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Abstract This paper deals with the estimation of unknown

signals in bioreactors using sliding observers. Particular

attention is drawn to estimate the specific growth rate of

microorganisms from measurement of biomass concentration.

In a recent article, notions of high-order sliding modes have

been used to derive a growth rate observer for batch processes.

In this paper we generalize and refine these preliminary results.

We develop a new observer with a different error structure to

cope with other types of processes. Furthermore, we show that

these observers are equivalent, under coordinate transforma-

tions and time scaling, to the classical super-twisting differ-

entiator algorithm, thus inheriting all its distinctive features.

The new observers’ family achieves convergence to time-

varying unknown signals in finite time, and presents the best

attainable estimation error order in the presence of noise. In

addition, the observers are robust to modeling and parameter

uncertainties since they are based on minimal assumptions

on bioprocess dynamics. In addition, they have interesting

applications in fault detection and monitoring. The observers

performance in batch, fed-batch and continuous bioreactors is

assessed by experimental data obtained from the fermentation

of Saccharomyces Cerevisiae on glucose.

Keywords Bioreactors � Bioprocess control �
Bioprocess observers � Sliding modes

Introduction

Biotechnological process control and monitoring represent a

big challenge because of model uncertainty, unpredictable

parameter variations, scarce on-line measurements of most

representative variables, etc. For these reasons, extended

work has been carried out in the field of parameter and

signal estimation in bioreactors [11, 39]. As a result, many

software sensors have been developed to estimate variables

of interest from the measurement of other process variables.

Basically, one may consider two main types of potential

variables to be estimated: reaction rates and species con-

centrations [1]. In this paper we focus on the estimation of

reaction rates and, particularly, of specific growth rates. The

motivation is that control specifications are often related

with the growth rate of microorganisms, whether the

objective is to maximize biomass production or to maintain

a metabolic steady state [19, 34, 36, 40]. In addition, growth

rate estimators provide essential information to monitor the

development of microorganisms.

Different methods have been developed to estimate

variables and parameters in bioprocesses and the literature

is very large. Some of these methods are based on the

Kalman or extended Kalman filter [20, 29, 38, 39, 41].

However, they usually result in complex algorithms that in

general do not guarantee convergence [10]. Another

approach consists in using asymptotic or high-gain

observers (see for instance [1, 3, 18, 24]) and the mea-

surement of some key variables. One of the main limitations

of observers is their lack of robustness in the estimation of

some variables when they rely on a reaction model and/or
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Camı̀ de Vera s/n, Valencia, Spain

123

Bioprocess Biosyst Eng

DOI 10.1007/s00449-012-0752-y



the knowledge of yield coefficients. This problem can be

overcome extending the order of the observer to adapt some

uncertain parameters (see for instance [14]). When the

specific growth rate is the variable to be estimated, very

robust adaptive high-gain observers can be designed if on-

line biomass concentration measurement is available. With

this purpose, some on-line biomass sensors are currently

available (see for instance [28] and [21]). This is the

approach followed, for instance, in [2, 10, 30] where the

specific growth rate is estimated from the biomass growth

dynamics without using any reaction model. By this reason,

the growth rate can be viewed as an unknown input signal to

the biomass dynamics.

During the last decades, considerable research activity

has been devoted to design algorithms for unknown input

reconstruction. Furthermore, many of them have been

originally developed or applied to bioreactors. Some of

these algorithms essentially consist in differentiating the

output measurement [31]. This approach is used in [6],

where the measured signal is filtered over a 20-min win-

dow to reduce the underlying noise effects. Another widely

extended approach consists in using state observers of

measured variables, the estimate error being used to con-

struct or adapt the signal estimate. In some cases, a nominal

signal is supposed to be known, which is statically cor-

rected in proportion to the output estimation error [5]. In

other cases, the observer dynamics is extended to adapt the

signal estimate dynamically [3]. In any case, since the

adaptation algorithm is based on the output estimate error,

signal reconstruction using continuous observers can be

achieved up to a bounded uncertainty, which depends on

the magnitude of the signal or/and its time derivatives.

Despite this theoretical limitation, these approaches offer

comprehensive solutions in many bioreactor applications

(see [3] and related papers). However, it should be taken

into account that they could introduce some stability

problems in closed-loop applications.

The use of discontinuous observers appears to be an

attractive alternative. Discontinuous output error injection

can be designed to induce a sliding motion on the state

estimation error space, thus enforcing the observer to copy

the process output despite disturbances and model uncer-

tainties. At the same time, the error is used in some way to

reconstruct the unknown signal. Also, sliding observers

generate residuals and have interesting applications in fault

detection [12]. In the authors knowledge, sliding observers

for bioprocesses based on biomass measurement appeared

for the first time in [33]. A switching term added to the

continuous estimate provides finite time convergence to the

unknown signal up to a very high frequency component.

More recently, a second-order sliding observer has been

presented, which outperforms the previous one [9]. This

new observer, which shares some ideas with [25], differs in

the structure of the discontinuous output error injection.

Discontinuity appears in the first derivative of the estimate

rather than in the estimate itself, thus significantly reducing

chattering while the most attractive features of sliding

mode observers are preserved.

In this paper, we revisit this approach. We take the

second-order sliding observer mentioned above, which has

been specifically designed to deal with the nonlinear

dynamics of batch processes, as starting point for our last

developments. Another observer based on the same sliding

mode concepts but with a different error structure is pro-

posed to cope with a larger set of bioprocess dynamics. We

also derive some tools to tune the observers. On the other

side, we demonstrate that these observers are equivalent

under different state and time coordinate transformations to

the classical super-twisting differentiator [22, 23]. Conse-

quently, these observers inherit all the attractive features of

the super-twisting algorithm. They exhibit finite time

convergence to the time-varying unknown signal, which is

particularly attractive property in control applications

because the observer dynamics do not affect closed-loop

stability and performance. Also, they are very robust since

they use no model of the reaction. In addition, their off-

surface coordinates are signals very sensitive to sensor

faults and unpredicted behavior.

Theoretical framework

Let us illustrate with a simple example the use of sliding

mode observers for signal reconstruction. Suppose that the

problem is the estimation of signal u(t) from measurement

of its integral f:

_f ¼ uðtÞ ð1Þ

Suppose that the absolute magnitude of u(t) is bounded

by |u(t)| \ 1. Then, the following conventional sliding

mode algorithm can be used to reconstruct u:

_z ¼ û
û ¼ a signðf� zÞ

�
ð2Þ

See that the dynamics of the error sM=f� z is given by

_s ¼ uðtÞ � a signðsÞ ð3Þ

The solution to (3) for any u(t) with |u(t)| \ 1 satisfies also

the differential inclusion1

_s 2 !� a signðsÞ ð4Þ

with ! ¼ ½�1; 1�. For constants a[ 1, any uðtÞ 2 ! is

dominated by the second term in (3). Then, the state con-

verges in finite time to the surface defined by s = 0. From

1 Solutions are understood in the sense of Filippov.
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then on, the discontinuous term switches at ideally infinite

frequency, establishing a sliding motion on the surface. In

sliding mode z(t) perfectly tracks fðtÞ; so ûðtÞ coincides

with u(t) except for a very high frequency error term. The

input signal u(t) can then be reconstructed by filtering the

discontinuous estimate. Alternatively, the signð�Þ function

can be replaced with a high-gain continuous function to

avoid discontinuity. In both cases, just convergence to a

close vicinity can be guaranteed, even in the absence of

measurement noise.

Suppose now that the time derivative of u(t) is

bounded by j _uðtÞj � 1 while u(t) is not necessarily

bounded. Conventional sliding mode algorithms to

reconstruct u(t) can still be designed. However, more

interestingly, second-order sliding mode concepts can be

alternatively exploited. Among all the second-order

sliding mode algorithms, the super-twisting is the most

attractive one for this purpose because it provides a

smooth estimate without requiring any further informa-

tion about u(t). The super-twisting algorithm has been

proposed in [22]:

_z1 ¼ ûþ 2bjf� z1j1=2
signðf� z1Þ

_z2 ¼ a signðf� z1Þ
û ¼ z2

8<
: ð5Þ

Note that, differing from the conventional first-order slid-

ing mode algorithm, discontinuity appears in the first

derivative _̂u rather than on û.

Taking s M= f� z1 and q M= u� z2 we obtain the error

dynamics

_s ¼ q� 2bjsj1=2
signðsÞ

_q ¼ _u� a signðsÞ

�
ð6Þ

The solution to (6) for any u(t) with j _uðtÞ\j1 satisfies also

the differential inclusion

_s ¼ q� 2bjsj1=2
signðsÞ

_q 2 !� a signðsÞ

�
ð7Þ

Whereas the discontinuous signal dominates the

unknown input rate _uðtÞ; finite time convergence to

s : 0 is still guaranteed thanks to the continuous, but

not Lipschitz, third term in (6). A typical state trajectory

converging to the surface s = 0 is plotted in Fig. 1.

Originally, stability conditions and convergence rate were

derived geometrically from Fig. 1 using majorant curves

(see for instance [8, 22]). A Lyapunov approach has been

proposed for the first time in [26] and then improved in

[27]. After convergence to the surface s = 0, a sliding

regime is established. Once in sliding mode, the invariance

condition (s,q) = 0 holds. Then, the state z1 copies fðtÞ and

u(t) is reconstructed. Now, ûðtÞ perfectly tracks u(t) and is

continuous.

Algorithm (5) exhibits the following properties:

– convergence in finite time T,

– exactness, in the sense that û � uðtÞ 8t [ T in the

absence of noise,

– robustness, in the sense that û tends uniformly to u(t) as

z1 tends uniformly to f;

Moreover, the reconstructor features are not seriously

deteriorated by discrete measurement with sufficiently

small sampling period, being the estimation error propor-

tional to the sampling time. For the proofs of these

statements, the reader is referred, for instance, to [22].

Also, readers unfamiliar with first- and high-order sliding

mode observers may consult the works [4, 12, 15, 16, 17].

Problem statement and main results

Bioprocess dynamics

Consider the dynamics of microorganism growth in a

bioreactor

_x ¼ ðl� FiðtÞ=vÞx xð0Þ[ 0

_v ¼ FiðtÞ � F0ðtÞ vð0Þ[ 0

�
ð8Þ

where x is the biomass concentration, v is the liquid volume

in the bioreactor, l is the specific growth rate of micro-

organisms, Fi C 0 and F0 C 0 are the inlet (free of bio-

mass) and outlet flow rates, respectively. Suppose that x is

measured, and that v and Fi(t) are known or measured.

Thus, the objective is to estimate l under the assumption

that x and v remain strictly positive. Note that this will be

always true in practice. Otherwise, the problem does not

make sense. On the other hand, biomass concentration is

bounded because of the mass balance principle.

The specific growth rate l is function of the concen-

tration of several nutrients in the bioreactor as well as on

environmental conditions. Our purpose is to design robust

observers for l not relying on models of the reaction

kinetics and nutrient dynamics, which are only barely

known in real world. That is why we treat l as an external

Fig. 1 Typical convergence trajectory of the super-twisting sliding

mode algorithm
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unknown input. Like in Luenberger-like adaptive

observers [3, 14, 32], an upper-bound on j _lj is needed to

tune the sliding mode algorithms. Mainly, two types of

upper-bounds are usually considered for j _lj: In continuous

bioreactors, it is reasonable to use absolute bounds.

However, in batch and fed-batch bioreactors, where bio-

mass grows significantly during the process, it makes

more sense to consider a biomass-proportional bound on

j _lj: This is corroborated in the Appendix where expres-

sions of these bounds for a typical reaction model are

derived.

Problem formulation

Biomass dynamics in the first line of (8) can be rewritten as

_x ¼ f ðx; tÞ þ xlðtÞ xð0Þ ¼ x0 [ 0 ð9Þ

where the state x 2 < is measured, l 2 < is unknown and

time-varying, and function f(x, t) = -xFi(t)/v(t) is known.

Note that f(x, t) is well-defined under the assumption that

v [ 0. Hereinafter, l(t) is considered an unknown input to

system (9).

The bioprocess dynamics (9) is bilinear in x and l.

Conventional first- and high-order sliding mode input

reconstructor algorithms are conceived for systems linear

in the input. So, a first approach consists of reconstructing

the product xl, and then divide by x to obtain l. However,

this straightforward application of the existing algorithms

is not optimum in terms of noise. In this paper we evaluate

the use of high-order sliding mode ideas to reconstruct l
directly from (9). We consider two algorithms actually,

which deal with the bilinearity of (9) and are applicable to

growth rates with biomass-proportional and absolute

derivative bounds.

Definition 1 Let U be the set of inputs for which a

solution to (9) exists. Let X be the set of solutions to (9) for

all l 2 U.

A solution x(t) is said to be strictly positive and bounded

if there exist constants x [ 0 and x [ 0 such that

x � xðtÞ � x 8t 2 <þ:

Definition 2 Let Uþ � U be the set of all inputs such

that the solution x(t) to (9) is strictly positive and bounded.

Let Xþ 2 X be the set of all bounded and strictly positive

solutions.

Definition 3 Let U
þð�Þ be the set of inputs in Uþ with

bounded time derivative. That is U
þðqÞ ¼ fl 2 Uþ :

j _lj\qg.

In batch processes, the growth rate derivative is pro-

portional to biomass concentration and accepts a biomass-

proportional bound. The same may occur in fed-batch

processes when substrate is supplied in proportion to bio-

mass (see the Appendix). Obviously, for bounded solu-

tions, an absolute bound also exists but it may be too

conservative. So, we define the following set of input

signals:

Definition 4 Let U
þ
x ð�Þ be the set of inputs in U

þ
with

state-proportional bounded time derivative. That is

U
þ
x ðqÞ ¼ fl 2 U

þðqÞ : j _lj\qx=xg.

Then, the task is to estimate the unknown input

l 2 U
þð�Þ or l 2 U

þ
x ð�Þ to (9) from measurement of

x 2 Xþ.

Sliding observer for growth rates with biomass-

proportionally bounded time derivative

Consider the process

Pxq :
_x ¼ f ðx; tÞ þ xlðtÞ xð0Þ ¼ x0 [ 0

l 2 U
þ
x ðqÞ

�
ð10Þ

Then,

OSM1:

_z1 ¼ f ðx; tÞ þ z2 þ 2bj1j
1
2signð1Þ

� �
qx

_z2 ¼ a
x

x
signð1Þ

1 ¼ ðqxÞ�1ðx� z1Þ
l̂ ¼ qz2

8>>>>>><
>>>>>>:

ð11Þ

is an observer for (10) that converges in finite time for

suitable gains a and b. Convergence of this observer has

been already investigated in [9]. There, the observer error

dynamics is transformed to a polytopic one, and LMIs were

used to assess on its stability. Here, we present an alter-

native approach to the problem. We show that the observer

is equivalent, after a time scale transformation, to the

standard super-twisting algorithm. Then, all the classical

results about stability and tuning of the super-twisting

algorithm can be applied [22, 27].

Fist, let us apply the coordinates transformation

ð1ðx; z1Þ;uðu; z2ÞÞ with u ¼ l
q� z2:

_1 ¼ x
xðu� 2bj1j

1
2 signð1ÞÞ

_u ¼ _l
q� ax

x signð1Þ

(
ð12Þ

Consider now the time scale transformation T <þ 7!<þ

s ¼ TðtÞM
=

Z t

0

xðnÞ
x

dn: ð13Þ

Note that T exists and is invertible for any x 2 Xþ.

Moreover, (12) is independent of x after the time scaling

(13). In fact, the observer error dynamics in the new time

scale is
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10 ¼ u� 2bj1j
1
2 signð1Þ

u0 ¼ l0

q
� a signð1Þ

8><
>: ð14Þ

where 0 denotes differentiation with respect to s. Considering

that l0j j\q 8l 2 U
þ
x ðqÞ; it follows that U

þ
x ðqÞ � fl : l0 2

q!; 8sg; where ! ¼ ½�1;þ1�. Then, any solution to (14) for

l 2 U
þ
x ðqÞ satisfies also the differential inclusion

10 ¼ u� 2bj1j
1
2 signð1Þ

u0 2 !� a signð1Þ

�
ð15Þ

Note that inclusion (15) is independent of the original

system (10) and of l. Moreover, it represents the family of

sliding surface coordinate dynamics of the super-twisting

sliding algorithm (see (7)). Finite-time convergence of (15)

has been already demonstrated for suitable gains a and b
(see for instance [22] and [27]). That is, after a finite time

s* a sliding regime is established on surface 1 ¼ 0. The

sliding mode invariance condition 1ðsÞ � 0; i.e. 1ðtÞ � 0;

implies z1(t) = x(t) and l̂ðtÞ ¼ lðtÞ 8t [ T�ðs�Þ.

Sliding observer for growth rates with absolutely

bounded time derivative

Consider now the process

Pq :
_x ¼ f ðx; tÞ þ xlðtÞ xð0Þ ¼ x0 [ 0

l 2 U
þðqÞ

�
ð16Þ

where _l accepts an absolute bound q. Then,

OSM2 :

_z1 ¼ ðf ðx;tÞx þ qz2 þ 2qbjrj
1
2 signðrÞÞz1

_z2 ¼ a signðrÞ
r ¼ q�1 lnðx=z1Þ
l̂ ¼ qz2

8>><
>>:

ð17Þ

with z1(0) [ 0, is proposed as an observer for (16), where

z1 is the estimated biomass and l̂ is the estimated growth

rate. Furthermore, we will demonstrate that this observer

converges in finite time. Note that a logarithmic law r ¼
q�1 lnðx=z1Þ is used as observer error. This error signal is

well-defined since x is strictly positive and z1 diverges from

0. In fact, r!1 and z2 is increasing as z1 ! 0þ.

Therefore, the right hand side of the first equation in (17)

becomes positive for z1 [ 0 small enough.

This nonlinear definition of the observer error allows us,

after a smooth change of coordinates, to transform (17) into

the standard super-twisting sliding algorithm.

In fact, apply the coordinates transformation (r(x, z1),

/(u, z2)) with / ¼ u
q� z2:

_r ¼ /� 2bjrj
1
2 signðrÞ

_/ ¼ � _l
q� a signðrÞ

(
ð18Þ

Considering that U
þðqÞ � fl : _l 2 q!; 8tg; any solution

to (14) for u 2 U
þðqÞ satisfies also the differential

inclusion

_r ¼ /� 2bjrj
1
2 signðrÞ

_/ 2 !� a signðrÞ

�
ð19Þ

Inclusion (19) represents the family of sliding surface

coordinate dynamics of the super-twisting sliding mode

algorithm (see (7)). This proves finite-time convergence of

(19) for suitable gains a and b [22, 27]. That is, after a

finite time t*, a sliding regime is established on surface

r = 0. The sliding mode invariance condition r(t) : 0

implies z1(t) = x(t) and l̂ðtÞ ¼ lðtÞ 8t [ t�.

Remark 1 The sliding surface coordinates 1 and r not

only indicate convergence of the algorithm but also

divergence caused by unexpected fast growth rate varia-

tions. Therefore, they are effective residuals to indicate

bioreactor malfunctions, sensor faults or changes in

microorganism behavior (both abrupt and gradual).

Remark 2 The proposed observers can be used to estimate

the kinetic rate r(t) in any reaction of the form

_p ¼ rðp; tÞpþ gðp; tÞ ð20Þ

provided analogous assumptions to the ones made here are

fulfilled.

Experimental results

Three experiments were carried out to assess the observers

performance in real world. Experimental results obtained

from the fermentation of the industrial strain Saccharo-

myces Cerevisiae T73 (wild type) are presented in this

section. Processes in batch, continuous and fed-batch

modes were run. Biomass measurement was carried out

using the sensor described in [28]. This sensor took sam-

ples every 12 s and returned a filtered value over a window

of 2 min. These measures (xm) were injected to the pro-

posed sliding observers to estimate l(t). As suggested

above, observer (11) was used in the batch and fed-batch

processes, whereas (17) was used in the continuous one.

Both observers have been tuned as a compromise between

convergence and sensitivity. We have found a = 1.1 and

b = 1.8 suitable for this application. Nevertheless, the key

parameter is q (or the product qa). Note that the higher the

gain q, the faster the observer will converge, but the higher

the noise sensitivity will be. Also, robustness against

uncertainties in maxtðj _lðtÞjÞ will increase with q, but

sensitivity to faults will decrease in the same manner.

Preliminary bounds on j _lj used to tune q were obtained

following the derivations in the Appendix. Then, these
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bounds were finely tuned based on previous experimental

data and our own experience in the process. Alternatively, q
can be continuously adapted to improve robustness without

unnecessarily increasing output noise following some of the

procedures recently presented in [7, 13, 35, 37].

For comparative purposes, we obtain another l-estimate

by numerical differentiation of the measured signal:

ld ¼
_xm

xm

þ Fi

v
ð21Þ

Although quite crude, this method provides an exact esti-

mate under noiseless conditions. Obviously, because of

measurement noise and the way it is constructed, ld is

highly corrupted with noise. Of course, the real growth rate

is not available to compare with the sliding observer out-

puts. Nevertheless, in the figures shown below, the real l
can be guessed behind the noisy ld.

Batch reactor

The first process was run in batch mode. The initial con-

dition was x(0) = 0.1 g/L. Biomass concentration and

growth followed time-varying profiles. The process fin-

ished when the nutrients in the bioreactor, initially in

excess, were consumed. The growth rate of microorgan-

isms was estimated with observer (11) tuned with

a = 1.1, b = 1.8 and q = 0.5.

Figure 2 shows the experimental results. Figure 2a plots

the measured biomass concentration ranging from 0.1 to

3.5 g/L. As it is typical in batch processes, measurement

was not reliable and highly corrupted with noise during the

first hours because of the low initial biomass. Conse-

quently, the growth rate estimation ld varied randomly

between unacceptable large limits (see Fig. 2b). It is also

observed in Fig. 2a that growth dropped abruptly at t = 14

h, most probably due to the depletion of some essential

substrate. Growth stopped at t = 24 h when nutrient

exhausted. Figure 2c zooms out the plot of ld and shows

also the estimate provided by the observer, which was

initialized at ððx̂ð0Þ; l̂ð0ÞÞ ¼ ð0; lmÞÞ. Since a biomass-

proportional bound was used, the observer output evolved

slowly at the beginning preventing the estimate from large

and infeasible deviations. After convergence, the sliding

observer provided a smooth estimate that closely tracked

the real growth rate. Of course, there is a trade-off in the

selection of q between noise sensitivity and convergence

rate. Figure 2d depicts the sliding surface coordinate. It is

seen that the observer took 6 h to converge.

Fed-batch reactor

The second fermentation was run in fed-batch mode in a

biostat B5 bioreactor. The initial conditions, obtained from

a previous batch phase, were x(0) = 2.6 g/L and v(0) = 1

L. The inlet substrate concentration was si = 20 g/L. The

specific growth rate of microorganisms was reconstructed

with observer (11) tuned with a = 1.1, b = 1.8 and

q = 0.15.

Figure 3 shows the experimental results. Figure 3a plots

the exponential-like input flow, which was proportional to

biomass population (Fi(t) = kxv). Figure 3b depicts the

biomass concentration measures xm, and the estimate x̂ ¼
z1 provided by the observer. During approximately 1 h,

between t = 11.7 h and t = 12.8 h, the pump of the bio-

mass sensor run unprimed, thus leading to erroneous

measures and abrupt changes. On the other hand, the

observer provided a smooth estimate x̂. Figure 3c displays

the measured volume used to determine the feeding law.

The process was interrupted when the volume reached 3 L.

Figure 3d shows the specific growth rate estimation ld

obtained according to (21) and l̂ provided by the sliding

observer. Recall that, assuming that the biomass sensor

works properly, ld represents the real growth rate to which

a large high-frequency noise signal is added. It is observed

that ld was very noisy and became unstable when the fault

in the biomass sensor occurred. On the contrary, the sliding

observer provided a much smoother estimate that con-

verged rapidly at the beginning of the process (the initial

biomass concentration was much higher than in the batch

process) and remained stable in the presence of the fault.

Furthermore, the sliding estimate was almost insensitive to

such abrupt perturbation. Meanwhile, the sliding surface

coordinate was very sensitive to the sensor fault. Effec-

tively, it is seen in Fig. 3e that the observer diverged at

t = 12.8 h because of the sensor fault and converged again

1 h after the fault was cleared. Far from being a drawback

of the observer, its divergence indicated the occurrence of

the fault, an abrupt fault in this case.

Continuous reactor

The third experiment took place in a chemostat. The initial

conditions were x(0) ^ 11.7 g/L and s(0) ^ 0 g/L. The

inlet substrate concentration was si = 10 g/L, whereas the

reactor volume was v = 3 L. The input flow Fi(t) = lr v

was piecewise constant. The initial set-point was lr = 0.18

h-1, and a reference step Dlr ¼ 0:04 h�1 was applied at

time t = 25 h.

The growth rate of microorganisms was estimated with

observer (17), which used a biomass-independent upper-

bound on _l. The observer was tuned with a = 1.1, b = 1.8

and q = 0.5.

Figure 4 shows experimental data collected during the

first 54 h of the process. The top plot displays the piece-

wise constant feeding profile. Figure 4b depicts the bio-

mass concentration measures xm, which were used to
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estimate l. A 1-h drift fault was induced in the biomass

sensor at t^ 40 h. Figure 4c displays the specific growth

rate estimation ld obtained according to (21) and l̂ pro-

vided by the sliding observer. The drift fault in the biore-

actor caused the pulse observed in ld that did not

correspond with reality. Finally, the bottom plot depicts the

observer sliding coordinate r. Effectively, it is seen in

Fig. 4d that the observer converged for the first time in less

than 2 h. From then on, the growth rate estimate perfectly

tracked the real growth rate with much less noise than ld.

At t ^ 40 h, the observer diverged since it was not able to

track the drastic—and unreal—increase in l. This fast

variation largely exceeded the admissible rate of change q
of the observer output. Note the importance of the sliding

surface coordinate r to determine the observer conver-

gence and, therefore, the estimate reliability. Continuous

observers do not provide such information.

Comment This sort of variation in l may also be caused

by other reasons like variations in physicochemical con-

ditions or metabolic changes. The observer may be used

with the aim of detecting these changes or to track l(t)

despite them. In the latter case, the parameter q, or a, can

be increased to gain in robustness at the cost of higher

noise and lower sensitivity against sensor faults. Alterna-

tively, q-adaptation can be implemented as mentioned at

the beginning of this section to avoid increasing noise

unnecessarily.

Conclusions

A pair of modified second-order sliding mode observers

have been evaluated for signal reconstruction in bioreac-

tors. They have been specifically designed to estimate the

(a
)

(b
)

(c
)

(d
)

Fig. 2 Experimental results for

the batch process. a Measured

biomass concentration.

b Estimated growth rate using

measurement differentiation.

c Growth rate estimates using

measurement differentiation

(out of scale) and sliding

observer. d Sliding surface

coordinate
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specific growth rate of microorganisms based on biomass

measurement. One of them has been conceived for batch

and fed-batch processes, whereas the other one is more

suitable in continuous process applications. Their design is

not based on any model for the kinetics of the reaction,

which may be monotonic or not. Just an upper-bound on its

time derivative is required to tune the observer parameters.

It was shown that these observers are equivalent, after

some coordinate and time scale transformations, to the so-

called super-twisting sliding algorithm, thereby inheriting

its attractive features. In contrast with continuous observ-

ers, perfect tracking after finite convergence time can be

achieved in the absence of noise, whereas chattering caused

by noise is substantially reduced in comparison with con-

ventional sliding observers. This theoretical property, i.e.

finite time convergence, is very attractive in real-world

control applications since the separation principle can be

applied to design observer and controller independently.

(a
)

(b
)

(c
)

(d
)

(e
)

Fig. 3 Experimental results for

a fed-batch process. a Input

flow. b Measured and estimated

biomass concentration.

c Measured volume. d Growth

rate estimates using sliding

observer ðl̂Þ and measurement

differentiation (ld). (e) Sliding

surface coordinate
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Furthermore, an internal variable of the observers deter-

mines the convergence time that can be used to decide

when to close the loop. In addition, this internal variable is

also an effective residual to indicate reactor malfunction,

sensor faults, etc.

The observers performance has been assessed experimen-

tally by means of fermentation of Saccharomyces Cerevisiae

on glucose. The results confirmed their distinctive properties,

namely fast convergence, excellent tracking, robustness and

effectiveness in fault detection and monitoring.

Future research will be conducted to estimate several

time-varying reaction rates from the measurement of sev-

eral species concentrations. The main challenge is that an

extra unknown function should be incorporated to avoid

too conservative bounds, implying further modifications of

the super-twisting algorithm.
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Appendix

Consider the following bioreaction model, which is typi-

cally used to describe the growth of Saccharomyces

Cerevisiae on glucose:

_s ¼ �ylxþ FiðtÞ
v ðsi � sÞ sð0Þ	 0

l ¼ mðsÞM=lm
s

sþk

(
ð22Þ

(a
)

(b
)

(c
)

(d
)

Fig. 4 Experimental results for

a continuous process. a Input

flow. b Measured biomass

concentration. c Growth rate

estimates using sliding observer

ðl̂Þ and measurement

differentiation (ld). d Sliding

surface coordinate
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being s: substrate concentration; y: yield coefficient; si:

substrate influent concentration; Fi: feeding flow; lm:

maximum specific growth rate; k: half saturation constant.

From (22), an expression for the l-dynamics is readily

obtained:

_l ¼ dmðsÞ
ds

_s ¼ ðlm � lÞ2

lmk
�ylxþ FiðtÞ

v
siðtÞ � m�1ðlÞ
� �� �

ð23Þ

From (23), upper-bounds for j _lj under different scenarios

are derived next. These bounds can be used to tune

observers (11) and (17). In any case, these bounds can be

adjusted up and down according to previous experience

about the process.

Batch operation mode

In batch mode (Fi = 0), biomass concentration and growth

follow time-varying profiles. From (23), it follows that _l is

minimum with respect to s at k/2. Therefore,

j _lðtÞj � qbxðtÞ ¼ 4

27

yl2
m

k
xðtÞ: ð24Þ

Fed-batch operation mode

Fed-batch processes are usually fed in proportion to bio-

mass population (Fi = kxv), in order to achieve growth at

constant rate. The value of k that is compatible with a given

growth rate lr can be easily obtained from (22):

k ¼ lry

si � s
ð25Þ

resulting in a substrate dynamics

_s ¼ �yðl� lrÞx ð26Þ

From (23), it then follows that _l can be bounded by

j _lðtÞj � qfbxðtÞ ¼ 4

27

yðlm � lrÞ3

klm

xðtÞ: ð27Þ

Continuous operation mode

Although closed-loop control strategies can be implemented,

chemostats are usually operated—at least during the initial

phase—in open loop (Fi = F0 = lrv). They reach their

steady states when the extraction of reaction medium equals

the substrate flow rate. After a set-point step Dlr or a control

reaction of the same amplitude, l evolves to its new equilib-

rium with bounded time derivative

j _lðtÞj � qc ¼
ðlm � lrÞ2

lmk
jDlrjsi ð28Þ

This is an absolute bound independent of biomass, so the

use of (17) is recommended.
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