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Brans-Dicke wormholes in nonvacuum spacetime
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Abstract

Analytical wormhole solutions in Brans-Dicke theory in the presence of mat-

ter are presented. It is shown that the wormhole throat must not be neces-

sarily threaded with exotic matter.
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The field equations of general relativity, being local in character, admit solutions with

nontrivial topology. Among these, wormholes have been extensively studied [1]. Their most

salient feature is that an embedding of one of their spacelike sections in Euclidean space

displays two asymptotically flat regions joined by a throat.

The interest on wormholes is twofold. From the point of view of the Euclidean path inte-

gral formulation of quantum gravity, Coleman [2] and Giddings and Strominger [3], among

others, have shown that the effect of wormholes is to modify low energy coupling constants

and to provide probability distributions for them. In particular, Coleman [4] showed that,

in the dilute wormhole approximation, the probability distribution for universes is infinitely

peaked at Λ = 0, rendering all other values of the cosmological constant improbable.

On the purely gravitational side, the interest has been recently focused on traversable

wormhole [1,5–8]. Most of the efforts are directed to study static configurations [9] that

must have a number of specific properties in order to be traversable. The most striking of

these properties is the violation of the energy conditions [10]. It implies that the matter

that generates the wormhole is exotic [1], viz. its energy density is negative, as seen by

static observers. Geometrically, this is a direct consequence of the singularity theorems of

Hawking and Penrose [11]. Although we do not know of any such exotic material to date,

quantum field theory might come to the rescue [12].

Finally, we should mention yet another proposal related to wormholes. It has been shown

[5,13] that a nonstatic wormhole’s throat can be transformed into a time tunnel. Physical

effects in this type of spacetimes have been studied in [14].

Wormhole solutions have also been discussed in alternative theories of gravity, such as

R+R2 theories [15], Moffat’s nonsymmetric theory [16], Einstein-Gauss-Bonnet theory [17],

and Brans-Dicke (BD) theory [18]. In the last case, static wormhole solutions were found in

vacuum, the source of gravity being the scalar field. Dynamical solutions are discussed in

[19]. The aim of this paper is to look for static wormhole solutions of Brans-Dicke theory in

a general setting, i.e. in the presence of matter that obeys a generic equation of state [20].

We shall also discuss whether the BD scalar can be the “carrier” of exoticity, as was shown
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in [18] for the vacuum case.

Following the conventions of [21], the field equations of Brans-Dicke theory are

Rµν =
8π

Φ

(

Tµν −
ω + 1

2ω + 3
T gµν

)

+ ω
Φ;µΦ;ν

Φ2
+

Φ;µ;ν

Φ
(1)

Φ;µ
;µ =

8π

2ω + 3
T (2)

The assumption of a static spacetime entails that it is possible to choose a metric and a

scalar field such that

gµν,t = 0 Φ,t = 0 gti = 0 (3)

(i = r, θ, φ). We further require spherical symmetry, so that the line element can be written

in Schwarzschild form:

ds2 = −e2ψdt2 + e2λdr2 + r2(dθ2 + sin2 θdφ2) (4)

For the stress-energy tensor of matter we choose

T tt = −ρ(r) T rr = −τ(r) T θθ = T φφ = p(r) (5)

and zero otherwise. Finally, we adopt the following equation of state for matter:

− τ + 2p = ǫρ (6)

where ǫ is a constant. Now, the trace of the stress-energy tensor can be written as T =

−τ + 2p− ρ = ρ(ǫ− 1). The field equations take the form

− ψ′′ − (ψ′)2 + λ′ψ′ + 2
λ′

r
= −

8π

Φ

[

τ +
ω + 1

2ω + 3
T
]

e2λ + (ω + 1)(lnΦ)′2 + (lnΦ)′′ − λ′(lnΦ)′

(7a)

1− re−2λ
[

ψ′ − λ′ +
1

r

]

=
8π

Φ

[

p−
ω + 1

2ω + 3
T
]

r2 + re−2λ(lnΦ)′ (7b)

e2(ψ−λ)
[

ψ′′ + (ψ′)2 − λ′ψ′ + 2
ψ′

r

]

=
8π

Φ

[

ρ+
ω + 1

2ω + 3
T
]

e2ψ − ψ′e2(ψ−λ)(lnΦ)′ (7c)
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Φ′′ − Φ′

(

λ′ − ψ′ −
2

r

)

=
8π

2ω + 3
T e2λ (7d)

To solve the system made up of Eqs. (7) we shall follow the philosophy sketched in [22]. We

shall look for a differential equation relating ψ and λ, starting from the equations of motion

and the equation of state. The equation we shall obtain is second order and nonlinear

in ψ but, after a change of variables, first order and linear in λ. We shall then make a

specific choice for ψ consistent with asymptotic flatness and nonexistence of horizons and

singularities. We shall finally substitute this ψ into the linear equation and solve for λ.

As explained in [21], from Eqs. (6), (7c), and (7d), it can be shown that Φ = Φ0 e
c ψ

where c = (ǫ−1)/[2ω+3+(ω+1)(ǫ−1)], and Φ0 is related to the value of the gravitational

coupling constant when r → ∞. In the case ω → ∞ or ǫ→ 1, we get general relativity back

(although in the latter case, other solutions different from Φ = const might exist).

After a bit of algebra, we get the equation:

Aψ′′ +B (ψ′)2 + 2Aψ′ − Aλ′ψ′ +
2

r2
(e2λ − 1) = 0 (8)

where

A = −2
2 + ǫ+ 2ω

2 + ǫ+ ω(1 + ǫ)

B = −
8 + ǫ2(ω + 2) + 4ω2(1 + ǫ) + 8ǫ+ 11ω + 12ωǫ

[2 + ǫ+ ω(ǫ+ 1)]2

In the spirit of [22], we make the ansatz ψ = −α/r, where α is a positive constant. With

this election, which guarantees that the gravitational constant takes the correct value at

r → ∞, Eq. (8) takes the form

h(r) + f(r) e2λ + g(r) λ′ = 0 (9)

where

h(r) = B
(

α

r2

)2

−
2

r2
f(r) =

2

r2
g(r) = −

Aα

r2
+

4

r
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A suitable change of variables transforms Eq. (9) into a Bernoulli equation, and afterwards

into a linear equation. Its general solution is given by

e−2λ =
e2s/ϕ

ϕ

(

1 +
R

ϕ

)

−(8l+1)

{I +K} (10)

where

ϕ =
r

α
s =

B

A
R = −

A

4
l = −

B

A2

I ≡
∫

e−2s/ϕ

(

1 +
R

ϕ

)8l

dϕ

and K is a constant. It is not valid when A → 0, i.e. for ω = −1 − ǫ/2. The binomial

(1 +R/ϕ)8l is related to the hypergeometric function 2F1 [23]. Using the relation [23]

et pFq(α1, . . . αp; β1 . . . βq;−xt) =
∞
∑

n=0
p+1Fq(−n, α1, . . . αp; β1, . . . βq; x)

tn

n!
, (11)

the integral I can be written

I = 2s
∞
∑

n=0

∫

3F1(−n,−8l, b; b;R/2s)

(

−2s

ϕ

)n

(12)

Integrating out the terms corresponding to n = 0 and n = 1, we finally get

I = ϕ− 8 l R lnϕ+ ϕ
∞
∑

n=2

3F1(−n, 8l, b; b;R/2s)(−1)n
(

2s

ϕ

)n
1

n! (n− 1)
(13)

It is easily seen that e2λ → 1 when ϕ→ ∞.

In order to fix the constant K, we must select a value for the dimensionless radius (ϕ
th
)

such that the “flaring out” condition

lim
ϕ→ϕ+

th

e−2λ = 0+ (14)

is satisfied. In the case R ≤ 0, ϕ
th
must necessarily be greater than |R|, so that the flaring

out condition holds for all values of ω and ǫ except, obviously, those where R diverges, which

are given by ω = −(2+ ǫ)/(1+ ǫ). Nevertheless, the absolute size of the throat also depends
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on α 1. The aforementioned properties of λ, together with the definition of ψ, bear out that

the metric tensor describes two asymptotically flat spacetimes joined by a throat.

Let us now study the issue of weak energy condition (WEC) violation. Using the field

equations and the expression for the trace, we easily obtain

2e2λ

r2
−

4ψ′

r
−

2

r2
=

16π

Φ
τe2λ +

4

r

Φ′

Φ
− ω

(

Φ′

Φ

)2

+ 2
Φ′

Φ
ψ′ (15)

At the throat, e2λ → ∞, and then

τ
th
≈

Φ
th

8πr2
th

(16)

To calculate ρ
th
, we use the nontrivial component of the equation T µν;µ = 0:

τ ′ = ψ′(ρ− τ)−
2τ

r
−
ǫρ+ τ

r
(17)

Using Eqs. (16) and (17), and the derivative of Eq. (15),

ρ
th
≈ τ

th

c+ 1 + ϕ
th

1− ǫϕ
th

(18)

And finally, from Eq. (6),

p
th
≈
τ
th

2

ǫ (c+ 1) + 1

1− ǫ ϕ
th

(19)

We shall show now that WEC may be violated (at least near the throat) with nonexotic

matter. This means that we shall present the parameters for which a wormhole solution

exists whenever the matter content of the theory satisfying the inequalities

ρ
th
≥ 0 ρ

th
− τ

th
≥ 0 ρ

th
+ p

th
≥ 0 (20)

or equivalently,

1This situation is analogous to what Kar and Sahdev have found for wormholes in general relativity

[22].
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c+ 1 + ϕ
th

1− ǫϕ
th

≥ 1 (21)

ǫ(c + 1) + 3 + 2(c+ ϕ
th
)

1− ǫϕ
th

≥ 0 (22)

In addition, a necessary condition for the violation of the weak energy condition for matter

plus Brans-Dicke field at the throat is given by

2(ω + 1) + ǫ

2ω + 3
ρ

th
≤ 0 (23)

As an example, let us study the case ǫ = 2. From Eqs. (16), (18), and (19), the

inequalities (20) will be satisfied if

(

ϕ
th
≥ −

1

9ω + 12
and ϕ

th
<

1

2

)

or
(

ϕ
th
≤ −

1

9ω + 12
and ϕ

th
>

1

2

)

(24)

Inequality (23) will be satisfied for ω ∈ (−2,−3/2). Finally, we have to impose that ϕ
th
≥

|A/4|, which implies that

ϕ
th
≥

∣

∣

∣

∣

2 + ω

4 + 3ω

∣

∣

∣

∣

(25)

These inequalities constrain ϕ
th

to an interval in which a nonexotic wormhole can be con-

structed, for instance, in the case ω = −1.75. We should recall that a definite interval for

ϕ
th
does not determine the radius of the throat, because of the dependence of ϕ on α.

Summing up, we showed that Brans-Dicke theory in the presence of matter with a fairly

general equation of state admits analytical wormhole solutions. They generalize the vacuum

ones presented by Agnese and La Camera [18]. It should be noted that there exists some

regions of the parameter space in which the Brans-Dicke field may play the role of exotic

matter, implying that it might be possible to build a wormholelike spacetime with the

presence of ordinary matter at the throat.
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