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We study the connection between N=2 supersymmetry and a topological bound in a two-Higgs-doublet
system with a SU(2) X U(1)yXU(1)y, gauge group. We derive the Bogomol’nyi equations from supersym-
metry considerations showing that they hold provided certain conditions on the coupling constants, which are
a consequence of the huge symmetry of the theory, are satisfied. Their solutions, which can be interpreted as
electroweak cosmic strings breaking one-half of the supersymmetries of the theory, are studied. Certain inter-
esting limiting cases of our model which have recently been considered in the literature are finally analyzed.
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I. INTRODUCTION

Supersymmetric (SUSY) grand unified theories (GUTs)
have attracted much attention in connection with the hierar-
chy problem in possible unified theories of strong and elec-
troweak interactions [1,2]. In view of the requirement of
electroweak symmetry breaking, these models necessitate an
enrichment of the Higgs sector [3], thereby raising many
interesting questions both from the classical and the quantum
point of view. In particular, many authors have explored the
existence of stable electroweak vortex solutions in a variety
of multi-Higgs-doublet systems [4—6] that mimic the bosonic
sector of SUSY GUTs, in correspondence with what happens
in the Abelian Higgs model [7]. It has also been argued that
GUT cosmic strings may exhibit superconducting properties
[8], and this fact has recently stimulated the study of several
multi-Higgs-doublet models describing many interesting
phenomena [9,10].

Vortices emerging as finite energy solutions of gauge
theories can be usually shown to satisfy a topological bound
for the energy, the so-called Bogomol’nyi bound [11,12].
Originally, these bounds were obtained by writing the energy
of the configuration (per unit length) as a sum of squares plus
a topological term. There exists another approach to study
the Bogomol’nyi relationships (i.e., Bogomol 'nyi bound and
equations) which exploits the huge symmetry of the theory:
It is based on the observation that Bogomol’nyi bounds re-
flect the presence of an extended supersymmetric structure
[13—16]. In particular, for gauge theories with spontaneous
symmetry breaking and a topological charge, admitting of an
N=1 supersymmetric version, it was shown that the N=2
supersymmetric extension, which requires certain conditions
on coupling constants, has a central charge coinciding with
the topological charge [15,16]. Having originated from the
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supercharge algebra, the bound is expected to be quantum
mechanically exact.

Since multi-Higgs-doublet models can be understood to
be motivated by SUSY GUTs, supersymmetry provides a
natural framework for studying Bogomol’nyi bounds. In fact,
we have recently considered in Ref. [17] the supersymmetric
extension of the two-Higgs-doublet model first presented in
[6], showing that Bogomol’nyi equations are a direct conse-
quence of the underlying N=2 supersymmetry of the model.
We shall study in this paper a supersymmetric formulation of
a SU(2)XU(1)yXU(1)y, model with two Higgs doublets
which is a generalization of the one analyzed in [17]. The
theory has the same gauge group structure as that of super-
symmetric extensions of the Weinberg-Salam model that
arise as low energy limits of E ¢-based grand unified theories
or Eg X Eg superstring theories compactified on a Calabi-Yau
manifold with a SU(3) holonomy. This gauge group was
recently considered in Ref. [5] for the study of electroweak
strings and, generically, the inclusion of an extra U(1) factor
in multi-Higgs-doublet systems has been also taken into ac-
count in a variety of models exhibiting cosmic strings [8,9].
In spite of being a simplified model (in the sense that its
Higgs structure is not so rich as that of grand unified theo-
ries), it can be seen as the simplest extension of the standard
model necessary for having the Bogomol’nyi equations. We
show that the Bogomol’nyi bound of the model, as well as
the Bogomol’nyi equations, is a direct consequence of the
requirement of N=2 supersymmetry imposed on the theory.
We also show explicitly that, as a necessary condition for
achieving the N=2 model, certain relations between cou-
pling constants must be satisfied. These ‘critical values’” of
the coupling constants have physical relevance; e.g., the re-
quired relation between coupling constants in the Abelian
Higgs model corresponds to the limit between type-I and
type-11 superconductivity in the relativistic Ginsburg-Landau
model [16]. We discuss the solutions of the Bogomol’nyi
equations and present some interesting limiting cases.

The paper is organized as follows. In Sec. II, we present
the SU(2)XU(1)yXU(1)y: two-Higgs-doublet model in
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2+ 1 dimensions admitting of nontrivial topological configu-
rations and we embed it in an N=1 supersymmetric theory.
We show that the N=2 supersymmetric extension can be
obtained provided some relations between coupling con-
stants, analogous to the critical relation appearing in the
Abelian Higgs model [16], hold. In Sec. III, we construct the
N=2 supercharges of the theory, and compute the corre-
sponding supersymmetry algebra. After static configurations
are considered, and restricting our calculations to the bosonic
sector, we find that the Bogomol’nyi relationships appear as
a direct algebraic consequence. This fact clarifies in our
theory the model-independent analysis established in Ref.
[15]. We further comment on some interesting features of the
classical field solutions saturating the Bogomol’nyi bound.
These could be interpreted as electroweak cosmic strings
breaking half of the supersymmetries of the theory.

Our approach being general and systematic, we finally
consider in Sec. IV some limiting cases describing various
models which have been recently considered in the literature.

IL SU(2) x U(1) yX U(1)y» N=2 SUPERSYMMETRIC
MODEL

We start with a SU(2)XU(1)yXU(1)ys gauge theory,
which is described by the action

1 wv
4 G,u.VG

p.v

S= fd3x[——W B = F PR —

+3 |D5})<D(1)|2+ %|Df)¢(2)|2+ 5(9,4)*+ 3(9,B)*
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where @, and @, are a couple of Higgs doublets under

the SU(2) part of the gauge group, A and B are real scalar
fields, and W= W7 is a real scalar in the adjoint represen-
tation of SU(2). The metric is choosen to be gt’=(+——)
and the specific form of the potential will be determined

below. The strength fields can be written in terms of gauge
fields as

Fu=0,4,—3,4,, G,=0,B,—3,B,,  (2)

and
a _ a a b 117¢
W}LV_aMWV_(?VWluJ'—gfabCWMWV) (3)

while the covariant derivative is defined as

i i i
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q=12, (4)

where g is the SU(2) coupling constant while «(,, and B,
represents the different couplings of @, with 4, and B, .

A minimal N=1 supersymmetric extension of this model
is given by an action which in superspace reads

Sy_i=4 f dPxd> [QAQA+QBQB+Q‘;~VQ‘;~V—ﬁDA—ESDB—WDW+§1A+gzzs‘

2
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where
i i i

This action is built from a couple of complex doublet superfields Y ,)=(P ),V ,,F(,)), three real scalar superfields
A=(4,x4,a), B=(B,x5,b), and W=(W*, X(;;,, )7, and three spinor gauge superfields which in the Wess-Zumino gauge
read I'y=(4,.p4), I's=(B,.pp), and FW:F Crl=(W N7 Oy, Qp, and Q% ji» are the corresponding superfield
strengths. Concerning )\(") R )\(q) , N3, &, and &,, they are real constants whose significance will be clear below. It must be
stressed that fermions p,, pg, x4, and xp are Majorana, )(‘;;,7” and \“7% are Majorana spinors in the adjoint representation
of SU(2), while the Higgsino doublets W, are Dirac spinors. 4 and B are real scalar fields and W*7¢ is a Hermitian field in

the adjoint representation of SU(2). Here F' ¢ » @> b, and w* are auxiliary fields which will be eliminated in what follows using
their equations of motion. Finally, D is the usual supercovariant derivative:

D=0;+i0y"d,, 7

with the y matrices being represented by 1°=7°, y'=i7!, and y*=—ir’.
Written in components, action (5) takes the form
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S:S+Sfera (8)

where
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The potential in Eq. (8) reads
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The preceding action (8) is invariant under the following set of N=1 supersymmetry transformations with parameter #:
SWo=—iny, A OSN'=—i"WNy 7, SW'=nxy, SA=nx., OB=nxs,
SA,==inyupa, Opy=—i"F*y\n, OB,=—inyups, Opz=—i"G N7,
2
| a __ [ T . a
5CI)(q)—77\If(q), 5XW—_ Zl 2)\3(D(q)7aq)(q)+l(DW) n,
. ;
Sxa=— 21 V2NOD! D~ & +id4 |7, (11)
L= ]
. ]
Sx5=— Zl VAP D] D~ & +i0B |7,
L9~ ]
SV () =[—iy* DD — (VBN A+ VBN B+ 8N ) D )] 7,
where *W *F* and *G" are the dual field strengths,
WMN=1 et W, CFM=3eF,,, and *GM=1e""G,,. (12)

Now, in order to impose the N=2 supersymmetric invariance of the theory, we can consider transformations with a complex
parameter 7, (an infinitesimal Dirac spinor), since this implies the existence of two supersymmetries [14]. Here p,, pg,
X4, and xp being real spinors, we combine them into Dirac fermions 3, and 3 given by

Su=Xa"iPss 2p=Xp—ips- (13)
We also construct a Dirac fermion E¢ in the adjoint representation of SU(2) from A“ and X%/:
Be=xj—iA" (14)

Using the fermion field redefinitions (13) and (14), the fermionic contribution to the action in Eq. (9) can be rearranged into
the form
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Here 5%, 3,,, and 3,5 are the charge conjugates (the complex
conjugates) of E%, X, and 35, respectively.

We shall be mainly interested in purely bosonic back-
grounds where all fermion fields vanish. Given a functional
F depending both on bosonic and fermionic fields, it will
then be convenient to define F | for

FlI=Flv, 5, 5,50 (16)

Under condition (16) the only nonvanishing supersymmetric
transformations (11) are those corresponding to fermionic
fields:

2
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Now, the transformations (17)—(20) with complex parameter
n.,=me '* are equivalent to transformations with real pa-

rameter 7 followed by a phase transformation for fermions:
{Ea,EA 728 7\Ir(q)}_)eia{5a72/1 728 ’\If(q)}

Then, N=2 supersymmetry requires invariance under this
fermion rotation. One can easily see from Eq. (15) that ferm-
ion phase rotation invariance is achieved if and only if
2 o> 2

£ =29 ( =%. 1)
That is, the model is invariant under an extended supersym-
metry provided relations (21) are imposed. This kind of con-
dition appears in general when, starting from an N=1 super-
symmetric gauge model, one attempts to impose a second
supersymmetry: Conditions on coupling constants have to be
imposed so as to accommodate different N=1 multiplets
into an N=2 multiplet. We note that the same conditions
take place in the model studied in Refs. [6,17]. Moreover,
once Egs. (21) are imposed, the Higgs potential of our model
happens to be a simple generalization of that obtained in [6]
by a different approach. In our case, however, it has been
dictated just by supersymmetry considerations. As can be
seen in Ref. [16], this discussion is analogous to that in the
Abelian Higgs model.

Summarizing, we have arrived to the following N=2 su-
persymmetric action associated to the SU(2)XU(1)y
XU(1)y» model of our interest:

1 a uva 1 1 nv (1) 2 (2) 2 2 2 72

EbEC+H.e)

_qzl [‘I’(q)(a(q)A + B(q)B+gWa7ﬂ)\If(q)_g(qf(q)Ea7ﬂ®(q)+HC) - a(q)(\P(q)EAq)(q)-l—Hc)

(22)

In the next section, the reasons why the conditions (21), which ensure N=2 supersymmetry, are also needed for the
Bogomol’'nyi bound will be clear in the light of the supercharge algebra.
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III. SUPERCHARGE ALGEBRA AND BOGOMOL’NYI EQUATIONS

We shall now analyze the N=2 algebra of supercharges for our model. To construct these charges we follow the Noether
method. The conserved current associated with N=2 supersymmetry is given by

For=D 5, 0
N=2" {}507(13 770 {W}ﬁé’\[’

5, W = 6"[.], (23)

where {®} and {W} represent the whole set of bosonic and fermionic fields, respectively. Concerning 6% 7.], it is defined

through

8,.5= f d*xd,0" n.]. (24)

The conserved charge is obtained from the current (23) as

QA 7.]= f d*x Ty, (25)
this giving the explicit expression
i ’ B
* ( ) * (q) . = tal| * pp\a
Q[nc]=—5J dzx{zj; Fhy, + 21 Tq (q)q)(q) E+ibd|+3) "G )\+E == d:’q)@(q)—ferzﬁB +:T[ Wy,
q=
2 2 2
+5q§1 D+ i(DW) +q§1 \If(Tq)[—iy"Dif)CI)(q)—(a(q)A+,8(q)B+gW“T”)CD(q)]] 7e. (26)

Since we are interested in connecting the N=2 supercharge algebra with the Bogomol’nyi relationships, we assume static

configurations with 4y=By= W=
algebra. We obtain, after some calculations

EAR LA

where

pPO= f d*x

while the central charge is given by

Z= fdz

2
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2
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In Egs. (28) and (29) conditions (21) have been already im-
posed.

Finite energy configurations
asymptotic conditions on the fields,

require the following

W, F;;,Gy,04,0,B,D W DiP®,,—0,  (30)

whereas the Higgs doublets as well as the scalar fields must
minimize the potential at infinity:

V(®(1yoe s P (2)00 540 , B , W) = 0. (31)

WL+ (F )+ S Gz+2 DD, >+

2
—6JG]( E '8(q

0, and we restrict ourselves to a purely bosonic solution of the theory after computing the

=2 7;70 ncPO + %ﬂcza (27)

(8:4)2+(8:B)>+ (D) +V(D(y), D) ,4,8, W) |,

(28)
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&2 (@)= & |+ —6’Wa2 D, 7P,

(29)

This last equation can be shown to give the following
asymptotic behavior for the Higgs doublets,

bo 0 b [ eXPin )
q)(l)oo:_ . 5 q)(z)oo:_ >
J2 \exping) 2 0
(32)
and, at the same time, the scalar fields must solve
(a(q)Aw-i-,B(q)Boo-i-ngcT”)(D(q)w:O (33)

The last term of Eq. (30) leads to expressions for 7, and
n(yy given by
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3
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such that

m=ng,+ny=—3(entap)d,~ 3 (,3(1)+,3(2))B(¢ :
35

is an integer which is inmediately identified as the topologi-
cal charge of the configuration.

Coming back to Eq. (29) for the central charge, it can be
rewritten in the form

zZ=1 f 9Vid’x, (36)

where V' is given by

2
=| £14,+ &8, +12 @ D )CD(q))E/ (37)

so that, after using Stokes’ theorem [and taking into account
the asymptotic behaviors given in Eq. (30)], we obtain

Z= § (§1A[+§2B[)dxi=—277¢(2)m; (38)

that is, the central charge of the N=2 algebra equals
(modulo some normalization factors) the topological charge
of the configuration. This is one of the main points of our
work: Once the relation between the central charge and the
topological charge is established, a Bogomol’nyi bound can
be easily obtained from the supersymmetry algebra [13—16].

This sort of identity between the N=2 central charge and
topological charge was first obtained by Witten and Olive
[13] in the SO(3) Georgi-Glashow model. It was also dis-
cussed for the self-dual Chern-Simons system by Lee, Lee,
and Weinberg [14]. Hlousek and Spector [15] have thor-
oughly analyzed this connection by studying several models
where the existence of an N=1 supersymmetry and a topo-
logical current implies an N=2 supersymmetry with its cen-
tral charge coinciding with the topological charge. More re-
cently, this connection was established for the Abelian Higgs
model [16] where a condition on the coupling constants has
also been shown to be necessarily imposed. This condition is
unavoidable both for having N=2 supersymmmetry and the
Bogomol’nyi equations. Also, in the study of self-dual
Chern-Simons systems, having a topological charge (related
to the magnetic flux) and an N=1 extension, a condition on
the symmetry-breaking coupling constant must be imposed
both to achieve N=2 extended supersymmetry and to obtain
the Bogomolnyi equations [14].

Coming back to our model, it is now easy to find the
Bogomol’nyi bound from the corresponding supersymmetry
algebra. Indeed, since the brackets given by Eq. (27) can be
written as a sum of fermionic bilinears,

{Q[7.].Q[n.1}= f x| (5,291(8, 2

+(8, 35018, 30+(5,3)"(8,35)

2
+gl<6nslf<q>>*<6nﬁuq>>}, (39)
it is immediate that
{Q 7.1, 9 n.1}|=0. (40)

This lower bound is saturated if and only if
57]cEa:57](32‘4:577(*23:57%\?(‘1):0' (41)

In order to further analyze the solutions of Egs. (41), let us
write the parameter 7, as

7+
n= .
n_

(42)

It is now easy to see that to obtain nontrivial solutions to
Egs. (41) we are forced to choose a parameter with definite
chirality. Moreover, one can see that the conditions

o Ea: 57] E 5 2 B—

7+

=6, =0  43)

imply 6, E“#0, 6, 3,#0, 6, 23#0, and 6, ¥, #0
for nontrivial solutions. Hence, if one is to look for
Bogomol’nyi equations corresponding to nontrivial configu-
rations, it makes sense to consider that 7, has just one inde-
pendent chiral component, say,

A
Ne= 0 .

Let us note, at this point, that for a parameter of this form,
the supercharge algebra can be seen to be

(44)

{Q[7.1,907. 1} =7\ 7. (2P°+2), (45)

with Z the central charge whose explicit value is given in Eq.
(38). Then, the inequality (40) is nothing but the
Bogomol’nyi bound of our model:

M=mdim. (46)

Consequently, Egs. (41) are the Bogomol’nyi equations of
the theory (once we identify the supersymmetry parameter
with 7,). Explicitly,
2
eIW, g, O 7D ,=0, (DW—ieD;W)*=0,
g=1
(47)
2
L+ S 200 @ —£=0, (3,—ieyd)A=0,
7 €0 = P (q9) ¥ (q) gl_ , ( i €ij ])
(48)
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2
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ij /)B: 05
(49)
(D"~ i€, D)D) =0,
(@A +BgB+egW 1) ® ;) =0. (50)

Owing to Eq. (46), their solutions also solve the static Euler-
Lagrange equations of motion.

Let us remark on the fact that field configurations solving
the Bogomol’nyi equations break half of the supersymme-
tries, a feature common to all models presenting
Bogomol’nyi bounds with supersymmetric extension (see,
for example, [17] and references therein). Indeed, as was
seen above, supersymmetry transformations generated by the
antichiral parameter 7_ are broken. If we attempt to keep all
the supersymmetries of our model, we will find that the re-
sulting field configuration has zero energy (the trivial
vacuum) as easily seen from Egs. (41). Had we been faced
with an antichiral parameter in Eq. (44), we would have ob-
tained antisoliton solutions with a breaking of the supersym-
metry transformation generated by 7, . Analogous results
also hold in four-dimensional models as the one originally
studied by Witten and Olive [13].

A careful analysis of the whole set of Bogomol’nyi equa-

tions makes evident that the scalar fields 4, B, and W must
vanish. In the special case in which

amBoy=ap)By,

a nonvanishing solution can be found to be

a a
A:(Pa B:—ﬂ@:— )

—¢, W'=0, (51)
B ﬂ(z)(P

with ¢ a real parameter describing an infinite set of vacua
that, nevertheless, are physically equivalent (thus, ¢ =0 does
not imply any loose of generality). Strikingly, we see that the
configurations that saturate the Bogomol’nyi bound are ex-
actly the same as those found in Ref. [6], in spite of the fact
that our model is an extension of the electroweak theory
analyzed there. Let us finally mention that, starting from Egs.
(47)—(50), it is possible to decouple an equation involving
only the Higgs doublet in the same vein as it was previously
done in the abelian Higgs model [12].

IV. LIMITING CASES

As a by-product of our systematic approach, we can easily
obtain Bogomol’nyi bounds (coming from an underlying
N=2 supersymmetric structure) for a variety of models
which have recently acquired physical interest.

A. SU(2) xU(1)yX U(1) y» pure-Higgs model

The dynamics of this model, first considered in Ref. [6], is
dictated by the following Lagrangian density:

v

7 1 1
uv' WHY— ZFMVFMV_ % G/LVG#V

T

EPH: -

2 f 2
2
_(q=1 \/xy)cp}q)@(q)——) : (52)

It is immediately seen that the results given in Ref. [6] can be
obtained just by considering bosonic configurations satisfy-
ing the constraint

A=B=W*=0 (53)

in our equations.' These conditions are consistent with the
asymptotic behaviors (30) and (31) and with the
Bogomol’nyi equations (47)—(50) of our model. It is inter-
esting to note that conditions (21), imposed by the require-
ment of extended supersymmetry, also fix in this case the
coupling constants exactly as they appear in the above-
mentioned reference. Thus, we have shown that the potential
and the coupling constants of the SU(2)XU(1)yXU(1)y:
pure Higgs model studied in [6] are simply dictated by
N=2 supersymmetry. A simple ansatz for stringlike solu-
tions of arbitrary topological charge in this system has been
explored in [6]. It is shown there that, interestingly enough,
these configurations do not correspond to an embedding of
the Nielsen-Olesen vortex solution.

B. U(1) X U(1) model

It is well known that superconducting cosmic strings
could have appeared as topological defects in the early Uni-
verse, owing to the presence of a charged field condensate in
the core of the string [18]. The superconducting string mod-
els are commonly based on a U(1)XU(1) gauge symmetry
[10,18], where one of the U(1) factors is unbroken. The same
gauge group has been recently considered in order to con-
struct the so-called binary cosmic string models [9]. How-
ever, in these models, the U(1)XU(1) symmetry is com-
pletely broken in the Higgs vacuum. In view of this, we will
consider the following Lagrangian density:

Lscs=— 1 F F*'— 1G,,G""'+ %(Dif)cﬁ)*(D#(A)(p)
+3(DPo*(DHP )~ V(,8), (54)

which can be obtained as a limiting case of our
SU(2) XU(1)yXU(1)y system, where ¢ and & are Abelian
(complex) Higgs fields, while Dif) and DELB ) are the covari-
ant derivatives with respect to 4, and B, respectively. In
order to simplify our discussion, we will restrict ourselves to
those solutions of the model satisfying condition (53), which

"Note that our algebraic approach is not modified by any con-
straint imposed on purely bosonic configurations, as all the fermion
fields are put to zero after computing the algebra.
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are decoupled from the non-Abelian gauge field WZ That is,
we are interested in topological classical field configurations
in the region of the parameter space where g—0. We then
ask for solutions where the disconnected non-Abelian field
strength is constrained to vanish:

we,=0. (55)

Now, we make the following ansatz for the Higgs sector:

b 0

after which the Higgs potential (10) takes the form

V(&)= (|p]>—v])*+ N, (€7 v3)?
+a3( P —v D) (€= 0v3). (57)

It is worthwhile to point out that this potential satisfies the
conditions for the existence of binary strings [9]. We will
further simplify the system imposing the condition

a)=p1)=0, (58)

which is equivalent to a vanishing A5 in Eq. (57), such that
the effective Lagrangian looks exactly as Eq. (54), with the
Higgs potential

afl) 2 '8(22) 2
V(ig,é)= T(|¢|2_UI)Z+T(|§|2_02)2' (59)

With this Higgs potential, the U(1)XU(1) symmetry is
spontaneously broken. The manifold of vacua has nontrivial
topology, IT,[U(1)XU(1)]=ZXZ, this implying the exis-
tence of two kinds of strings: those with a flux of 4, and
those with a flux of B,, which can be called type-A and
type-B vortices, respectively. If we consider the possibility
that both U(1) symmetries be broken roughly at the same
scale, finite energy leads to the following asymptotic behav-
ior for the Higgs fields:

dp—v,e"?  and E—v,er?, (60)
where ny and ny, are integers that characterize the topologi-
cal sector of ZXZ to which the solution belongs. Then, in
view of Egs. (36) and (37), it is immediately clear that the
central charge of the corresponding N=2 supersymmetric
theory becomes

Z:_ZW(U%ny‘FU%nyr). (61)

Thus, the Bogomol’'nyi bound of the U(1)XU(1) model
presented above is

MZ’]T(U%VI)I"'U%VZY/). (62)

The bound is proportional to a linear combination of the
topological charges that appear do to the fact that both U(1)
subgroups have been broken. To end this paragraph, let us
comment that provided one relax any of the conditions (53)

or (58), imposed in order to arrive to our quite simplified
system, one could obtain Bogomol’nyi relationships for a
variety of models. This analysis will be carried out else-
where.

C. SU(2) gigha1X U(1) jocar sSemilocal model

Finally, it is also interesting to explore how N=2 super-
symmetry guarantees the existence of a Bogomol’nyi bound
for the neutral semilocal string defects with
SU(2) gioba X U(1) jocar Symmetry discussed in Ref. [19], even
though the vacuum manifold is simply connected. The La-
grangian density of this model takes the form

Lo=— 1 F,F*"+ 5[(d,—ied,)P][(9*—ied")D]
—NDTd—0v?)?, (63)

where @ is a Higgs doublet charged only under the Abelian
subgroup U(1),cai- The potential is minimum when
®Td=yp2. Since @ is a complex doublet, the minimum of
the potential is a three-sphere and is simply connected. This
is in contrast with the situation in the Abelian Higgs model
where the potential minimum is a circle and a vortex solution
correponds to a configuration which winds around the circle.
However, it was explicitly shown in Ref. [19] that this model
admits of stable string solutions by a simple generalization of
Bogomol’'nyi’s proof. We can reproduce their proof as a par-
ticular case of our model. In fact, it is easy to see that im-
posing conditions (53) and (55), and working in the param-
eter space region where g,5,)—0, we just have to restrict
ourselves to those configurations satisfying the constraint

®=G,,=0. (64)

Then, the Bogomol’nyi bound obtained in [19] can be easily
reproduced following the same steps as above. Let us men-
tion that the Bogomol’nyi bound survives the coupling of
this system to the gravitational field [20]. It is also possible,
in this case, to show that this bound can be thought of as
coming from an underlying supergravity model [21].

Let us end our paper remarking that we have considered a
SU(2)XU(1)yXU(1)y, gauge model with a symmetry-
breaking potential, which can be seen to be a simple exten-
sion of the electroweak standard model. The requirement of
N=2 supersymmetry forces a relation between coupling
constants and at the same time, through its supercharge al-
gebra, imposes the Bogomol’nyi equations on certain classi-
cal field configurations. The connection of our model with
realistic supersymmetric extensions of the standard model
and the possible existence of stringlike solutions in its cou-
pling to supergravity remain open problems. We hope to
report on these issues in a forthcoming work.
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