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Abstract: Rapid antibiotic susceptibility testing (AST) could play a major role in fighting multidrug-
resistant bacteria. Recently, it was discovered that all living organisms oscillate in the range of
nanometers and that these oscillations, referred to as nanomotion, stop as soon the organism dies.
This finding led to the development of rapid AST techniques based on the monitoring of these
oscillations upon exposure to antibiotics. In this review, we explain the working principle of this
novel technique, compare the method with current ASTs, explore its application and give some advice
about its implementation. As an illustrative example, we present the application of the technique to
the slowly growing and pathogenic Bordetella pertussis bacteria.

Keywords: rapid antibiotic susceptibility testing (AST); nanomotion; atomic force microscopy (AFM);
B. pertussis

1. Introduction

According to a WHO report [1], a post-antibiotic era—in which common infections
and minor injuries can kill—is far from being an apocalyptic fantasy but a very real
possibility for our century. This is due to the fast emergence of multidrug-resistant microbial
pathogens, which is caused by the extensive, sometimes unnecessary use of antimicrobials
and the lack of interest of pharma in developing new compounds. The cost of antimicrobial
resistance (AMR) is projected to increase significantly as some models predict a rise in
global casualties from the present figure of one million to 10 million in 2050 [2]. To combat
the rise of AMR, a profound understanding of the mechanisms of microbial infections, the
development of new diagnostic tools and new antimicrobials are necessary.

To rationalize the use of large spectrum antimicrobial drugs, it is essential to have
a rapid and sensitive detection system that identifies the most appropriate drug to fight
a given microorganism immediately at the admission of the patient in a medical center.
Current antimicrobial susceptibility testing (AST) technologies mostly rely on microbial
culturing and thus replication, which can therefore take up to 1 to 3 days [3,4]. As a result
of the diagnostic’s limited speed, accurate treatment, with effective narrow-range antimi-
crobial agents, is often replaced by the use of broad-spectrum antimicrobials [5–7]. The
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overuse of broad-spectrum antibiotics accelerates the further rise of AMR worldwide [5].
The development of rapid AST technologies is thus important in the battle against AMR.
Rapid AST technologies can therefore have a double effect, firstly increasing the survival
rate for patients with infections, and secondly, it could potentially extend the lifespan of
current narrow-spectrum antimicrobials [8].

2. Current Antimicrobial Susceptibility Testing (AST) Methods

Fighting the threat of multidrug-resistant pathogens requires a multi-disciplinary
approach in which rapid AST plays a critical role. The classical method to determine
antibiotic susceptibility is the disk diffusion method [3,9–11]. This well-established method
requires a growth period before the actual disk test is performed, which also is based on
further growth during 16 to 20 h. Since some pathogenic bacteria are non-culturable, other
methods have to be used. Therefore, new methods that also allow one to perform AST on
non-culturable microorganisms in a short time frame [8] are needed. Current AST methods
can be divided into phenotypic and molecular tests [12–14].

Phenotypic assays monitor the growth of the microorganism in the presence of antibi-
otics [15]. Classical AST methods are culture-based (Table 1). Since these methods mostly
rely on microbial culturing and thus replication, the performance of these tests takes 1 to
3 days [3,4]. Agar dilution assays, i.e., disk diffusion and E-test methods, are flexible and
simple methods that are commonly used in clinical microbiology labs (Table 1). They allow
one to determine the minimal inhibitory concentration (MIC). A MIC test can also be used
using broth dilution assays, where the MIC corresponds to the lowest concentration of
antibiotic that completely inhibits bacterial growth and lacks visible turbidity [16]. Broth
macrodilution assays have been miniaturized and automated [3]. Several commercial
semi-automated or fully automated instruments have been developed, such as the Mi-
croScan WalkAway, Vitek-2, BD Phoenix, Wider System and Sensititre system [3,4,7,17–27].
The time–kill test is a tool for obtaining information on the dynamic interaction between
the antimicrobial and the microbial strain [14]. The time–kill curve reveals a time- or
concentration-dependent antimicrobial effect and can be used to determine synergism or
antagonism between drugs in combinations [28–32]. Optical-based AST methods have
been developed to measure the growth rate, such as the “multiplexed automated digital
microscopy (MADM)” method [33–35] and the oCelloscope [36], as well as to measure
morphological changes of single cells upon antibiotic treatment [37] (Table 1). Recently,
electrical-based AST methods that are based on impedance, capacitance, resistance and
electrochemical measurements, and mechanical-based methods have also been developed
(see Table 1 for some examples).

Molecular techniques rely on the determination of a particular fingerprint associated
with the resistance to a specific antibiotic [15,48,49] (Table 2). Real-time PCR techniques
and specifically constructed DNA microarrays have been developed to detect a spectrum
of genes that could be related to resistance to different antibiotics [15,48,50]. Some of these
techniques (e.g., the Xpert MTB/RIF assay [51–53]) have been commercialized and are
characterized by a very high reliability and speed of execution [13]. In the last 10 years,
various methods have been developed that are based on matrix-assisted laser desorption
ionization time-of-flight mass spectrometry (MALDI-TOF MS) [54]. MALDI-TOF MS
allows for the fast identification of the microbial species [55–64]. The use of MALDI-TOF
MS for AST lies in the combination of MALDI TOF MS identification with an established
AST method, such as the combination with Vitek-2 [65] or the BD Phoenix system [66,67].
MALDI-TOF MS has also been combined with stable isotope labeling by amino acid in cell
culture (SILAC). This MS method can identify the metabolically inactive microorganisms
due to the action of the antibiotic [68]. ATP bioluminence assays can provide a fast
antibacterial [69–71], antimycobacterial [72,73] and antifungal testing [74,75] where the
growth is determined based on the ATP quantification. Another molecular marker for
growth that has been used is 16S rRNA [76].
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Table 1. Examples of current phenotypic antibiotic susceptibility testing (AST) methods that are classified according to the
measuring principle: culture-based, optical-based, electrical-based and mechanical-based AST methods. MIC: minimal
inhibitory concentration.

Method Characteristics Reference

Culture-based AST methods

Broth dilution assay
Macro- or microdilution of medium–antibiotic solution and
growth evaluation based on turbidity or
colorimetric differences.

[3,4,7,16–27]

Disk diffusion Optical analysis of the resulting colony is based on the
growth. MIC determination. [3,9–11]

Gradient diffusion Similar to the disk diffusion method using a plastic strip. [38]

Time-kill test Reveals a time- or concentration-dependent antimicrobial
effect drugs synergism or antagonism. [28–32]

Optical-based AST methods

Optical tracking of cell division Single-cell division tracking associated with large
volume imaging. [39]

Multiplexed automated digital microscopy Optical imaging of cells with quantification of growth rates
in the presence of antibiotics. [33–35]

oCelloscope Estimate the growth of bacterial cells with an
optical microscope. [36]

Single-cell morphological analysis (SCMA) Imaging changes of the morphology of single cells upon
antibiotic treatment. [37]

Surface plasmon resonance (SPR) A SPR biosensor was used to determine the susceptibility of
Staphylococcus aureus clinical isolates. [40]

Electrical-based AST methods

Electric resistance Growth of cells in a microchannel is directly proportional to
the measured resistance change. [41]

Impedance-based Fast Antimicrobial
Susceptibility Test (IFAST)

Changes in biophysical properties of bacteria measured by
impedance cytometry. [42]

Electrochemical Measurement of the change in current due to
electrochemical reactions. [43–45]

Electrical AST (e-AST)
Growth of cells is monitored by detecting capacitance
change of bacteria bound to 60 aptamer-functionalized
capacitance sensors

[46]

Mechanical-based AST methods

Asynchronous magnetic bead rotation Detects bacterial growth, based on the rotation of a cluster
of magnetic microparticles. [47]

Table 2. Molecular AST methods. SILAC: stable isotope labeling by amino acid in cell culture.

Method Characteristics Reference

16S rRNA identification Influence of antibiotic on growth by measurement of 16S rRNA. [76]

ATP bioluminescence ATP quantification as an estimate of the microbial population
metabolic activity. [69–74]

DNA microarrays DNA microarray using 70mer oligonucleotide. probes to detect
resistance genes. [49]

Real-Time PCR Detection of resistance genes. [50–53]

MALDI-TOF MS and broth dilution Combination of microbial identification with an established AST method. [65,66]

MALDI-TOF MS and SILAC Identification of metabolic inactive microorganisms upon antibiotic
treatment. [68]
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In this review, we will essentially focus on a novel way to characterize the susceptibil-
ity of microorganisms to antibiotics. The technique relies on the detection of the nanometric
scale oscillations that characterize living cells. Several years ago, our team demonstrated
that all living organisms oscillate at a nanometric scale and that these oscillations end as
soon the organism dies [77]. Highlighting such minute movements on a single microor-
ganism requires highly sensitive devices such as atomic force microscopes (AFMs). These
instruments are particularly adapted to such challenges, since they can detect displace-
ments in the range of 0.1 Å with a temporal resolution in the range of microseconds. As
an illustration, the typical distance between two carbon atoms in an organic molecule is
about 2 Å. The very first and straightforward application of such a life monitor is rapid
AST. The aim of this article is to describe the working principle of these novel devices, to
review their contributions to the field of AST and to discuss their future applications.

3. The Atomic Force Microscope (AFM) and the Cantilever as a Mass Sensor

The atomic force microscope was developed in late 1980s by Binning Quate and Ger-
ber [78]. The instrument aimed to image non-conductive samples with atomic resolution.
The microscope consists of a very sharp tip fixed at the end of a soft cantilever that scans
the surface of the sample. The tip is maintained in contact with the surface and the deforma-
tions of the cantilever are used to reconstruct on a computer screen the 3D topography of
the sample. The cantilever deformation is measured by monitoring the reflection angle of a
laser beam that bounces off the end of the lever and ends its path on a two- or four-segment
photodiode as depicted in Figure 1.
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Figure 1. Components of a typical atomic force microscope (AFM). 1. Cantilever holding chip,
cantilever and tip, 2. sample, 3. piezo electric sample holding stage, 4. laser, 5. mirror, 6. two- or
four-segment photodiode.

The sample, or in some cases the cantilever, are moved by piezo-electric crystals with
a sub-Å precision [79]. These crystals convert an electric field that is applied on their
surface into a mechanical strain that moves the sample. As an illustration, a potential
difference of 100 V induces a displacement of 25 Å. The device can indifferently operate
in vacuum air or liquid environments. This last ability makes the instrument highly
interesting for biological applications. In the early days, the instrument was essentially
used to image single molecules or individual cells in their “almost native” environment and
very soon numerous microbiological applications of this novel imaging mode appeared
in the literature. They essentially focused on the morphological alterations of bacteria
following antibiotic exposure [80–84], or yeast cells upon antifungal treatment [85,86]. In
the early days, the instrument was essentially used to image single molecules or individual
cells in their “almost native” environment.

However, very soon it appeared that the device can also measure interaction forces
between single molecules, monitor the mechanical properties of the sample at a nanometric
resolution or measure minute changes in the mass of the samples attached to the cantilever.
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A comprehensive review of the different application domains of the AFM can be found
in Krieg et al. [87]. The interaction force measurement is achieved by attaching a “ligand”
molecule on the substrate and a “receptor” on the tip. To achieve the measurement, the
cantilever is brought in close vicinity to the substrate to permit the attachment of the two
molecular species. Eventually, the lever is moved afar the surface and sets the newly
formed bond under stress which induces a downward bending of the cantilever. When
the retraction force of the cantilever overcomes the adhesion between the two molecules,
the bond breaks and the cantilever returns to its rest position. The maximal downward
bending of the cantilever is directly proportional to the interaction force between the two
molecules. The technique can also be used to explore intercellular interaction forces, by
attaching mammalian, fungal or bacterial cells onto the lever and/or the substrate [88].
Since bacteria adhesive properties play an important role in biofilm formation, several
teams have used AFM to explore this parameter on various surfaces [89–91]. The very
same technique can be used to monitor the presence of specific molecules on bacterial
surfaces [92–94].

The mechanical properties measurement of the sample by AFM consists of indenting
(i.e., pushing) the tip into the sample and monitoring the deflection of the lever during the
process. The harder the sample, the more the lever deforms. The curve that depicts the
deformation of the cantilever as a function of the z position of the piezo electric crystal is
referred to as a force distance curve (Fdc). By subtracting the Fdc obtained on the sample
from another Fdc obtained on a hard substrate obtains a new curve referred to as an inden-
tation curve. This last curve basically indicates the force that is required to indent the tip to
a certain depth in the sample. The indentation curve of course depends on numerous other
factors such as the shape of the tip [95]. The calculation of the sample’s elastic properties,
i.e., its Young’s modulus, is obtained by fitting the indentation curve with a function such
as the one of Hertz [96], Sneddon [97], JKR (Johnson Kendall Roberts) or Tatara [98]. The
theoretical foundations of indentation curves are described elsewhere [99,100].

The first measurements of the mechanical properties of microorganisms by AFM were
conducted on the archaebacterium Methanospirillum hungatei [101]. This first study was
very quickly followed by numerous others involving Magnetospirillum gryphiswaldense [102],
Haemophilus influenzae [103], Pseudomonas aeruginosa [104], Klebsiella pneumoniae [105] and
Staphylococcus aureus [106]. Thanks to its very high spatial resolution, the AFM can also
highlight specific domains that possess different mechanical properties than the rest of
the cell wall. Arnal et al. demonstrated this capability of the microscope on Bordetella
pertussis [107]. Stiffness inhomogeneities can also be highlighted underneath the bacterial
surface by using a peculiar method to process Fdc. This AFM imaging mode is referred
to as stiffness tomography [108,109]. It was used to monitor at high resolution stiffness
modifications in bacteria upon antibiotic exposure [110,111].

For recent and comprehensive reviews on the use of the AFM to measure mechanical
properties of the sample, one can refer to Kasas et al. [112] and Garcia [113], for various
contributions of AFM in the field of microbiology, we refer to Garcia [113] and Formosa-
Dague et al. [114].

Another type of measurement can also be carried out by the AFM: it involves the
monitoring of the cantilever bending upon minute temperature variations [115,116] or the
attachment of a molecule onto the lever. The measurement is achieved by monitoring the
cantilever resonant frequency or its static bending upon a ligand molecule attachment. The
cantilever resonant frequency changes due to the added mass whereas its static bending is
induced by a change in the surface stress occurring on one side of the lever [117,118]. These
types of devices are extremely sensitive and are widely applied as biosensors [117,119–126].
They have been used for the detection of very small masses [118,122,127–129], for measur-
ing the buoyant mass of microorganisms and for determining the growth rates of individual
microbial cells [130]. They were also applied to detect antibiotic–mucopeptides interaction
on cantilever arrays [131].
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AFM cantilevers have also been used as nanosensors for living cell studies since
they offer many advantages. They are highly sensitive, selective, label-free and provide
real-time in situ detection capabilities [132]. Experiment involving single cells have been
reported for Escherichia coli [130,133,134], Bacillus subtilis [130,134], Enterococcus faecalis [133],
Saccharomyces cerevisiae cells [130,132,133,135], HeLa cells [136], mouse lymphoblasts [130],
and human lung carcinoma and mouse lymphocytic leukemia cells [133,137], mouse and
human T cells [133]. Cell growth detection has been demonstrated by monitoring resonance
frequency changes with immobilized S. cerevisiae and fungal Aspergillus niger spores [138].

The measurement of the cantilever resonant frequency can be quite challenging since
the quality factor of the lever dramatically drops in liquids, due to the viscous forces that
dampen its oscillations. An elegant workaround of the low-quality factor problem was
recently found by Etayash et al. [139]. It consists of designing a channel embedded in the
cantilever and of injecting a buffer containing the cells of interest. The cantilever resonant
frequency is then measured in air and permits one to monitor the number of organisms in
the channel and to distinguish viable and non-viable cells. The drawbacks of the technique
are essentially the complexity of fabrication of such levers and the care that has to be taken
during the operation to keep the channel clog- and bubble-free.

4. Nanomotion Detection

In early 2013, we noticed that living organisms deposited onto an AFM cantilever
induce nanometric scale oscillations that immediately stop when the organism dies [77].
The setup as well as the measurement procedures are different from the previously men-
tioned mass and adhesion detection techniques. The organism of interest can be de-
posited on both sides of the lever as depicted in Figure 2 and the induced oscillations
are far below the resonance frequency of the cantilever. The first experiments concerned
motile bacteria (Escherichia coli); however, later studies revealed that “non-motile” mi-
croorganisms (i.e., those lacking propulsion mechanisms) induce such oscillations of the
cantilever, too [140] (Table 3).
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Table 3. Antimicrobial susceptibility testing applications of the AFM cantilever method for pathogenic microorganisms.

Microorganisms Remark Antimicrobial Reference

Escherichia coli
Motile bacterium,

rapidly growing bacterium
Ampicillin, ceftriaxone, ciprofloxacin [77,141–143]

Bacteriophage T7 [143]

Bordetella pertussis Non-motile bacterium,
slowly growing bacterium

Clarithromycin,
ampicillin [94]

Staphylococcus aureus Non-motile bacterium, rapidly
growing bacterium Ciprofloxacin [144]

Mycobacterium abscessus Non-motile bacterium,
rapidly growing bacterium

Rifampicin,
isoniazid, amikacin [145]

Bacillus Calmette-Guérin Non-motile bacterium,
slowly growing bacterium

Rifampicin,
isoniazid, amikacin [145]

Candida albicans Yeast (candidiasis) Caspofungin [144,146]
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Subsequent extension of the study to larger cells such as yeast, plant and mammalian
cells revealed that this phenomenon seems to be general for many organisms living on
Earth (Table 4). Very quickly, we have foreseen the utility of such a detection method
to conduct rapid antibiotic susceptibility tests and we therefore extended the technique
to a large population of bacteria such as motile, non-motile, Gram-positive and Gram-
negative germs as well to rapidly and slowly growing organisms. In all these experiments,
the bacteria were exposed to different antibiotics and the organisms that were sensitive
drastically reduced the cantilever oscillation amplitude in the minutes that followed the
injection of the drug. Importantly, we also spotted the correlation that exists between the
antibiotic concentration and the oscillation amplitude of the exposed microorganisms. This
correlation permits one to draw dose–response curves and determine clinically important
parameters such as the minimum inhibitory concentration (MIC) and minimum bactericidal
concentration (MBC) [77]. Table 1 lists the biological samples that were explored with
this method.

Table 4. Other nanomotion detection applications.

Cell/Protein Remark Killing/
Neutralizing Agent Reference

Topoisomerase II Protein conformational changes are detected AMPPNP 1, aclarubicin [140]

Mitochondria Intracellular organelle oscillation detection Rotenon [147]

Osteoblasts Mammalian cell Glutaraldehyde [144]

Neurons Mammalian cell Osmotic shock [144]

Breast cancer cells Mammalian cell Paclitaxe, doxorubicin [148,149]

Arabidopsis thaliana Plant cell Absence of light [144]
1 AMPPNP: adenylyl-imidodiphosphate.

Importantly, other independent groups confirmed these results [142,143,148]. Interest-
ingly, slowly growing bacteria such as B. pertussis or even mycobacteria also responded
very quickly to the presence of antibiotics. These results emphasize further the potential of
the technique as a rapid antibiotic susceptibility test, especially for tuberculosis and sepsis.

5. AFM Nanomotion Setup and Measurement

The technique is relatively simple to set up. A detailed procedure describing the prepa-
ration measurement and the data processing steps can be found in Venturelli et al. [150].
Briefly, the first step consists of functionalizing a relatively soft (0.06 N/m) AFM can-
tilever with a cross linking molecule such as glutaraldehyde, paraformaldehyde, APTES
((3-aminopropyl)triethoxysilane) or fibronectin. To ensure a stronger binding, we recom-
mend a suspension of the microorganism in a phosphate-buffered saline (PBS) solution first.
Cell membrane parts, various peptides or amino acids present in traditional culture media
can hide the attachment spots on the cross-linking molecules. To ensure the attachment,
the cantilever is immersed in a droplet containing the bacteria for about 15 min. The sensor
is eventually inserted in the analysis chamber of the AFM to start the measurement. Biolog-
ically oriented instruments are preferable since they are designed to operate in liquids and
permit one to exchange the “imaging” medium during the measurement. Custom built
devices such the one depicted in Figure 3 can also be used.
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photodiodes, 6. photodiodes.

The analysis chamber is then filled with the culture medium and the laser beam as
well as the two- or four-segment photodiodes are adjusted to achieve the highest possible
sensitivity. The measurement usually starts 5–10 min after the insertion of the cantilever
into the analysis chamber. This delay permits the liquid medium and the cantilever to reach
a thermal steady state. Typical measurements are carried out with a sampling rate of about
20 kHz. Such a high rate is preferred, since it permits one to capture the resonant frequency
of the cantilever and to assess the correct position of the laser beam. The oscillations
of the lever are recorded for about 15 min in the culture medium before the addition of
the antibiotic. Usually, after 10–15 min exposure of bacteria to the drug, the oscillation
amplitude drops if the bacteria are sensitive and remains stable or even increases if they
are resistant. The experiment can be stopped at this stage; however, we usually inject
an additional killing agent such as glutaraldehyde or paraformaldehyde to ensure that
the oscillation amplitude drops to zero once all the organisms present on the cantilever
are dead.

6. AFM Nanomotion Data Processing

The data processing step consists of a high pass filtering of the original data set to
get rid of the thermal drift of the cantilever. The resulting data are eventually processed
to extract the variance in a temporal window of 10 s. The variance of the signal is up
to now the most sensitive parameter we found to distinguish between living and dead
cells. A trial-and-error process in which we attempted to maximize the difference between
signals recorded on living and dead samples determined the size of this 10 s window. It is
important to mention that the amplitude of the variance signal directly correlates to the
nutrient concentrations in the analysis chamber. This observation significantly extends the
technique application domains.

Interestingly, frequency domain analysis did not reveal up to now any preferential
peak (i.e., frequency) that we could attribute to the specific bacterial species or a metabolic
state. However, we noticed that on the fast Fourier transforms (FFT) of the signal, the
largest difference between living and dead cells is located between 0.2 and 100 Hz. This
frequency window is very stable among all the living organisms that we, and other groups,
explored up to now [142].

7. Application Example

To illustrate the technique and emphasize its susceptibility and rapidity, we present
here an example of nanomotion-based AST applied to a slowly growing non-motile
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pathogenic bacterium. We selected B. pertussis, which is the causative agent of whooping
cough. In this experiment, we monitored this by using one of our custom-made detectors
for B. pertussis Tohama I strain nanomotion upon exposure to clarithromycin. The injection
of the antibiotic at 5 µg/mL (i.e., MIC) in the analysis chamber induced within minutes a
dramatic drop in the variance of the cantilever oscillations (Figure 4).
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Figure 4. Illustration of the effect of clarithromycin on B. pertussis nanomotion. (A). Effect of the
antibiotic at MIC on the variance of the nanomotion signal as a function of time before (blue column)
and after (red columns) the exposure of the microorganism to the antibiotic. (B). Oscillations of the
cantilever as a function of time before (blue curve) and after (red curve) the injection of the drug. SS
medium: Stainer–Sholte liquid medium. The details of the preparation procedure are described in
Appendix A.

8. Advantages and Drawbacks of the AFM Nanomotion AST Technique.

Rapidity is probably the most straightforward advantage of the technique, especially
in the case of tuberculosis or pertussis. A reliable AST obtained in about 1–2 h can be
a “game changer” in the case of septicemia. The method does not require any previous
knowledge about the microorganism to be tested and relies only on the bacterial phenotype.
Finally, only a limited number of cells are required to conduct an AST. A few hundred
bacteria adhered on the cantilever are enough to obtain a reliable and reproducible signal.
This number can drop to one single cell in the case of larger microorganisms such as yeast.
In the case of polymicrobial infections, a representative sample composed of the different
bacterial species present in the patient has to be adhered to the cantilever. This will allow
one to evaluate the action of the antibiotic on the whole population: the lever oscillations
will stop only when all organisms present on the cantilever are killed by the antibiotic.

Probably the most limiting drawback of the technique is the need to attach the organ-
isms onto the cantilever. It requires chemicals that cross link the organism to the surface
of the lever without compromising the cellular physiology. The technique is based on
AFM technology and therefore is relatively expensive. However, custom-made devices as
depicted in Figure 3 can advantageously replace commercially available AFMs at a fraction
of their prices. Particles or bacteria floating in the analysis chamber can cross the laser
beam and modify its intensity on the photodiodes. This can lead to a misinterpretation
of the phenomena as a displacement of the cantilever [151]. Vibration isolation is an ad-
ditional issue since AFMs and nanomotion-dedicated devices are relatively sensitive to
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environmental vibrations. Up to now, MICs and MBCs were only obtained for bactericidal
antibiotics and not for bacteriostatic antibiotics. However, we are convinced that a more
detailed analysis of the cantilever oscillations should remove this limitation.

9. Future Developments

We are confident that nanomotion-based AST will play an important role in specific
diagnostic domains such as tuberculosis or septicemia. Currently, several AFM-based
nanomotion detectors are implemented for evaluation in the Lausanne University Hospital
(Prof. G. Greub, Microbiology Department, CHUV, Switzerland). In the case of posi-
tive evaluation, they will be included in the routine diagnosis chain. To further increase
nanomotion detection-based AST, potential parallel detection systems should be imple-
mented. This would permit one to probe simultaneously, on a single detector, different
antibiotics or different bacterial species. This development would also eliminate the need
of any previous knowledge of the bacterial species under evaluation. It would permit
one to assess the susceptibility of the microorganism for dozens of different antibiotics
simultaneously. A universal cross linker would also greatly facilitate the spread of the
device in research medical centers. Finally, additional fundamental knowledge about the
origin of the nanomotion is mandatory to permit to the technique to further spread in
research centers, pharmaceutical companies and hospitals.
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Appendix A

B. pertussis Tohama I strain (Collection of Institute Pasteur, Paris, France -CIP 8132-)
was grown in Bordetella agar plates with charcoal, supplemented with 7% horse blood,
supplied by BD Difco for 48 h at 37 ◦C. The colonies were cultured for 48 h and then
inoculated in 100 mL Erlenmeyers flasks containing 30 mL of Stainer–Sholte (SS) liquid
medium. This culture was incubated for 24 h at 37 ◦C with shaking at 160 rpm. The initial
concentration at 650 nm was OD650: 0.2; after 24 h of growth, the culture was centrifuged
at 8000 g for 5 min and washed four times with sterile phosphate-buffered saline (PBS).
Lastly, bacteria were washed three times in PBS; between each rinse they were sedimented
by centrifugation at 8500 rpm for 5 min and were finally suspended in SS liquid medium to
get a final high-density bacterial suspension (OD595: 0.5 with 100 µL of suspension diluted
in 1 mL of PBS).

Cantilevers of silicon nitride with a force constant of 0.06–0.12 N/m were incubated for
10 min with a drop (10 µL) of 0.5% (v/v) glutaraldehyde, rinsed with ultrapure water, dried,
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and incubated with 10 µL of the high-density bacterial suspension. Three washes with PBS
were performed to eliminate the non-adhering or poorly adhered bacteria. These cantilevers
with adhered bacteria were introduced into the analysis chamber of the nanomotion
detector to test different liquid conditions. Before starting the measurements, the analysis
chamber was allowed to stabilize for a short time. Initially, the vibration of the cantilever
with B. pertussis adhered bacteria was analyzed in SS medium and then the liquid was
replaced by fresh SS medium with antibiotic and a new data record was carried out, at
the room temperature. The antimicrobial used was clarithromycin (Sigma-A3487) in a
concentration of 5 µg/mL. The deflection signal was collected at a sampling frequency of
20 kHz (20000 data points by seconds). Cantilever deflection and variance of the deflection
signal were calculated to define the amplitude of the sensor’s movements. The evident
outliers were removed in cases of inevitable non-biological signal. The information was
recorded and analyzed using custom software written in LabVIEW (National Instruments)
and the Matlab R2013b software.
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