
L. Baresi, P. Fraternali, and G.-J. Houben (Eds.): ICWE 2007, LNCS 4607, pp. 152 – 166, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Transparent Interface Composition in Web Applications

Jeronimo Ginzburg1, Gustavo Rossi2, Matias Urbieta2, and Damiano Distante3

1 Departamento de Computación, FCEyN, Universidad de Buenos Aires, Argentina
jginzbur@dc.uba.ar

2 LIFIA, Facultad de Informática, UNLP, La Plata, Argentina and Conicet1
{gustavo, matias.urbieta}@lifia.info.unlp.edu.ar

3 RCOST – Research Centre on Software Technology
Department of Engineering, University of Sannio, Italy

distante@unisannio.it

Abstract. In this paper we present an approach for oblivious composition of
Web user interfaces, particularly for volatile functionality. Our approach, which
is inspired on well-known techniques for advanced separation of concerns such
as aspect-oriented software design, allows to clearly separate the design of the
core’s interface from the one corresponding to more volatile services, i.e. those
that are offered for short periods of time. Both interfaces are oblivious from
each other and can be seamlessly composed using a transformation language.
We show that in this way we simplify the application’s evolution by preventing
intrusive edition of the interface code. Using some illustrative examples we fo-
cus both on design and implementation issues, presenting an extension of the
OOHDM design model which supports modular design of volatile functionality.

1 Introduction

Even simple Web applications must deal with a myriad of concerns, each one of them
encompassing multiple requirements. It is well known that by clearly decoupling
application concerns in each development stage, and using proper composition
mechanisms to weave corresponding design and implement artifacts, we can get more
evolvable (Web) software [11]. However, while different techniques for advanced
separation of concerns such as architectural and design patterns [9] and aspects [8]
have been already introduced in the Web field (for example [2]), there are still many
open problems, related with concern separation and composition, which have not been
fully addressed. In this paper we focus on the design of volatile functionality, particu-
larly on presentation issues. In a Web application there may be many different kinds
of volatile requirements giving raise to volatile functionality. Some of them may arise
during the application’s evolution to check acceptability of the users’ community (like
beta functionality) and might be later considered or not core application services (e.g.
forums or users’ tags in Amazon.com). Others are known to be available only on
short and determined periods of time such as functionality for giving donations after a
catastrophe or sales for fixed periods of time (e.g. Christmas). Others are even more

1 This paper was partially funded by Secyt Project PICT 13623.

 Transparent Interface Composition in Web Applications 153

irregular: some kinds of price discounts in e-stores (e.g. for specific left-over stock
products), draws and concert tickets selling (associated with a CD), Amazon’s
“fishbowl performance” for new releases of an artist, etc.

Volatile functionality may also affect irregular sub-sets of objects; for example
only some CDs in a store are involved in a draw, artists’ performances in a video
appear only in some novelties, etc. As an example, in Figure 1 we show the Amazon
page of the last CD of Norah Jones, including a short video, which will be surely
removed after some weeks. Additionally at the bottom of the page there is a link to a
Valentine’s store, a volatile sub-store which was removed after St. Valentine’s day.

Core
Information

Fishbowl
Performance

St Valentine
ReminderCustomer reviews

Fig. 1. Different volatile functionality in Amazon.com

Volatile functionality poses many challenges to the designer, and also to design
approaches. Suppose for example that we have designed a CD class or entity type
using any Web design approach. If we want that some CD objects exhibit some new
behaviors or data (e.g. a video performance), we can either add an attribute to the
class, create a sub-class for the new behavior, re-design the class (type) so that it is
now a composite, encompassing as a component the new features, etc. Some of these
solutions might be better than others depending on the context (e.g. sub-classification
or class editing are not good solutions to deal with functionality attached to certain
instances). However, in all cases we face a serious problem: being this functionality
volatile, we might need to deactivate it after certain time. This means, once again,
some kind of intrusive editing, which is cumbersome even if we are using a model
driven approach and tool: the model has to be edited and this operation is certainly
error prone. To make matters worse, if new requirements arose after introducing vola-
tile modules, we might have a more complex tangle of core and volatile design com-
ponents. Even using powerful configuration management environments, rolling back
to the desired application’s configuration might be a nightmare.

Unfortunately, the armory of existing Web design methods (object oriented ones
like OOHDM [21], UWE [12] or OOWS [17], or those based on data modeling ap-
proaches like WebML [3]) lacks modeling primitives to deal with this problem. In
[19] we presented an extension to the OOHDM approach to deal with volatile func-
tionality, both at the conceptual and navigational levels. Following our approach,
we model volatile features as first class entities (e.g. classes), which are completely

154 J. Ginzburg et al.

decoupled from core modules. Core and volatile classes are then “weaved” together at
run-time, by using an integration specification. In this paper, we describe how we
extended these ideas to the user interface realm, showing that it is also possible to
create concern-specific interfaces which are obliviously composed according to inte-
gration specifications.

The rest of the paper is structured as follows: in Section 2 we present the back-
ground of our approach; next, in Section 3 we present an extension to the Abstract
Data Views (ADV) interface design notation [7] used in OOHDM with ideas coming
from aspect-oriented software design; we next introduce the idea of interface compo-
sition using transformations and illustrate our approach. In Section 4 we discuss some
related work. Finally in Section 5 we conclude the paper and present some further
work we are pursuing.

2 Integrating Volatile Functionality into OOHDM Models

Our approach is based on the idea that even the simplest volatile functionality (e.g. a
video as in Figure 1), must be considered a first-class citizen and designed accord-
ingly. Our extension to OOHDM can be summarized with the following design deci-
sions, which are shown schematically in Figure 2:

• We decouple volatile from core functionality by introducing a model for volatile
functionality (called Volatile Layer), which comprises both a conceptual and
navigational models.

• New behaviors, i.e. those which belong to the volatile functionality layer are
modeled as first class objects in the volatile conceptual model; they are consid-
ered as a combination of Commands and Decorators [9] of the core classes.

• As a consequence, we use inversion of control to achieve obliviousness; i.e. in-
stead of making core conceptual classes aware of their new features, we invert
the knowledge relationship. New classes know the base classes on top of which
they are built. Core classes therefore have no knowledge about the additions.

• Nodes and links belonging to the volatile navigational model may or may not
have links to the core navigational model. The core navigational model is also
oblivious to the volatile navigational classes, i.e. there are no links or other ref-
erences from the core to the volatile layer.

• We use a separate integration specification to specify the connection between
core and volatile functionality.

• We design (and implement) the interfaces corresponding to each concern sepa-
rately; the interface design of the core classes (described using ADVs [7]) are
oblivious with respect to the interface of volatile concerns.

• Core and volatile interfaces (at the ADV and implementation levels) are
woven by executing an integration specification, which is realized using XSL
transformations.

In this section we focus only on conceptual and navigational issues while Section 3
describes user interface specification. The overall conceptual model of the application
comprises two coarse grained packages, one containing the core functionality and the
other which is itself composed of packages describing each volatile module. Classes

 Transparent Interface Composition in Web Applications 155

in the volatile layer have a knowledge relationship to those classes which are ex-
tended with the new services. The navigational model is built analogously; there are
no links between core and volatile nodes, though there might be links to the core
navigational model (indicated with a dashed line in the diagram).

Core Conceptual
Model

Volatile Conceptual
Model

Core Navigational
Model

Volatile Navigational
Model

Core Interface
Model

Volatile Interface
Model

Integration Specification

Integration Specification

A
ffinities

P
o

intcut +
 Insertion

In
ve

rsion of
C

ontrol

Fig. 2. Overall Schema for Volatile Functionality

Nodes comprising volatile functionality are woven onto the core model using an
integration specification, which is decoupled both from volatile and core classes, thus
making the nodes oblivious to the integration strategy. In this way, the same volatile
functionality can be attached to different nodes at different times according to the
application’s needs. The specification indicates the nodes that will be enhanced with
the volatile functionality, and the way in which the navigation model will be ex-
tended. For example we can add links, insert new information or components in a
node, etc. The nodes which are affected by the new functionality are called the affin-
ity of the functionality.

In Figure 3, we present an oversimplified conceptual and navigational diagram,
showing a couple of outstanding classes and node classes in the CD example; the in-
tention of Figure 3 is to serve as an anchor for further examples in Section 3. More
elaborated examples of volatile functionality and integration specifications can be
found in [19]. The integration specification for the video functionality is the following:

Affinity NorahJones (FROM FishbowlNode WHERE performer=Norah Jones)
FROM CDNode WHERE title = 'Not too Late'

 AND performer = 'Norah Jones'
Integration: Extension

This specification indicates that the nodes corresponding to the CD with title “Not
too late” and performed by “Norah Jones” will be enriched with the Norah Jones
video (as if new attributes where added). Meanwhile, the specification for the volatile
St. Valentine’s store is as follows:

Affinity Valentine
From CDNode and BookNode WHERE styleTag=’Romantic’
Integration: Linkage (StValentineStore)
Additions: [Message: Text (“Find perfect Valentines for sweethearts….”)
 ToStore: Anchor]

156 J. Ginzburg et al.

Fig. 3. Core and Volatile Conceptual and Navigational Models

In this case we wish to add a link towards the singleton StValentineStore to those
products (CDs and Books) which are tagged as “romantic”. The text message is indi-
cated in the specification and the Anchor is associated to the unnamed link created at
weaving time. Notice that in both cases the interface specification (and therefore some
aspects of the implementation) also should change.

Our notation which is similar to the OOHDM node definition syntax (based on
object queries) allows expressing different affinities for the same volatile concern,
therefore allowing great flexibility in the resulting nodes without polluting core
classes. For example, once the CD is not more a novelty, we can weave the video to
another node, if necessary, with a different specification; in Amazon, particularly,
some of these videos are re-located (during a period of time) in the home page.

In order to support our model-driven approach and to simplify the process of weav-
ing volatile functionality into core nodes, we have implemented a framework
(CAZON), on top of Apache Struts. CAZON supports semi-automatic translation of
core and volatile OOHDM models into XML specifications, and manages the instan-
tiation of Web pages from the OOHDM navigational schema; the integration between
core and volatile services is performed by executing the queries which specify the
service affinities. A service manager evaluates affinity queries (stored in XML files)
on the actual node which is being built, and when a query succeeds, it augments the
node (in fact the corresponding XML description) with the attributes, links or aggre-
gated nodes indicated in the specification. As a result of a request CAZON returns a
node which now contains the corresponding volatile functionality and whose presen-
tation is handled using the base Struts mechanisms and tools. A full description of
CAZON can be found in [19].

In the following sections we explain how we managed to apply the ideas of oblivi-
ous composition of volatile features in the user interface, both at the design and im-
plementation levels. Though we focus on our implementation in CAZON, most of the
concepts can be easily applied in a broader context. Particularly, the idea of separation
and oblivious composition of user interfaces is applicable to all kinds of design con-
cerns though we exemplify it with volatile ones.

 Transparent Interface Composition in Web Applications 157

3 Improving Web Interface Composition

User interfaces also suffer the impact of the addition and editing of volatile function-
ality both at design and implementation levels. Even if we push languages like JSP to
their limits regarding modularity, it is practically inevitable that code which describes
the interface of core components is polluted with tags belonging to volatile function-
ality and therefore both concerns (core and volatile) get tangled.

As an example, the JSP page that implements the CD interface (see Figure 1) will
have knowledge on both St. Valentine store and on the Fishbowl component as shown
in Figure 4.

....

.... <tr><td><input name="addToBabyRgstr" alt="Add to Baby ...
src="btn-baby-reg.gif"/></td></tr>

<tr><td> <jsp:directive.include file="fishbowl.jsp" /> </td></tr>

<tr><td> Find perfect Valentines for sweethearts…
 ... Valentine’s Gift for music lovers</td></tr>

<tr><td><hr><h2>Customer Reviews</h2></br>
Average Customer Review:....
.....

Information pertaining to
core concern CD

Fishbowl Service

StValentine
Service

Fig. 4. Code tangling in the user interface

In Figure 4, we can see two blocks of code which refer to the Fishbowl and St Val-
entine concerns and which are clearly tangled with the code of the core (CD) concern
therefore compromising modularity. A similar situation would arise at the interface
design level regardless of the used notation. The classes corresponding to the core’s
interface will have explicit references (either as attributes or as aggregated classes) to
the volatile ones.

It is important to state that this problem is conceptual and not technological. In
common implementation technologies (such as JSP, JSF, etc.) or user interface de-
scription languages (such as usiXML [15], UIML [18], etc) we may experience this
kind of tangling due to the lack of primitive constructs to implement either a solution
based on polymorphism (e.g., using Decorators to made oblivious interface code
insertion) or on point-cuts such as in aspect-orientation. The include primitive, typical
of scripting languages, does not guarantee obliviousness because it yields an explicit
invocation.

It is not surprising that separation of concerns is such elusive at the interface level;
most modern Web engineering techniques have treated these aspects as lower-level
issues (e.g. relegating it to the implementation stage). Avoiding tangling at the inter-
face level allows better composition of existing interfaces and interface designs.
Though this impact is obvious and seems more harmful at the code level (e.g. in a JSP
page) it should be also addressed at design time. For the sake of understanding we
describe our approach in two different sub-sections, addressing design issues first, and
then showing how we realized these ideas in the implementation stage in the context
of CAZON.

158 J. Ginzburg et al.

3.1 Composing Web Interface Designs

In OOHDM, the user interface is specified using Abstract Data Views (ADVs) [7],
which support an object-oriented model for interface objects. In OOHDM we define an
ADV for each node class, indicating how each node’s attribute or sub-node (if it is a
composite node) will be perceived. An ADV can be seen as an Observer [9] of the node,
expressing its perception properties, in general as nested ADVs or primitive types (e.g.
buttons). Using a configuration diagram [21] we express how these properties relate
with the node’s attributes.

ADVs are also used to indicate how interaction will proceed and which interface
effects take place as the result of user-generated events. These behavioral aspects,
which are specified using ADV-charts [7] (a kind of Statechart), are outside the scope
of the paper; we will only focus on structural interface aspects.

picture Title:string

Performer:String

ADV CD

ListPrice:string

CustomerAvg:image

ADV Customer Reviews

CustomerAvg:image

Customer Review

Description:string

Set

Cover:bitmap

ADV
addShopCart

(asButton)

Customer reviews

Fig. 5. The ADV corresponding to the CD Node

We have slightly modified the ADV notation in such a way that the positions of
nested objects in the ADV reflect the look and feel of the interface as shown in
Figure 5. This notation which is inspired in a similar one for UWE [12], allows im-
proving discussions with different stakeholders, though it can not be processed auto-
matically by standard ADV-based tools.

As explained in Section 2, each concern (core and volatile) will comprise ADVs
for its corresponding nodes; when necessary, e.g. when a node should exhibit some
volatile functionality, we weave volatile and core ADVs using an integration specifi-
cation. Figure 6 shows these ideas schematically.

Core Volatile

ADV V1ADV C2

Fig. 6. ADV V1 woven into ADV C2

To express the integration, we have defined a simple specification language which
allows indicating pointcuts and insertions at the abstract interface level, i.e. the
position of the volatile ADV when it is inserted in the core ADV. The specification

 Transparent Interface Composition in Web Applications 159

generalizes the idea of pointcuts to the two dimensional space of Web interfaces. A
pointcut and the corresponding insertion are specified using the following template:

IntegrationFor: Concern name. affinity name
Target: ADV target name
Add: ADV source name | Insertion Specification
Relative to: ADV name
Position: [above | bottom | left | right]

The field “IntegrationFor” refers to the navigational affinity as described in Section 2;
the name of the affinity is necessary only when there is more than one affinity in the
same concern. When the affinity is satisfied (at the navigational level) the interfaces must
be composed according to the specification. The field “Target” indicates the name of the
ADV (or ADVs) which will host the volatile interface code. Inner ADVs may be speci-
fied using a “.” notation, such as CD.Reviews to indicate that the insertion will take place
in the ADV Reviews, which is a part of the ADV CD.

The “Add” field indicates which elements must be inserted in the target, either an
ADV or an immediate specification, which is used when the inserted field is simple
enough to avoid the specification of another (auxiliary) ADV. Finally we indicate the
insertion position by using the “Relative” and “Position” fields. Notice that the speci-
fication is still “abstract”, leaving place to fine tuning during implementation.

In Figure 7 we show (on the left) the ADV for the Fishbowl volatile functionality
and the integration specification which corresponds to the abstract interface of Figure
5. The result of the weaving process in the concrete interface is shown on the right of
Figure 7. As shown, the ADV Fishbowl is placed between the CD’s core information
and the inner ADV Customer Review.

Sometimes the integration requires additional interface objects, for example when
the navigation extension is of type Linkage, as in the case of the St. Valentine store.
The corresponding objects might be defined either as ADVs belonging to the specific
volatile concern package (e.g. for reusing them in other specifications), indicated in
the integration specification (e.g. when they are simply strings), or separately defined
as “integrators” ADVs (e.g. when only used for this particular specification).

IntegrationFor: NorahJones
Target: ADV CD
Add: ADV Fishbowl
Relative to:
CD.CustomerReviews
Position: above

ADV Video

ADV Fishbowl

Play STOP
Customer reviews

Fig. 7. Integrating Fishbowl onto the ADV CD

In Figure 8 (left), we show the ADV Reminder which is used during the integration
process of the Valentine’s store. This ADV does not need to have an underlying navi-
gational node and it provides an anchor to the St. Valentine’s store which is realized

160 J. Ginzburg et al.

Fig. 8. ADV Reminder and integration specification

in the CD node after the navigational weaving. The result of weaving the ADV Re-
minder into the ADV CD according to the specification in the right of Figure 8, gives
as a result the ADV in Figure 9 (left) with a concrete interface shown in Figure 9
(right).

picture Title:string

Performer:String

ADV CD

ListPrice:string

picture

Valentine’s Gift for music
lovers

ADV Reminder
Find perfect Valentines for

sweethearts in our

Cover:bitmap

Anchor

ADV Customer Reviews

CustomerAvg:image

Fig. 9. ADV CD after weaving and the resulting concrete interface

A further research subject (see Section 5) is to analyze the impact of the order in
which integrations are specified (in fact “executed”) in the interface look and feel, for
example in the case of the volatile concerns Fishbowl and St. Valentine.

As shown in [21], ADVs can be mapped systematically into concrete interface
specifications in different running environments. Next, we show our approach to
achieve obliviousness of interface code in the implementation stage.

3.2 Using Transformations to Compose XML Documents

The problem of achieving obliviousness at the user interface can be expressed in
terms of XML documents as follows: given two documents A and B which express
the contents of a node, we need to describe how to obtain a document which inte-
grates B into (an specific part of) A, without an explicit reference inside A. Moreover,
in the case of (irregular) volatile functionality, we need that this integration is done in
all documents which fulfill some conditions; this might eventually involve specific
instances of different document types.

The core of our solution is to use XSL [25] transformations to compose volatile and
core interfaces, and XPATH [24] to indicate the parts of the source document in which
the insertions are done. The transformation acts as an aspect in aspect-orientation: the

 Transparent Interface Composition in Web Applications 161

content of a template is like an advice, while the XPATH specification which matches
the template, indicates the point-cut where the advice is inserted. An XSL engine (e.g.,
Xalan[23], Saxon[20]) does the weaving process.

Pointcut

Advice

<xsl:stylesheet version="1.0" xmlns:xsl="http://...." xmlns:jsp="http://....” >
 <!--Imports a transformation which copies all the elements-->
 <xsl:import href="defaultTemplate.xsl"/>
 <xsl:template match=" ">

 <tr><td> <jsp:directive.include file="fishbowl.jsp" /></td></tr>
 <tr><xsl:apply-templates select="*"/></tr>

 </xsl:template>
</xsl:stylesheet>

//tr[contains(.,'Customer Reviews')]

Fig. 10. Transformation that inserts Fishbowl component

For example, in order to add the Fishbowl component to the CD Node, we can ap-
ply the XSL transformation shown in Figure 10 over the CD interface. The XPATH
expression (point-cut) "//tr[contains(.,'Customer Reviews')]" refers to the row con-
taining the text "Customer Reviews" (see Figure 4). The template (advice) leaves the
existing elements of that row unchanged and inserts above a new one with the
Fishbowl element.

In the case of class-based volatile functionality (e.g. functionality which applies to
all instances of a class), and given that JSP pages can be written as well-formed XML
documents, this kind of transformations could be applied statically to incorporate the
tags with volatile functionality without polluting the source code (see Figure 11).

A problem with this simple solution is that when volatile functionality only affects
some instances of a class (e.g., those products which are recommended to be St. Valen-
tine presents), some kind of conditional structure should be included in the tags, pollut-
ing the resulting code. As applying XSLT transformations in bare JSP during run time
is cumbersome, we decided to use a flexible approach using a more “pure” XML-based
framework in which the publishing process is done by applying XSL style sheets to the
XML content. We describe our approach in the following sub-section.

XSL
Transformation

Core JSP
File

Volatile
JSP File

JSP Enhanced

Fig. 11. Statically weaving of volatile interfaces

3.3 Our Approach in a Nutshell

In CAZON for each node type we define a style sheet which transforms its XML
representation in a physical presentation object (e.g., HTML, WAP, etc). When the
node contains aggregated sub-nodes, the style sheet contains calls to the style sheets

162 J. Ginzburg et al.

templates corresponding to the nested parts. As explained before, when the frame-
work receives a request to perform an action, it produces as a result a node’s instance,
described with an XML document containing its attributes, anchors and its recursively
aggregated nodes. The presentation layer gets this document and transforms it accord-
ing to the corresponding style sheet. As an example, in Figure 12 (left) we show the
style sheet associated to the CDNode type; when applied to the XML node representa-
tion corresponding to the Norah Jones CD (Figure 12 right) it yields a concrete inter-
face, like the one in Figure 9, but without the reference to the St. Valentine’s store.

place where StValentine reminder
should be inserted

<cd>
 <title>
 Not to late
 </title>
 <performer>
 Norah Jones
 </performer>
 <listPrice>
 9.99
 </listPrice>
 <customerReviews>
 <average....

 </customerReviews>

 </cd>

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/...
 <!--Imports customerReviews stylesheet-->
 <xsl:import href="customerReviews.xsl"/>
 <xsl:template name="cd" match="cd">
 <html>
 <table border="0">
 <tr>
 ...
 <td class="cdInfo">
 <xsl:value-of select="title"/>

 <xsl:value-of select="performer"/>

 List Price: $<xsl:value-of select="listPrice"/>
 </td>
 </tr>
 </table>
 <xsl:call-template name="customerReviews"/>
 </html>
 </xsl:template>
</xsl:stylesheet>

Fig. 12. CD stylesheet and CDNode instance

As explained in Section 2, when a node’s instance satisfies an affinity query corre-
sponding to a volatile service, the corresponding node (in fact its XML representation)
is augmented according to the indication of the integration specification, either with a
link, attributes or nested nodes. Therefore, to complete the task in the user interface
and according to Section 3.2, for each integration specification we need to implement a
XSL transformation which applied over the style sheet corresponding to the core node,
inserts the newly added elements. The transformation associated with the St. Valen-
tine’ Reminder integration specification (Figure 8) is shown in Figure 13.

Pointcut Advice

Reference to Valentine’s reminder stylesheet

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
 <!--Imports a transformation which copies all the elements-->
 <xsl:import href="defaultTemplate.xsl"/>
 <xsl:template match=" ' ”>
 <xsl:copy-of select="document('reminder.xsl')//xsl:template[@name='reminder']/table"/>
 <xsl:copy-of select="."/>
 </xsl:template>
</xsl:stylesheet>

//xsl:call-template[@name='customerReviews]

Fig. 13. Transformation that inserts Valentine’s reminder

We have realized these ideas in CAZON using Stxx [22], an extension of Struts
which allows action classes to return XML data documents, to be transformed using
different technologies into appropriated presentation formats.

To allow dynamic weaving of style sheets during run time, we created a sub-class
of the Stxx AbstractXSLTransformer such that the method transform() collaborates

 Transparent Interface Composition in Web Applications 163

with CAZON’s ServiceManager to get the list of volatile services which had affinities
with the actual node. For each of these volatile services, its associated integration
transformation is obtained and applied over the base interface style sheet. Finally, the
transformed style sheet is applied to its XML document (which has been previously
augmented) and the final user interface is obtained, as shown in Figure 9 (right).

Receive
Request

Node Augment
with v olatile

data

XML
Marshalling

Apply
Stylesheet

Response
delivery

Final

Resolv ing
conceptual

object

Resolv ing
Nav igational

Node

Resolv ing
Conceptual
obj ects of
VServ ice

Resolv ing
Nav igational

Node of
VServ ice

Resolve
Node

Stylesheet

Request
event

Conceptual
Object

Nav igational node
Volatil

Conceptual
Object

Volatil
Nav igational

Node

XML
DocumentXSLHTML, WAP,PDF,

etc

XSL

Resolve
v olatile node

stylesheet

Compose
Stylesheet

determine
node

affinities
satisfaction

[has no more affinities]

[has no more transformations]

[has more
transformations]

[has more
affinities]

Fig. 14. Overview of request processing in CAZON

In figure 14 we show a UML activity diagram which summarizes the core steps of
our implementation.

We have finally defined a set of heuristics to allow semi-automatic translation of
interface integration definitions (as those presented in Section 3.1) to XSL templates
and XPATH specifications, assuming that the XSL style sheets which correspond to
the ADVs have been manually codified.

4 Related Work

Volatile Requirements have been a research focus in the requirement engineering
community for some years. In [16], the authors present an aspect-oriented approach
for representing and composing volatile requirements using composition patterns [5].
Though we deal with the problem on another level of abstraction (design and imple-
mentation), our approach complements the ideas in [16] for the kind of volatile ser-
vices which are usual in the Web. We have also got inspiration from the so called
symmetric separation of concerns approaches, such as Theme/Doc [4]. Both volatile
and core models are modeled using the same concepts, while in asymmetric
approaches crosscutting concerns are modeled with a different primitive: the aspect.

Modern Web design methods have already recognized the importance of advanced
separation of concerns for solving the problem of design (and code) tangling and scat-
tering. For example, in [2] aspect oriented concepts are used to deal with adaptivity.

164 J. Ginzburg et al.

Though we don’t use aspects to deal with volatile functionality, the approaches are
somewhat equivalent.

In [12] the authors present an XML Publication Framework based on the UWE ap-
proach; the transformation concept presented in this paper can be used to extend the
framework of [12] to allow volatile concerns. One just needs to append transforma-
tions steps into the Cocoon pipeline.

Composition of interfaces has also been addressed in [14] by using operators of the
tree algebra with the UsiXML description language [15]. A visual tool (Com-
posiXML) has been implemented with these ideas. The aim of that research is to help
in the reuse of interface components. Our proposal uses affinity specifications and
XSL transformations instead of tree algebra, focusing on oblivious integration of core
and volatile interfaces.

So far, we are not aware of any approach supporting oblivious composition of in-
terface design models; meanwhile, in the XML field, the AspectXML project [1] has
ported some concepts of aspect-orientation to XML technology, by allowing the
specification of point-cut and advices similarly to Aspect Java. The project is still in a
research stage.

In [6] a J2EE framework (named AspectJ2EE) which incorporates aspects on EJB
components is presented. AspectJ2EE may be used to incorporate volatile concerns
on J2EE applications at the model layer, though navigational and interface aspects
are not mentioned in the project. The aspect weaving is performed at the deployment
stage, while we propose to perform it in runtime in order to deal with volatile
functionality that only affects some instances of a class dynamically.

5 Concluding Remarks and Further Work

We have presented an original approach for seamless and oblivious composition of
Web applications’ interfaces. Our approach is grounded on the well-known principles
of advanced separation of concerns to improve modularity and therefore to foster
reuse and software evolution. We have focused on one specific kind of application’s
concerns: those which encompass volatile functionality, i.e. the kind of functionality
that can not be guaranteed to be stable. Using the compositional approach that we
described in the paper, conceptual navigation, and user interface models correspond-
ing to core concerns can be made oblivious to the models corresponding to volatile
requirements, which are designed using the same primitives (in our approach, those in
the OOHDM design framework). By using a very simple syntax, we indicate the way
in which interface designs are composed, and using XSL transformations we are able
to weave the corresponding XML files. In this way we don’t need to pollute the de-
sign model and the implementation code with references to components that may be
eliminated (requiring newer code editions). We have realized these ideas in the con-
text of CAZON, an OOHDM-based framework which automates dynamic weaving of
volatile functionality into core application’s modules, both at the navigation and inter-
face levels. The ideas in this paper can be used for weaving any kind of concern into
the application’s core in those cases in which we want both (the concern and the core
functionality) to evolve separately and obliviously.

 Transparent Interface Composition in Web Applications 165

We are now working on several research areas: first we are building tools to auto-
mate the translation of ADVs into XSL files, and point-cut specifications into XSL
transformations to improve model-driven support in CAZON. We are also analyzing
other kinds of concerns (either volatile or not) in which interface weaving might be
crosscutting, i.e. involving further changes in the core interface. Though XSL trans-
formations can cope with this situation, we aim to improve our specification language
to support more complex crosscutting. We are also studying the problem of conflicts
among volatile models, and the impact which the order of execution of integration
specifications has in the interface look and feel; this problem is similar to the problem
of conflicts among aspects already reported in [8]. Finally, we are researching on the
process of building prototypes from requirement specifications which encompass
separated concerns using early aspects approaches such as [10]. A further topic not
addressed in this paper is the application of these ideas in the field of RIA (rich inter-
net applications), particularly those built using Ajax or similar scripting languages.

References

1. AspectXML: The AspectXML home page. In www.aspectxml.org
2. Baumeister, H., Knapp, A., Koch, N., Zhang, G.: Modelling Adaptivity with Aspects. In:

Lowe, D.G., Gaedke, M. (eds.) ICWE 2005. LNCS, vol. 3579, Springer, Heidelberg
(2005)

3. Ceri, S., Fraternali, P., Bongio, A.: Web Modeling Language (WebML): A Modeling Lan-
guage for Designing Web Sites. Computer Networks and ISDN Systems 33(1-6), 137–157
(2000)

4. Clarke, S., Baniassad, E.: Aspect-Oriented Analysis and Design. The Theme Approach.
Addison-Wesley, Object Technology Series (2005)

5. Clarke, S., Walker, R.: Composition patterns: an approach to designing reusable aspects.
In: Proceedings of the 23nd International Conference on Software Engineering, Toronto,
Canada, May 2001, pp. 5–14. ACM Press, New York (2001)

6. Cohen, T. (Yossi) Gil, J.: AspectJ2EE = AOP + J2EE Towards an Aspect Based, Pro-
grammable and Extensible Middleware Framework. In: Odersky, M. (ed.) ECOOP 2004.
LNCS, vol. 3086, pp. 219–243. Springer, Heidelberg (2004)

7. Cowan, D., de Lucena Pereira, C.: Abstract Data Views: An Interface Specification Con-
cept to Enhance Design for Reuse. IEEE Trans. Software Eng. 21(3), 229–243 (1995)

8. Filman, R., Elrad, T., Clarke, S., Aksit, M. (eds.): Aspect-Oriented Software Development.
Addison-Wesley, London, UK (2004)

9. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns. Elements of reusable ob-
ject-oriented software. Addison Wesley, London, UK (1995)

10. Gordillo, S., Rossi, G., Moreira, A., Araujo, A., Vairetti, C., Urbieta, M.: Modeling and
Composing Navigational Concerns in Web Applications. Requirements and Design Issues.
LA-WEB, pp. 25–31 (2006)

11. Harrison, W., Ossher, H., Tarr, P.: General Composition of Software Artifacts. Software
Composition, pp. 194–210 (2006)

12. Koch, N., Kraus, A., Hennicker, R.: The Authoring Process of UML-based Web Engineer-
ing Approach. In: Proceedings of the 1st International Workshop on Web-Oriented Soft-
ware Construction (IWWOST 02), Valencia, Spain, pp. 105–119 (2001)

166 J. Ginzburg et al.

13. Kraus, A., Koch, N.: Generation of Web Applications from UML Design Models using an
XML Publishing Framework. In: Integrated Design and Process Technology Conference
(IDPT’2002) (June 2002)

14. Lepreux, S., Vanderdonckt, J.: Towards Supporting User Interface Design by Composition
Rules. In: Proceedings of CADUI’2006. Ch. 19, Springer, Berlin (2006)

15. Limbourg, Q., Vanderdonckt, J., Michotte, B., Bouillon, L., López-Jaquero, V.: UsiXML:
a Language Supporting Multi-Path Development of User Interfaces. In: Proceedings of 9th
IFIP Working Conference on EHCI-DSVIS’2004 (2004)

16. Moreira, A., Araujo, J., Whittle, J.: Modeling Volatile Concerns as Aspects. In: Dubois,
E., Pohl, K. (eds.) CAiSE 2006. LNCS, vol. 4001, p. 544. Springer, Heidelberg (2006)

17. Pastor, O.: Abrahão, S., Fons, J.: An Object-Oriented Approach to Automate Web Appli-
cations Development. In: Proceedings of EC-Web, pp. 16–28 (2001)

18. Phanouriou, C.: UIML: A Device-Independent User Interface Markup Language. Ph.D.
Thesis, Virginia University (2000)

19. Rossi, G., Nieto, A., Mengoni, L., Lofeudo, N., Distante, D.: Model-Based Design of
Volatile Functionality in Web Applications. Proceedings of LA-WEB 2006, Mexico 2006,
pp. 179–188. IEEE Press, Orlando, Florida, USA (2006)

20. Saxon: (2007), http://saxon.sourceforge.net/
21. Schwabe, D., Rossi, G.: An object-oriented approach to web-based application design.

Theory and Practice of Object Systems (TAPOS), Special Issue on the Internet 4, 207–225
(1998)

22. Stxx. Struts for Transforming XML with XSL (2005) http://stxx.sourceforge.net
23. Xalan: (2007) http://xalan.apache.org/
24. XPATH. XML Path Language: (2007) http://www.w3.org/TR/xpath
25. XSL: The Extensible Stylesheet Language Family (2007) In http://www.w3.org/Style/

XSL/

	Introduction
	Integrating Volatile Functionality into OOHDM Models
	Improving Web Interface Composition
	Composing Web Interface Designs
	Using Transformations to Compose XML Documents
	Our Approach in a Nutshell

	Related Work
	Concluding Remarks and Further Work
	References

