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Abstract 

We extend a recently proposed non-local and non-covariant version of the Thirring model to the 
finite-temperature case. We obtain a completely bosonized expression for the partition function, 
describing the thermodynamics of the collective modes which are the underlying excitations of this 
system. From this result we derive closed formulae for the free-energy, specific-heat, two-point 
correlation functions and momentum distribution, as functionals of electron-electron coupling 
potentials. © 1998 Elsevier Science B.V. 
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1. Introduction 

In recent years renewed interest has arisen in the study of low-dimensional field 
theories. In particular, research on the one-dimensional ( ld )  fermionic gas has been 
very active, mainly due to the actual fabrication of the so-called quantum wires [ 1 ]. 
One of the most interesting aspects of these systems is the possibility of having a 
deviation from the usual Fermi-liquid behavior. This phenomenon was systematically 
examined by Haldane [2] who coined the term Luttinger-liquid behavior to name this 
new physical situation in which the Fermi surface disappears and the spectrum contains 
only collective modes. Perhaps the simplest theoretical framework that presents this 
feature is the Tomonaga-Luttinger (TL) model [3], a many-body system of right- 
and left-moving particles interacting through their charge densities. In a recent series 
of papers [4] an alternative, field-theoretical approach was developed to consider this 
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problem. In these works a non-local and non-covariant version of the Thirring model was 
introduced, in which the fermionic densities and currents are coupled through bilocal, 
distance-dependent potentials. This non-local Thirring model (NLT) contains the TL 
model as a particular case. Although it constitutes an elegant framework to analyze 
the ld many-body problem, one serious limitation appears if one tries to make contact 
with quantum wires phenomenology. Indeed, one has to recall that the NLT has been 
formulated at zero temperature. This means, of course, that as it stands it cannot be used 
to study the Luttinger-liquid thermodynamics. The main purpose of this paper is to fill 
this gap. To this end we employ the well-known imaginary time formalism [5,6] in order 
to obtain the finite-temperature version of the NLT model. In Section 2 we verify that 
the manipulations used to write the vacuum functional at T = 0 in terms of a fermionic 
determinant, also work for the NLT at an arbitrary equilibrium temperature. Using the 
so-called decoupling technique at finite temperature [ 7 ] we obtain the partition function 
which describes the thermodynamics of the effective bosonic degrees of freedom (charge 

density and spin-density waves). In Section 3 we derive expressions for the Helmholtz 
free energy, the energy and the specific heat as functionals of the forward-scattering 
potentials. In Section 4 we compute the two-point fermionic correlation function and 
using this result, in Section 5 we obtain the formula for the momentum distribution. 
One of the most interesting aspects of these formulae is that being functionals of the 
potentials they could be employed as starting points in order to perform quantitative tests 
of different electron-electron couplings. Of course, these studies could be analytical or 
numerical, depending on the specific potentials to be considered. Finally, in Section 6, 
we summarize the main points of our investigation. 

2. The parfifionfuncfion 

In this section we study the two-dimensional non-local Thirring model [4] at fi- 
nite temperature using the imaginary time formalism developed by Bernard [5] and 
Matsubara [6]. Our starting point is the Euclidean action given by 

S = / d 2 x ~ i ~ - ~ - ~ j d 2 x d 2 y [ j a ~ ( x )  V i ~ ) ( x - y ) j b ( y ) ]  (2.1) 

where L d2x means fo # dx ° f dx'  and/3 = 1 / k , T  with kB the Boltzmann's constant and 

T the temperature. The fermionic current is represented by Ju = q,y~,~ag, with ,~0 = ½1, 
A .j = t j, t j being the SU(N)  generators normalized according to tr(tit j) = 8ij/2. In order 
to make direct contact with a system of ld electrons, we introduce the Fermi velocity 
VF by defining the y~ matrices as 
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(OiVF) (2.3) 
"~1 • --iVF 0 " 

Of course, for VF = 1 one reobtains the set of  matrices usually employed in 1 + 
1 QFT's .  The functions V~bu)(x - y)  a r e  N 2 X N 2 matrices whose elements are the 

potentials describing electron-electron forward-scattering interactions. Let us anticipate 
that, although the procedure that follows works for arbitrary N, we shall be specially 
interested in the particular case N = 2, which is the natural choice to consider spin-½ 
particles in this non-relativistic framework. To avoid confusion let us also note that no 

sum over repeated indices will be implied when a subindex (/L) is involved. In other 

words, the interaction between currents appearing in the action above reads 

J~(x)V~2)(x- y)J~(y) = J~(x)V~ob)(x - y)J~(y) + J~ (x )V~(x -  y)J~(y). 

(2.4) 

We shall consider the vacuum functional 

Z = N N F ( f l )  I D![" D~ e -s, (2.5) 
, I  

antiper 

where N is an infinite H-independent constant while NF(fl) is a fl-dependent infinite 
factor that will be determined later on in this section. The functional integral in (2.5) 

must be extended over the paths with antiperiodicity conditions in the Euclidean time 

variable x°: 

~ ( x  ° + fl ,  x I ) = - ~ ' ( x  °, x l ) ,  

(X 0 -~- ~ ,  X 1 ) = - - ~  (X0, x l ) .  (2.6) 

Exactly as one does in the usual (local and covariant) Thirring model, the fermionic 
quartic interaction can be eliminated by introducing auxiliary vector fields. In this way 

one can express the partition function in terms of a fermionic determinant. This, in turn, 
allows us to implement the path-integral approach to non-local bosonization [4] ,  which 
we want to extend to the T 4 : 0  case. To follow this procedure it is convenient to split 

S in the form 

S = So + Sint, (2 .7 )  

where 

So = / d2x ~ i ~ ,  (2.8) 

and 

g2 f Sire : -- y d 2 x  J~zK~. 

In this last expression K~ is a new current defined as 

(2.9) 
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ab b K~(x )  = d 2 y V o z ) ( x , y ) J ~ ( y ) .  (2.10) 

/3 

The partition function can now be written as 

,' J Z=NNF(.) /D'Dqtexp{- f d2x'i~qs+-~ 
. . , , ~ ,  /3 13 

shall introduce a vector field .4~ in the form Now, w e  

g2 /d2xA.J;}=exp{'~ 
/3 /3 

We represent the delta functional using a/'~,-field as follows: 

~a K~) =/D.aexp { f 2 ~a-a a } - d xB t , (A  ~ - K~) (2.13) 6(A~ . 

/3 

We have to impose periodicity conditions for the bosonic ,4~ and/~-fields over the 
range [0, B]. Using now (2.12) and (2.13), the fermionic piece of the action can be 

written as 
g2 g2 

/3 /3 

where we have defined 

2 ab ~ a ( x ) =  2 d yV~ i , ) ( y , x )B~(y ) .  -Z 
/3 

For later convenience we shall invert (2.15) in the form 

g2 f 2 ab B~(x )  = -~ d y b ( ~ ) ( y , x ) B ~ ( y ) ,  

/3 

ab with b(~) (y, x)  satisfying 

2 ab bc d y b ( ~ ) ( y , x ) V ~ ) ( z , y )  = ~acB2(x - z ) .  

At this point we make the change 

g , j ~  a 

g ,  fi,, -,, a 

which allows us to write 

(2.14) 

(2.15) 

(2.16) 

(2.17) 

(2.18) 

(2.19) 
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Z = N1NF(fl) / DAauDBbdetB(i~ - g¢~) 

periodic 

725 

(2.20) 

where we have used the fact that the functions Vi~ ) and b~)  are symmetric in coor- 

dinates. Note that the Jacobian associated with the change (fi~,/~) ~ (A, B) does not 
depend either on fields or on temperature and then it can be absorbed in the normaliza- 

tion constant (N ~ N1). 
We have been able to express Z in terms of a temperature-dependent fermionic 

determinant. This fact will enable us to apply the non-local bosonization scheme, first 

developed for T = 0 [4], to the present finite-temperature case. 

Note that, as a consequence of the change of bosonic variables (Eqs. (2.18) and 
(2.19)) ,  the effect of the non-local interaction has been completely transferred to the 

purely bosonic piece of the action, S[A, B]. On the other hand, we see that the field 

Bu is completely decoupled from both the Au-field and the fermion field. This clearly 
indicates that its contribution should be factorized and absorbed in the normalization 

constant. However, the issue is more subtle since for repulsive interactions B u corre- 

sponds to a negative-metric state. This is not a peculiar feature of neither non-local nor 
finite-temperature theories. Indeed, the appearance of negative-metric states was already 

stressed by Klaiber in his seminal work on the usual Thirring model [8]. In order to 
have a well-defined Hilbert space, Klaiber had to disregard these fields. Following the 

same prescription in this new context, we are naturally led to include the decoupled 

Bu-integral in Nr(fl). Indeed, as it is habitual in finite-temperature studies, NF(fl) 
contains all the /3-dependent infinite contributions to the partition function. Since the 
integral over ghost fields is also a/3-dependent infinite factor (otherwise one would not 
reproduce the well-known result for the T 4~ 0 local Thirring model (see Eq. (2 .62))) ,  

it is natural to include it in NF(18). The partition function (2.20) then reads 

NF(fl)NI f DAa~det(i¢ - g3)e -stAll, (2.21) Z 

periodic 

where S[A] is the Au-dependent part of (2.20). From now on we shall take the fermion 
fields in the fundamental representation of the maximal abelian subgroup of U(2) .  In 

the many-body language this corresponds to a system of spin-½ fermions in which 
spin-flipping processes are forbidden. 

Now, the potential matrices are diagonal whose elements can be written in terms of 
S61yom's "g-ology" [9] as 

V;0°~ = '  ~(g411 +g4± +g211 + g2±), 

= ~(g41] -- g4J_ + g2l] -- g2±), 
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V~ 10~ = 1 ( _g411 _ g4_l_ + g211 + g2±  ) ,  

W(lll 1 = ~(--gall + ga_t_ + g2[I -- g2.L), (2.22) 

where g2 and g4 are associated to scattering diagrams involving two or just one electronic 
species (left- or right-moving), respectively. On the other hand, the subscripts I1 and l 
denote those processes in which incident fermions have parallel or anti-parallel spins. 
Let us also recall for later convenience that the Tomonaga-Luttinger model, in which 
only charge-density fluctuations are considered, corresponds to V il°~ = V(II 1) = 0. 

At this stage we can decouple the vector field Au from the fermion fields in the 
fermionic determinant contained in (2.21). The only new feature in this otherwise 
standard step, is given by the modified yl matrix of Eq. (2.3). Fortunately this fact 
does not pose any substantial problem. Indeed, writing the components of A u in terms 
of two scalar fields ~b and r / in  the form 

Ao( x ) = VFOj dp( x ) - Oorl( x ), (2.23) 

-1  
AI (x) = --00~b(x)  - al ~7(x) (2.24) 

UF 

with ~b = dpiA. i, "q = "qiAi, i = 0, 1, it is easy to verify that the desired decoupling is 
achieved by the same chiral transformation in the fermionic variables that one would 

perform in the VF = 1 case: 

~l ( X ) = eg[750(x)+i~(x) lAv( x ) , (2.25) 

~'( x) = f(( x)e gIr5~(x)-i~(x)l , (2.26) 

where Y5 is the usual chiral matrix, i.e. the one that is obtained in the case u F = 1. Thus 
we get 

det#(i~ - g¢~) = JF[fb, r/]det~i~ (2.27) 

and the Jacobian of the fermionic transformation is given by [ 10] 

In JF[~b,r/] = 2 4  f dzx [l(o°<b)z+VF(O'4))2] " (2.28) 

Concerning the bosonic change of variables given by (2.23) and (2.24), one has 
to consider another temperature-dependent Jacobian, to be included in the path-integral 
measure as 

DAu = detc~(-N) Dfb a Drl a, (2.29) 

1 02 + UFO?" where [] = ~ o 
Inserting (2.27), (2.28), and (2.29) in (2.21) the result is 

Z=N'NF([3)det2~(i¢)det2~ ( - [ ] )  f H DfbaDrflexp{-Sa~f[dP'rl]} ' (2.30) 
a---O,1 

where 
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A f d2x [ l  (ooqba)2 +VF(Ol~ba) 2] 
/3 

+~ f d2xdZy [vZOldpa(x)b~)(x,y)Oidpa(y) 
/3 

a aa +-~FFOOdp ( x)b(l) ( x, y)Oodpa(y) + Oorlab~) ( x, y)Oorla(y) 

h-Ol'rla( x)b~) ( x, y)Olrla(y) + 2vFOorla(x)b~g) ( x, y)Oldpa(y) 

20lrla(x)b~) (x, y)Oo~b a (Y)I (2.31) 
OF 

and A = g2/¢r. 
In order to evaluate In Z we follow the pioneering work of Bernard [ 5 ] and expand 

the bosonic fields ~b(x °, x 1 ) and r / (x °, x 1 ), which are periodic in the interval 0 ~< x ~</3, 

in Fourier series, 

1 ~ , f d k ,  ei~,,x, . - df ( x°' xl ) = -fl .=_~ 27r d°~"X° dpa( kl ) ' (2.32) 

l X~__, f dk'eit~lX'ei'"x°rl-~(kl) (2.33) 
~Ta(x°' x l )  = fl  27r ' 

n = _ _ O Q  

where 

/3 

c~'~(kt) = f dxl f dx° e-il'lX'e-''"x°fba(x°,xl), (2.34) 

o 

/3 

"~X(kl) = f dxl f dx° e-klX e-'":"°~Ta(x°,x l) (2.35) 

o 

and the Matsubara frequencies are given by 

2mr  
o9, - (2.36) 

/3 
In an analogous way one can expand the inverse potentials as 

b~b. , yl,xO, yO)= 1 ~--~ /dk~  ik,l(x, v,) i.,,(xO_,,o)~,a b (kll). (2.37) (.)tx , -fin=- -j-~e - e - v(~,) n, 

In writing the above expressions we have used discrete and continuous delta functions 
defined by 

/3 

f dx°e i(°J'-~°'' )x° =/38n,n,, (2.38) 

0 
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dx . ., 
.x.__ et(k,-~, )x' = 6(kl - k~ ). (2.39) 
A7"/" 

Eq. (2.31) can then be rewritten as 

1 ~__~_co/dkl -a k -a k Aaa k S~'~f=~. 5-~[¢.(1)¢_.(-1) . (l) 

~a k ~a k +~Ta(kl) f l~_n(-kl)B~a(kl)  + ¢ . (  ~ ) r /_ . ( -  ~)Cffa(kl)] (2.40) 

where 

aa 2 2 ~aa ~aa A n ( k l ) = A  - n  +VFk +VFk lb (o ) , n ( k l )+b(1 ) ,n ( k l )  ~ ,  (2.41) 
UF U F 

B~a(kl)  ~aa 2 ~aa ) k  2, (2 .42)  = b(o) ,n(kl)w n + b(l),n(kl 

Ca, a( k, ) = 2 [  ~aa + b ~ ) , n ( k , ) ]  UFb(o), . ( kl ) - wnkl. (2.43) 

The action (2.40) can be easily diagonalized through the change 

c~_~. 
ca = (~ _ 2Aa_____..7~a, (2.44) --n 

7/, a, = (~, ( 2.45 ) 

which yields 

l~=~_~fdho aa a aa= ) (,n I. 1)~--n~, - 1)] ,  s~ff ~ °  -~- [ (~(k~)G; . . (k , )¢_ . ( -h)  +G~(k, 'G ~ ' k  ' ~  : k 

(2.46) 

where 

aa ( 0)2~ [~aa 2 2 ~aa 092] 
G¢,n(kl ) = A VFk 2 + UF/I -~ b(°)UFkl + ~'(I)~F] (2.47) 

and 

,~(O.)2/OF 71_ UFk2)[~aa 2 ~,aa b 2 Kaa Kaa : 1.2 q_ O)2/UF)2 tv(O),nOJn dr- ~(l),n~l ] q- U(O),nO'(1),nkUFr~ 1 
V~ ,a (k l )  ~- /~(UFk21 ..~ O.)2n/UF) ..j_ ~aa . 2 7.2 ~aa 2 -- =(0),nUF~l q-- b(l),neOn/VF 

The partition function of the system can now be expressed as 

Z = N, Nv ( f l )de t~ ( -D)de t2# ( i  ~) H (detG~an)-U2(detG~ a,")-1/2 
a--O,l 

(2.48) 

(2.49) 

and its logarithm, using the well-known identity involving functional traces and deter- 
minants, can be written as 
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lnZ = lnZ °° + lnZ II (2.50) 

where we have defined 

InZ aa= ½1nNF(fl) + ½1nN1 + trln(i~) + trln(-E3) - ~trl In G¢, naa _ ~tr~ In G¢, n.aa 
(2.51) 

Since in general one is interested in derivatives of the partition functions with respect 
to temperature, we shall disregard/3-independent terms. In particular, from now on any 
reference to N~ will be omitted. 

The last two terms in (2.51) can be expressed in the form 

[ ( a a ) 1  1 a a  bo),n(kl ) 
= b(o),n (kl) A + -½trlnG~a. - ~trlnG~,. -½trln ~"  

UF 

-½trln[ vFk21 +wn2]VF J --½trln[t°2n +k21f~na(k')[ (2.52) 

with 
~aa ~aa 

fana(kl) _ b(1), . =  A + VFb(o), n 

Using also the well-known identity [5] 

trln (VFk~+ +¢o2n)= ~ f dkl In (+oj2.+VFk~) 
.=z.y, j 2'n- 

(2.53) 

= tr In(-[3) = In dett~(-[3) (2.54) 

and replacing (2.52) and (2.54) in (2.51) one obtains 

In Z aa = ½ In NF(fl) + In det/~i~ + ½ In det/~(-F-l) 

! 
~aa _ _  ½ t r l n [ m 2 n  2 a - 2 t r l n  b(o),n(kl) A+ - +klf~.  (kl)] .  (2.55) 

vr /J 
Let us recall that up to now we have considered a very general situation. Indeed, the 

above formula is valid for potentials that depend on both distances and the temperature. 
However, from a physical point of view it is reasonable to assume that the interactions 
are temperature-independent. In this case we can generalize the procedure developed in 
Refs. [5,11] in order to write 

' /  -1  trln[~°~2 + k~Fa(k~) ] = 2 -~-~ {(1 - kfl)(fa)~/Z(k) 

- 2  ln( 1 - e -kc~(f°°)'/2(k) ) + 2 In( 1 - e -(F")'/~(k) ) } 

1 f d k l  ~ f d k l  ~ 2 j ~ ~ ln[(2crn)2+F~(k)] +ln/~J~--~- ~ ,  (2.56) 
1 / = - -  O 0  n = - - O 0  
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1 f dkl VFk~ 
l n d e t a ( - ~ )  = J ~  2 

o o  

f dk, e_..k. ) _ f dk, lnfl Z + j ~--~- In(1 - J T-~-~ 
I / = - -  O 0  

(2.57) 

(2.58) 2Ir T ÷ ~--~ In(1 +e  -v'kl3) - ~-~- Infl ~ , 
n = - - O O  

where k = [kl [. Note that here we are calling faa the expression (2.53) in the present, 
n-independent case. As usual, the fl-dependent infinite contributions to the partition 
function are eliminated by choosing 

oo f dkl 
lnNe( f l )  = 21nil Z g 2---~" (2.59) 

/ 1 = - -  O O  

Thus we finally obtain 

In Z aa = f dk, { 3VFk fl + 2 In( 1 + e -''rk#) + In( 1 -- e - ' ' ' '#)  } j 
1 f dk~ [(1 

j ~ - kf l)( faa)U2(k) - 2In(1 - e -k#(f')m(k)) + ~  

+21n(1 --e-(F' / /~(k))]  -- ~ ~ ln[(2~rn)2+faa(k)] 
n------  ~ 

lfd ,[ ( 
b(°) VF 

2 -~-~ In ~aa (k) A t  b(l)(k) Z ' (2.60) 

which is our first non-U'ivial result. Indeed, by inserting this expression in (2.50) we have 
the partition function corresponding to the Thirring model with non-local interactions. 
Therefore, it is the extension of the well-known results for the local Thirring model 
at finite temperature (see Refs. [12,7] and references therein) to the case in which 
non-contact potentials are taken into account. Apart from academic interest, this result 
could be useful in order to explore thermodynamical properties in strongly correlated 
systems, since for b~) = oo the NLT model describes a TL system [4]. Note that, in 
the case b~) = b~) = baa(x, y) and VF = 1 (which leads t o  faa(k) = 1), one obtains a 
simplified non-local covariant model: 

lnzaa=2 ~ + I n ( l + e - k / 3 )  -~j-~--~ ~. ln[baa(k)(a+ba'(k))] 
n~ - -  oo  

(2.61) 

which for b~ a = b~) = 62(x - y) gives the right result for the usual (local) Thirring 
model at finite temperature [ 12,7]: 

lnZThirring =2 ~ +In(1  + e  -k~) -- ~ l n ( J +  1) Z " (2.62) 
B = - - O O  
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3. Thermodynamica l  functions 

In the previous section we evaluated the partition function for the non-local Thirring 
model. The main purpose of the present section is to derive analytical expressions for 
relevant thermodynamical functions such as the Helmholtz free energy, the energy and 
the specific heat. Throughout this section we shall consider/3-independent potentials. 
Let us begin with the Helmholtz free energy defined as 

1 
F = - ~  lnZ = F °° + E II , (3.1) 

where 

U , ~ = f d k l { 3 k V F 2  1 - ~ - - - f -+~ ln ( l+e-k# '+)+-~  ln(1-e-~a''F) 

(faa)Uz(k) 
_ 1 In( 1 - e -k#<f'"°))~/2(k)) + ( 1 - k/3) 

/3 2/3 
1 1 

+ ~  ln(1 - e -(faa)l/~(k) ) - - ~  ~ In[ (2~rn) 2 + f a ( k ) ]  

1 ln[b'~g)(k)(a+b'~'~)(k))] . (3.2) 
2/3 .- 

The energy is given by E = - 0  ln Z/O/3. Using Eq. (2.60), ignoring the zero-point 

energy of the vacuum and taking into account that 

(3<3 O O  

2 27r ek~ ~+ + 1 2~" ekt~"g------Z~ - 12/32VF 
o o 

we obtain 

E= E °° + E" = f ~dkl{ (f°°)'/2(k)+2 ( f l , )  1/2 

k(fll)l/Z(k) } k(f°°)l/Z(k) + ~ ) V  ---i ' (3.4) 
-t ek~(f%~/2 _ 1 

where, since we have supposed that the electron-electron potentials are/3-independent, 

one has faa ( k, to) = faa ( k ). 
Performing the derivative of the above expression with respect to temperature, one 

can write the specific heat as 

1 [ dkl kZ~fOO(k ) e k~-t'°°)'/2~k)/kBr Cv 
k - ~  J ~ 1. (1 - ek~f°°W2~k~/kBr) z 

e k(fli)U2(k)/kBT 
+ f l l (k )  (l _ - ~ r ) 2  j (3.5) 
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Recalling the dispersion relations for charge-density and spin-density modes given 
in [4], one can easily write f0o and f l l  in terms of the corresponding velocities vp and 
Vo- as 

fO0 2 2 - vFvp, (3.6) 

f l l  2 2 - VFV ~. ( 3.7 ) 

In order to check our general formula (3.6) we can consider the local case, in which 
Vp and v,~ are constants. For this particular case we can easily compute the corresponding 
integral, which yields 

l) 
cv = k ~  + r, (3.8) 

which is the characteristic linear behavior of the underlying fermions (linear specific 
heat in any dimension) when only weak interactions (consistent with keeping only 
forward-scattering interactions) are taken into account. Thus, in this section we have 
presented analytical expressions for the energy and the specific heat of a general forward- 
scattering interacting system of fermions, represented by the non-local Thirring model. 
Our formulae give the thermodynamical magnitudes not only as functions of temperature, 
but as functionals of the electron-electron potentials. Then, they could be used in order 
to examine the influence of different potentials on the equilibrium properties of the ld 
electron liquid. 

4. Two-point fermionic correlations 

Let us now go back to the general case, i.e. with potentials not necessarily /3- 
independent, and compute the fermionic propagator defined by 

0 
(g ' ( r , x )~ ( r ' ,  y ) )#= G~_(r,x,r,, y ) 

where 

Gf+)(r ,x , r ' , y )  = ( G~(+)T(r'x'7''y)O 

G+(7",x,r ,y) 
0 

o ) 
G~(+)l(T,x,r,,y ) " 

(4.1) 

(4.2) 

The subindex + ( - )  means that we consider right(left)-moving electrons, and T (J,) 
indicates that the field operator carries a spin up (down) quantum number. In the present 
case we have disregarded those processes with spin-flip. To be specific we shall restrict 
our analysis to Gf+)T (similar expressions are obtained for G~+)$). 

Once we have performed the decoupling change of variables given by Eqs. (2.25) 
and (2.26) the non-vanishing components of the thermal Green function are factorized 
in the form 
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G#,T(X,1",y, 7" ) = (qt+T (x)~+T (y))  ~ = G r, y, 7")B°:~#(x,~-,y, 7 s) 

xB~t3( x, 7-, y, 7"), (4.3) 

where ,.,4_TZ~,c:(°) ( -  7", y, . /)  is the free thermal Green function given by 

oo f e_i(o).(r_r,)+kl(x_y)) 
~(0) t,,. _ e+iVFpe(x_y ) 1 J d k l  - - ~ n ~  (4.4) ~+T# ' ' - ' r ' ' x  Y)=  Z ~ - ~  

n = - - O O  

with con = (2n + 1)Tr/fl, and 

B°~B = @g[ ¢°(Y,r')-¢°(x,r) l eigln°(y,r')-n°(x,r) l ) O~B ' 

B~# = (e s[¢' O',r')-¢~ (x ,~ ' ) le ig[~l  (y,r')--'l/I (x,r) ] ) 1 lfl. 

(4.5) 

(4.6) 

In Eq. (4.4) we have redefined the energy origin, as usual, by introducing the Fermi 
momentum PF. In Eqs. (4.5) and (4.6) the symbol ( )~a means v.e.v, with respect to 
the action (2.31). Working in momentum space these bosonic factors can be written as 

B ~ ( x ,  7", y, 7") = f D(baDrla e-[~+s'=~P(x'r'Y'r')l 
f D~baDgl a e-Sgg 

with Seef given by Eq. (2.40) and 

g ~ f a k ,  s~13(x,7",y,7") = ~  -~--~ [ :tzq~a(kl) +i~la(kl)]D(wn, kl;x,7",y, 7"), 

(4.7) 

(4.8) 

(4.9) D( w,,  kl ; x, 7-, y, 7-t) = ei~O,,z e ik l .X _ ei~O,,(r') eikl.y. 

Now B_fat~ can be easily evaluated by performing the change 

Ei2a l q ~ a ( k l ) = ~ a ( k l ) +  n,+ttq;x ,r ,y ,r ' ) ,  

~/a(kl) =/Sa(kl ) + Fna~: (kl ; x, 7", y, 7"), (4.10) 

where ffa and t5 a are the new quantum variables and Ea,+aa and F;,eaa are classical functions 
chosen in the form 

aa [ iCa?k,)  ]D(o)n,k,;x,  7",y, 7") (4.11) 
En,+(kl;X,7",y, r t )=g  q:Baa(kl) A a a ( k l )  ' 

[ _ _  ]D(o)n ,k , ;x ,y)  Fna.a~(kl) =g + caa(k~) iAaa(kl) (4.12) 
2 Anaa(kl) 

with A~a(kl), Baa(kl) and caa(kl) defined in ( (2 .41)-(2 .43))  and 

Aaa(kl) = (Caa)Z(kl) - 4aana(kl)B~a(kl). (4.13) 

Putting all this together, the result is 
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B~z~(x,r, y, 7") = e x p {  2g2 ~-~ . f  dkl D(ogn, kl;x,7", y, 7") 
8 , ,  __ _ o ° 

¢ B~a(kl) - A~a(kl) T ic~'a(kl) t 
×D(w-n,-kl;x, 'r ,  y, ) Aana(kl) 

J 

(4.14) 

which can also be written as 

8g2/3 ° f _ fdk,. sen 2 [¢0n(7" --  [ -~ 

B~a(kl) - Aaa(kl) zV iC~"(ki) ) 
× A a a ( k l )  f " 

kl(x--  y) ] 
7") + 2 

(4.15) 

This is the main result of this section. Indeed, apart from the free fermion contribution 
given by Eq. (4.4), Eq. (4.15) gives the fermionic thermal propagator as functional 
of the electron-electron potentials. Please note that up to this point these couplings are 
allowed to depend on both distance and temperature. Of course, in order to go further 
in this computation one needs to specify the Fourier transformed inverse potentials 
/)(u),n(kl) which determine the integrand in (4.15). The simplest case at hand is the 
one corresponding to the usual Thirring model, which once again can be used to check 

~aa ~aa = 1, VF = 1, the consistency of our more general calculation. Setting b(0 ) = b(1 ) 
X = ( r ,x) ,  Y= ( ¢ , y )  and P = (wn, kl) we get 

BThi,ring. { 2"rr (~)2  ~ = ~ / d p s e n 2 ~  
+~ tx, r,y,r ')  =exp - -/3 (1 + ~ )  , ~ ~ j (4.16) 

which, together with the corresponding free fermion contribution, can be easily shown 
to coincide with the well-known result for the local and covariant case [ 12,7]. 

5. M o m e n t u m  distr ibut ion 

Once we have the fermionic two-point functions, it will be rather simple to get a 

closed expression for the electronic momentum distribution at finite temperature. Let us 
consider electrons with spin-up, whose distribution at finite temperature is given by 

+oo 

= i [ dzl e -iqzl lira G~,T(zO, Zl), (5.1) NiT(q) 
J zo --, O 

- -oo  

w h e r e Z = ( z 0 ,  z l ) = X - Y .  
Going back to (4.5) we can take the limit ( T -  ¢ )  --~ 0, (z0 --~ 0) in G~ )fl and 

perform the sum over n. We obtain 

+oo 

l(imoG(~]~(Zo, Zl): 4~e~ZiUFPFZl / dkle-iktZ~cot(~2F ~ ) .  (5.2) 

- -00 
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Evaluating the kl-integral we arrive at 

//,r/-2 Z 1 '~ 
lim G (°)/3" zl) - z: 7r e+i,,Fp~Z, cosech~_~F,] z0--.0 ±r tzo, ----2--~F " (5.3) 

Using this result together with the bosonic factors computed in the previous section, the 
momentum distribution can be expressed as 

+oo 
N±T(q) = dZl e -iz'tqT''ep~) cosech \--ff~o~ j 

-- 00 

• 2 k ~ z ]  x e x p { ~ 8  f dk, sln - - ~ ( I ~ + I t , ' ) ( k l ) } ,  (5.4) 

where we have defined I~ oo = E n = - o o [ n 2 - -  ii • ii ii A n q: tC n ]/A n. At this point it is interesting 
to observe that for the physically relevant case in which the potentials are temperature- 
independent, the sum can be readily evaluated, yielding 

I/,/(kl) = 

where 

+ - bj"o)) 

167r2b~o) (VFa + bj~,)) (Tit) 2 --  S2 

( Tii  ) 2 - .. ] ,  ×{(S-Rii)cot(TrS)-( -TW R"S) cot(IrT u) (5.5) 

~.. 
- -  ~ ( I ) V F  Ri  i ( k l  ) = ikl fiVE A + VFb~o) ~ii - 1 

~ii --1 --  UF~io)  27r a +~(])v F 

ikl t~UF 
S(kl)  - - - ,  

27r 
i k l f l  [b~il) (UF 1A "[- b~/o)~]1/2 

T i i ( k ' ) = - ~  Lb~'o==-7") \ VF----a+~ / J  

Thus, we finally get 

(5.6) 

(5.7) 

(5.8) 

+oo 
71" [ -- --iqzl 

Nt(q)  = N+t(q) + N-T(q)  = -~F a azle sin(pFZ]) 
-- 00 

× cosech\.~F ] exp [ .r r sin 2 T(,+oo+ 
Of course, in order to have the complete result one has to add the contribution corre- 

sponding to spin-down electrons. In the present situation (no spin-flipping interactions) 
it is easy to see that both up and down results coincide and therefore, (5.9) must be 
multiplied by 2. 

This result could be used to perform quantitative studies of the momentum distribution 
in the context of ld many-body systems [ 13], as functional of potentials. In fact, this 
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formula is the extension to the T ~ 0 case of the one first presented in [4]. As such, it 
could be helpful in order to verify if the interplay between electron-electron interactions 
and thermal corrections could give rise to a restoration of Fermi-liquid behavior, as 
suggested in the literature [ 14,15]. 

6. Conclusions 

In this work we have extended a recently proposed approach to the bosonization 
of a Thirring model with non-local current-current interaction, originally developed at 
T = 0 [4],  to the finite-temperature case. In view of the connection between this model 
and a one-dimensional system of fermions (in fact our non-local model coincides with 
the Tomonaga-Luttinger model for a particular choice of the coupling potentials), the 
present study is relevant not only from a purely academic point of view but also as 
a possible starting point to examine thermodynamical properties of a Luttinger liquid 
through an alternative field-theoretical formulation. 

In Section 2 we have shown how the standard techniques of finite temperature local 
and covariant QFT's [5,6,11] can be also successfully implemented in the non-local 
Thirring model. We obtained an expression for the partition function as functional of the 
forward-scattering potentials. From this result, in Section 3 we derived the corresponding 
formulae for the Helmholtz free energy, the energy and the specific heat. In Sections 4 
and 5 we computed the two-point fermionic correlation and the momentum distribution, 
respectively. 

One interesting aspect of our results is that they provide practical formulae to check 
the validity of different potentials. Moreover, they could be used to explore the interplay 
between thermal effects and electron-electron scattering (through suitable potentials). 
However, in order to make these studies more realistic one should include two ingredients 
that were disregarded in this paper: spin-flippings and backward-scattering. We hope to 
report on some of these issues in the close future. 
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