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Abstract

Equivalent crystal theory (ECT) is applied to the study of multilayer relaxations and

surface energies of high-index faces of Fe, Al, Ni and Cu. Changes in interplanar

spacing as well as registry of planes close to the surface and the ensuing surface energies

changes are discussed in reference to available experimental data and other theoretical

calculations. Since ECT is a semiempirical method, we investigate the dependence of

the results on the variation of the input used.



1. Introduction

In the last ten years, there has been a large number of experimental and theoretical

studies on the subject of surface structure of high-index faces of metals [1-13]. Several

low-energy electron diffraction (LEED) and high-energy ion scattering (HEIS)experiments

provided a wealth of information, supplemented by numerous theoretical models, on the re-

laxation and energetics of unreconstructed metallic surfaces which, in the case of high-index

faces, includes the relaxation of interlayer registries as well as interlayer spacings, where a

change in the surface-parallel components of the interlayer vectors can occur without di-

minishing the symmetry of the surface space-group [2]. However, the number of studies on

high-index faces has been limited to just a few systems (Fe(210),(211),(310) [3]; Al(210)

[4],(311) [5],(331) [2] and the (311) face of Cu [6] and Ni [7]) thus providing limited infor-

mation for extracting definite relaxation patterns and global behavior of such properties.

That is not the case for low-index faces: as summarized in ref. 1, several experimental

techniques and almost all of the theoretical methods available have been devoted to the

study of such systems. Although there is yet no simple model that fully accounts for

the observed patterns in the high-symmetry cases, the available data, both experimental

and theoretical, gives a good but necessarily incomplete description of general trends and

patterns.

We start by discussing the (311) face of fcc metals, the fourth highest density surface,

which has a relatively wide open structure. High index planes have rough contours, for which

a smoothing of the electron density is likely to occur. Such density smoothing provides

a driving force for interlayer registry shifts. This same argument helps to understand

the relatively large contractions of the first interlayer spacing, /kd_2, as compared to the



correspondingvaluesfoundfor low-indexfaces,in agreement with the observation that Adl2

increases with surface roughness [3].

In a previous paper [12] we focused our attention, on one case, A1 (210), which we

used both as a testing ground for the application of the theoretical framework provided by

equivalent crystal theory (ECT) [13], as well as an interesting example on which we based

a new concept generalizing the idea of roughness of a surface. Because of the excellent

agreement with experiment found for that system, in this work we conclude our survey of

multilayer relaxation studies by examining other fcc (210) surfaces with equivalent crystal

theory, for those cases for which experimental data exist. We complete our study with a

discussion of the structure of fcc (331) and bcc (210) and (310) surfaces.

All the reliable experimental data comes from analysis of LEED experiments. Even in

this case, the values for relaxations for interlayer spacing and registry come from a rather

complicated procedure. The relaxations are determined from multivariable, least squares,

fits to intensity-energy curves for various beams, based on predictions from multiple scat=

tering theory. Error estimates for the fits are based on assuming a quadratic form for

deviations from the optimum r-value [4] in the minimization search ill terms of the input

parameters (i.e., layer spacing and registry, potential parameters and Debye temperature).

The error bars attached to the experimental results for the relaxations thus included infor-

mation from changes in the input parameters of the multiple scattering model as well as

errors inherent to the experimental technique used. In this work we address a similar issue,

by defining the uncertainties in the optimum relaxation values obtained from an energy

search, by including a margin of error in our theoretical predictions that, in the particular

case of semiempirical methods such as ECT, can be attributed to fluctuations in the input



data used (generally experimentally determined).

The paper is organized as follows: in section 2 we briefly discuss equivalent crystal

theory and provide the essential working equations. Section 3 focuses on the case of per-

pendicular relaxations of low-index faces in order to illustrate the need for the introduction

of theoretical 'error bars', thus providing a better framework for comparison between ex-

perimental and theoretical results. In section 4 we apply EC'I" to several fcc high-index

metallic surfaces and compare with experimental values when available. Conclusions are

drawn in section 5.

2. Equivalent Crystal Theory

Equivalent crystal theory [13] is based on an exact relationship between the total energy

and atomic locations and applies to surfaces and defects in both simple and transition

metals as well as in covalent solids. Lattice defects and surface energies are determined

via perturbation theory on a fictitious, equivalent single crystal whose lattice constant is

chosen to minimize the perturbation. The energy of the equivalent crystal, as a function of

its lattice constant is given by a universal binding energy relation [14].

\

Let e be the total energy to form the defect or surface, then E = _i Ei where _i is the

contribution from an atom i close to the defect or surface. ECT is based on the concept

that there exists, for each atom i, a certain perfect, equivalent crystal with its lattice

parameter fixed at a value so that the energy of atom i in the equivalent crystal is also Ei.

This equivalent crystal differs from the actual ground-state crystal only in that its lattice

constant may be different from the ground-state value. We compute Ei via perturbation

theory, where the perturbation arises from the difference in the ion core electronic potentials

of the actual defect solid and those of the effective bulk single crystal.



For the sake of simplicity, the formal perturbation series is approximated by simple,

analytic forms which contain a few parameters, which can be calculated from experimental

results or first-principles calculations. Our simplified perturbation series for ¢i is of the form

ci = AE { F" [a_(i)] + _ F" [a_(i,j)] +j _ [a;(i,j,k)] +j,k_ F" [a_(i,p,q)]}v,q (1)

where F* [a*] = 1 - (1 + a*)e -a" and AE is the cohesive energy. In this expression, we

distinguish four different contributions to the energy of atom i and thus, the existence of

four different equivalent crystals which have to be determined for each atom i.

The first term, F" [aT(i)], contributes when average neighbor distances are altered

via defect or surface formation. It can be thought of as representing local atom density

changes. In most cases, this 'volume' term is the leading contribution to ei and in the case

of isotropic volume deformations, it gives ¢i to the accuracy of the universal energy relation

[14]. The value of a_(i), the lattice parameter of the first equivalent crystal associated with

atom i, is chosen so that the perturbation (the difference in potentials between the solid

containing the defect and its bulk, ground-state equivalent crystal) vanishes. Within the

framework of ECT, this req,_,ir_ment translates into the following condition from which a_(i)

is determined:

NR_e-OR1 + MR_e-(O+_)I% - _ r;e-["+s(_' )It' = 0
deject

(2)

where the sum over the defect crystal or surface is over all neighbors within second-neighbor

(NNN) distance, rj is the actual distance between atom i and a neighbor atom j, N and

M are the number of nearest-neighbor (NN) and next-nearest-neighbors, respectively, of

the equivalent crystal (12 and 6 for fcc, 8 and 6 for bcc) and p,a and A are parameters

known for each atomic species, listed in Table i. S(rj) iS a screening function and R1



and R2 are the NN and NNN distances in the equivalent crystal. The equivalent lattice

parameter, al, is thus related to the scaled quantity a_ via a_ -- (R-xc - rWSE) /l, where

rWSE is the equilibrium Wigner-Seitz radius, I is a scaling length and c is the ratio between

the equilibrium lattice constant and rWSE.

The higher-order terms are relevant for the case of anisotropic deformations. The

linear independence attributed to these four terms is consistent with the limit of small

perturbations which we assume for the formulation of ECT. The second term, F" [a_(i,j)],

is a two-body term which accounts for the increase in energy when NN bonds are compressed

below their equilibrium value. This effect is also modeled with an equivalent crystal, whose

lattice parameter is obtained by solving a perturbation equation given by

_¢R_e-oR,_ _TR_e-o_+ A2ngZ(Rj -- Ro)_-_cR'-_) = 0, (a)
J

where fl = 4a for the metals used in this work, and R1 is the NN distance of the equivalent

crystal associated with the deviation of NN bond length Rj from Ro, and Ro is the bulk

NN distance at whatever pressure the solid is maintained (generally, R0 is the ground-

state, zero-pressure value). A2 is a constant determined for each metal (see Table 1 for

a list of values of A: used in this work). The scaled equivalent lattice parameter is then

=
The third term, F* [a_(i,j,k)] accounts for the increase in energy that arises when

bond angles deviate from their equilibrium values of the undistorted single crystal. This

is a three-body term and the equivalent lattice parameter associated with this effect is

obtained from the perturbation equation

N RVe__R_ _ N R_e-a._ + A3Rge-_(RJ+n_ -2_1 sin(Oik - O) = 0

6

(4)



where As is a constant listed in Table 1 and 8jk is the angle between the NN distances

Rj and R_ with the atom i at the center. 8 is the equilibrium angle, 70.5 degrees for bcc

and 90 degrees for fcc. This term contributes only when there is a bond-angle anisotropy

(0jk ¢ 0). The scaled lattice paxameter is then a_ -- (_e - rWSE)/l.

The fourth term, F" [a_(i,p, q)], describes face diagonal a_isotropies (see Ref. 13 for a

detailed description, for each lattice type, of the structural effect associated with this term).

The perturbation equation reads

NR_e -ann NRge -a_ + A4R_ Idp - dql e -'_(ni+nk+n'+n_-4n°} = 0 (5)- 7

where d is the face diagonal of the undistorted cube and A4 is a constant adjusted to

reproduce the experimental shear elastic constants (Table 1). Finally, a_ = (B_t _ rwsE)/l.

Consider a rigid surface (i.e., no interlayer relaxation): all bond lengths and angles

retain their bulk equilibrium values, thus F'(a_) = F'(a_) = F*(a_) = 0. The surface

energy is therefore obtained by solving for the 'volume' term represented by F*(a_) only.

If we consider a rigid displacement of the surface layer towards the bulk, as is the case in

most metallic surfaces, the higher-order terms become finite: some bonds are compressed,

contributing to F'(a_), the bond angles near the surface are distorted as well as the differ-

ence between face diagonals in some cases, generating an increase of energy via F*(a_) and

F'(a_). For the case studied in this work, these additional contributions to ei are generally

small, representing only 1% to 2 % of the total energy. However, while these anisotropy

terms are small for metals when there is no reconstruction, they play an important role in

the energetics of these defects where the differences in energy between the rigid and relaxed

configurations are also small.



3. Multilayer relaxation of pure crystals

Before proceeding to the calculation of multilayer relaxation in high-index faces, we

will discuss some features of theoretical calculations of these quantities. Ref. 1 provides

a reasonably large sample of both experimental and theoretical results for changes in in-

terlayer spacing in pure fcc and bcc crystals. In all cases, the semiempirical, theoretical

techniques used rely either on input data (generally experimentally determined) or on cer-

tain approximations for some of the variables of relevance. Necessarily, results will depend

on such choices. Multilayer relaxations involve at best very small changes in position, and

correspondingly, comparable changes in surface energy, whose minimization is the criterion

used to determine the final interlayer spacings. Thus, the search for a minimum of the sur-

face energy, as accurate as the minimization technique might be, will be strongly influenced

by the two factors indicated above: the approximations used and the shallowness of the

minimum in the surface energy surface resulting from small changes in the input parame-

ters. As a consequence, to quote just one value for each of the changes in interlayer spacings

as is ordinarily done, might not reflect the ambiguities in these calculations. In this paper

we adopt a different path: to each theoretical prediction, we will attach an estimate of the

possible errors due to any of the reasons mentioned above. Although there is no certain

way to determine such errors (after all, the predictions axe, within their own framework,

exact), we will see that changes on the order of 1% in the surface energy can generate quite

interesting variations in the relaxation schemes predicted. In particular, within the frame-

work of F_CT, such small changes in the surface energy can be easily obtained by changing

any of the input parameters (lattice constant, cohesive energy, bulk modulus) by a similar

amount, well below the usual experimental errors in the determination of such quantities.



To illustrate this issue, we will focus our attention on the surface structure of some

fcc pure metals (A|, Au, Cu and Ni). As can be seen in Tables 2-11 of ref. 1, previous

theoretical and experimental studies show a wide spread in the predictions of the changes

in interlayer spacings for the (100) and (110) surfaces. Even results obtained within the

same theoretical technique (embedded atom method (EAM), ECT) do not agree with each

other (due to different fitting procedures of the embedding function in the case of EAM

and different input data in both cases). Although there is general qualitative agreement,

regarding the contraction or expansion pattern found for successive layers, in some cases the

absolute theoretical values show poor agreement with experimental results (see, for example,

A1 (100)). The ECT results (from refs. 1 and 13) also highlight this inconsistency. The

difference between the values obtained in this work and those from previous applications of

ECT is easily traceable to slightly different values of some of the input parameters.

As mentioned above, in order to account for these and other ambiguities in the calcu-

lation, we investigated the change in predicted relaxations due to small changes in the rigid

surface energy. We thus defined _error bars' in such way that all the intermediate values so

obtained predict variations in surface energies within that tolerance. Needless to say, this

range of values does not include all the possible sets (Ad12, Ad_3) that correspond to surface

energies within the allowed values. It is interesting to note, however, that in most cases, all

the experimental as well as theoretical predictions fall within the range of uncertainties in

such procedure.

It should be noted that when comparing our theoretical predictions with available

experimental results, the error bars quoted in each case are similar in that the optimum

relaxations are determined by minimization of some property by varying the input parame-
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ters. To illustrate this point, we first discuss the surface energies and multilayer relaxations

of the unreconstructed low-index surfaces of pure A1, Ni, Cu and Au crystals. In Table

2 we display the ECT predictions for the surface energies and compare the results with

typical experimental values for polycrystalline samples [15,16]. The agreement is excellent

in all cases. We note that experimental values for the surface energies are for polycrystalline

surfaces, thus could be strongly dominated by the predominant surface plane.

In table 3 we compare results for the multilayer relaxations of the first two interlayer

spacings for those cases for which recent experimental data is available [16-24]. Once again

the agreement is excellent, as it was shown in previous ECT studies of surface structure

[1]. The inclusion of the theoretical 'error bar', as mentioned above, allows for a better

comparison with experiment as it shows that for most cases, small changes in the input

parameters of the method suffice to account for the whole range of possible experimental

results. The exceptions are A1(100) and A1(111), where the outward relaxation of the surface

layer has been attributed to an electron promotion effect [17]. Semiempirical methods

(ECT, EAM. etc.), unless specifically designed to do so, do not generally allow for such

fine electronic structure effects, thus it is not surprising that our results for /kdl2 _n these

cases predict surface layer contractions, even when the 'error bar' is taken into account.

For completeness we also include results for the surface relaxation when only the top plane

is allowed to relax, in order to single out correlations with subsequent interlayer spacing

changes on the surface plane. Again, the agreement with available experimental data is

very good in all cases.

4. Multilayer relaxation of high-index surfaces

We now discuss the application of ECT to the study of the surface structure of high-

10



index faces of fcc (A1, Cu, Ni) and bcc (Fe) metals. For each case, we computed the changes

in interlayer spacing for the top six layers as well as the changes in registry. We follow the

notation used in previous work on similar systems [2-7]. As discussed in Section 1 and 3,

in this work we focus our attention not only on the absolute values of the relaxations, as

obtained from experiment and predicted by the theory, but in the associated uncertainties

as well. Although this last issue could be of importance when comparing the quality of the

predictions, the main reason why it is highlighted here is to indicate the influence of external

variables on the final results. We believe that because of the nature of the procedure used

to perform the LEED analysis on the one hand, and the inherent uncertainties brought on

by the simplifications adopted in designing semiempirical techniques, a thorough discussion

of the results would not be complete if this issue was not appropriately addressed. In

this spirit, figs. 1-4 summarize the ECT results for several fcc and bcc systems and the

corresponding LEED results for those cases for which experimental results are available. We

have chosen this format for presenting the data for ease of comparison of experiment with

theory. Fig. 1 displays results for A1 faces..4.1 (210) and (331) display a similar behavior:

large relaxation of the first interlayer spacing, followed by a comparable contraction of the

second layer and an expansion of the third. The corresponding changes in registry are

at best too small to definitely predict a trend in either case. As discussed in a previous

application of ECT to A1 (210) [12], the ECT results give a final configuration of higher

symmetry and optimized 'coverage' of the space between atoms in the top layer. Whereas

both theory and experiment agree in the case of registry changes in that the trends are the

same and there is substantial overlap of the error bars, the agreement is less noticeable for

the perpendicular relaxations, although the theoretical error bars clearly indicate that only

11



small changes of the input parameters are needed to improve the quantitative agreement.

Fig. 2 shows similar results for fcc (311) surfaces for A1, Cu and Ni. The trends found

in the LEED results for /Xd12 are reproduced by ECT in all three cases. Although there

are seemingly poorer results for the other relaxations, the principal point in this paper is

that small shifts in the input parameters in the semiempirical method can bring trends

into agreement. In the case of Ni(311), for which experimental values have been reported

[7], there is good agreement with the associated registry changes. For completeness, we

include the ECT results for Ni and Cu (210) (fig. 3), although there is no experimental

data available for comparison. In spite of the differences in electronic structure, both metals

display an almost identical behavior regarding the structure of the surface, which, together

with the A1 (210) results displayed in Fig. 1.a, indicate a defined relaxation pattern for

such fcc faces.

We conclude the presentation of results with a bcc system, Fe, for which several studies

have been carried out. Fig. 4 displays LEED [3] and ECT results for Fe (210) and (310)

surfaces. As expected, the percentage change in interplanar spacings is much larger for

bcc metals than for fcc, a feature clearly reproduced by ECT. The contraction-expansion

pattern is also generally reproduced for both parallel and perpendicular relaxations. For

completeness, we include the numerical results for all the cases studied in this paper in

tables 4-7. Table 4 displays the results for the (210), (311) and (331) surfaces of A1 where

the error bars are related to changes of just 1% in the surface energy. Table 5 and 6 show

the results for the (311) and (210) faces of Ni and Cu, respectively.

5. Conclusions

In conclusion, in this paper we have used equivalent crystal theory to examine relax-

12



ationsin higherindex planesof A1,Cu, Ni and Fewhereboth perpendicularand parallel

surfacerelaxationscanoccurand thereis experimentaldataavailablefor comparison.In

addition,weattempt to raisequestionsregardingthe natureof agreementbetweentheory

andexperimentin that the successof theoreticalagreementhasbeenbasedon trendsand

absolutevaluesof specificrelaxations.Sincesemiempiricaltheoreticalmethodsinvolvethe

useof experimentalinput parametersandconclusionsarebasedonsmallchangesin lattice

geometry,wetest the sensitivityof ourpredictionsto smallvariationsin input parameters.

Wefind that in mostcases,agreementinvolvingtrendscanbegreatly improvedby small

changesin theseparametersandthat carefulconsiderationmustbegivento themethodof

makingcomparisons.
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TABLE 1: COMPUTED CONSTANT AND EXPERIMENTAL INPUT FOR ECT

[Theconstantp is2n - 2,wheren istheatomicprincipalquantum number, ](in_k}isa

scalinglengthand A (in_k)isa screeningparameter(seetext).The constantsA3 and

A4 aredimensionless.AE (ineV) isthecohesiveenergyand ae(in/_)theequilibrium

latticeconstant.]

Element p I a A
A1 4 0.336 2.105 0.944

Cu 6 0.272 2.935 0.765

Ni 6 0.270 3.015 0.759

Fe 6 0.277 3.124 0.770

lO-2A2]D
7.822

5.784

7.382

9.183

IO-1A4/ D
2.104

2.530

2.793

1.887

10-4D

591.4

99.74

100.1

60.62

&E ae

3.34 4.05

3.50 3.615

4.435 3.524

4.29 2.86

TABLE 2: EXPERIMENTAL (Exp.) AND

RELAXED ECT SURFACE ENERGIES

OF AI, Cu, Ni AND Au

[Inergs/cm2.]

Technique AI Cu Ni Au

Exp. [15] 1200 1790 2270 1560

Exp. [16] 1140 1780 2380 1500

Exp. [16] 1180 1770 2240 1540

ECT(100) 1203 2309 2982 1546

ECT(ll0) 1284 2373 3073 1621

ECT(lll) 856 1767 2274 1136

TABLE 3:SURFACE RELAXATIONS OF Al,Cu AND Ni AS PERCENTAGES OF THE

BULK INTERPLANAR SPACINGS

[The ECT Ad12 column displays results for relaxations of the top layer only while the ECT
(two layers) columns display results for the case when the top two layers are allowed to
relax.]

Element Face Experiment

Ad12 Ad23 Ref.

(100) +1.8

A1 (110) -8.5+1.0 ÷5.5+1.1

(111) ÷1.7+0.3 -{-0.5+0.7

(100)-3.2+o.5
Ni (110) -9.0+1.0 %3.5+1.5

(111) -1.2+1.2

(ioo) -2.1 +0.45
Cu (110) -7.5+1.5 %2.5+1.5

(111) -o.7+o.5

[18]

[19]
[20]
[21]
[22]
[23]
[24]

[25]
[26]

ECT

Ad12

-4.68=1=1.62

-8.29+2.35

-3.67+1.21

-3.53+1.68

-6.32+2.44

-2.89+1.29

-3.52+1.74

-6.31=[:2.46

-2.88+1.30

ECT (two-layers)

Ad12 Ad23

-5.05::f 1.58 -{-3.35+0.80

-9.53::t=3.58 -{-1.90=[=2.24

-3.94::t=1.19 +2.75+0.61

-3.82+1.68 -{-2.48+0.85

-6.55=f3.63 +0.34+2.24

-3.10+1.25 -{-2.12+0.63

-3.81+1.70 ÷2.47_0.86

-6.51+3.83 -{-0.29+2.44

-3.10+1.25 ÷2.12+0.63
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TABLE 4:PERPENDICULAR (Ad_ AND PARAL-

LEL {Aa) RELAXATIONS OF A1 (210),(311)

AND {331)SURFACES EXPRESSED AS

PERCENTAGES OF THE CORRE-

SPONDING BULK SPACINGS

Ad12

Ad23

Ad34

Ad4s

Adss

Aan

Aa23

Aa34

Aa4s

Aas6

Al (210)

-8.08+4.44

-7.07+3.82

+2.90+4.23

-3.36+5.83

+4.214-6.84

-0.20+2.42

+0.024-2:60

+0.794-2.90

+0.044-3.49

-0.47+4.42

Al (311)
-8.88+2.88

-0.04-}-2.77

-2.42+4.36

+5.05+5.25
-1.96+4.92

+0.87+2.67

+0.534-3.19

-0.81+4.09

+2.27+3.86

-0.37+4.96

A1 (331)

-4.17+4.17

-4.52+3.47

+6.08+3.59
-3.56+4.97

+3.36+5.95

-2.65+2.26

+0.02+2.63

-0.08+3.08

+1.87+3.64

-1.41+3.76

TABLE 5:PERPENDICULAR (Ad) AND

PARALLEL (Aa)RELAXATIONS OF Ni

(21o)AND (311)SURFACES EX-

PRESSED AS PERCENTAGES

OF THE CORRESPONDING

/Xd12

Ad23

Ad34

Ad4s

Ads¢

Aa12

Aa23

Aa34

Aa45

Aa56

BULK SPACINGS

Ni (210) Ni (311)

-4.54+5.04

-4.96+4.15

+1.064-4.37

-I.96+5.76

+3.17+6.73

0.00+2.42

+0.03+2.55

+0.46+2.78

+0.15+3.38

-0.45+4.12

-5.57+3.26

-0.77+3.00

-1.61+4.32

+4.11+5.01

-1.41+5.00

+0.53+2.80

+0.46+3.10

-0.524-3.92

+0.534-4.89

-0.31+4.58
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TABLE6:PERPENDICULAR(Ad) AND

PARALLEL (Aa) RELAXATIONS OF

Cu (210)AND (311)SURFACES

EXPRESSED AS PERCENT-

AGES OF THE CORRE-

Ad12

Ad23
Ad34

Ad4s

Ads6

Aal2
Aa23

Aa34

Aa4s

Aas6

SPONDING BULK

SPACINGS

Cu (210) Cu (311)

-4.48+5.07

-4.91+4.17

+0.96:l:4.38

-2.03+5.80

+3.204-6.80

0.00+2.43

+0.054-2.55

+0.484-2.82

+0.114-3.49

-0.5014.31

-5.54+3.27

-0.$1±2.99

-1.75:}:4.33

+4.32+5.05

-1.60"4-5.02

+0.554-2.79

+0.50=l=3.'12

-0.54+4.00

+0.50±5.08

-0.30±4.73

TABLE 7:PERPENDICULAR (Ad) AND

PARALLEL (Aa) RELAXATIONS OF Fe

(210)AND (310)SURFACES EX-

PRESSED AS PERCENTAGES

OF THE CORRESPONDING

BULK SPACINGS

Fe(210) Fe(310)

Adl2 -7.65+7.06

Ad23 -2.81+5.48

Ad34 -4.53+4.84

Ad4s +0.06+5.14

Ads6 +1.0014.30

Aal2 +2.374-2.12

Aa23 +3.104-2.05

Aa34 +1.474-2.70

Aa4s -0.75+2.70

Aass +0.404-3.23

-30.45+1.99

+15.54-1.83

-19.82+1.91

+11.49+1.81

-2.364-1.47

+6.36+1.67

-4.824-1.92

+2.60+1.93
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Figure 1.--Theoretical (solid line) and experimental (dotted line or solid squares) values for the perpendicular (&d) and parallel (_a) relax-

ations for (a) A1(210) and Co) A1(331), expressed as percentages of the corresponding bulk spacings. The experimental values were taken

from refs. 4 and 2, respectively.
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Figure 2.--TheoreUcal (solid line) and experimental (dotted line or solid squares) values for the perpendicular (&d) and parallel (&a) relax-

ations for the (311) face of (a) AI, (b) Cu and (c) NI, expressed as percentages of the corresponding bulk spacings. The experimental

values were taken from refs. 5, 6 and 7, respectively.
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Figure 3.mTheoretical values for the perpendicular (_d) and

parallel (Aa) relaxations for the (21 0) face of Cu (solid line) and

Ni (dotted line), expressed as percentages of the corresponding

bulk spacings.
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Figure 4.--Theoretical (solid line) and experimental (dotted line) [3] values for the perpendicular (Ad) and parallel (Aa) relaxations for the

(a) (210) and (b) (310) faces of Fe, expressed as percentages of the corresponding bulk spacings.
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