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Abstract We analyze the model of a self-interacting φ4
�

scalar field theory in Snyder–de Sitter space. After analyt-
ically computing the one-loop beta functions in the small
noncommutativity and curvature limit, we solve numerically
the corresponding system of differential equations, showing
that in this limit the model possesses at least one regime in
which the theory is asymptotically free. Moreover, in a given
region of the parameter space we also observe a peculiar
running of the parameter associated to the curvature, which
changes its sign and therefore can be interpreted as a tran-
sition from an IR de-Sitter space to and UV anti-de Sitter
one.

1 Introduction

It is currently believed that noncommutative geometry [1,2]
may play an important role in the search for a quantum theory
of gravity. The first example of noncommutative geometry
was introduced by Snyder [3] with the hope of taming the
divergences of quantum field theory (QFT) through the dis-
cretization of space. Of particular interest is therefore the
investigation of QFT on noncommutative spaces, which has
become an important area of research in recent times, espe-
cially in the context of the Moyal geometry [4,5].

In [6], we have used the worldline formalism to investigate
the QFT of a scalar model with a quartic interaction on Snyder
space, in an approximation of first order in the noncommuta-
tivity parameter. The investigation has been performed using
the standard formalism of noncommutative QFT. We have
found that divergences appear in the six-point function which
could lead to renormalization problems. However, this is due
to the approximation used. A treatment at all orders in the
noncommutativity parameter gives strong clues of renormal-
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izability and maybe even finiteness, at least for some choices
of the interaction potential, although calculations have not
been completed due to algebraic difficulties [7].

An intriguing phenomenon that occurs in several exam-
ples of noncommutative QFTs is that of UV/IR mixing [8]. It
manifests itself through the appearance of divergences in the
UV-renormalized diagrams when the external momenta go
to zero. Although this scenario could compromise the renor-
malizability of the theory, it also brings out several oppor-
tunities. The mixing could be for example used to generate
small scales from the UV dynamics as pointed out in [9].
It also served as a motivation to find new well-behaved NC
field theories. One of the major successes in this respect is the
Grosse–Wulkenhaar (GW) extension of the Moyal φ4

� model
[10]. The main peculiarity of this model is the presence in
the action of an harmonic oscillator term that smooths the
infrared behavior and in the end gives rise to an all-order
perturbatively renormalizable theory. According to the latest
results, in a certain limit it could provide the first example of
a solvable model in four dimensions [11].

It is therefore naturally of interest to further investigate
the origin of the harmonic term. It has been observed that the
introduction of such term may be justified by the assumption
of a de Sitter spacetime background [12]. For this reason,
we extend our previous study of the Snyder scalar QFT to
the case of a de Sitter background. Some other approaches
to noncommutative curved spaces can be found in [13–15],
where the authors motivate their mathematical construction
from Poisson–Lie algebras, and [16,17], where a group-
representation approach is used and some astrophysical con-
sequences are discussed.

Coming back to our Snyder–de Sitter model, we shall
show that it presents an effective action that at zeroth order
in the noncommutative and curvature parameters coincides
with that of the GW model (although the star-product is dif-
ferent), and might then share some of its properties. Another
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property common to the GW and Snyder–de Sitter algebra is
the existence of a duality between positions and momenta.
However, as we will see it is difficult to extend the duality to
the level of the action in the latter case.

Our computations are limited to the first approximation
in the noncommutativity and curvature coupling constants
of the theory and therefore are just a starting point, which
permits to study the renormalization group (RG) flow of
the theory. We will prove that at the one-loop level our
model possesses several interesting properties: it admits
asymptotic freedom in some region of the parameter space,
as well as a RG-induced change of sign in the spacetime
curvature.

Of course, the fact that we are working in a small-noncom-
mutativity expansion forbids us to drive conclusions about
questions such as the UV/IR mixing. Also, for simplicity, we
shall use an action which is not de Sitter symmetric. We shall
present a fully de Sitter-invariant treatment together with a
more detailed exposition of the calculations in a forthcom-
ing paper. For the same reason the question of (all-order)
renormalizability is not tackled in this work and will be
addressed elsewhere. The model investigated in this paper is
to be considered as an effective field theory whose features
could give us clues on what to expect from a noncommu-
tative QFTs in a curved background, which at least in prin-
ciple is more realistic than those usually considered in the
literature.

2 Curved Snyder space

Snyder spaces are spaces in which noncommutativity is
implemented in such a way that the Lorentz algebra and its
action on the position (x̂i ) and momentum ( p̂ j ) operators is
undeformed; in our Euclidean version, we can write the rele-
vant commutation relations in terms of the generators Ji j of
the Lorentz algebra,

[Ji j , Jkl ] = i(δik J jl − δil J jk − δ jk Jil + δ jl Jik),

[Ji j , p̂k] = i(δik p̂ j − δk j p̂i ),

[Ji j , x̂k] = i(δik x̂ j − δk j x̂i ).

(1)

These expressions do not fix the commutation relations
among momentum and position operators, that constitute
the (deformed) Heisenberg algebra. Indeed, there exist sev-
eral representations for which the p̂i commute among them-
selves, but the x̂i do not [18]. The commutation relations of
the p̂i and x̂i are then fixed almost uniquely by requiring the
validity of the Jacobi identities.

In this paper, we consider instead an algebra in which the
momenta do not commute: this can be interpreted as implying

the presence of spacetime curvature. Explicitly, we choose
the commutation relations1 [20–23]

[x̂i , x̂ j ] = iβ2 Ji j , [ p̂i , p̂ j ] = iα2 Ji j ,

[x̂i , p̂ j ] = i[δi j + α2 x̂i x̂ j + β2 p̂ j p̂i + αβ(x̂ j p̂i + p̂i x̂ j )].
(2)

The generators Ji j can be realized in terms of the phase
space variables as Ji j = 1

2 (x̂i p̂ j − x̂ j p̂i + p̂ j x̂i − p̂i x̂ j ).
On the one hand, the position commutators correspond to
the simplest Snyder space realization. On the other hand, the
momentum commutators are the ones one would find for a de
Sitter space in the usual commutative geometry. For β → 0
one recovers the de Sitter algebra, while for α → 0 one
gets the Snyder one. As usual, the commutator that mixes
positions and momenta is fixed by the request that the Jacobi
identities are satisfied. These observations justify the name
“Snyder–de Sitter space” (SdS) given to this geometry. It is
also important to observe that the algebra (2) is invariant
under the duality

α x̂i ↔ β p̂i . (3)

One interesting property of the SdS model is the fact that
it can be obtained from the usual Snyder space by means
of a nonunitary transformation. In fact, we can define the
operators x̂i and p̂i in terms of the operators Xi and Pi that
satisfy the Snyder algebra,

[Xi , X j ] = iβ2 Ji j , [Pi , Pj ] = 0,

[Xi , Pj ] = i(δi j + β2Pi Pj ), (4)

employing the following definitions that involve an arbitrary
parameter t [21,23], which will be set to zero for reasons
that will be explained below:

x̂i =: Xi + t
β

α
Pi , p̂i =: (1 − t)Pi − α

β
Xi . (5)

In the following, we use this map in order to perform our
calculations.

It must be noted that this method has several disadvan-
tages. However, at present there is no more practicable way to
perform an investigation of the model. For example, this map
does not preserve the duality between positions and momenta
of (2), i.e. there is no duality aαXi ↔ bβPi with a, b ∈ R

such that (3) is satisfied. In any case, also the choice of an
action invariant under the full algebra (2), and hence under
duality, is problematic.

1 Note the change β → β2 with respect to some previous works on the
topic, as [19].
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Another disadvantage of this representation is that it is
singular for β → 0. The reason is that the transformation
(5) can give rise to the Snyder-de Sitter algebra only if the
operators Xi are noncommutative, and hence β �= 0, i.e. the
model must be thought as a deformation of Snyder space.

Certainly, there exist different representations for the alge-
bra but we are not aware of any representation that solves
the above problems. One possibility could be to start from
the de Sitter algebra and repeat the previous steps in a dual
way, obtaining therefore an expression with factors β

α
. The

arousal of these non-analiticities can be understood in terms
of a dimensional analysis: if we are willing to use a linear
transformation as in (5) without the introduction of additional
dimensional parameters, then the only possibility one can
have is one of the already mentioned. If instead one relaxes
one of the assumptions, we have no proof that forbids the
existence of transformations that map the Snyder–de Sitter
algebra into a Snyder algebra. We can just say that without
the addition of extra dimensional parameters, there is no lin-
ear transformation with the desired properties. Also related
to this, there are many known cases in noncommutative the-
ories where the algebra shows a pole in some noncommuta-
tive parameter, usually related to the fact that the associated
group modifies its compactness properties, giving place to
the so-called quantum phases [24,25].

Coming back to the Snyder algebra, it is well known that
the Snyder operators can be written in terms of operators xi
and pi , obeying canonical commutation relations, as

Pi =: pi = −i∂i , Xi =: xi + β2x j p j pi = xi − β2x j∂ j∂i .

(6)

Although the Xi operators so defined are non-hermitian, this
problem can be overcome by symmetrizing [19],

Xi → Xi = x̂i = xi + β2

2
(x j p j pi + pi p j x j ). (7)

After this sequence of transformations, the original momen-
tum operator of SdS can finally be written as

p̂i = pi − α

β
xi − αβ

4
(x j p j pi + pi p j x j ). (8)

3 Self-interacting scalar quantum field theory on SdS

In the following, we shall define the free scalar field action
in D dimensions as

SK =
�

dDx φ ( p̂2 + m2) φ, (9)

where p̂2 is the kinetic operator, defined previously in (8).
In doing so, we are taking into account the fact that the
α → 0 limit is well defined, motivating the choice t = 0
made before expression (5). In other words, we are perform-
ing a deformation of Snyder theory to curved spaces: we
can recover the Snyder case in this limit, while generally we
obtain some additional contributions in powers of α. Actu-
ally, as explained after Eq. (5), one could have started with
a theory in a de Sitter background, where the correct kinetic
operator would be AdS = p̂2 + α2

2 J 2
i j , SK would have had a

nontrivial measure and then one could have thought of intro-
ducing a noncommutative deformation through the param-
eter β. One may also define an action invariant under the
full Snyder–de Sitter group, and hence under duality, which
seems to be rather involved. We shall consider some of these
points in a forthcoming publication.

Using hermitian operators x̂ , p̂ as given by Eqs. (7) and
(8), and after several manipulations using the commutators of
the algebra and integration by parts, we can obtain a simpler
expression, that up to first order in both α2 and β2 reads

p̂2 ≈ p2 + α2

β2 x
2 + α2(xi x j p j pi + x j p j pi xi ). (10)

Hence, up to first order order in the noncommutative
parameters one obtains the Grosse–Wulkenhaar kinetic term,
plus an extra contribution that mixes position and momenta
operators. It is important to notice that in this way the
harmonic term, added ad hoc in the Grosse–Wulkenhaar
model, acquires a clear geometric and physical meaning.
This possibility was proposed in a different context already in
[26].

It is also interesting to remark that the form of the addi-
tional contribution (x · p)2 is not surprising, since in the
usual commutative theory on curved spaces there would also
be similar contributions. Furthermore we expect that when
considering the dS invariant kinetic term further corrections
of this type will arise.

Now that we have obtained an expression for the kinetic
term, we need to introduce the interaction. In order to do this,
let us briefly mention some properties of a powerful tool used
to describe noncommutative theories, the star product. The
noncommutative geometry can be implemented in terms of
an algebra of functions with a deformed (noncommutative
or star) product. In the case of the explicit realization we are
using for the Snyder space, the star product � of plane waves
has been found to be [19]

eik·x � eiq·x = eiD(k,q)·x

(1 − β2k · q)D+1/2 , (11)
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where D is the dimension of the space and

Dμ(k, q) := 1

1 − β2k · q

��
1 − β2k · q

1 + �
1 + β2k2

�
kμ

+
�

1 + β2k2qμ

�
.

(12)

Note that this star-product is both noncommutative and
nonassociative.

With the aid of this star-product the addition of an interact-
ing term is straightforward. If we propose a quartic term, we
end up with the usual expression in Snyder space, where the
noncommutativity among position operators can be traded
for the star product [6]:

SI = λ

4!
�

dDx φ(x̂)
	
φ(x̂)



φ2(x̂)

��

= λ

4!
�

dDx φ(x) �
	
φ(x) �



φ(x) � φ(x)

��
.

(13)

Notice that the original duality present in the Snyder–de Sit-
ter algebra, viz. Eq. (3), is broken by the inclusion of such a
potential. In order to preserve it, one should introduce a non-
canonical potential including both x̂ and p̂ on equal footing,
what seems to us not strongly motivated.

Going back to formula (13), a direct computation gives an
expansion for small noncommutativity β,

SI = λ

4!
�

dx


φ4 + β2 φ�,(1) + O(β4)

�
, (14)

where we have defined the first noncommutative contribution
to the potential

φ�,(1) := 2

3
φ3

�
(D + 2) + 2xμ∂μ

�
∂2φ. (15)

This expansion will become relevant when considering the
divergences that will arise in the following section, where we
compute the one-loop effective action.

As the reader could guess, in order to make the computa-
tions feasible, the starting action whose one-loop contribu-
tions will be considered in the next section is simply the sum
of both the kinetic and interacting term,

S = SK + SI , (16)

in the regime where both the curvature α and noncommuta-
tivity β parameters are small.

4 The one-loop effective action

In order to perform the one-loop calculations we will use the
Worldline Formalism in its noncommutative version [27].
This method has already proved its utility in the study of the
exact nonperturbative propagator of the Grosse–Wulkenhaar
model [28,29].

Consider then the expression for the effective action Γ up
to one-loop corrections,

Γ [φ] = S[φ] − 1

2

� ∞

0

dT

T
Tr

�
e−T δ2S

�
, (17)

where the connection with the heat kernel of the second vari-
ation δ2S of the action is made explicit. The fact that the
action involves the noncomutative and nonassociative prod-
uct � implies that the computation of the variation should be
performed with care. As an example of this type of calcula-
tions consider [6].

Instead of writing the second variation of the action, we
report below its Weyl ordered expression δ2SW , since this is
the relevant one for the Worldline Formalism:

δ2SW = p2 + ω2x2 + α2(xi x j p j pi )S + mef f + VW , (18)

where the subscript S indicates a symmetrized expression2

and we have introduced the Weyl-ordered potential VW , the
frequency parameter ω for the oscillator3 and the effective
mass mef f , given by

VW := λ

4!
1

2

�
dq1dq2

(2π)2D



4!eix(q1+q2)

+β2 

αμν(x)p

μ pν + βμ(x)pμ + γ (x)
��

φ̃1φ̃2,

ω2 := α2

β2 ,

m2
e f f := m2 − 5α2

2
D(D + 1).

(19)

In the expression for VW , the x-dependent coefficients αμν ,
βμ and γ are those given in Appendix A of [6]. In the follow-
ing, we shall consider ω as an independent parameter, since
its renormalization flow is different from that of α/β

It is interesting to notice that as a by-product of the sym-
metrization we get a negative contribution to the mass term.
Even if this could seem awkward at first sight, the appearance

2 As an example, consider for simplicity the one-dimensional case.
If we have an expression x2 pn , its symmetrization gives



x2 pn

�
S =

1
4



x2 pn + 2xpnx + pnx2

�
[30].

3 Note that ω is actually a frequency times a mass, that could be iden-
tified with the mass m of the field. In calling this parameter frequency,
we follow the usage in the literature [10].
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of such a term and the usually consequent infrared diver-
gences are familiar in the commutative de Sitter case [31].
It is not the aim of this paper to inquire in this direction.
Instead, we point out that there have been some advances
to show that this is a pure perturbative feature—this can be
inferred for example from the computations in the large N
limit of a O(N ) model in commutative de Sitter [32] or from
the use of nonperturbtative RG techniques in de Sitter [33].

Using expressions (18) and (19), the computation of the
one-loop contribution to the effective action is lengthy, but
otherwise straightforward. In order to isolate the divergent
contributions and proceed with the renormalization of the
theory, we use dimensional regularization in D = 4 − ε

dimensions. In this way we find that the divergent contribu-
tions of the 2- and 4-point functions are given by

Γ
(2)
div = − λ

96π2ε

�
d4x φ

�
2β2ω2xμxν(−i∂μ)(−i∂ν)

− x2β2ω2∂2 + x2

�
15α2m2

e f f

2
+ 18β2m2

e f f ω
2 + 3ω2

�

+ x4

�
9α2ω2

2
+ 12β2ω4

�
− 163α2 + 6β2ω2

+
3α2m4

e f f

ω2 + 6β2m4
e f f + 3m2

e f f

�
φ, (20)

Γ
(4)
div = 1

4!
3λ2

16π2ε

�
d4x φ2

⎡
⎣α2∂2

2ω2 −
x2

�
5α2 + 16β2ω2

�

2

−
2m2

e f f

�
α2 + 2β2ω2

�
+ ω2

ω2

⎤
⎦φ2 − β2φ�,(1), (21)

where the notation of Eq. (15) has been employed. This result
agrees with [6] once we first take the limit of α going to zero
and then consider a vanishing ω. Notice that higher n-point
functions are not considered here, since it is not our purpose
to analyze the renormalizability of the model.

Some remarks are now necessary concerning the origin of
these divergent terms. In order to proceed with the renormal-
ization of the theory, the need to introduce counterterms for
the effective mass, the frequency and the coupling constant
should be evident. Moreover, the appearance of a x4 term in
the 2-point function and a x2 term in the 4-point function
can be motivated by considering the inclusion of the deter-
minant of the metric in the original action— indeed, in de
Sitter projective coordinates this is given by [34]

�
det g = 1

(1 + α2x2)(D+1)/2
, (22)

which upon expansion in the α parameter gives (among oth-
ers) the desired contributions. So the introduction of this type
of counterterms should not be seen as an inconsistency of our
theory.

Another contribution related to the geometry of the curved
space are the two terms combining p and x . As explained
in the previous section, they are of the form that usually
arises when considering the Laplacian in curved commuta-
tive spaces. The fact that we should add a new term x2 p2 to
our original action can be understood as a backreaction of
the field on the geometry, i.e. a dynamical deformation of the
original spacetime by the one-loop contributions of the scalar
field. A similar effect could be seen in the commutative case,
where the one-loop effects of the scalar field generate new
terms in the gravitational sector [35–38].

The remaining contributions, i.e. the φ�,(1) and the ∂2 one
in the 4-point function, can be explained if we look deeper
into the noncommutative φ4

� potential. In fact, by taking a
closer look at Eq. (15) one realizes that these two types of
contributions were hidden in our original action. As a con-
sequence, the noncommutative parameter β should be renor-
malized, but in a different way for the two terms in the RHS
of Eq. (15)—in other words, we are in presence of a dynam-
ical deformation of the noncommutative space. This is one
of the key differences with the Grosse–Wulkenhaar model,
in which the noncommutativity parameter has no running.

5 The beta functions

Upon the introduction of an energy scale μ to render the
coupling λ dimensionless in D = 4 − ε dimensions, we
can compute the corresponding beta functions from (20) and
(21), using the standard definition βx = ∂x

∂ log μ
for the cou-

pling x . For the sake of simplicity we limit ourselves to the
terms that were present in the original action (16), whose
coupling constants have the following beta functions:

βλ =
3λ2

�
2m2

e f f



α2 + 2β2ω2

� + ω2
�

16π2ω2 ,

βω2 = λ

48π2

�
15α2m2

e f f

2
+ 18β2m2

e f f ω
2 + 3ω2

�
,

βm2
e f f

= λ

48π2

�
−163α2 + 6β2ω2 + 3α2m4

e f f

ω2

+6β2m4
e f f + 3m2

e f f

�
,

βα2 = λ

48π2

�
2β2ω2

�
,

ββ2 = −3λβ2m2
e f f



α2 + 2β2ω2

�
8π2ω2 .

(23)

Contrary to the GW case, the field does not get renormalized
at the one-loop level.
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Fig. 1 Numerical solutions for the running of all the parameters of the
theory, choosing as initial conditions v1 = 


1, 1, 10−5, 10−4, 10−1
�

at
an energy μ0 = 1 (all the quantities are measured in the corresponding
powers of eV)

Recall that, in order to analyze the renormalization group
equation, the relevant differential equations are obtained
from the previous ones adding a term related to the dimen-
sion dx of the corresponding coupling x in units of mass [39],
i.e.

∂ x̄(μ)

∂ log μ
= βx − dx x̄(μ). (24)

If one were to solve this system of differential equations, one
would need to provide some initial conditions; the natural
guess would be to fix them at an energy scale attainable exper-
imentally, say μ0 ∼ GeV, at which according to the available
experimental data we could choose λ0 ∼ 1, a typical baryon
mass mef f,0 ∼ GeV, α0 ∼ 10−33 eV (according to its rela-
tion to the cosmological constant) and β0 ∼ 10−29 eV−1,
that is of the order of the Planck scale. These quantities fix
the initial value of the frequency parameter ω0 ∼ 10−4 eV2

in natural units, which turns out to be the only relevant effect
of noncommutativity and curvature until one reaches large
energies.

Since we are interested in the qualitative behavior of
the solutions, we will instead choose rather general ini-
tial conditions. In addition, we will use the vectorial nota-
tion v = 


λ, mef f , α2, β2, ω2
�

to simplify the following
description.

Let us start by choosing

v1 =
�

1, 1, 10−5, 10−4, 10−1
�

(all measured in the corresponding powers of eV) at μ0.
Using the odeint function implemented in [40], we solve
numerically the renormalization group equations, i.e. the sys-
tem of differential equations (23), after the inclusion of the
corresponding dimensional term (24). In this way we obtain
the plots depicted in Fig. 1. Notice that in some plots the
running of two parameters is shown. In order to avoid con-
fusion, in the online version the curve and the ordinate scale
of a given parameter are drawn with the same color, while
for different parameters the colors differ. In the printed black
and white version, the dashed curves correspond to β2 and
m2

e f f , the dashed-dotted ones to α2 and the continuous ones

to λ and ω2.
Turning to the interpretation of the plots, we observe

that the couplings behave as expected: the noncommutativ-
ity becomes more relevant at high energies, contrary to what
happens to the curvature (or, analogously, noncommutativity
of the momenta), while the mass and the frequency decay
quickly. On its side, the coupling constant increases slowly
but faster than in the commutative case, since its beta func-
tion is always greater than the commutative one. As a conse-
quence, there occurs a Landau pole for λ.

However, the situation can change drastically if we con-
sider different initial conditions. Suppose that we had begun
with an anti-Snyder (β2 < 0) and anti-de Sitter (α2 < 0)
space, given by

v2 =
�

1, 10, −10−5, −10−1, 10−4
�
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Fig. 2 Numerical solutions for the running of the λ (continuous and
orange curve) and α2 (dotted-dashed and red curve) parameter. The
initial conditions correspond to v2 = 


1, 10, −10−5, −10−1, 10−4
�

at the initial energy μ0 = 1 (all the quantities are measured in the
corresponding powers of eV)

and depicted in Fig. 2. Being the curvature and noncommuta-
tive contribution to λ’s beta function negative, the asymptotic
freedom of the theory is guaranteed for large enough masses.
Also, as can be seen from Fig. 2, the curvature tends to zero
for large energies as in the previous case—analogously, the
frequency, the mass and the noncommutative parameter show
a behaviour analogous to the previous case (of course with
an additional minus sign for β2). All in all, in this situation
the only relevant parameter in the UV turns out to be the
noncommutativity parameter.

Now notice that, after the running, the constraint for ω

given in (19) is no longer valid. This suggests that we could
also relax the constraint in the initial condition and consider
more general ones. For example, let us choose an initial anti-
Snyder space, say mef f = 1 and β2 = −10−4 in the cor-
responding units. Then, λ’s beta function would have a neg-
ative contribution that would be nevertheless suppressed by
the fast decay of the mass. If we choose instead the situation
with a bigger mass, e.g. choosing

v3 =
�

1, 102, 10−5, −10−4, 10−1
�

,

the negative term in the beta function of λ is dominant and the
theory becomes again asymptotically free. The plots in Fig. 3
(top) depict the behaviour of λ and β2 in this case, while the
remaining parameters show a behavior qualitatively equal to
the previous v1 case.

Still another interesting situation shows up if we still
assign initial anti-Snyder conditions, but with

v4 = (1, 10, 10−5, −10−1, 10−1)

at μ0 (all quantities given in the corresponding powers of eV).
In this case α2 decreases so fast that becomes negative—

Fig. 3 Numerical solutions for the running of λ (continous and
orange curve), β2 (dashed and blue curve) and α2 (dashed-
dotted and red curve). The initial conditions correspond to
v3 = 


1, 102, 10−5, −10−4, 10−1
�

(top panel) and v4 =

1, 10, 10−5, −10−1, 10−1

�
(bottom panel), choosing the initial

energy μ0 = 1 (all the quantities are measured in the corresponding
powers of eV)

our interpretation is thus that the geometry of the model
becomes of anti-de Sitter type as a consequence of the one-
loop dynamics of the theory. At the same time, the coupling
constant stays in an asymptotic-free regime. The only param-
eter that changes its behavior with respect to the previous case
is α2, whose plot is shown in the bottom panel of Fig. 3.

6 Conclusions

The formulation of a scalar field theory on a noncommuta-
tive curved spacetime, in the approximation of small non-
commutativity and curvature, has revealed several interest-
ing features. In particular, we have shown that the Snyder–de
Sitter model could provide an astrophysical motivation for
the harmonic term introduced by Grosse and Wulkenhaar in
their celebrated model [41]. In this respect, the emergence of
a frequency given by the quotient of the noncommutativity
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and the curvature parameter turns out to be even more inter-
esting, since it means that its effects could be several orders
of magnitude bigger than expected. Of course it will be of
interest to analyze how the current experimental data from
the standard model could constrain the presence of such an
harmonic term.

Turning our attention to the beta functions, we have seen
that according to the initial infrared conditions, it could be
the case that the curvature and the noncommutativity render
the theory asymptotically safe. For this effect to arise, it is
a necessary condition to begin with an anti-Snyder–anti-de
Sitter or an anti-Snyder–de Sitter scenario. In these cases it
is clear that the theory does not suffer the illness of a Landau
pole. However, it is important to emphasize that this is a
situation different from the one set by the GW model, in
which the existence of a zero of the beta functions guarantees
asymptotic safety.

Another interesting peculiarity is the fact that we are
forced to consider the running of both the noncommutativity
and curvature parameters. Its consequence is that an initial
symmetry, encoded in the constraint ω2 = α2/β2, is dynam-
ically broken. This in turn generates the question whether
there could exist some (hidden) symmetry that could prevent
the independent running of ω, for example after the consider-
ation of the whole expansion in α and β or of a fully invariant
action. Also the inclusion of a noncommutative action for the
gravity sector might be relevant. Indeed, such a symmetry
could be the equivalent of gauge symmetry in QED, which
through the Ward–Takahashi identity precludes a different
running for each of the couplings identified with the electric
charge at tree level.

Aditionally, noncommutativity on curved spaces could
give the opportunity to analyze some proposals discussed
in the literature of quantum gravity and asymptotic safety,
such as [42]. Indeed, we have shown that a running from de
Sitter space to a would-be anti-de Sitter one is allowed in
our model after generalizing the initial conditions, suggest-
ing that, even if the de Sitter–Swampland conjecture were
true, a way out of it could be possible.

Finally, we would also like to mention some open ques-
tions. The discussion of whether the Snyder–de Sitter model
in the small α and β regime is UV complete or (all-order)
renormalizable, would involve a deeper analysis of higher
n-point functions and will be thus left to future work. To this
end, we believe it could be essential to have an equivalent of
the Langman–Szabo duality present in the GW case, which
could not only simplify the computations, but more impor-
tantly prevent some radiative corrections and avoid the need
to include an infinite number of new terms in the action.
Moreover, an analysis of the UV–IR divergences seems to be
impossible in our framework. This would in fact require the
investigation of the theory beyond linear order in α and β,
as initiated in [7]. Another interesting point regards gravita-

tional corrections to the beta functions of coupling constants.
In some papers (see for example [43] and references therein),
it has been proposed that this type of corrections is not phys-
ical by analyzing QFT in curved spaces. Our model could be
a playground for considering this claim in a theory that can
be seen as a step forward towards Quantum Gravity.
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