
F. Daniel, P. Dolog, and Q. Li (Eds.): ICWE 2013, LNCS 7977, pp. 224–232, 2013.
© Springer-Verlag Berlin Heidelberg 2013

A Domain Specific Language for Orchestrating User
Tasks Whilst Navigation Web Sites

Sérgio Firmenich1,2, Gustavo Rossi1,2, and Marco Winckler3

1 LIFIA, Facultad de Informática
2 Universidad Nacional de La Plata and Conicet Argentina

3 IRIT, Université Paul Sabatier, France
{gustavo,sergio.firmenich}@lifia.info.unlp.edu.ar,

winckler@irit.fr

Abstract. In this paper we claim that there are a lot of processes over Web ap-
plications that require a high level of coordination between individuals and
tasks featuring procedures. We propose hereafter a Domain Specific Language
(DSL) for describing the asynchronous orchestration users’ tasks including ma-
nual users’ tasks (i.e. simple instructions that tell users what to do during the
navigation) and automated tasks (i.e. tasks that can be partially or completely
automated by client-side scripts). The approach is illustrated by examples and a
case study showing the tools, for which an empiric evaluation is presented.

Keywords: task and process modeling, Web application, Web augmentation.

1 Introduction

Although Web navigation was regarded in the past as a solitary activity, nowadays,
many users are engaged in repetitive and collaborative activities that are supported by
uncountable Web applications [6]; for example booking a seat in a flight or explaining
friends how to book a seat next yours in a flight… Moreover, many of these tasks
involve dealing with different Web sites, which run independently with no support to
the actual users’ concern [4].

This lack of integration of different Web resources has motivated the development
of mash-ups tools that are able merge into a specialized applications a set resources
that are scattered among different Web sites [8]. The problem is that mash-up are used
straightforward, when most of tasks users perform are volatile and do not really re-
quire the creation of a new an entirely new applications.

The integration of data across applications can also be done by Web augmentation
artifacts, which perform interventions over Web applications DOMs. Some Web
augmentation approaches [1][4] aim to support users task by adapting the Web pages
visited accordingly.

In this paper we propose a Domain Specific Language (DSL) for describing proce-
dures that are aimed to orchestrate user tasks over multiple Web sites. It supports
flexible process modeling by allowing users to combine manual task and automated
tasks from a repertoire of patterns of tasks performed over the Web. Whilst manual
tasks can be regarded as simple instructions, automated tasks correspond to Web

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Servicio de Difusión de la Creación Intelectual

https://core.ac.uk/display/479254948?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

 A DSL for Orchestrating User Tasks Whilst Navigation Web Sites 225

augmentation [4] tools (i.e. augmenters). The approach is duly illustrated by a case
study describing a trip planning over the Web.

The rest of the paper is organized as follows: section 2 motivates and presents re-
lated works; section 3 introduces the approach. Section 4 present the DSL followed
by the corresponding tool support (section 5). In section 5 we also present a compara-
tive study using our tools; and lately section 6 presents the conclusions and future
work.

2 Motivation and Related Work

Web Augmentation is not a new concept, and it is becoming really important from the
point of view of users, who are expecting new kinds of mechanisms for personalizing
their experience while navigating the Web. Large communities of scripting such as
GreaseMokey prove the value of this technique. There are other similar approaches.
Mashup tools, for instance, have the same final goal: improve the users’ experience.
Neither mash-ups nor existing Web augmentation techniques provide a definite and
flexible solution for supporting users tasks. Here, we compare our approach with
others DSL/tools for supporting users tasks.

Some approaches allow users to specify the steps involved in certain tasks in order
to repeat these steps later. For example CoScripter [4] records the user interactions
(based on DOM events) and then the user may reproduce the same steps automatical-
ly. Other approaches define DSLs that aim to help to automate tasks. For instance,
ChickenFoot [1] extends JavaScript with new sentences (e.g. “click()”, “enter()”,
etc.). In this way, to develop a script for automating Web use is easier. Both Chicken-
Foot and CoScripter are powerful approaches but these do not contemplate changes in
the process, since it is completely DOM-dependent. With the same philosophy we can
mention Selenium [7], which can be used for this task automation, although it was
originally defined for testing. While all these approaches may help users by allowing
them to automate only primitive tasks, our approach mixes these with augmentation
ones, which adapt Web pages accordingly to the current user tasks. It implies that not
only repetitive processes may be defined but complex scenarios of adaptation. Be-
sides that, the manual execution of certain tasks gives the control to users. In this way,
sensitive tasks (for example payments, or sensible information use) are not performed
by automatic tasks in which users may not trust.

3 Overview of Our Approach for Orchestration of Web Tasks

This section provides a view at glance of our approach and the type of users’ tasks
supported which include: primitive and augmentation tasks.

We refer as primitive tasks to a basic set of tasks that are already supported by the
Web browser. These tasks include actions such as “go to a Web page”, “fill in a
form”, etc. Primitive tasks used in our approach are heavily inspired by previous
works that have already proposed a taxonomy for these user tasks [7].

For us, augmentation tasks are those ones that require advanced scripts programming
(based on Web augmentation techniques) to be executed over the Web browser. Some

226 S. Firmenich, G. Rossi, and M. Winckler

of these tools are able to perform changes in DOM’s changing Web pages on the client
side. In previous work [4] we have developed a set of Web augmentation tools, called
augmenters, using the CSN framework. The CSN framework is a tool that supports the
development of scripts aimed to adapt Web sites accordingly to the actual users’ con-
cern. Augmenter are integrated into the Web browser via the framework. Once installed,
augmenters are accessible to the user via a contextual menu. The framework has two
main user roles: i) developers: are users with programming skills who can extend the
framework by creating augmenters; ii) final users: who use augmenters to improve their
performance whilst navigating the Web. For example, Figure 1 shows the activation of
the augmenter DataCollection used to collect data from Web pages. The data collected
is presented as a kind of floating post-it called Pocket. In the example the user is collect-
ing point of interest under the name of “PoI”. As we shall, the collection of Web page
data requires an advanced script (i.e. an augmenter), it modifies the DOM page (by
creating a floating DIV element) and extend what users can do over a Web page (i.e.
create electronic post-its); so that when a user runs the DataCollection augmenter he in
fact performing an augmentation task.

Fig. 1. Example of the use of the augmenter DataCollection

Augmenters can also be used in combination to create complex sequences of tasks.
Figure 2 shows the combined execution of augmenters. In this example a user ex-
ecutes the augmenter CreateGoogleMapsLink from the Pocket element (2.a). This
action adds an anchor to GoogleMaps next to each occurrence of the concept “PoI”
(2.b) that can then navigated to the corresponding GoogleMaps web site (2.c).

Fig. 2.a. Triggering augmenter
using GoogleMapLink

Fig. 2.b. Adaptation performed by
the augmenter GoogleMapLink

Fig. 2.c. Navigation to
GoogleMaps

3.1 Overview of the Approach

The goal is to allow users to create complex processes, called procedures, by compos-
ing primitive and augmentation tasks. The composition is a sequence of tasks forma-
lized by a DSL and stored as a XML file. A dedicated tool parses that XML file and

 A DSL for Orchestrating User Tasks Whilst Navigation Web Sites 227

executes the procedures on the Web browser. Figure 3 provides a view at glance of
the approach. As we shall see, the approach include three phases, as follows:

• Definition of tasks: it concerns the inclusion of task to be composed. This phase
requires skilled Web developers who program augmenters. This is technically de-
manding, but the work should be done once and it will benefit all users. Nonethe-
less, the framework provides a large set of both primitive and augmentation tasks.

• During Composition phase, users create a sequence of tasks available in the reposi-
tory, which is exported by the factory and defined by the means of a DSL describ-
ing all tasks in the procedure. This artifact, defined by the DSL, may be shared with
other users in order to support them in the accomplishment of the same task.

• Execution: this phase features a player that is concerned by the execution of the
procedure previously encoded by the DSL.

Fig. 3. Overview of the approach

4 A DSL for Web Task Composition

Procedures will be defined according with the DSL metamodel shown in Figure by a
UML class model. This metamodel defines those elements contemplated by the DSL
and their relations. Basically, the DSL defines a procedure as a XML file containing a
list of tasks. Primitive tasks supported are based on [3]. The set of augmenters de-
pends on what was developed by users. Composed tasks are used to group several
tasks in a single block. Tasks have three main properties: repetition property for spe-
cifying if the task may be executed more than once. The optional property allows
skipping the execution of the task. If automatic property is true, then the player
automatically triggers the task.

228 S. Firmenich, G. Rossi, and M. Winckler

Fig. 4. The DSL metamodel

Besides these properties, for each task additional properties can be added including
preconditions, postconditions and attributes:

• Preconditions: preconditions are used to decide if the task will be executed or
not according to which information is available. There are two main kinds of pre-
conditions. On the one side, preconditions about collected data: for conditioning
the execution of a task according to the collected data. On the other side, precon-
ditions about navigational history: for conditioning the execution of a task ac-
cording to the Web applications used.

• Post-conditions: post-conditions are specified to determine the effect of execut-
ing a particular task. For example, AffectCurrent is used to specify that the execu-
tion will modify the current Web site.

• Attributes: refer to data required to accomplish tasks. Attributes (with name,
values, etc.) are specified as metadata for each task.

ComposedTask allows creating dependencies in the DSL. With this kind of task a
finite sequence of tasks can be manage altogether in order to mark as repetitive or
optional this entire block.

In the example from Figure 3, we have used both pre and post conditions. For ex-
ample in the augmentation task IconifiedLink we have specified the AffectSubset pre-
condition with a regular expression that matches with all Wikipedia articles. In this
way, when a new “PoI” is collected, all Wikipedia articles will be adapted by adding
the corresponding link to Google Maps (the focused Wikipedia article and any other
opened in non-focused Browser tabs). In order to show an example of precondition,
we have used the PocketHasInstanceOf one in order to execute the augmenter only if
an instance of “PoI” was collected.

5 Tool Support

We have developed two tools: an editor for creating procedures and a procedure
player for parsing and executing procedures.

 A DSL for Orchestrating User Tasks Whilst Navigation Web Sites 229

Fig 5.a. General view of the tool Fig. 5.b. Edition of a single task

Figure 5.a shows the editor: a sidebar that allows users to specify tasks into the
procedure while analyzing Web sites. The tool provides an assisted mode: users may
record their interaction with the Web and the corresponding tasks will be added to the
procedure automatically. This mode contemplates both primitive and augmentation
tasks. Figure 5.b shows how to edit a task. It allows users to specify the name, pre-
and post-conditions as well as values for both properties and attributes.

The Procedure Player is shown in Figure 6. When the user selects a procedure to
be executed, this appears in the Procedure Player. Once it is running, the Procedure
Player may execute automatically a task (if the tasks was marked as automatic).
Those tasks that have been executed appear with different styles, in order to give
visual feedback to users when a task was finished. For manual tasks the Procedure
Player waits to the corresponding user interaction. When this happens the task state
changes and the following task in the sequence is executed. When the procedure has
finished, the user may share the procedure execution (which includes both tasks
definition and data used in each task) for future executions or even for share with
partners.

5.1 A Simple Case Study Using the Tools

Figure 6 shows the execution of a procedure for planning a trip to ICWE2013. The
first task “Enter ICWE Web Site” is automatic and it loads the ICWE2013 Web site.
Then the procedure waits a manual task, which require from users to collect a City
into the Pocket. Once it is made, the procedure loads the accommodation page.

The task “Collect Hotel name” allows user to collect hotel names. After that, an
automatic task opens the site booking.com for searching rooms. Figure 6.b shows
the booking.com loaded with the “Destination” input filled with the city previously
collected. The procedure follows with augmenters for highlighting the selected
hotels.

230 S. Firmenich, G. Rossi, and M. Winckler

Fig. 6.a. Task Execution: collecting accommod-
ation

Fig. 6.b. Task Execution: looking for hotels
rooms

Fig. 7. Trip to ICWE procedure execution: searching and highlighting collected hotels

Figure 7 shows the procedure state once the user has finished several primitive
tasks for searching for rooms. Once the results are shown, the hotel names collected
are used by the task “Highlight collected Hotels” which adapt the current Web page
for highlighting the relevant hotels. Once the hotel room payment is finished, the
procedure gives the same support for buying flight tickets: it opens expedia.com,
prefills the forms for search (it uses the geolocation component provided by the
framework), etc. since some tasks are marked as automatic. Finally, it supports to the
user in the task of filling forms with his personal data.

5.2 Evaluation

We have evaluated empirically the approach by performing the same task in different
ways: manually, automatically with other tool (Selenium) and with procedures. We
defined three procedures with different levels of automation: i) repeating the task
structure but reentering all information, ii) repeating task structure and reusing
information from previous execution, iii) fully automated. We assessed quantitatively
the interactions made by the user using GOMS-Keystroke (KLM) model [6]. The
GOMS-Keystroke (KLM) allows to simulate the performance of a trained user

 A DSL for Orchestrating User Tasks Whilst Navigation Web Sites 231

proposing the average time to perform basic action (for instance, reach for mouse
takes 0,40 sec). Thus, provided a detailed scenario of user actions including low-level
user actions, it is possible to estimate user performance (i.e. speed).

The task was Planning a Trip to ICWE, which implied to use three different Web
sites: i) ICWE2013 home page to get information about the conference; ii)
Expedia.com to buy flights tickets; and iii) boking.com to book a room in one of the
conference hotel.

Table 1 summarizes the results obtained with each approach. The task was
decomposed into smaller ones in order to show when the use of a tool makes the
difference. A first task, Create Artifact, is only valid when a tool for automating tasks
is used.

Table 1. Results of the evaluation

Table also shows how much time was necessary with each approach. The most

time consuming was the normal use (245,3s). Selenium consumed 28.5s. The auto-
matic procedure was the fastest. However it can be counterproductive since users lose
the control over task. Semi-automatic execution only reproduced automatically those
aspects like prefilling forms, and opening URLs when the previous task is finished,
etc. Semi-automatic execution with data reutilization implies more automation by
reusing data used in previous executions of the procedure such as prefilling forms
with passenger information, credit card information, etc. In this case each confirma-
tion steps (i.e. clicking search buttons) were performed manually. Finally, the full-
automated procedure performs even these last actions, but leaving the user unable to
control the task. Defining the procedure took 472,2 sec. This time would be low-
er/higher accordingly to the automation level used. We only measured the case we
thought was the best choice in our approach.

6 Conclusions and Future Work

We presented an approach and DSL for orchestrating user tasks over the Web. The
approach allows easy integration of client-side scripts to build procedures that can be
share with other users. The DSL provides a certain level of abstract that could be used

 Procedures

Task Normal
Use Selenium Semi

automatic
Semi automatic with

data reutilization Automatic

Create Artifact - 9,5 - 472,2 -
Execute Artifact - - 9,5 9,5 9,5
Get information about the conference 12 9,5 14,2 14,2 0
Search Flights 35,9 1,7 1,7 0
Select Flights 5 6.3 6.3 0
Enter Passenger Information 25,5 25,5 0 0
Pay Flights 59,7 9,5 59,7 1,7 0
Search Room 19,9 3,6 3,6 0
Select Room 6,5 5,1 5,1 0
Enter Passenger Information 29,4 27,5 0 0
Pay Room 51,4 9,5 51 4,8 0
Total 245,3 28.5 202,8 46,9 9,5

232 S. Firmenich, G. Rossi, and M. Winckler

to analyze the sequences of users’ tasks used in procedures compositions. Each task
may be pre-conditioned, and the data is not fixed a priori (the approach contemplates
data collection as tasks); which gives flexibility. Manual tasks are contemplated too,
in order to give control to users who may feel uncomfortable if the whole task is dele-
gated in an automatic tool.

The case study presented shows that the tools are completely functional. An empir-
ic evaluation shows how the approach improves the performance in the execution of
complex tasks. However we need additional studies to explore the usability and po-
tential of user adoption of such tools. In addition with user testing of the tools, future
work will address the possibility of having synchronous communication between
users performing procedures. Our ultimate goal is to allow users who create and share
procedures with friends, be able to follow the execution of the procedures.

The approach opens up the way for potential collaboration between users. By shar-
ing procedures or even synchronize users’ procedures execution would allow users to
collaborate in order to accomplish a task altogether or even to share a procedure
execution with a partner.

References

1. Bolin, M., Webber, M., et al.: Automation and customization of rendered web pages. In:
UIST 2005, pp. 163–172. ACM Press (2005)

2. Card, S., Moran, T., Newell, A.: The psychology of human-computer interaction, p. 448.
Lawrence Erlbaum Associates, Hillsdale (1983)

3. Byrne, M.D., John, B., Wehrle, N., Crow, D.: The tangled Web we wove: a taskonomy of
WWW use. In: Proc. of Conf. on Human factors in computing systems (CHI 1999),
pp. 544–551. ACM, New York (1999)

4. Firmenich, S., Winckler, M., Rossi, G., Gordillo, S.: A Framework for Concern-Sensitive,
Client-Side Adaptation. In: Auer, S., Díaz, O., Papadopoulos, G.A. (eds.) ICWE 2011.
LNCS, vol. 6757, pp. 198–213. Springer, Heidelberg (2011)

5. Leshed, G., Haber, E., Matthews, T., Lau, T.: CoScripter: automating & sharing how-to
knowledge in the enterprise. In: Proc. of ACM SIGCHI 2008, pp. 1719–1728. ACM Press
(2008)

6. Morris, M.R.: A survey of collaborative web search practices. In: Proc. of ACM SIGCHI
2008, pp. 1657–1660. ACM Press (2008)

7. Selenium, http://jroller.com/selenium/ (last visit: February 26, 2013)
8. Yu, J., Benatallah, B., Casati, F., Daniel, F.: Understanding Mashup Development. IEEE

Internet Computing 12, 44–52 (2008)

	A Domain Specific Language for Orchestrating UserTasks Whilst Navigation Web Sites
	1 Introduction
	2 Motivation and Related Work
	3 Overview of Our Approach for Orchestration of Web Tasks
	3.1 Overview of the Approach

	4 A DSL for Web Task Composition
	5 Tool Support
	5.1 A Simple Case Study Using the Tools
	5.2 Evaluation

	6 Conclusions and Future Work
	References

