly during requirements
gathering and specification, and user interface design. It obviously manifests while dealing
with requirements since this is the step in which stakeholders express the main functional
and non-functional properties the application must contain. Besides, Accessibility is one of
those concerns that even though they are directly related to user’s semantic dialogs, they
can dramatically influence the application’s context of use. For this reason, Accessibility
should be analyzed as a user interface concern, since it is at the user’s interface level where
Accessibility barriers finally show.

The main contributions of this paper are the following:

& We present an aspect-oriented approach to handle the non-functional, generic and
crosscutting characteristics of the Accessibility concerns.

& We introduce specific Accessibility modeling techniques included in a mature
methodology for the development of Web applications.

& We illustrate with a real, practical example the applicability and feasibility of the approach.

The rest of the paper is structured as follows: in Section 2 we discuss some background
issues. In Section 3 we offer an overview of our approach showing the model we envisage
to deal with Accessibility concerns within a Web engineering approach providing a detailed
step-by-step explanation of our proposal; and in Section 4 we use a real application
example to illustrate our ideas. Finally Section 5 analyzes related work and also gives some
insights on how to upgrade our approach from WCAG 1.0 [27] to WCAG 2.0 [28]; and in
Section 6 we conclude and present further work we are currently pursuing.

2 Background

In this section we introduce four key topics that we will use throughout the rest of the
paper, to make it self-contained. These are: (a) Aspect-Oriented composition, (b) Reference
Frameworks and Ontologies, (c) User Interaction Diagrams (UIDs), and (d) Softgoal
Interdependency Graphs (SIGs). Our aim is not to discuss these issues in detail, but to stress
the most important concepts.

2.1 Aspect-oriented composition

Traditional approaches to software development are not able to deal with concerns which
cut across many other concerns, producing scattered (concern’s code spread through
multiple modules) and tangled (a single module implementing many concerns) representa-
tions (e.g. specifications, code) that are difficult to understand and maintain. Typical
examples of such crosscutting concerns are non-functional requirements, such as security,
availability, persistency and Accessibility, the main topic of this paper. Aspect-Oriented
Software Development (AOSD) aims at handling such crosscutting concerns by providing
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means to their systematic identification, modularization and composition [10]. Crosscutting
concerns are encapsulated in separate modules, known as aspects, and composition
mechanisms are later used to weave them back with other core modules, at loading time,
compilation time, or run-time. Nowadays AOSD focuses not only on the implementation
phase of the software lifecycle but also on former phases as design and even earlier as
requirements to cover consistently the entire development process [2, 18].

2.2 Reference frameworks and ontologies

Our approach involves two main elements when designing the user interface towards
achieving Accessibility of Web applications: a reference framework and ontology.

We applied the Larson’s user interface design decision framework [15] which defines the
following five classes: (a) structural—specifying the structure of the end users’ conceptual
model; (b) functional—specifying functions (operations) which the user can apply to the
conceptual objects; (c) dialog—specifying the content and sequence of information
exchange between the user and the application; (d) presentation—choosing interaction
objects which make up the end users’ interface; and (e) pragmatic—dealing with issues of
gesture, space, and hardware devices. Since the last three classes are related to the user
interaction and activities with the application’s interface, and they are also directly involved
with Web Accessibility, we ensure their inclusion in our approach. The Larson’s framework
[15] gives us a comprehensive and general view that can be instantiated with different
conceptual models, such as the approach proposed 11 years later by Baxley in [3]. We omit
a comparison between the two approaches for the sake of conciseness.

We also applied the Abstract Widget Ontology [22]. This ontology can be thought of as
a set of classes whose instances will comprise a given interface. As shown in Figure 2, an
abstract interface widget can be any of the following: (a) SimpleActivator (a widget capable
of reacting to external events, such as mouse clicks); (b) ElementExhibitor (a widget able to
exhibit some type of content, such as text or images); (c) VariableCapture (a widget able to
receive/capture, the value of one or more variables, such as input text fields, menus and check
boxes), and (d) CompositeInterfaceElement (a composition of any of the abstract interface
widget represented by the ontology’s previous concepts). VariableCapture generalizes two
distinct concepts. The first one is the ontology concept PredefinedVariable, which represents
abstract interface widgets that let the selection of a subset from a set of pre-defined values.
The second ontology concept is the IndefiniteVariable, which represents abstract interface
widgets that allow entering previous unknown values, such as text typed by the user.

2.3 User interaction diagrams

A User Interaction Diagram (UID) [26] is a diagrammatic modeling technique to describe
the information exchange between the application and the user. UIDs are simple state

INDEFINITEVARIABLE

CONTINUOSGROUP DISCRETEGROUP SINGLECHOICESMULTIPLECHOICES

VARIABLECAPTUREELEMENTEXHIBITORSIMPLEACTIVATOR

PREDEFINEDVARIABLE

ABSTRACTINTERFACEELEMENT

COMPOSITEINTERFACEELEMENT

Figure 2 Abstract widget ontology [22].
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machines as shown in Figure 3 where we illustrate the use case “Enrolling a student in an
examination board given a course” in the context of the SIU Guarani registration system.

Ellipses represent an interaction between the user and the system. The initial interaction
is particularly recognized by an ellipse with an arrow without a source. Each ellipse offers
content to the user such as (a) data entry i.e—data entered by the user and graphically
represented by a rectangle; (b) text i.e—descriptive text represented by “XXXX”; (c) a
structure with their data items or a set of structures with their data items i.e—selectable
elements represented by “element (data items)” or by “…element(data items)” respectively.
A more formal description of the original UID’s notation can be found in [26]. Arrows
show the possible paths according to the user’s choices.

In the interaction <1> of Figure 3 a student selects the examination option (represented
by “[1]”) from an initial set of options (represented by “…”). At interaction <2>, the response
of the system is the set of careers in which a student is enrolled. The student chooses one of
them and the system returns at interaction <3> a complete set of courses (related to the
selected career) in which the student is able to enroll. The student selects a course and the
system returns at interaction <4> the registration to an examination board for the course.

Additionally, the user can perform the operation “Print registration” (indicated by a line
with a black bullet) to get a receipt of the registration completed.

2.4 Softgoal interdependency graphs

Softgoal Interdependency Graphs (SIGs) have been intensively used in software engineering
for modeling non-functional requirements as “softgoals” to be “satisfied” [7, 8]. To determine
satisficeability, design alternatives or decisions (called operationalizing softgoals) are
considered; design tradeoffs are analyzed, design rationale is recorded and design choices
are made. The entire process is recorded in a “Softgoal Interdependency Graph” (SIG) and
then the selected design decisions (operationalizing softgoals) can be used as a framework
for architecture and design [8]. Figure 4 depicts a SIG for the Student Friendliness
softgoal in the context of our example. The light cloud indicates an NFR softgoal, denoted
with nomenclature Type [Topic] where Type is a non-functional aspect—e.g. Student
Friendliness, and Topic is the context for the softgoal—e.g. a Student accessing the SIU
Guaraní registration system. Either Type or Topic of each NFR softgoals can be refined,
one at a time, with either AND-decomposition (denoted with a single arc) or OR-
decomposition (denoted with a double arc). For example, as shown in Figure 4, Student
Friendliness [Student—SIU Guaraní system] is OR-decomposed into Student Friendliness
[Manifest Model] and Student Friendliness [Technical Model]. The manifest model is the
UI model through which the software represents its functioning to the user; while the
technical model is the model with which developers feel most comfortable.

Since student friendliness is the NFR under evaluation, the focus is on the Manifest
Model token that is AND-decomposed into Student Support [Manifest Model] and UI

Figure 3 A simple UID: enrolling a student in an examination board given a course.
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Support [Manifest Model]. The dark cloud indicates an operationalizing softgoal. For
example, in most development environments the developers agree on a basic framework
and the UI is constructed in an ad-hoc manner when the screens are coded. This kind of
practice has a highly negative contribution since a formal UI model is never constructed
and this is the reason why in Figure 4, the operationalizing softgoal Ad-hoc Development
Process is denied.

3 Our approach in a Nutshell

In the spirit of modern Web Engineering approaches, we propose a model-driven
development process in which the construction of a Web application consists of the
specification of a set of conceptual models, each addressing a different concern (such as
navigation or interface). The model we envisage to deal with Accessibility concerns within
a Web engineering approach is illustrated in Figure 5. Columns in Figure 5 indicate: (a) the
overall process with their main activities (in the middle), (b) the conceptual tools and
languages used (on the right) along with relations to the stage of the process where they are
required, and (c) the artifacts provided as input by the WE approach and / or delivered as
output by our process (on the left). As highlighted in Figure 5 (1), this process manages
Web application requirements looking for those that involve Accessibility needs. Then, as
shown in Figure 5 (2), we propose an early capture of Accessibility concrete concerns by
developing two kinds of diagrams: the UID with Accessibility integration points and the
Softgoal Interdependency Graph (SIG) template for WCAG 1.0 Accessibility requirements,
as shown in Figure 5 (2.1) and (2.2) respectively.

We propose these conceptual tools basically to allow the representation of Accessibility
requirements while executing a user’s task (the UID technique and the SIG model are
described below in Sections 3.2.1 and 3.2.2 respectively). As indicated in Figure 5 (3), this
Accessibility knowledge captured at early stages aids designers making decisions
through the abstract interface model, as shown in Figure 5 (3.1), and then, as shown in
Figure 5 (4) toward its implementation through the concrete interface model as shown in
Figure 5 (4.1).

Almost all WE approaches have an explicit development activity for user interface
design and, normally, a user interface is specified by the abstract interface and the concrete
interface models, providing respectively the type of functionality offered to the user by the
interface elements and the actual implementation of those elements in a given runtime

[TECHNICAL MODEL ]

UI SUPPORT STUDENT SUPPORT   

++ 
- -

STUDENT FRIENDLINESS [ STUDENT - SIU GUARANÍ SYSTEM ] 
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Ad-hoc Development Process

Information Gathering about Students

Accurate Response   

Accurate  
On-line Help  
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! !

X 

Custom Keypad 

++ 

Figure 4 Softgoal interdependency graph (SIG) for student friendliness NFR.
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environment. So, given a user’s task, the SIG model provides the WCAG 1.0 Accessibility
checkpoints that crosscut the interface widgets (both, abstract and concrete ones, as shown
in Figure 5 (3.1) and (4.1) respectively), to ensure an accessible user experience. In the
following sub-sections, we put all the pieces together to give a detailed step-by-step
explanation of our aspect-oriented approach.

3.1 Identifying application’s requirements that involve accessibility needs

Since we are particularly interested in discovering Accessibility concerns at the user
interface design, we propose as a first step, an iterative and incremental process over the
Web application’s requirements looking specially at those that involve user-system
interaction but also at those derived from all kind of user activity with the application’s

Figure 5 Overview of our approach.
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interface. As an example, assume that we take into account the following use case “Login a
student given the student’s ID and password”:

USE CASE 1: LOGIN A STUDENT GIVEN THE STUDENT’S ID AND PASSWORD

Brief Description: This use case describes how a Student logs into the SUI Guaraní registration system.

Success End Condition: The Student is now logged into the system.

Primary Actor: Student

Description
MAIN SUCCESS SCENARIO:

Step Action

1. The system requests that the Student enter his/her ID and password

2. The Student enters his/her ID and password.

3. The system validates the entered ID and password and logs the Student into the system.

EXTENSIONS:

Step Branching Action

3a. The Student enters an invalid ID and/or password, the system displays an error message, the use case ends.

This use case describes the application’s requirements for the online login Web page
(introduced in Section 1 by Figure 1 from the SUI Guaraní registration system). The
functionality required for the online login involves user-system interaction, since at Step 1
of the main success scenario, the student is requested by the system to enter his/her ID and
password. At the SIU Guaraní registration system, Step 2 is satisfied when the student
enters its identity card number as an ID and a four-digit key as a password. Then at Step 3
the system executes the validation process yielding the student logged into the system as a
success end condition or displaying an error message to end the use case.

This identification process is defined as Step 1 and is graphically represented by (1) in Figure 5.

3.2 Specifying accessibility concrete concerns

Mostly because of the non-functional, generic and crosscutting nature of Accessibility
concerns of a user-system interaction, we developed two conceptual tools as extensions of
the UID and SIG techniques (introduced earlier in Section 2.3 and 2.4 respectively): the
UID technique with integration points and SIG template for Accessibility.

As an example, let us return to the use case “Login a student given the student’s ID and
password” in Section 3.1 and consider a scenario in which a blind student using an older
“screen reader” device wishes to log into the SIU Guaraní registration system. It is a fact,
that Accessibility concerns related to the user layout and the user technology support must
be considered to guarantee interaction and browsing regardless of the assistive device.
Specifically, in this case it means that the HTML elements required for the identification
form must be accessible for students using “screen readers”. So, when developing
functional requirements captured by the use case, we need a way to record Accessibility
concerns early and as a reminder for design. With this aim in mind we developed the UID
technique with integration points and SIG template for Accessibility.

3.2.1 Using UIDs with integration points technique

For each application’s requirement identified at Step 1, and at Step 2, we firstly develop an
UID diagram focusing mainly on outlining integration points where Accessibility is
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crucial for ensuring a successful information exchange between the application and the
user. With the traditional perspective given by techniques like [7, 8] in mind (depicted in
Section 2.4), we introduce the concept of UIDs’s integration points [16] to model the
Accessibility concerns of a user-system interaction. Particularly, we define two kinds of
UIDs integration points as follows:

& User-UID Interaction (U-UI) integration point. This is an integration point for Accessibility
at UID interaction level—i.e. to propitiate an accessible communication and information
exchange between the user and a particular interaction of a UID interaction diagram.

& User-UID Interaction’s component (U-UIc) integration point. This is an integration
point for Accessibility at UID interaction’s component level—i.e. to propitiate an
accessible communication and information exchange between the user and a particular
UID interaction’s component of an UID interaction.

Figure 6 shows the resultant UID, corresponding to the use case “Login a student given the
student’s ID and password” (presented in Section 3.1), by applying our integration points
technique. The development of the UID diagram with integration points at Step 2, is
graphically represented by (2.1) in Figure 5.

3.2.2 Applying the SIG model

After specifying the Accessibility integration points of the UIDs diagrams at Step 2, we
develop a SIG diagram for WCAG 1.0 Accessibility requirements [16]. Figure 7 shows our
SIG template where the Accessibility softgoal denoted with the nomenclature Accessibility
[UID integration point] is the root of the tree.

From the root node we identify two initial branches: (a) the user technology support, and
(b) the user layout support. The user technology support represents the Accessibility
softgoal concerns helping to ensure user’s browsing and interaction by improving the
Accessibility of user’s current and earlier assistive devices and technologies (PDAs,
telephones, screen readers, etc.); meanwhile, the user layout support represents the
Accessibility softgoal concerns explicitly improving user’s browsing and interaction focus
on user’s interface issues. For example, returning to Figure 6, we establish the Accessibility
softgoal for the interaction’s components <1.1> LogoImage and <1.2> IDForm to guarantee
accessible image and text input fields for all the students by defining two User-UID
Interaction’s components (U-UIc) integration points for the login process at UID interaction
<1>. The instantiation process of the SIG template is conducted as a refinement process
over the SIG tree using association tables as a reference for groups of related HTML

 
 
 

 
 

[VALIDSTUDENTDATAENTERED ]  

Student 

...

< 1 >  

< 1.2 >  IDForm 

 Password 
E-Mail 

< 1.1 >  LogoImage 
Guarani3W( pageTitle, logoImage ) 

 Accessibility integration point:
for an accessible HTML image  

 Accessibility integration point:  
for an accessible HTML form  

 
 
 Invalid Student Login !!! 

Figure 6 UID with accessibility integration points: login a student given the student’s ID and password.
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elements. For example, Table 1 introduces the association table that we have developed for
the HTML control group.

Basically, association tables link each ontology concept—i.e. abstract widget, with their
respective HTML elements—i.e concrete widgets, and with the Accessibility concerns
prescribed for those widgets by the WCAG 1.0 checkpoints. We further describe
association tables in section 3.4.2.

3.3 Discovering crosscutting and applying aspects

The purpose at Step 3 is to find out how WCAG 1.0 Accessibility concerns “crosscut”
interface widgets required for the online login Web page, aided by the abstract interface
model shown in Figure 5 (3.1). More specifically, the SIG diagrams and the association
tables work together to discover the required WCAG 1.0 checkpoints for assuring the
student’s login but also to show how aspect-oriented “symptoms” (“scattering” and/or
“tangling”) manifest their crosscutting nature on the HTML image and HTML form elements.
For example, and as we will see in-depth later, from guidelines 10 responding to the
statement “use interim1 solutions”, satisfacing the 10.4 checkpoint is a “mandatory” goal (set
with an “M”) required for every HTML control element, and establishes that empty controls
must be handled correctly “until user agents”.2 So, to ensure this Accessibility requirement,
the checkpoint 10.4 will be “scattered” at the login Web page of the SUI Guaraní registration
system every time that an HTML textField element (corresponding to an IndefiniteVariable
widget) is present. It is important to highlight that ensuring compliance to Accessibility is, in
several cases, similar for those HTML elements sharing the same HTML group. As we can
see on Table 1, this is the case for the HTML control group.

3.4 Designing with accessible interface widgets

3.4.1 A mapping between ontology concepts and HTML elements

Taking into account the Abstract Widget Ontology [22] described in Section 2.2, we map
the ontology concepts onto HTML elements. We have materialized this mapping using

1 Interim is used by the W3C as a temporary recommendation to ensure that while assistive technologies and
older browsers exist they will operate correctly.
2 “Until User Agent” (UUA) is used by W3C to refer to “User Agents” (UA) i.e.—software or assistive
technologies, that require content developers to provide additional support for Accessibility until most user
agents readily available to their audience include the necessary Accessibility features.

 U-UI or U-UIC   
   

< UID INTERACTION > or 
< UID INTERACTION’S COMPONENT > 

 

User TECHNOLOGY support User LAYOUT support

ACCESSIBILITY [ UID integration point ]

Figure 7 SIG template for accessibility.
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UML class diagrams to explain the relationships between each abstract interface widget
presented by the ontology concepts, and the concrete interface widget in HTML elements.
Figure 8 shows the UML class diagram for the ontology concept VariableCapture, whose
functionality is to capture the value of one or more variables, implemented in HTML by
control elements. They can be grouped together in an HTML form element, which is a
possible implementation of the ontology concept CompositeInterfaceElement. Users
interact with an HTML form through HTML controls by modifying their values before
submitting the form to an agent, like a Web server or a mail server, for processing.

In this way, we map the ontology concepts onto five groups of HTML elements: (a) the
VariableCapture maps onto the HTML control group, as we shown in Figure 8; (b) the
SimpleActivator, which is capable of reacting to external events such as mouse clicking,
maps onto HTML link and button group; (c) the ElementExhibitor, which is able to exhibit

Table 1 Association table for the HTML control group.
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different types of content, such as text, images or applets, maps onto HTML text and non-
text groups; (d) the LogicalStructuring, which is able to logically organize the content of
the document, maps onto the HTML structural group; and (e) the ElementStyling, that is
able to display the content with a certain appearance, maps onto HTML frame and style
sheet groups.

Since most of the HTML elements are composed by other HTML elements, an
accessible HTML element requires the Accessibility of all its components. So a deeper look
about HTML elements composition is required to work properly with Accessibility issues.

Figure 9 explains HTML element composition providing a more detailed description of
the HTML control elements: textField and texArea; radioButton and singleChoiceMenu;
and checkBox and multipleChoiceMenu (see Figure 9a, b and c respectively). For example,
label is a very important element to achieve the goal of making a HTML form accessible,
because, if used correctly, it can provide helpful support to people with disabilities. The
WCAG 1.0 is very clear about the Accessibility role of the label element when developing
HTML form elements. Specifically, the document provides two checkpoints, one related to
the user layout support and the other to the user technology support—i.e precisely the two
initial branches of our SIG template for Accessibility, to be consider when “labeling”
HTML control elements that are in an HTML form.

3.4.2 Association between ontology concepts-HTML elements-WCAG checkpoints

To develop and exploit the SIG diagrams for managing crosscutting in an aspect-oriented
manner, we establish five association tables, one for each group of HTML elements defined

 

 

 

 

 

 
  

 

1 
Form 1..*

...
 

 

Figure 8 Mapping between some ontology concepts and HTML elements.

   

   

 

  

(a) (b) (c)
...

1

needsA

TextField TextArea

Control Label

1...
1 1..*

letsChoose

1

hasAssociated

SingleSelectMenu

Control Option

Label

..*

needsAneedsA

1 1..*

letsChoose

1

a

...

hasAssociated

CheckBox MultipleSelectMenuRadioButton
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Figure 9 UML model for HTML control elements.
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in Section 3.4.1: (a) the HTML control group as we shown in Figure 8 and Figure 9; (b) the
HTML link and button group; (c) the HTML text and non-text group; (d) the HTML
structural group; and (e) the HTML frame and style sheet group. We called them
association tables because of two strong reasons. On one hand, they bind the WACG 1.0
checkpoints required for ensuring Accessibility of the interface widgets present at each
HTML group. On the other hand, they help to classify these WCAG 1.0 checkpoints into
the two initial branches of our SIG template for Accessibility.

Table 1 introduces the association table for the HTML control group. A checkpoint
cell for a specific interface widget is selected only when the HTML element requires
ensuring Accessibility by the checkpoint. As we can see in Table 1, this association table
also indicates each checkpoint priority level assigned by the WCAG 1.0 [27]: (a) [Priority
1] checkpoints that “must” be satisfied, (b) [Priority 2] checkpoints that “should” be
satisfied and, (c) [Priority 3] checkpoints that “may” be satisfied. This information allows
interface designers to keep in mind the impact of the Accessibility barrier when not
satisfying each checkpoint. To address Accessibility of the HTML control elements,
guidelines 9, 10 and 12 deal with the question of what to do to make HTML form
elements accessible [27, 29].

On Table 1, Aspect I called “TSControl” evaluates control’s widgets Accessibility to
improve user’s current and earlier assistive devices and technologies. The association
between Accessibility softgoal concerns (represented by the WCAG 1.0 checkpoints and
their priorities) and the design decision classes is showed in the table with a “P” for the
presentation class, a “D” for the dialog class and by the “ ” symbol for the pragmatic
class. As examples over this branch, satisfying checkpoints 9.4 and 9.5 responding to the
statement “design for device-independence” of guideline 9 and, checkpoints 10.2 and
10.4 responding to the statement “use interim solutions” of guideline 10, are goals
required for every HTML control element. The checkpoint 9.4 establishes that we should
“create a logical tab order through links, form controls, and objects [Priority 3]” [27].
While the checkpoint 9.5 establishes that we should “provide keyboard shortcuts to
important links (including those in client-side image maps), form controls, and groups of
form controls [Priority 3]” [27]. The checkpoint 10.2 establishes that “until user agents
support explicit associations between labels and form control, for all form control with
implicitly associated labels, ensure that the label is properly positioned [Priority 2]” [27].
While the checkpoint 10.4 establishes that “until user agents handle empty controls
correctly, include default, place-holding characters in edit boxes and text areas [Priority
3]” [27].

On Table 1, Aspect II called “LSControl” evaluates control’s widgets Accessibility to
improve user’s interface issues, and it is supported by softgoals to be satisfied at the SIG’s
user layout support branch. Over this branch, the checkpoint 12.4 establishes “associate
labels explicitly with their controls [Priority 2]” [27]; while, checkpoint 12.3 establishes
“divide large blocks of information into more manageable groups where natural and
appropriated [Priority 2]” [27]. Checkpoints 10.3 and 10.4 are goals required for all the
HTML control elements and are focused on providing context and orientation information
to help users understand complex pages or HTML elements. For example, complex
relationships between HTML control elements as parts of an HTML form on a Web page
may be difficult for people with cognitive or visual disabilities a to interpret.

Similarly, to Table 1, we developed Tables to describe the HTML link and button,
HTML text and non-text, HTML structural and HTML frame and style sheet groups
respectively. For brevity reasons, we include here only the HTML control group as shown
in Table 1.
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4 A case study

The SIU Guaraní student registration system is been used by a number of public
universities in Argentina. It offers online information and/or diverse registration
functionalities to their students. Since these kind of online systems give support to an
educational organization, Accessibility has a main role for students with disabilities. We use
the online student’s identification function, shown in Figure 1, as the case study to apply
our aspect-oriented approach. To carry out the implementation of our approach clearly, we
follow the step-by-step process as we defined in Section 3.

Step 1. This kind of application, which is archetypical in educational domains, allows
students to login at his/her university system. During the execution of the task,
the requirements for a student’s identification involve user-system interaction.
The corresponding user interface design must provide the interface widgets
(both abstract and concrete ones) required for student’s login. In this case, the
Web engineering activity that develops the user interface design must include at
least, for the student’s identification purpose, two widgets of the type
IndefiniteVariable at the abstract interface model mapped to the concrete
interface model on two widgets of the type HTML textField. The mission of
these widgets is to receive the student’s identification and password values.
Normally, these two widgets are grouped together into a CompositeInterfaceElement
at the abstract interface model and mapped to the concrete interface model on an
HTML form.

Step 2. For specifying Accessibility concerns we encourage the early capture of these
Accessibility requirements applying the UID and SIG conceptual tools as follow:

2.1. We develop an UID diagram describing the task and outlining two integration
points at the UID interaction <1> corresponding to the student’s identification
process. As shown in Figure 6, the UID for this task has set two integration points
at the UID interaction <1>. This is because Accessibility is crucial for ensuring a
successful login information exchange between the student and the application,
during the execution of the identification function.
2.2. We develop a SIG diagram for the Accessibility integration points outlined by
the UID in Step 2.1 to identify WCAG 1.0 Accessibility requirements.
Specifically, we define Accessibility softgoals for the UID interaction’s compo-
nents <1.1> LogoImage and <1.2> IDForm, to guarantee accessible image and
text input fields for all the students, including those with disabilities. Using the
SIG’s notation and vocabulary, the HTML image and the HTML form at the
concrete interface model, corresponding to an ElementExhibitor and to a
CompositeInterfaceElement of the abstract interface model respectively, are the
focus of the Accessibility softgoal highlighted into the root light cloud. As shown
in Figure 10a, the user technology support and the user layout support branches
are specified into light clouds and dark clouds respectively. The light clouds
represent the refined Accessibility softgoal—i.e. the required WCAG 1.0 guide-
lines; while the dark clouds represent operationalizing goals—i.e. the required
checkpoints to be satisfied. In this case, we use the association table for HTML
Text and Non-Text elements and Table 1 for the HTML control elements, since the
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( a ) SIG instantiation for an Accessible Student’s Login at UID Interaction < 1 > of Fig. 6

( b ) WCAG 1.0 checkpoints crosscuting an HTML form element (Concrete Interface
Widget) corresponding to a CompositeInterfaceElement (Abstract Interface Widget)

( c ) WCAG 1.0 checkpoints crosscuting an HTML image element (Concrete Interface
Widget) corresponding to a ElementExhibitor (Abstract Interface Widget)

Figure 10 Managing crosscutting symptoms in an aspect-oriented manner.
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Accessibility softgoal is defined for a LogoImage and an IDForm. Then, the
refinement process for the SIG instantiation is carried out as follow.

Firstly, looking at the user technology support branch in Figure 10a, a distinction
between “technology independence” and “technology dependence” is made and to ensure
the universal access of devices to the HTML form element, we chose an and-
decomposition; but the choice for an AND / OR decomposition will depend on the
designer’s decisions and the application’s constraints. For “technology independence”,
satisfying goals related to guideline 10 for checkpoints 10.2 and 10.4 compliance are
required. Otherwise for “technology dependence”, satisfying goals related to guideline 9 for
checkpoints 9.4 and 9.5 compliance are required. Now looking at the user layout support,
satisfying goals related to guideline 12 for checkpoints 12.3 and 12.4 compliance are
required for the HTML form element; while satisfying goals related to guidelines 1 and 2
for checkpoints 1.1; 2.1 and 2.2 compliance are required for the HTML image element.

Step 3. For the user interface design activity, we exploit the Accessibility knowledge
captured and organized by SIG diagrams at Step 2.2. The purpose here is to find
out how WCAG 1.0 Accessibility requirements “crosscut” interface widgets
required for a LogoImage and an IDForm.

In order to make our discussion clear, Figure 10b and c illustrate how the SIG’s
operationalizing goals—i.e. the required WCAG 1.0 checkpoints to be satisfied for an
accessible student’s login—“crosscut” the components of an HTML form element and an
HTML image element, corresponding to a CompositeInterfaceElement and ElementExhibitor
ontology widgets respectively. Since applying the required WCAG 1.0 checkpoints to be
satisfied at the user interface causes typical crosscutting symptoms—i.e. “scattering” and
“tangling” problems, it is clear that aspect-orientation is the natural approach to solve these
crosscutting symptoms. The SIG diagrams not only provide Accessibility technology and
layout support respectively for any of the HTML image and HTML form components at the
user interface, but also allow Aspects I and II to be modeled and instantiated appropriately to
avoid “scattering” and “tangling” problems. Then Aspects I and II can be seamless injected by
aspect “weaving” mechanism into the core—i.e. user interface models, to achieve the
Accessibility softgoal and as a consequence an HTML code with the desired conformance to
the WCAG 1.0.

For example, as shown in Figure 10c, whenever there is an HTML image element at the
user interface model, Aspect II “LSText&Non-Text” is injected to avoid the “scattered”
nature of Accessibility checkpoints 1.1, 2.1 and 2.2 over HTML image classes. The
addition off Aspect II “LSText&Non-Text” guarantees later, at the concrete interface model
implementation, conformance to the following Accessibility properties for each HTML
image element: (a) adding an HTML alt-text description and, (b) not relying on images’
color alone to convey information. While, as shown in Figure 10b, whenever there is an
HTML form element at the user interface model, Aspect I “TSControl” and Aspect II
“LSControl”, focused on solving technology and layout Accessibility issues respectively,
are injected to avoid the “scattered” and “tangling” nature of Accessibility checkpoints 9.4,
9.5, 10.2, 10.4 12.3 and 12.4 over HTML form classes.

Step 4. Finally, as a result of modeling Aspect I and Aspect II (using SIG’s prescription
for WCAG 1.0 checkpoints) and the addition of these aspects to deal with the
targeted interface widgets, we produce an accessible HTML implementation for
the concrete interface model required by the online student’s ID.
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5 Related work and discussion

The main advantage of our approach is the possibility to treat Accessibility as an
independent AOSD concern at early stages of the development’s life cycle, therefore
eliminating crosscutting and as a consequence allowing more modular system development
and reuse of Accessibility aspects.

Further on, we review similar approaches that consider modeling the Accessibility
concerns in at least, some of the stages of the development life-cycle.

The main goal in Plessers et al. [21] is to generate the annotations for visually impaired
users automatically from the explicit conceptual knowledge existing during the design
process. The approach integrates the Dante [31] annotation process into the Web Site
Design Method (WSDM) [9] that allows Web applications to be developed in a systematic
way. The annotations are generated from explicit conceptual knowledge captured during the
design process by means of WSDM’s modeling concepts. These WSDM’s modeling
concepts, used in the different phases, are described by using the WSDM OWL3 ontology.
To generate code that is annotated with concepts from the Dante’s WAfA4 ontology [31], a
relationship between the concepts in the WSDM ontology and the WAfA ontology is
established. By using these mapping rules, the authors establish a transformation process
that takes the conceptual design models as input and generates a set of annotations as a
consequence. We have decided to include this approach primarily because it is a project that
has its main focus on Accessibility, which is addressed from a Web Engineering (WE)
perspective. This is a point in common with our proposal, since both are embedded into a
recognized WE approach: the WSDM and the OOHDM respectively. However, although
this approach is embedded in a WE method, the mayor effort is focused on the interface
transformation process to improve the support for screen readers, using for this purpose
their own concepts from the WAfA ontology [31]. As a consequence, the approach has a
restricted dependency on this ontology and it does not work directly with concepts from
world-wide recognized Accessibility standards. Here, there is a substantial difference with
respect to our proposal since we follow established Accessibility guidelines and, by
providing specific design techniques, we carry out these guidelines systematically over
models of a WE process allowing developers to improve interface designs for all kinds of
disabilities.

The work by Centeno et al. [5] presents the set of rules that, in a Web composition
process, a design tool must follow in order to create accessible Web pages. These rules are
formalized with W3C standards like XPath5 and XQuery6 expressions, defining conditions
to be met in order to guarantee that Accessible chunks of Web pages are safely composed
into a page that also turns out to be Accessible. The XPath and XQuery expressions spot
HTML nodes and attributes having Accessibility problems. This work proposes to properly
manage these spot elements by an authoring tool, so that the author’s attention can be
directly brought to these barriers in a semi-automated edition process. The WSLS approach
follows the AOSD separation of concerns principle to decompose complexity and control
Accessibility over six distinguished categories: Data, Presentation, Navigation, User,
Interaction, Process and Communication. The six elements are mediated by a service
control function. Beyond the advantage of the reuse aspect of these components, separation

3 OWL Web Ontology Language at http://www.w3.org/TR/owl-ref/
4 Web Authoring for Accessibility (WAfA) at http://hcw.cs.manchester.ac.uk/experiments/ontologies/wafa.
owl
5 W3C XML Path Language at www.w3.org/TR/xpath
6 W3C XML Query Language at www.w3.org/TR/xquery
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of concerns facilitates also being compliant to the underlying guidelines [5]. Although the
fact this approach works like ours with mature WCAG standards, the focus of the proposal
is on providing Accessibility support to Web composition processes managed by an
authoring tool. The proposal results in a pragmatic approach to sustain Accessibility
principles while a graphic designer develops websites from reusable chunks of accessible
HTML code. However, since the approach bases its strategy on the assumption that there is
a repository of accessible pieces of HTML markup, the delivery of accessible Web pages is
performed only as a product of the composition of such pieces. It does not pay attention to
Web application modeling issues to support accessible design. On the other hand, our
approach aims at providing full support to Accessibility with modeling techniques
specifically designed to be integrated within the steps of a Web application development
process.

Using “the best existing practices of software engineering” for Accessibility purposes,
the approach by Zimmermann & Vanderheiden [32] presents a methodology for accessible
design and testing to capture functional requirements. The approach defines a new way of
using proven tools of software engineering, like use cases, scenarios, test cases, guidelines
and checkpoints for Accessibility purposes; and to relate them to each other, thus
facilitating automation as much as possible. The resultant methodology consists of: (a)
capturing Accessibility requirements in a way that makes them tangible and comprehen-
sible, through use cases and the technique of user profiling “personas” [32], (b) making
Accessibility requirements concrete through scenarios and guidelines for accessible design,
(c) manual and automatic testing based on test cases and Accessibility checkpoints that are
derived from guidelines, and (d) complementary user testing and expert reviews, and
continuously improving the overall process model. In this way, for design projects that are
applying a use case driven methodology, this approach enables us to incorporate accessible
design into the existing processes rather than having to add Accessibility as a new process
[32]. The approach has two important features to highlight. The first one is encouraging the
use of existing standards for Accessibility (although, it does not apply in particular to any of
these standards). The second one is incorporating accessible design into proven
development processes using a use case driven methodology. While an initial analysis
seems to show points in common with our proposal, there is a conceptual difference
between both approaches when it comes to the Accessibility requirements. The accessible
design proposed by Zimmermann & Vanderheiden [32] is based on “the best existing
practices of software engineering”, which basically uses cases and scenarios that were
designed to meet functional requirements. From this perception, the approach merely
attaches Accessibility requirements to functional diagrams, for the purpose of reminding
them during the testing stage, and verifying guidelines and checkpoints derived from the
applied Accessibility criteria. Since the beginning of our work, we have claimed about the
non-functional, generic and crosscutting characteristics of Accessibility and certainly, this
inherent nature requires approaches which ensure an appropriate treatment to the
Accessibility concerns. Keeping this conceptual principle in mind, our approach gives an
accurate answer extending “proven design best practices of WE”.

Casteleyn et al. [4], focus on how to extend an application with a new functionality
without having to redesign the entire application. The work states that since creating a Web
application has become an increasingly complex task, various design issues like device-
dependence, privacy, security, Accessibility, localization, personalization, etc. have become
extremely relevant to the performance of the application. To add new functionality, the
authors propose to separate additional design concerns and describe them independently.
They demonstrate how an aspect-oriented approach can support the high-level specification
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of these (additional) design concerns at a conceptual level. The work first illustrates how to
add adaptation to an existing Hera-based Web application [12] by using a component-based
implementation. A further work [19] over this foundation proposes an aspect-oriented view
on adaptation engineering within the AMACONT7 framework. By separating the
specification of adaptation from the underlying application in the form of so-called
adaptation aspects, the proposal adds new or modifies existing adaptation concerns on
demand. Although, this approach is primarily focused on adapting an existing Web
application, we include it because the approach suggests adding relevant design concerns,
like Accessibility, in an aspect-oriented manner and, it is representative of other similar
works in the adaptation field, like [1, 23]. Although this is not an Accessibility approach
itself, we consider it because of two folds: (a) it clearly establishes the crosscutting nature
of adaptation concerns like personalization, localization, security and even Accessibility, (b)
it recognizes that WE approaches fail to cope with this crosscutting nature of adaptation
concerns. Over these foundations the authors developed an interesting work to manage
transformations required for an adaptation concern. Nevertheless, two points should be
noted: the support effort is focused on the presentation generation level and we do not have
evidence of the result of implementing this proposal on Accessibility standards and issues.

The objective of our approach is different from the former ones because it is focused on
providing specific modeling techniques to include Accessibility systematically in a
methodology for Web applications development. The fact that we choose the aspect orientation
to develop our proposal ensures handling naturally the non-functional, generic and crosscutting
characteristics of the Accessibility concerns. As we have already seen in this section we have
not found evidence of approaches addressing Accessibility early from requirements and
through design to implementation, following the Web engineering philosophy.

At this point, we want to reflect on the advantages/disadvantages of model-driven
approaches and how this issue benefits/affects our proposal. It is a fact that applying
“unified”, model-driven approaches brings the benefit of having full documentation and
automatic application generation at the expense of introducing some bureaucracy into the
development process. For instance, consider the spectrum of model-based approaches for
developing Web applications as UWE [14], OOHDM [22], WebML [6] or WSDM [9].
Since our proposal suggests the early treatment of the Accessibility concerns through
models specified in the context of the OOHDM method, we may still be influenced by this
reality and its disadvantages—i.e. time and cost consuming, complexity, learning effort, etc.
Being aware of this situation, we would like to address some insights that can assist the
application of our proposal.

Firstly and since the Accessibility guidelines are quite independent from the Web
application under development, there are many cases to which the same Accessibility
solution can be applied. On this basis, it is very common to find recurrent Accessibility
situations when designing user interfaces for Web applications. Then, recording such
situations (e.g. using patterns) might contribute to reuse them, which contributes to reduce
the development effort when implementing our proposal. This is possible because aspects,
as we have already explained, could be developed once and be reused in different Web
projects. For example, user interfaces typically include images and actions that should be
carried out to break down the Accessibility barrier for blind users

Secondly, and in order to simplify the implementation of our approach, we are working
on the development of a tool to assist designers in the implementation of cases, and on the

7 System Architecture for Multimedia Adaptive WebCONTent at http://www-mmt.inf.tu-dresden.de/Forschung/
Projekte/AMACONT/index_en.xhtml
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creation of their corresponding models by using reusable components. Currently, we are
working on supporting the first phase of our approach by assisting and implementing the
application of SIGs diagrams to interface models.

5.1 Migrating to WCAG 2.0

Since the WCAG has two documents (1.0 and 2.0), it is important to make clear at this
point why we chose the 1.0 document. WCAG 1.0 [27] has been used worldwide since
1999 as a reference material or cited as a normative from many other accessibility
documents in the world [20, 24]. It also has been implemented by many tools and
approaches. Although the WCAG 2.0 has been released in December 2008 and has already
been a standard for about a year, it is a fact that so far the rate of adoption has been
relatively slow and the number of countries and other regulating authorities now using
WCAG 2.0 are still not enough compared to what was expected.

However, aware that the new guidelines and the move to technological neutrality are
undoubtedly good, we do not see major inconveniences to upgrade our approach to WCAG
2.0 when necessary. As we discussed before, our approach is based on the use of UIDs with
integration points and the SIG template for Accessibility linked by association tables.
These conceptual tools are able to support the success criteria from WCAG 2.0 instead of
checkpoints from WCAG 1.0 applying some straightforward redefinitions and adjustments.
We highlight that to realize this upgrade we use the comparison provided by W3C-WAI in
[30], since there are still some discrepancies at the Accessibility community8 when
providing mappings between the WCAG 1.0 checkpoints onto the WCAG 2.0 success
criteria. A complete analysis of this upgrade is outside the scope of the paper.

6 Conclusions and future work

In this paper, we presented a novel WE approach to conceive, design and develop
accessible Web applications using aspect-oriented concepts, which enabled us to address
Accessibility early from requirements and through design to implementation. We used a
real application example to illustrate our ideas and point out the advantages of a clear
separation of concerns throughout the development life-cycle.

First of all, aspect-orientation capabilities constitute an important driver to efficiently
capturing the orthogonal properties that are typical of the Accessibility’s nature. Secondly,
organizing these properties into a model-driven approach gives us better visibility of the
components at different levels—i.e. from its conceptualization to its instantiation by
particular Accessibility rules. This is especially important when reasoning about the
different properties, because their complexity may be adequately addressed.

In addition, we provided explicit analysis and design techniques aiming at facilitating the
capture of early Accessibility concerns. These techniques might be combined with
traditional web engineering methods, which would help introduce and deploy our approach
in the industry. However, we must take into account that the inclusion of new conceptual
tools for treating Accessibility requires an extra effort for developers to get familiar with
them. In this sense, we are currently incorporating our ideas into design tools to assist
developers to design model-driven accessible Web applications.

8 See http://www.w3.org/WAI/WCAG20/from10/comparison/; http://wipa.org.au/papers/wcag-migration.
htm; http://www.usability.com.au/resources/wcag2./
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Considering the extensibility of our approach, it is important to highlight, that although
in this work we focused on visual disabilities, the proposal can be extended to all kinds of
disabilities as the conceptual tools we provided (the UID with integration points and SIG
template for Accessibility) are generic enough to capture Accessibility requirements for all
types of impairments. The reason why we use visual impairment is based on the fact that
ensuring Accessibility requirements for blind people, to a certain extent, covers
Accessibility requirements for other disabilities. For example, the checkpoint 1.1 of the
WCAG 1.0 establishes that text equivalents must be written to convey all essential content;
therefore ensuring compliance to checkpoint 1.1 is vital for visually impaired users. The
fact is that the absence of non-text equivalents represents a critical Accessibility barrier for
people with visual disabilities, but ensuring text-equivalent also improves Accessibility for
users with deafness, cognitive and learning disabilities. So, we considered the treatment of
visual impairments as a good starting point.

Finally, we should further validate our proposal beyond the case study presented in this
work. To do so, we are currently analyzing the impact of applying our proposal on quality
attributes of the resulting system, such as extensibility, reuse, and modularity; and the
developing effort required when using the approach. We are currently carrying out some
guided experiments in the area of Web-based systems for academic domains.
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