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We consider here an environment in which the fact that a semiquantum Hamiltonian obeys SU(2) symmetries poses serious
difficulties if one wants to compute Lyapunov exponents.

1. Introduction

An extreme complexity of phase space’s trajectories that are
very sensitive to small changes in the initial conditions is the
signature of classical chaos, accompanied by (i) an ostensibly
random allotment of phase points on a Poincare’s surface
of section and (ii) an exponentially rapid separation of two
initially close trajectories [1]. Instead, it is clear that the state
vector of a closed quantum system cannot exhibit chaotic
motion in Hilbert space. The interaction between a quantum
system and a classical one may instead lead to authentic
chaotic motion of the quantum component, a phenomenon
known as semiquantum chaos [2, 3]. Remark that the vocable
semiquantum is reserved to systems for which neither the
quantum part nor the classical part would be chaotic by
themselves. If chaos ensues, this happens because of the
classical-quantum coupling. Semiquantumness implies that
one part is treated classically and the other one in quantal
fashion [3].

We consider here an environment in which the semi-
quantumHamiltonian obeys SU(2) symmetries and consider
the difficulties that arise if one wants to compute Lyapunov
exponents [4].

The paper is organized as follows: Section 2 deals with
some background materials [5], while Section 3 explicates
Hamiltonian details.

2. Background

Consider a system that possesses both quantum and classic
degrees of freedom, with a coupling amongst them, that we
call semiquantum [3, 6–10]. The associated Hamiltonian is of
the general form [11]

̂

𝐻 =

̂

𝐻𝑞 + 𝐻cl + 𝐻int, (1)

where ̂

𝐻𝑞, 𝐻cl, and 𝐻int are the quantum, classical, and
interaction parts, respectively. There exist many situations
in which a semiquantum description has been attempted
[6, 9, 12]. Porter [6] made an exhaustive compilation of
physical systems for which this kind of description is relevant.
One may highlight vibrating quantum billiards as a useful
abstraction of the ensuing semiquantum dynamics [13].
Indeed, many semiquantum Hamiltonians are found in the
literature [3, 14–23].

In this work, via the Maximum Entropy Principle (MEP)
vantage point [5], we show that serious difficulties arise, in
the case of these systems, if one wants to compute Lyapunov
exponents, because the quantum degrees of freedom of the
system must abide by the generalized uncertainty principle
(GUP) [24] which in the case of an underlying SU(2) Lie
algebra becomes a dynamic invariant. In turn, the other
dynamic invariants (the energy) involve both quantum and
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classical degrees of freedom. Accordingly, the initial con-
dition pertaining to at least one of the classical degrees of
freedom will depend not only upon the energy value but also
on the uncertainty relation as well. This will be illustrated
below.

These invariants allow us to (i) adequately define initial
conditions and (ii) follow the details of the temporal evolu-
tion, from regular regimes to irregular ones. Ourmain invari-
ant is none other than the generalized uncertainty principle
(GUP) [24]. From a MEP viewpoint, in the analysis of a
semiquantum dynamics, one deals with a peculiar dynamic
“working” space spanned by the variables ⟨

̂

𝑂1⟩, . . . , ⟨
̂

𝑂𝑁⟩,
𝑞1, . . . , 𝑞𝑛, 𝑝1, . . . , 𝑝𝑛. The first 𝑁 variables ⟨

̂

𝑂1⟩, . . . , ⟨
̂

𝑂𝑁⟩

are the mean values of a set of noncommuting observable
closing a partial Lie semialgebra under commutation with
the Hamiltonian. We insist on the fact that these quantum
variables must obey the uncertainty relation not only at
the instant 𝑡 = 0 but also for any other 𝑡. The 𝑞1, . . . , 𝑞𝑛,
𝑝1, . . . , 𝑝𝑛 are 2𝑛 classical variables of the system. As in the
full quantumcase [25, 26], wewill see for semiquantumSU(2)
nonlinear dynamics; the closure condition defines an 𝑁 × 𝑁

dynamic matrix𝐺 (𝑞𝑖, 𝑝𝑖)which governs the dynamics of the
system’s quantum degrees of freedom. This matrix is now
of a semiquantal nature since it also depends upon classical
degrees of freedom.

We follow the prescription given in [8, 9, 11, 12, 18, 19];
that is, the energy of the system is taken to coincide with
the expectation value of the Hamiltonian, ⟨̂𝐻⟩ = Tr(𝜌̂

𝐻),
traced over the quantum state, 𝜌. In turn, ⟨

̂

𝐻⟩ generates
the time evolution of the classical degrees of freedom in the
orthodox classical mechanics’ fashion. The MEP’s point of
view approach to semiquantal systems takes advantage of two
facts:

(1) it is possible to describe the time evolution of
the quantum degrees of freedom in the dual space
of Lagrange multipliers associated to the quantum
observable [25–27] and

(2) the existence of the GUP invariant, 𝐼𝐻 say, makes
it possible to analyze the dynamics of the system in
different regimes (irregular and regular) by varying
𝐼

𝐻’s value through the initial conditions of the system.

3. Quantum Plus Classical Hamiltonians and
Maximum Entropy Approach

Consider the Hamiltonian (1). The classical degrees of free-
dom are the canonical conjugate variables (𝑞𝑖, 𝑝𝑖). We choose
for the Hamiltonian (1) the specific form

̂

𝐻 = ∑

𝑗

𝑛

∑

𝑖=1

𝑎𝑗 (𝑞𝑖, 𝑝𝑖)
̂

𝑂𝑗 +

𝑛

∑

𝑖=1

𝐹 (𝑞𝑖, 𝑝𝑖) , (2)

where the first term includes both the ̂

𝐻𝑞 (nonchaotic)
and 𝐻int (chaos-generator) ingredients, with the ̂

𝑂𝑗’s being
quantum operators, while the last term is a purely classical
and nonchaotic, with 𝐹(𝑞𝑖, 𝑝𝑖) functions of the canonically

conjugate classical variables (𝑞𝑖, 𝑝𝑖). We have in fact a family
of Hamiltonians with a classical phase-space substratum.

The MEP formalism [25–27] deals with the quantum
degrees of freedom of the systems (2) and provides a density
operator 𝜌(𝑡) [25–27]

𝜌 (𝑡) = exp(−𝜆0
̂

𝐼 −

𝑁

∑

𝑗=1

𝜆𝑗 (𝑡)
̂

𝑂𝑗) , (3)

in terms of 𝑁 + 1 Lagrange multipliers (𝜆’s), where ̂

𝑂0 =

̂

𝐼

is the identity operator and 𝜆0 = Tr[exp(−∑

𝑁

𝑗=1
𝜆𝑗(𝑡)

̂

𝑂𝑗)] is
determined through the normalization condition. Alhassid
and Levine demonstrated [25, 26] that the sufficient number
𝑁 of constraints

⟨

̂

𝑂⟩ = Tr [𝜌 (𝑡)

̂

𝑂] (4)

Is necessary in order for the state operator (3) to be valid for
any time 𝑡 deriveing from the closure condition

[

̂

𝐻 (𝑡) ,

̂

𝑂𝑗] = 𝑖ℎ

𝑁

∑

𝑟=0

𝑔𝑟𝑗 (𝑡)
̂

𝑂𝑟 , 𝑗 = 1, 2, . . . , 𝑁. (5)

Equation (5) defines a𝑁 × 𝑁matrix 𝐺 (𝑡) whose coefficients
𝑔𝑟𝑗 (𝑡) may depend upon the time if the Hamiltonian ̂

𝐻 (𝑡)

of the system is time dependent. With the help of (5) and
considering that the set of relevant operators {

̂

𝑂1; . . . ;
̂

𝑂𝑁}

defined through (5) are linearly independent, it is possible to
obtain the equations of motion of the Lagrange multipliers
[25–27] (see (8)) below. Note that (5) involves the classical
variables (𝑞𝑖, 𝑝𝑖) in the guise of parameters, on account of the
coefficients 𝑎𝑗 (𝑞𝑖, 𝑝𝑖) intervening in (2). Thus, (5) adopts the
appearance

[

̂

𝐻,

̂

𝑂𝑘] = 𝑖ℎ

𝑁

∑

𝑟=0

𝑛

∑

𝑖=1

𝑔𝑟𝑗 (𝑞𝑖, 𝑝𝑖)
̂

𝑂𝑟,
(6)

with 𝑘 = 1, . . . , 𝑁. The ̂

𝑂𝑘’s are𝑁 quantum operators closing
a partial Lie algebra under commutationwith (2) [25, 26].The
𝑔𝑟𝑗 (𝑞𝑖, 𝑝𝑖) defines a semiquantum matrix 𝐺 (𝑞𝑖, 𝑝𝑖).

Since we are going to describe the quantum state of the
system (2) bymeans of the quantum statistical operator given
by (3), it is required that this operator be represented by (3)
for all 𝑡 so that the entropy 𝑆 [25, 26]

𝑆 = 𝜆0 +

𝑁

∑

𝑗=1

𝜆𝑗 (𝑡) ⟨
̂

𝑂𝑗⟩ (𝑡) , (7)

is a constant of themotion [25, 26].The Lagrangemultipliers,
in turn, fulfill the following equations of motion (see [22] for
more details):

𝑑𝜆𝑘

𝑑𝑡

=

𝑁

∑

𝑟=1

𝑛

∑

𝑖=1

𝑔𝑘𝑟 (𝑞𝑖, 𝑝𝑖) 𝜆𝑘 (𝑡) , 𝑘 = 1, . . . , 𝑁. (8)

The semiquantum matrix 𝐺 (𝑞𝑖, 𝑝𝑖) defined through (6)
enables us to obtain the equations of motion of the mean
values for the𝑁 quantum degrees of freedom via [22]

𝑑 ⟨

̂

𝑂𝑘⟩

𝑑𝑡

= −

𝑁

∑

𝑟=1

𝑛

∑

𝑖=1

𝑔𝑟𝑘 (𝑞𝑖, 𝑝𝑖) ⟨
̂

𝑂𝑟⟩ , 𝑘 = 1, . . . , 𝑁.
(9)
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Equations (8) and (9) display the interplay between the
quantum and classical degrees of freedom. In order to
describe our classical degrees of freedom, we need to know
the equation of motion for the 2𝑛 classical variables (𝑞𝑖, 𝑝𝑖).

To do so, we consider the mean value of (2), traced over
the quantum state (3), as a classical Hamiltonian function so
that ⟨̂𝐻⟩ = Tr (𝜌̂

𝐻) generates the temporal evolution of the
classical degrees of freedom [8, 9, 11, 12, 18, 19]

𝑑𝑞𝑖

𝑑𝑡

= {𝑞𝑖, ⟨
̂

𝐻⟩} , 𝑖 = 1, . . . , 𝑛,

𝑑𝑝𝑖

𝑑𝑡

= {𝑝𝑖, ⟨
̂

𝐻⟩} , 𝑖 = 1, . . . , 𝑛,

(10)

where {⋅} indicates Poisson brackets.
The generalized uncertainty principle (GUP) in the

present framework reads [24]

𝐼

𝐻
=

𝑁

∑

𝑗=1

𝑁

∑

𝑘=1
𝑗<𝑘

{(Δ

̂

𝑂𝑗)

2

(Δ

̂

𝑂𝑘)

2

−[

1

2

⟨

̂

𝑂𝑗
̂

𝑂𝑘 +
̂

𝑂𝑘
̂

𝑂𝑗⟩ − ⟨

̂

𝑂𝑗⟩ ⟨

̂

𝑂𝑘⟩]

2

}

≥ −

1

4

𝑁

∑

𝑗=1

𝑁

∑

𝑘=1
𝑗<𝑘

⟨[

̂

𝑂𝑖,
̂

𝑂𝑗]⟩ .

(11)

The GUP relationship given by (11) is obtained as a sum
over the principal minors (of order 2) of the correlation
matrix 𝐾 (𝑡), corresponding to the observable set defined by
the closure condition (6). The correlation matrix is a definite
positive one, and its elements are defined via [28]

𝐾𝑖𝑗 (𝑡) =

1

2

⟨

̂

𝑂𝑖
̂

𝑂𝑗 +
̂

𝑂𝑗
̂

𝑂𝑖⟩(𝑡)
− ⟨

̂

𝑂𝑖⟩(𝑡)
⟨

̂

𝑂𝑗⟩(𝑡)
. (12)

3.1. The SU(2) Instance. It is well known that {𝜎̂𝑥, 𝜎̂𝑦, 𝜎̂𝑧} is
a basis of the SU(2) algebra and the following commutation
relationship [29] holds:

[𝜎̂𝑗, 𝜎̂𝑘] = 2𝑖𝜀𝑗𝑘𝑙𝜎̂
𝑙
= 2𝑖

3

∑

𝑙=1

𝜀𝑗𝑘𝑙𝜎̂𝑙, (13)

and the semiquantum Hamiltonian of the type (2) becomes

̂

𝐻 =

3

∑

𝑗=1

𝑛

∑

𝑖=1

𝑎𝑗 (𝑞, 𝑝) 𝜎̂𝑗 +

𝑝

2

2𝑚

+ 𝑉 (𝑞) , (14)

where 𝜎̂𝑗 are the generators of SU(2).

Proposition 1. If a set of operators, which fulfills the com-
mutation relation (13), closes a commutation algebra with a
Hamiltonian of the type (14), then the semiquantum matrix
𝐺 (𝑞𝑖, 𝑝𝑖) of the system, defined by means of the closure
condition (6), is an antisymmetric one.

Every Hamiltonian that closes an algebra with the SU(2)
generators is accompanied by the GUP invariant (11) which
for the SU(2) Lie algebra adopts the fashion [24] consider the
following:

𝐼

𝐻
= 3 − 2 [⟨𝜎̂𝑥⟩

2
+ ⟨𝜎̂𝑦⟩

2

+ ⟨𝜎̂𝑧⟩
2
] = 3 − 2⟨𝜎̂⟩

2
. (15)

Because of the uncertainty principle (11), 𝐼

𝐻
≥

(−1/4)∑

𝑞

𝑗,𝑘=1

𝑗<𝑘

⟨[𝜎̂𝑗, 𝜎̂𝑘]⟩
2, and Schwarz’ inequality entails

⟨𝜎̂⟩

2
≤ 1, that is, the uncertainty principle for the SU(2) Lie

algebra, that can be expressed in the guise

0 < ⟨𝜎̂𝑥⟩
2
+ ⟨𝜎̂𝑦⟩

2

+ ⟨𝜎̂𝑧⟩
2
< 1,

(16)

defining the celebrated Bloch sphere of the system.

4. First Difficulty: The
Normalization Difficulty

In evaluating Lyapunov exponents (LE), wemust consider the
action of the motion invariants (MI). Any “orbit” calculation
must “respect them.” In particular, we must take care of
not violating the uncertainty principle as the system evolves
(same for the normalization procedure) in the process of
Lyapunov exponents’ evaluation. Once we have chosen a
GUP-value at 𝑡 = 0 via (16), this value must remain
the same at any other time 𝑡 so as not to violate the
uncertainty principle. More specifically, we are speaking of
the fiduciary trajectory and of the ones infinitely close to it
that one keeps renormalizing when the Euclidean distance
between them grows. If the uncertainty principle ((11) or
(16)) is violated during the normalization procedure, the
concept of semiquantum system (2) will become a mere
“mathematical artifact” (in the words of [3]) but cease to have
physical meaning. To illustrate what we mean, we consider
the semiquantum SU(2) Hamiltonian [3]

̂

𝐻 = 𝐵𝜎̂𝑧 + 𝐶𝑞𝜎̂𝑥 +

𝑝

2

2𝑚

+

𝑞

4

4

,
(17)

whose equations of motion for quantum degrees of freedom
(mean values and Lagrange multipliers) and classical degrees
of freedom are

𝑑 ⟨𝜎̂𝑥⟩

𝑑𝑡

= −2𝐵 ⟨𝜎̂𝑦⟩ ,
(18)

𝑑 ⟨𝜎̂𝑦⟩

𝑑𝑡

= 2𝐵 ⟨𝜎̂𝑥⟩ − 2𝐶𝑞 ⟨𝜎̂𝑧⟩ ,

(19)

𝑑 ⟨𝜎̂𝑧⟩

𝑑𝑡

= 2𝐶𝑞 ⟨𝜎̂𝑦⟩ ,
(20)

𝑑𝜆𝑥

𝑑𝑡

= −2𝐵𝜆𝑦,
(21)

𝑑𝜆𝑦

𝑑𝑡

= 2𝐵𝜆𝑥 − 2𝐶𝑞𝜆𝑧,
(22)
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𝑑𝜆𝑧

𝑑𝑡

= 2𝐶𝑞𝜆𝑦.
(23)

𝑑𝑞

𝑑𝑡

=

𝑝

𝑚

,
(24)

𝑑𝑝

𝑑𝑡

= −𝐶 ⟨𝜎̂𝑥⟩ − 𝑞

3
.

(25)

Our motion invariants (MIs) for the system given by (17)
are [5]

(i) generalized uncertainty principle (GUP) (see (11))

GUP (𝑡 = 0) = ⟨𝜎⟩

2

(0)
= ⟨𝜎̂𝑥⟩

2

(0)
+ ⟨𝜎̂𝑦⟩

2

(0)
+ ⟨𝜎̂𝑧⟩

2

(0)
, (26)

(ii) energy (Tr (𝜌̂

𝐻))

𝐸 (𝑡 = 0) = 𝐵⟨𝜎̂𝑧⟩(0)
+ 𝐶𝑞(0)⟨𝜎̂𝑥⟩(0)

+

𝑝

2

(0)

2𝑚

+

𝑞

4

(0)

4

,

(27)

(iii) evolution vector

𝑢 (𝑡 = 0) = 𝜆𝑥(0)⟨𝜎̂𝑥⟩(0)
+ 𝜆𝑦(0)⟨𝜎̂𝑦⟩(0)

+ 𝜆𝑧(0)⟨𝜎̂𝑧⟩(0)
, (28)

(iv) entropy (−Tr (𝜌 ln 𝜌))

𝑆 (𝑡 = 0) = 𝜆0 + 𝜆𝑥(0)⟨𝜎̂𝑥⟩(0)
+ 𝜆𝑦(0)⟨𝜎̂𝑦⟩(0)

+ 𝜆𝑧(0)⟨𝜎̂𝑧⟩(0)
,

(29)

with

𝜆0 = ln [2 cosh (√𝜆

2
𝑥
+ 𝜆

2
𝑦
+ 𝜆

2
𝑧
)] , (30)

Λ = √𝜆

2
𝑥
+ 𝜆

2
𝑦
+ 𝜆

2
𝑧
, (31)

invariant in 𝜆-space whose value is not an arbitrary one. The
𝜆’s values are adjusted after setting initial conditions (IC) for
the UP ⟨𝜎⟩

2

(0)
, since the invariants’ expressions in the two

reciprocal spaces (1) expectation values one and (2) 𝜆 one are
related by [5]

⟨𝜎̂⟩

2
= tanh2 (√𝜆

2
𝑥
+ 𝜆

2
𝑦
+ 𝜆

2
𝑧
) . (32)

All these invariants’ values are closely linked to the uncer-
tainty principle’s value given by (26) and, therefore, cannot
be chosen disregarding it. Accordingly, one must mind the
evolution equations for ⟨𝜎̂𝑥⟩, ⟨𝜎̂𝑦⟩, ⟨𝜎̂𝑧⟩, 𝑞, 𝑝, 𝜆𝑥, 𝜆𝑦, and 𝜆𝑧

given by (18)–(25). Let𝑋 = (⟨𝜎̂𝑥⟩, ⟨𝜎̂𝑦⟩, ⟨𝜎̂𝑧⟩, 𝑞, 𝑝) be a vector
field belonging to the solution space of (18)–(20) and (24)-
(25) and let {𝑇𝑡} be the flow induced by 𝑋 [4], that is, as it
reads in [4]: “for any 𝑡 let 𝑇𝑡𝑥 = 𝑥 (𝑡), where {𝑥 (𝑡)} is an
integral curve of the vector field 𝑋 such that 𝑥 (0) = 𝑥.” Now
let us choose two neighboring initial conditions 𝑥 and 𝑦 not
lying on the same trajectory as prescribed by [4], butminding
the conservation of the invariants given by (26) to (31) over
the whole evolution process. Thus, we choose

𝑥 = 𝑥 (0) = (⟨𝜎̂𝑥⟩(0)
, ⟨𝜎̂𝑦⟩(0)

, ⟨𝜎̂𝑧⟩(0)
, 𝑞(0), 𝑝(0)) , (33)

𝑦 = (⟨𝜎̂𝑥⟩
󸀠
, ⟨𝜎̂𝑦⟩

󸀠

, ⟨𝜎̂𝑧⟩
󸀠
, 𝑞

󸀠
, 𝑝

󸀠
) . (34)

In (33) and (34), the initial conditions must be set as follows:
(i) choose any value for our GUP invariant (26) that it does
not violate the uncertainty principle (16), that is, 0 < ⟨𝜎̂𝑥⟩

2

(0)
+

⟨𝜎̂𝑦⟩
2

(0)
+ ⟨𝜎̂𝑧⟩

2

(0)
< 1. Once this value is chosen, it must

remain the same during the whole evolution of the system
not only for the fiduciary orbit (33) but also for any other
infinitely close to it that one keeps renormalizing (in this way,
we assure that the quantum state is always evolving on the
sameBloch sphere, i.e., the same radius, in order not to violate
the uncertainty principle, see (34)); (ii) choose arbitrarily two
of the three following values: ⟨𝜎̂𝑥⟩(0), ⟨𝜎̂𝑦⟩(0), or ⟨𝜎̂𝑧⟩(0)

, and
the third must be obtained from the relationship given by
(26); (iii) choose a value for the energy 𝐸(0) = ⟨

̂

𝐻⟩(0) which
is also another invariant of the motion; (iv) choose an initial
value for one of the classical variables, for example, 𝑞(0); (v) it
is clear that the 𝑝(0) value cannot be fixed at will since 𝑝(0) is
of the form

𝑝(0) =
√
2𝑚(𝐸(0) − 𝐵⟨𝜎̂𝑧⟩(0)

− 𝐶𝑞(0)⟨𝜎̂𝑥⟩(0)
−

𝑞

4

(0)

4

),
(35)

and its initial value is constrained to the 𝐸(0) value and to the
uncertainty principle value! This is a curious feature of the
semiquantum dynamics: the values of the classical degrees of
freedom are influenced by the uncertainty principle followed
by the quantum degrees of freedom of the system (see
[22] for more details). The steps (i) to (v) given above
give conditions to be followed by not only on the fiducial
trajectory (33) but also by all trajectories infinitely close
to it. Otherwise, the uncertainty principle will be violated.
With such restrictions in mind, we choose ⟨𝜎̂𝑥⟩

󸀠
= ⟨𝜎̂𝑥⟩(0)

;
⟨𝜎̂𝑦⟩
󸀠

= ⟨𝜎̂𝑦⟩(0)
; ⟨𝜎̂𝑧⟩

󸀠
= ⟨𝜎̂𝑧⟩(0)

; 𝑞󸀠 = 𝑞(0) + 10

−6; 𝑝󸀠 =

√
2𝑚(𝐸(0) − 𝐵⟨𝜎̂𝑧⟩

󸀠
− 𝐶𝑞

󸀠
⟨𝜎̂𝑥⟩
󸀠
− 𝑞

󸀠
4/4).

We denote, as in ([4]), by 𝑑 the length of the segment
joining 𝑥 to 𝑦 (|𝑑|) at 𝑡0 = 0, so that

|𝑑| =

󵄩

󵄩

󵄩

󵄩

𝑥 − 𝑦

󵄩

󵄩

󵄩

󵄩

=

󵄩

󵄩

󵄩

󵄩

𝑥 (0) − 𝑦

󵄩

󵄩

󵄩

󵄩

, (36)

where ‖ ⋅ ⋅ ⋅ ‖ is the Euclidean norm. Let 𝑥1 = 𝑇

𝜏
𝑥 (0) and

|𝑑1| = ‖𝑇

𝜏
𝑥 (0) − 𝑇

𝜏
𝑦‖ [4]. Reference [4] prescribes: “denote

by 𝑦1 the unique point on the half-line issuing from 𝑥1 and
containing 𝑇

𝜏
𝑦 such that ‖𝑦1 − 𝑥1‖ = |𝑑|” in order to be able

to iterate this procedure and define 𝑥2 = 𝑇

𝜏
𝑥1 = 𝑇

2𝜏
𝑥 (0) and

|𝑑2| = ‖𝑇

𝜏
𝑥1 − 𝑇

𝜏
𝑦1‖ “and find the unique point on the half-

line issuing from𝑥2 = 𝑇

2𝜏
𝑥 (0) and containing𝑇𝜏𝑦1 such that

‖𝑦2 − 𝑥2‖ = |𝑑|” in order to get a sequence {|𝑑𝑖|}𝑖≥1 which
enables one to evaluate lim𝑛→+∞((1/𝑛𝜏)∑

𝑛

𝑖=1
ln(|𝑑𝑖|/|𝑑|))

[4].
However, here the SU(2) nonlinear semiquantumdynam-

ics reigns. We must ensure that those required points
𝑦1, 𝑦2, . . . , 𝑦𝑛 are to be chosen in such away that the invariants
given by (26) to (31) are always respected. How could
one ensure that imposing on the system the normalization
condition ‖𝑦𝑖 − 𝑥𝑖‖ = |𝑑| at every step 𝜏 does not violate
the uncertainty principle? Enters now our crucial caveat: this
prescription may be inconsistent with that given by ‖𝑦𝑖 −

𝑥𝑖‖ = |𝑑| = ‖𝑥 (0) − 𝑦‖. Such constraint does not exist
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Figure 1: Poincaré surface of section and Bloch sphere for a SU(2) Hamiltonian and for given integration path (see text).
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Figure 2: Same as Figure 1 for the same integration path but a different end point (see text).

for a classical system since there is no obligation to strictly
abide by the uncertainty principle. Such an obligation is not a
mere mathematical feature but a strong physical constraint
‖𝑦𝑖 − 𝑥𝑖‖ = |𝑑| = ‖𝑥 (0) − 𝑦‖. Unfortunately, all we can
expect is to be able to find a point 𝑦1 (or 𝑦𝑖 for each iteration)
connecting 𝑥1 to 𝑇

𝜏
𝑦 with a distance from 𝑥1 as small as

possible, such that the function ‖𝑦1 − 𝑥1‖ is minimal. This
𝑦𝑖 must comply with the uncertainty principle (a dynamic
invariant for the SU(2) Lie algebra) whose value was set at
𝑡0 = 0 by means of the initial conditions.

Summing up, in order to find the initial condition
𝑦1 = (⟨𝜎̂𝑥⟩1

, ⟨𝜎̂𝑦⟩1
, ⟨𝜎̂𝑧⟩1

, 𝑞1, 𝑝1) of the fiduciary’s very close
trajectory (in each iteration path), we MUST externalize the
distance function |𝑑| = ‖𝑥1 − 𝑦1‖, subject to the following
constraints:

(i) 𝑦1 should respect the fixed value of GUP invariant
GUP (𝑡 = 0) = ⟨𝜎⟩

2

(0)
(see (26)) so as not to violate

the uncertainty principle,
(ii) 𝑦1 does the same with the invariant 𝐸(0) (see (27)) so

as not to violate energy conservation,
(iii) 𝑦1 does the same with the invariant 𝑆(0) (see (29)) so

as not to violate entropy conservation,
(iv) 𝑦1 does the same with the invariant 𝑢(0) (see (28))

so as not to violate the conservation of the evolution
vector,

(v) 𝑦1 must lie in the half-line starting at 𝑥1 and contain-
ing 𝑇

𝜏
𝑦.

If we do mind all this panoply at each iteration
path, we can never be sure that we are evaluating
lim𝑛→+∞((1/𝑛𝜏)∑

𝑛

𝑖=1
ln(|𝑑𝑖|/|𝑑|)) in a correct fashion.

In general, we face an insurmountable task.

5. Second Difficulty: Numerical Simulations’
Cumulative Error

If we evaluate Lyapunov exponents with the so-called one
step method Runge-Kutta 4 (RK4), whose local truncation
error is of the order 𝑂(ℎ

5
) (given that RK4 is a fourth order

𝑂(ℎ

4
) method), we face the following situation: suppose we

choose an integration path ℎ = 0.001. This entails that our
approximation to the actual solution starts off (at 𝑡 = 0)
with a local truncation error |𝑇1| ∼ ℎ

4
∼ 10

−12. However,
as pointed out by [30], it is necessary to take into account the
error arising as a consequence of cumulative effects coming
from all local truncation errors, namely, the global truncation
error |𝑒𝑛|. After a few millions of iteration paths, the global
truncation error is so important that the temporal series’
approximation that we have obtained {𝑋𝑛(𝑡)}𝑖≥1 becomes
meaningless. It is the same for the swarm of points in
Poincaré surfaces of section. Accordingly, such evaluation
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of the Lyapunov exponents numerical is also meaningless
(remember that even if the normalized trajectory begins at
every 𝜏𝑖 and does not accumulate much error, the fiduciary
trajectory is evolving from 𝑡 = 0 and does accrue a large
global cumulative truncation error |𝑒𝑛|). To illustrate our
claim, let us return to the SU(2) semiquantum Hamiltonian
given by (17): if we take 𝐵 = 0.5; ⟨̂𝐻⟩(0) = 0.5; 𝑚 = 16; 𝐶 =

1; ⟨𝜎̂𝑥⟩(0) = ⟨𝜎̂𝑦⟩(0)
= 0; ⟨𝜎̂𝑧⟩(0) = 0.9; 𝑞(0) = 0.5; 𝑝(0) =

√2𝑚(𝐸(0) − 𝐵⟨𝜎̂𝑧⟩(0)
− 𝐶𝑞(0)⟨𝜎̂𝑥⟩(0)

− 𝑞4(0)/4), an integration
path ℎ = 0.001, and integrate (18)–(20) and (24)-(25), using
RK4 from 𝑡 = 0 to 𝑡 = 𝑡 = 10

6, we obtain the Poincaré surface
of section 𝑝 versus 𝑞 and the Bloch sphere of Figure 1, while
if we do the same from 𝑡 = 0 to 𝑡 = 5 × 10

6, using the same
integration path, we obtain the Poincaré surface of section 𝑝

versus 𝑞 and Bloch sphere depicted in Figure 2.

6. Conclusions

We have shown that the evaluation of Lyapunov exponents
on semiquantum systems like (17) may become an impossible
task given that these kinds of Hamiltonian systems contain
both a classical component and a quantum component which
must obey the uncertainty principle. We appreciate via (18)–
(25) the interplay between classical and quantum degrees
of freedom. This means that once (i) the GUP (𝑡 = 0) =

⟨𝜎⟩

2

(0)
value is chosen (without violating the uncertainty

principle) together with (ii) the energy value 𝐸(0) (another
dynamic invariant), the classical variables become strongly
constrained in the values they can attain by two facts: (i) the
constant energy of the system determines the energetically
accessible regions (this fact is shared by classical Hamiltoni-
ans) and (ii) the uncertainty principle, that imposes strong
restrictions on their evolution (see [22] for more details).
Thus, the 𝑝(0) value cannot be fixed without minding the
condition 0 < ⟨𝜎̂𝑥⟩

2

(0)
+ ⟨𝜎̂𝑦⟩

2

(0)
+ ⟨𝜎̂𝑧⟩

2

(0)
< 1 that follows

from the uncertainty principle. This fact is encountered
only in dealing with semiquantum dynamics. Accordingly,
one does not preserve the uncertainty principle’s dynamic
invariant value GUP (𝑡 = 0) = ⟨𝜎⟩

2

(0)
and one will get

nonsensical results. This is a distinctive feature of semiquan-
tum dynamics that has no classical counterpart. Evaluating
Lyapunov exponents for semiquantum systems is an entirely
different problem for semiquantum systems than for classical
ones.

In other words, as the MEP approach is able to convert
the evolution equation of motion of the quantum state 𝜌(𝑡) of
a semiquantum system into a set of nonlinear semiquantum
differential equations (see [21, 22] for more details), the
quantum nature of the system rises its head in setting the
initial conditions for the quantum degrees of freedom. One
must not violate the uncertainty principle. At every 𝜏whenwe
obtain the values 𝑦𝑖 infinitely close to the fiduciary trajectory,
we must be sure that the system abides by the uncertainty
principle from the very beginning. In this sense, calculating
the Lyapunov exponents for a semiquantum system is in no
way a similar task to that of doing it classically.
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