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Mass spectrometry is used to evaluate the occurrence of the nitrile-ketenimine tautomerism. Mass spectra of two differently
substituted nitriles, ethyl-4,4-dicyano-3-methyl-3-butenoate and diethyl-2-cyano-3-methyl-2-pentenodiate are examined looking
for common mass spectral behaviors. Ion fragmentation assignments for specific tautomers allow to predict the presence of
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1. Introduction

Few reports have been found on the occurrence of nitriles
in equilibrium with the corresponding tautomers, the keten-
imines. Some studies where enolization of nitriles takes
place have been found [1–3]. Among these tautomeric
compounds the most interesting ones were those which
involve a methylene hydrogen γ to the nitrile group and
electron-acceptor groups as –CN or –COOR (Scheme 1) [3].

The majority of nitriles appear to favour strongly the
cyano form in this equilibrium [1]. Kasturi et al. [2] have car-
ried out the study of the UV absorption spectra of several 1,2-
dicyano esters and 1,1,2-tricyano compounds with a view to
demonstrate the presence of nitrile-ketenimine tautomerism.
They have synthesized several condensation products of
β-ketoesters with malononitrile and ethyl-cyanoacetate in
connection with the synthesis of heterocyclic compounds.
From the analysis of the UV spectra in ethanol and in
ethanol/sodium hydroxide solution there was observed a
hyperchromic effect on the band around 355 nm (detectable
only in polar hydroxylic solvents) that could be assigned to
the presence of the ketenimine structure [3].

Contrarily, the long wavelength UV absorption band
present in the spectra of some alkylidene malononitriles
and cyanoacetates has been claimed to be a consequence of

anion formation and not of nitrile-ketenimine tautomerism
[4].

Additionally, in the IR spectra of these compounds,
absorption bands between 2100 and 1500 cm−1 which could
be expected if any ketenimine had been present were not
observed [5].

A highly enantioselective direct dialkyl allylic elec-
trophilic functionalization by addition of diethyl azodicar-
boxylates to alkylidene cyanoacetates and malononitriles
(commercially available organocatalysts) has been demon-
strated, and can be applied to other electrophilic addition
reactions [6].

Tautomerism studies are notoriously relevant in various
biologically important systems, and spectrometric methods,
mainly NMR, have been used [7–22].

Mass spectrometry has already demonstrated to be useful
for the study of prototropic tautomerism (keto-enol, amide-
imidol, amine-imine, etc. [23–49]). Some of those processes
are really difficult to be studied by the NMR, where the
solvent plays a key role. Many times interesting tautomeric
structures are not detected by this technique which might
be not the case of mass spectrometry since tautomerism
occurs in the gas phase previous to ionization. This is why
this methodology has been chosen to study the nitrile-
ketenimine equilibrium trying to find experimental evidence
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about the occurrence of the ketenimine tautomer through
the interpretation of mass spectral peaks of selected nitriles.

In order to get further support for the occurrence of
the ketenimine tautomeric form, it has been resourced to
additional experimental evidence as it is the case of an
electrophilic addition reaction that can only take place
through an specific tautomer (ketenimine). Amination was
selected and although a mechanistic study of amination of
ketenimines is lacking, it is known that amination of keten-
imines forms amidines. By high-level ab-initio calculations
Sung et al. [50] concluded that amination of ketenimines
proceeds via amine addition across the C=N bond rather
than the C=C bond, followed by tautomerization to form the
amidine product. They have observed an intermediate vinyli-
dendiamine by low-temperature proton NMR spectrometry.

The main purpose of the present work is to find
experimental evidences for the occurrence of the ketenimine
structure in equilibrium with the nitrile tautomer.

2. Experimental Part

2.1. Synthesis of Nitriles and Amidine. The ethyl esters of
the alkylidene malononitrile and the alkylidene cyanoac-
etate, ethyl-4,4-dicyano-3-methyl-3-butenoate and diethyl-
2-cyano-3-methyl-2-pentenodiate, were synthesized accord-
ing to the condensation procedure of Cope-Knoevenagel
[51, 52] (Scheme 2).

The ethyl-4,4-dicyano-2,2-diethyl-3-methyl-3-butenoate
was synthesized according to literature procedures [53].

The synthesis of the corresponding amidine (prepared by
reaction with diethylamine) was carried out according to the

general preparation procedure [52], and it was recrystallized
up to constant melting point (163-164◦C).

2.2. Structural Determinations

2.2.1. Gas Chromatography-Mass Spectrometry-Single
Quadrupole. These determinations were performed by
injection of methanol solutions (1 μL, 100 μg/mL aprox.)
in an HP 5890 Chromatograph coupled to an HP 5972 A
mass selective detector (unit mass resolution). An HP5-MS
capillary column (30 m × 0.25 mm × 5μm) has been used
with Helium as the carrier gas (0.6 mL/min in column, split
ratio 1 : 30). The temperatures set points were 200◦C in the
split injector, 300◦C in the interface, 185◦C in the ion source
and the oven ramp started at 40◦C (5 minutes), and ended
at 290◦C with a heat rate of 20◦C/min. The electron energy
was 70 eV, and the pressure in the mass spectrometer was
lower than 10−5 torr, thus precluding ion molecule reactions.

Isotopic exchange was performed by dissolution of the
corresponding compound in methanol-d1. Mass spectra
were analyzed one hour after dissolution.

The relevance of spectrometric data as a predictive
tool in regard to tautomeric equilibria depends mainly on
the fact that the contribution due to tautomerization of
molecular ions in the gas phase does not take place or can
be ignored. The importance of this point comes from the
physicochemical properties of ionic and radical species, quite
different from the neutral ones. This could be the reason
of possible distortion of results and loss of the desirable
predictive power of the methodology.

It has been demonstrated, in the case of keto-enol
tautomerism of a variety of carbonyl and thiocarbonyl
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compounds [38–49], that there is no significant intercon-
version of the tautomeric forms in the gas phase follow-
ing electron impact ionization in the mass spectrometer
(molecular ions, M+., do not seem to undergo unimolecular
tautomerization), and, even more surprising, for GC/MS
experiments, once the solvent is separated after injection in
the injection port of the gas chromatograph, tautomerism
mechanisms (intermolecular, unimolecular) would not seem
to take place even with no GC separation (under the selected
experimental conditions). These conclusions are supported
by temperature studies at the ion source (negligible effect)
and at the injection port of the gas chromatograph with a
shifting effect in agreement with the corresponding heats of
tautomerization [42, 47]. In fact, this process would take
place very fast under the working conditions in the GC.

Separation of tautomers in the analytical column is
frequently very difficult; consequently the different pathways
of fragmentation of the tautomeric forms have to be used
for identification of individual tautomers. For this reason
and because of the high similarity between MS (commercial
databases) and GC/MS spectra, analytical separation has not
been considered critical for the present work. Analogously,
it is thought that most of the conclusions could be useful to
analyze spectra registered with mass spectrometers equipped
with direct insertion probes.

2.2.2. Gas Chromatography-Mass Spectrometry-Ion Trap.
These determinations were performed by injection of
methanol solutions (1 μL) in a Thermo Quest Trace 2000
coupled to Finnigan Polaris ion trap detector (unit mass
resolution) under the same experimental conditions already
mentioned for the single quadrupole GC/MS system. This
instrumentation was utilized to confirm proposed fragmen-
tation pathways by CID (collision induced dissociation)
using Helium as the damping gas, a CID voltage of 4–7 eV
and an excitation energy of 0.3–0.45 (values were optimized
for each ion transition). These experiments were done by
selecting a precursor ion from the full-scan spectrum and
carrying out the corresponding MS/MS product ion scan.

2.2.3. Nuclear Magnetic Resonance. 1H NMR spectra in
CDCl3, were recorded with a Varian Mercury Plus spec-
trometer operating at 4.7 T. The typical spectral conditions
were as follows: spectral width 3201 Hz, acquisition time 4.09
seconds and 16 scans per spectrum. Digital resolution was
0.39 Hz per point. Deuterium from the solvent was used
as the lock and TMS as the internal standard. Sample con-
centration was 20 mg/mL. Measurements were performed at
25◦C.

13C proton decoupled and gated decoupled spectra were
recorded with the same spectrometer from CDCl3 solutions
at 25◦C. The spectral conditions were as follows: spectral
width 10559 Hz, acquisition times 1.303 seconds and 1000
scans per spectrum. Sample concentration was 40 mg/mL,
and digital resolution was 1.29 Hz per point.

A standard one-dimensional (1D) proton NMR spec-
trum and a carbon spectrum with broad-band proton
decoupling were run of each sample, supplemented by
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Figure 1: Mass spectrum of ethyl-4,4-dicyano-3-methyl-3-
butenoate.

2D gradient-selected COSY and multiplicity-edited HSQC
experiments to helpwith the assignment of signals. All 2D
spectra were recorded with the same spectrometer.

Vendor provided pulse sequences were used throughout
the work.

2.3. Computational Procedure. Theoretical calculations offer
an interesting approach to define relative stabilities of
compounds that participate in different kinds of equilibria.
That is why AM1 calculations [54] were performed on the
ethyl-4,4-dicyano-3-methyl-3-butenoate using the standard
Hyperchem package [55]. Since it has been resorted to heat
of formation values in order to rationalize experimental find-
ings and the AM1 technique has been specially parameterized
to reproduce this sort of experimental data, the authors think
that this choice is a sensible one for the molecular set under
consideration. Besides, previous computations obtained for
this kind of studies have given quite sensible results in order
to correlate experimental and theoretical data, so that it is
deemed that is not necessary to appeal to higher levels of
molecular electronic structure sophistication.

3. Results and Discussion

The relative stabilities of all possible tautomers for the ethyl-
4,4-dicyano-3-methyl-3-butenoate have been estimated by
semi-empirical calculations (AM1 level), and the results are
shown in Table 1.

The predicted most likely tautomerization process
involves the conversion of the nitrile-keto form I to the
ketenimine-keto III. The energy barrier to form tautomers
II, V and, VI indicates that they are likely to occur in some
extent while tautomerism involving the methyl moiety (IV)
and the double tautomerization process (VII and VIII) seem
to be less likely.

The mass spectrum of ethyl-4,4-dicyano-3-methyl-3-
butenoate is shown in Figure 1.

From the assignment of the main fragment peaks it
seems clear the occurrence of the ketenimine form because
there exist fragment ions that can only be explained from
that tautomer. The proposed fragmentation mechanisms are
supported by the data although it should be noted that there
is no absolute proof for them since there might be alternative
pathways that are not eliminated by these experiments.
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Table 1: Heats of formation and relative stabilities of the tautomeric forms of ethyl-4,4-dicyano-3-methyl-3-butenoate by AM1 calculations.

Tautomer ΔHf, kcal mol−1 ΔΔHf, kcal mol−1

I C C

CH2

C

C

N

N

C

O

H3C

H3CH2CO

−24,18846 0

II
C C

C

C

C

NC

H

O

NH

H3C

H3CH2CO

−6,2391 17,94936

III C C

C

C

C

N

C

O

H

NH

H3C

H3CH2CO

−8,38831 15,80015

IV C C

C

C

NH

N

C

O

H2C

CH2

H3CH2CO

3,558174 27,746634

V C C

C

C

C

N

N

C

HO

H

H3C

H3CH2CO

−8,176637 16,011823

VI C C

C

C

C

N

N

C

H

H3C

H3CH2CO

HO

−8,175188 16,013272

VII C C

C

C

C

N

C

H

H2C

NH

H3CH2CO

HO 17,81065 41,99911

VIII

H2C

C C

C

C

C

NH

N

C

H3CH2CO

HO H

17,98366 42,17212

The peaks at m/z 104, 105, 106, 132, 133, and 150 can be
justified from both tautomeric forms (Scheme 3).

The fragment ion at m/z 66 can only be justified from the
ketenimine form (Scheme 4). The ion at m/z 106 can also be
formed by the other ketenimine form (Scheme 3(b)) which
can render the fragment ion at m/z 66 (Scheme 4(b)).

It seems that the fragment at m/z 78 could be assigned to
the ketenimine since the only possible alternative to form this

ion would come from that one at m/z 106 by loss of HCNH
through hydrogen rearrangement.

In case that tautomerization involving the enol from the
ester moiety occurs, there are no evident pathways for the
formation of m/z 66 and the ions in the range m/z 104–106.

The fragmentation pathways were confirmed by GC/MS-
Ion Trap experiments (Table 2): the ions at m/z 66, 132, 133,
and 150 are generated from the molecular ion at m/z 178; the
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Figure 2: Mass spectrum of diethyl-2-cyano-3-methyl-2-
pentenodiate.

ion at m/z 106 comes from that one at m/z 150; the ion at m/z
105 arises from the ion at m/z 133; the ion at m/z 104 comes
from the ion at m/z 132; the ions at m/z 66 and 78 arise from
that one at m/z 106.

Figure 2 shows the mass spectrum of diethyl-2-cyano-3-
methyl-2-pentenodiate.

Table 2: MS2 data for ethyl-4,4-dicyano-3-methyl-3-butenoate.

Precursor ion (m/z) Relevant product ions (m/z)

178 150, 133, 132, 106, 105, 104, 66

150 106, 78, 66

133 105

132 104

106 78, 66

Scheme 5 shows the main fragment ions that can be
generated from all tautomeric structures. Not only the
molecular ion but also the ions (M–C2H4)+ and (M–C2H4–
CO2)+ are not observed. It should be pointed out that the
initial hydrogen transfer in Scheme 5(a) can occur to the
carbonyl oxygen atom to render the ions at m/z 153 and 152.
In that case the ion at m/z 180 should be represented as an
equilibrium between the protonated ester and the protonated
nitrile by hydrogen rearrangement.
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Scheme 4: Fragmentation pathways involving ketenimine tautomers of ethyl-4,4-dicyano-3-methyl-3-butenoate.

Table 3: MS2 data for diethyl-2-cyano-3-methyl-2-pentenodiate.

Precursor ion (m/z) Relevant product ions (m/z)

180 152, 124

179 151, 134, 123, 107, 106

152 124

151 123, 107, 106, 97, 96

134 106

123 97, 96, 79, 69

107 79

The ion at m/z 153 is not significant maybe due to the
lower probability of the double hydrogen rearrangement.

The m/z 124 can be explained from the nitrile form
(Scheme 6).

The fragment ion at m/z 67 can only be explained from
the ketenimine form (Scheme 7).

The following fragmentation pathways were confirmed
by GC/MS-Ion Trap experiments (Table 3): the ion at m/z
152 comes from that one at m/z 180 and the ion at m/z 124

from that one at m/z 152; the ions at m/z 134, 151, and m/z
67 arise from the ion at m/z 179; the ions at m/z 107, 123,
and 106 come from the ion at m/z 151; the ion at m/z 106
also arises from the ion at m/z 134; the ion at m/z at 79 is
generated by the ions at m/z 107 and 123; the ions at m/z 69,
96, and 97 arise from that one at m/z 123.

In order to better support the specificity of the proposed
fragmentation pathways, isotopic exchange with methanol-
d1 was carried out for the ethyl-4,4-dicyano-3-methyl-3-
butenoate. The corresponding mass spectrum is shown in
Figure 3.

As observed, not only expected shifts are observed (m/z
66-67, m/z 78-79, m/z 104-105, m/z 105-106, m/z 106-
107, m/z 132-133, m/z 133-134, m/z 150-151, m/z 178-
179) but also m/z 68, m/z 80, m/z 108, m/z 135, m/z 152,
and m/z 180 are present. This can be explained by taking
into consideration the equilibria in Scheme 8. As mentioned
before, the enol form from the ester seems to be unable to
generate the clusters at m/z 66–68 and m/z 104–108.

To get additional supporting evidence for the occur-
rence of the ketenimine tautomer that involves the free
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methyl group, the synthesis of ethyl-4,4-dicyano-2,2-diethyl-
3-methyl-3-butenoate was carried out. This product was
analyzed not only by MS (Figure 4) but also by NMR
(Table 4) demonstrating that, for this compound, the lack of
the methylene group does not preclude tautomerization to
the ketenimine form.

The ion at m/z 163 constitutes the base peak, and it seems
to be only explainable from the ketenimine (Scheme 9).

GC/MS-Ion Trap experiments showed that this ion is
generated directly from the molecular ion at m/z 234.

After isotopic exchange with methanol-d1 the fragment
ion at m/z 163 shifts to m/z 164, that constitutes a supporting
evidence for the proponed fragmentation pathway.

Ketenimines react with nucleophiles as amines and
alcohols [50], so that the electrophilic addition to the alkene
moiety of the ketenimine can be carried out thus obtaining
the corresponding amidine, that is possible only if that
structure is present (Scheme 10).

Equimolar amounts of ethyl-4,4-dicyano-3-methyl-3-
butenoate and diethyl amine in diethyl ether were mixed and
allowed to react until detection of product formation. After
recrystallization the reaction products were identified by 1H
and 13C NMR (Table 5). From the corresponding analysis it
turns that both ketenimines are present (Scheme 1), that is
consistent with mass spectrometric results of the diethylated
alkylidene malononinitrile, where the base peak can only
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Table 4: Nuclear magnetic resonance spectra (1H and 13C) of ethyl-4,4-dicyano-2,2-diethyl-3-methyl-3-butenoate.
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Table 5: Nuclear magnetic resonance spectra (1H and 13C) of the amination products of ethyl-4,4-dicyano-3-methyl-3-butenoate.
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butenoate after isotopic exchange with methanol-d1.
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Figure 4: Mass spectrum of ethyl-4,4-dicyano-2,2-diethyl-3-
methyl-3-butenoate.

be justified by the ketenimine involving the methyl group
(the ethyl groups on the methylene make impossible the
formation of the other ketenimine tautomer).

The bidimensional NMR allowed to confirm the assign-
ments (see experimental part). In addition, the preparation
and detection of the amidines from the nitrile in neutral
medium is also a strong indication of the presence of the
ketenimine structures in the equilibrium.

4. Conclusions

The reported evidences found by mass spectrometry in
regard to the occurrence of the nitrile-ketenimine tau-
tomerism have been supported through isotopic exchange,
MS2 and reactivity experiments (amination reaction and
NMR determinations). AM1 calculations were consistent
with the relative importance of the ketenimine tautomer for
one of the compounds here studied. Although for a long
time the value of mass spectrometry as a tool to predict the
occurrence of prototropic interconversions in the gas phase
has been questioned, nowadays there is enough experimental
work that supports this approach. In this sense, there are
some key aspects to keep in mind: there should be specific
assignments of fragment ions to tautomeric structures,
tautomerization is not supposed to proceed between ionic
species, and this approach does not intend to constitute a
quantitative tool.
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