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R. São Francisco Xavier, 524,
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Abstract
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1 Introduction

In the last years there has been much interest in the study of low-dimensional field
theories. One of the main reasons for this revival can be found in striking achieve-
ments of the material sciences that have allowed to build ultranarrow semiconductor
structures [1] in which the motion of the electrons is confined to one dimension [2].
One important tool for the theoretical understanding of the one-dimensional (1d)
electron system is the Tomonaga-Luttinger (TL) model [3] [4] [5], which can be
considered as the paradigm of Luttinger Liquid (LL) behavior [6] [2]. This model
describes a non-relativistic gas of massless particles (the electrons) with linear free
dispersion relation and two-body, forward-scattering interactions. In a recent work
[7], a non-local Thirring model (NLT) with fermionic currents coupled by general
(symmetric) bilocal potentials was presented, which contains the TL system as a
special case. In that work, the complete non-local bosonization of the model was
presented, calculating in particular the dispersion relations of the relevant bosonic
modes involved in the system.

In quantum field theory, the wave functional is not the most usual quantity to
calculate. The reason is that, for the evaluation of scattering data, the relevant
quantities are Green functions. Nevertheless, with the application of quantum field
techniques to model condensed matter systems, it becomes useful to get the infor-
mation contained in the ground state of the system.

In this paper we address our attention to the vacuum properties of the above
mentioned model. As it is well-known, ground-state wave functionals (GSWF’s)
have in general very complex structures. Due to this fact, their universal behavior
has been seldom explored in the past. Fortunately, in a recent series of papers,
an alternative way to compute GSWF’s was presented [8] [9] [10]. By conveniently
combining the operational and functional approaches to quantum field theories, these
authors provided a systematic path-integral method that, at least in the context of
1 + 1 systems, seems to be more practical than the previously known semiclassical
[11] and Bethe ansatz [12] [13] techniques. We take advantage of these advances
and apply them to shed some light on the vacuum structure of the NLT. This is
a relevant issue for several reasons. On the one hand, our work can be viewed as
an extension of the path-integral approach to wave functionals to the case in which
non-local interactions are taken into account. On the other hand our studies clarify
the physical content of a model that is interesting by its own right, due to its direct
connection with many-body systems.

The paper is organized as follows. In Section 2 we define the NLT model and
recall the steps that enable to obtain its path-integral bosonization. In Section 3 we
describe the density representation of wave functionals and combine the results of [7]
and [10] in order to evaluate the GSWF for the NLT. We get a closed formula that
gives the probability of the vacuum state as a functional, not only of the density
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configuration but also of the potentials that bind the original fermionic particles of
the system. This result allows us to find a non-trivial symmetry of this vacuum with
respect to the interchange of potentials. We also discuss the general electromagnetic
response of the model. In Section 4 we analyze the long-distance behavior of the
GSWF for the NLT. Exploiting the generality of this model we specialize the results
of the previous Section to some particular potentials. This permits us to make
contact with the TL [3] [4] [5] and Sutherland [13] models. In Section 5 we sketch
the Grassmann representation of wave functionals and show how to implement it in
the present context. Although the mathematical structure for the GSWF is more
involved in this representation, once again we obtain a closed expression for the
probability of the vacuum as a functional of both Grassmann sources and potentials.
Finally, in Section 6 we summarize our main results and conclusions.

2 The Model and the Non-Local BosonizationMethod

We start defining our model by writing the partition function

Z =
∫

DΨ̄ DΨ e−S, (1)

where the action S can be split as

S = S0 + Sint, (2)

with
S0 =

∫

d2x Ψ̄i/∂Ψ (3)

and

Sint = −
g2

2

∫

d2xd2y [V(0)(x, y)J0(x)J0(y) + V(1)(x, y)J1(x)J1(y)] (4)

where the electron field Ψ is written as

Ψ =

(

Ψ1

Ψ2

)

,

with Ψ1 (Ψ2) describing right (left) movers.
Concerning the electronic kinetic energy, we have set the Fermi velocity equal

to 1. The interaction piece of the action has been written in terms of currents Jµ
defined as

Jµ = Ψ̄γµΨ,

(5)
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V(µ)(x, y) are symmetric bilocal arbitrary potentials describing the electron-electron
(e-e) interactions. The model is not relativistic except for the special case V(0) = V(1).

Our first goal is to express the functional integral (1) in terms of fermionic de-
terminants. To this end we define new currents

Kµ(x) =
∫

d2y V(µ)(x, y)Jµ(y). (6)

(Note that no sum over repeated indices is implied when a subindex (µ) is involved).
The usual procedure in order to match the quartic interaction between fermions

consists in introducing auxiliary fields Aµ so that one can write

Z =
∫

DΨ̄ DΨ e−S0

∫

DAµ δ[Aµ −Kµ]exp[
∫

d2x JµAµ]

(7)

On the other hand, we represent the δ functionals as integrals of exponentials over
new fields Cµ(x), thus obtaining

Z =
∫

DΨ̄ DΨ DAµ e
−S0

exp
∫

d2x JµAµ

∫

DCµexp[−
∫

d2x (Aµ −Kµ)Cµ]

(8)

At this point one sees that the fermionic piece of the action (the free part and the
terms involving the currents J and K) can be cast in a local form by defining the
“potential transformed” fields

C̄µ(x) =
∫

d2y V(µ)(x, y)Cµ(y), (9)

We then get

Z =
∫

DΨ̄ DΨ DA DC̄

exp{−
∫

d2x [Ψ̄(i/∂ + ( 6A+ 6C̄))Ψ +

+ Cµ(x)Aµ(x)]}. (10)

This equation, in turn, suggests the following change of variables

Aµ + C̄µ = Ãµ,

Aµ − C̄µ = C̃µ, (11)

4



giving

Z =
∫

DÃ DC̃ det(i/∂+ 6Ã)

exp
∫

d2x d2y {−b(µ)(x, y)
4

[Ãµ(x)− C̃µ(x)]C̃µ(y)}, (12)

where we have defined the inverse potentials b through the identities

∫

V(µ)(x, y)b(µ)(x, z)d
2x = δ(2)(y − z), (13)

In the above expression for Z one sees that, by virtue of the change of variables
(11), the fields C̃ play no direct role in the fermionic determinant. They are actu-
ally artefacts of our method, whereas the fields A describe the physically relevant
bosonic degrees of freedom. Therefore, the next step is to perform the integrals in
C̃. This can be easily done, as usual, by conveniently shifting the fields. When this
is done one finds a field that describes negative metric states. In order to agree with
Klaiber’s operational prescription we absorb the decoupled ghost partition function
in the overall normalization constant [7]. Taking these considerations into account,
and setting from now on Ã = A, one finally gets

Z =
∫

DA e−S
′[A]det(i/∂+ 6A). (14)

with

S ′[A] =
∫

d2x d2y
1

2
[Aµ(x)b(µ)(x, y)Aµ(y)]. (15)

Thus we have been able to express the partition function for the NLT in terms
of a fermionic determinant. This is a necessary condition to apply the path-integral
approach to non-local bosonization which, combined with the methods of [8] and [10],
will enable us tu derive the GSWF for the NLT. An interesting point of our approach
is that one can go further quite a long way without specifying the potentials. This
will be shown in the next Sections, where we shall undertake the evaluation of the
GSWF in the density and Grassmann representations.
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3 Ground State Wave Functional in the Density

Representation

Generally, the wave function can be labeled by the eigenvalues of the particle num-
ber operator. In the case of an N-particle system, ψ(x1, . . . , xn) =< ψ|x1, . . . , xn >,
where |x1, . . . , xn > is an eingenstate of the particle density operator ρ̂(x) = ĉ†(x)ĉ(x)
with eigenvalue ρ(x) =

∑N
i=1 δ(x−xi). This representation is called the density rep-

resentation and we can label it by ψ(ρ) =< ψ|ρ >.
In the case of a dense system, ρ(x) is a general distribution (not necessarily δ’s)

and ψ(ρ) is a functional of a density rather than a function.
In a fermionic system, antisymmetrization of the wave function is supposed. In

spite of the fact that ρ(x) is an even distribution in a dense system, we will see that
the Pauli exclusion principle is still satisfied.

This section is devoted to the calculation of the GSWF in the density represen-
tation, for the non-local Thirring model, described in the previous Section.

The GSWF is related with the equal-time density correlation function< ρ(p)ρ(−p) >.
In references [8] and [10], it was shown an interesting relation between the GSWF
in the density representation and the generating functional Z(Q) (see Appendix):

|ψ0[ρ]|2 =
∫

DQ0e
−i
∫

dxQ0(x)ρ(x) lim
Q0(x)→Q0(x)δ(x0)

Z(Q0, Q1 = 0) (16)

So, the first step towards the calculation of |ψ0[ρ]|2 is to evaluate Z(Qµ). To
this aim, we take advantage of equation (14), where the generating functional was
written in terms of a fermionic determinant. Coupling the system minimally to an
external gauge potential Qµ(x), we obtain from (14):

Z(Qµ) =
∫

DA Det {i 6∂ + g 6A}× (17)

× exp

{

−1
2

∫

d2xd2y (Aµ(x) +
1

g
Qµ(x))b(µ)(x− y)(Aµ(y) +

1

g
Qµ(y))

}

To calculate the fermionic determinant, we make a chiral change of variables in
the fermionic fields

ψ(x) = e−g[γ5φ(x)+iη(x)]χ

ψ̄(x) = χ̄e−g[γ5φ(x)−iη(x)] (18)

With this change of variables the measure transforms as

Dψ̄Dψ = JF [φ, η]Dχ̄Dχ (19)
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It is also possible (in 1+1 dimensions), to split the gauge field in a longitudinal plus
a transversal component in the following way

Aµ(x) = ǫµν∂νφ+ ∂µη (20)

These changes lead to

Det {i 6∂ + g 6A} = JF [φ, η]Det {i 6∂} (21)

As it is well-known (see for instance [14]) the Jacobian associated to this change of
variables is:

log JF [φ, η] =
g2 + α

2π

∫

d2x φ✷φ (22)

where α is an arbitrary parameter that can be fixed with gauge invariance arguments.
Putting all this together, we finally find a bozonized generating functional

Z(Qµ) =
∫

DφDηe−Seff (φ,η,Qµ) (23)

where

Seff =
g2 + α

2π

∫

d2x (∂µφ)
2

+
∫

d2xd2y
{

b(0)(x− y)∂1φ(x)∂1φ(y) + b(1)(x− y)∂0φ(x)∂0φ(y)
}

+
∫

d2xd2y
{

b(0)(x− y)∂0η(x)∂1φ(y)− b(1)(x− y)∂1η(x)∂0φ(y)
}

− 1

g

∫

d2xd2y φ(x)(ǫµν∂νb(µ)(x− y))Qµ(y)

− 1

g

∫

d2xd2y η(x)(∂µb(µ)(x− y))Qµ(y)

+
1

2g2

∫

d2xd2y Qµ(x)b(µ)(x− y))Qµ(y) (24)

It is simpler to evaluate the generating functional in momentum space. To do
this, we Fourier transform eq. (24) obtaining:

Seff =
∫

d2p

(2π)2
[φ̃(p)φ̃(−p)A(p) + η̃(p)η̃(−p)B(p) + φ̃(p)η̃(−p)C(p)] +

+
i

g

∫

d2p

(2π)2

{

φ̃(p)(ǫµνpν b̂(µ)(p)Q̃µ(−p)) + η̃(p)(pµb̂(µ)(p))Q̃µ(−p))
}

+
1

2g2

∫

d2p

(2π)2
Q̃µ(p))b̂(µ)(p)Q̃µ(−p) (25)
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where

A(p) =
g2 + α

2π
p2 +

1

2
[b̂(0)(p)p

2
1 + b̂(1)(p)p

2
0], (26)

B(p) =
1

2
[b̂(0)(p)p

2
0 + b̂(1)(p)p

2
1], (27)

C(p) = [b̂(0)(p)− b̂(1)(p)]p0p1. (28)

To integrate (25), we first decouple the fields φ̃ and η̃ by means of

φ̃ = ξ̂ − C

2A
ζ̂ (29)

η̃ = ζ̂ (30)

and then, we integrate the quadratic integrals in ξ̂ and ζ̂. We thus obtain:

Z(Qµ) = exp

{

−
∫

d2p

(2π)2
Q̃µ(p)πµν(p)Q̃ν(−p)

}

(31)

where

πµν =
1

2π

p20 + p2

{ g2
π
v0(p) + 1}p2 + { g2

π
v1(p) + 1}p20

(

δµν −
pµpν
p2

)

(32)

with v(p) = F(V (x− x′)).
Note that, for the generating functional Z(Qµ) being gauge invariant, the polar-

ization tensor πµν must be transversal (pµπµν = 0). This property is automatically
satisfied for any potential due to the tensor structure of (32).

For the present model being well defined, the potentials must satisfy the following
(sufficient) condition:

(

g2

π
v0(p) + 1

)(

g2

π
v1(p) + 1

)

> 0 (33)

If this relation is not satisfied, the euclidean πµν may have a pole in the real
p0 axis. This corresponds to the propagation of a runaway mode, breaking the
unitarity of the model. Roughly speaking, relation (33) means that the density-
density interaction and the current-current interaction must be both repulsive or
both attractive (note that it is a sufficient condition, not necessary). As a by product
we have obtained the exact electromagnetic response of the system for any potential

v0 or v1. For example, if we apply an arbitrary electric field to the fermionic system,
it will induce an electric current and a charge density given by (in Minkovsky space):

ρ(p) ≡< ψ̄γ0ψ > (34)

= − i

8π3

p

{ g2
π
v0(p) + 1}p2 − { g2

π
v1(p) + 1}p20

×E(p0,p)
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J(p) ≡< ψ̄γ1ψ > (35)

=
i

8π3

p0

{ g2
π
v0(p) + 1}p2 − { g2

π
v1(p) + 1}p20

×E(p0,p)

where E = i(pQ0 − p0Q1) is the applied electric field.
Equation (35) implies that for instantaneous potentials, the system allows the

propagation of free waves with dispersion relation

ω0 = ±
√

√

√

√

g2

π
v0(p) + 1

g2

π
v1(p) + 1

|p| (36)

These waves are related with the propagation of the bosonic modes ξ̂ and ζ̂ (see
eq. (29) and (30)) discussed in ref. [7]. We shall return to this issue in the next
section, when we consider the Tomonaga-Luttinger model. In particular, note that
in the special case v0(p) = v1(p), the dispersion relation is the free one ω0 = ±|p|
(vf = 1).

After this digression, let us now face the evaluation of the GSWF. Fourier trans-
forming equation (31) and using (16) we have (in euclidean space):

|ψ0[ρ]|2 =
∫

DQ̃0e
− 1

2π

∫

dpQ̃0(p)ρ(p)e
− 1

(2π)2

∫

dp Q̃0(p)Π̄00(p)Q̃0(−p)
(37)

where
π̄00(p) =

∫

dp0 π00(p0,p) (38)

It is a simple task to integrate equation (37) obtaining

|ψ0[ρ]|2 = e
1
4

∫

dpρ(p)(π̄00)
−1ρ(−p) (39)

with π̄00 given by (38).
This result express the probability (not the amplitude) of a particular density

distribution to be realized in the ground state of the non-local Thirring model.
We can go further if we suppose that the potentials are local in time (as in

any non-relativistic model). In this case, v0 and v1 are p0-independent and we can
integrate (38) explicitely. So for any instantaneous potential we have

π̄00(p) =
∫ +∞

−∞

dp0
2π

p

( g
2

π
v0(p) + 1)p2 + ( g

2

π
v1(p) + 1)p20

=
π

2

√

√

√

√

1

( g
2

π
v0(p) + 1)( g

2

π
v1(p) + 1)

|p| (40)

In this way, from (40) and (39) we obtain

|ψ0[ρ]|2 = e
1
2

∫

dpρ(p)

√

( g
2

π
v0(p)+1)( g

2

π
v1(p)+1)( 1

|p|)ρ(−p)
(41)
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This equation is the main result of this section, and gives the exact ground state

wave functional for the non-local Thirring model defined by eqs. (3) and (4).
Let us point out some general features of this wave functional. From (41) we see

that the vacuum of the theory has the non-trivial symmetry

V(0)(x− y)←→ V(1)(x− y) (42)

This symmetry tells us that the density-density interaction is completely equivalent
to the current-current interaction, provided we are studying only vacuum properties.
It is clear that it should be broken by the excited states of the spectrum since the
action (4) is not symmetric.

Another property of (41), is that |ψ[ρ]|2 in the N- particle subspace, has a general
factored Jastrow form:

|ψ(x1, . . . , xn)|2 =
∏

i,j

[ϕ(|xi − xj |)]λ (43)

To see this more clearly, let us rewrite (41) in configuration space,

|ψ0[ρ]|2 = eπ
∫

dx1 dx2ρ(x1)f(|x1−x2|)ρ(x2) (44)

with

f(|x1 − x2|) =
∫

dp

2π

√

(
g2

π
v0(p) + 1)(

g2

π
v1(p) + 1)

(

1

|p|

)

eip(x1−x2) (45)

We now consider the Fock subspace with fixed n particles and n holes (antiparticles),
since we are working with < ρ >= 0, i. e. , without chemical potential. In this
circumstance one has

ρ(x) =
n
∑

i=1

(δ(x− xi)− δ(x− yi)) (46)

where {xi}({yi}) is the position of the particles (holes).
Replacing (46) in (44) we have

|ψ(x1, . . . , xn, y1, . . . , yn)|2 =
∏

i<j

e2πf(|xi−xj |)e2πf(|yi−yj |)
∏

i,j

e−2πf(|xi−yj |) (47)

that is the general factored form for our model. Clearly, the complexity of this
expression depends on the form of the potentials. In the next section we will study
universal properties of the long-distance behavior. But, in order to gain confidence
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and to somehow test our result, let us analyze the simpler example of a local Thirring
model, i.e. v0 = v1 = 1. We then get

f(|x|) = (
g2

π
+ 1)F(|p|−1) =

1

π
(
g2

π
+ 1) ln(|x|) (48)

Inserting this expression in (47) we obtain

|ψ(x1, . . . , xn, y1, . . . , yn)|2 =
∏

i<j |xi − xj |2µ|yi − yj|2µ
∏

i,j |xi − yj|2µ
(49)

with µ = g2/π + 1, which is the correct result [10].

4 Long distance behavior and the connection with

the Tomonaga-Luttinger and Sutherland mod-

els

In this section we analyze the general long-distance behaviour of the GSWF. We
also specialize the non-local Thirring model for particular potentials, showing that it
contains the Tomonaga-Luttinger [3] [5] and the Sutherland [13] models as particular
cases.

We have already shown, that in the limit V0 = V1 = δ2(x − y), our model
reproduces the local Thirring model. Let us now consider two non-local potentials
of the form:

V0 ∝ |x− y|αδ(x0 − y0) (50)

V1 ∝ |x− y|βδ(x0 − y0) (51)

Their fourier transforms are [15]

v0(p) ∝ −2 sin(α
2
π)Γ(α+ 1)|p|−α−1 (52)

v1(p) ∝ −2 sin(β
2
π)Γ(β + 1)|p|−β−1 (53)

The long distance behavior of |ψ(ρ)|2, is dominated by limx→∞ f(x), or equiv-
alenty limp→0 f̃(p)(see eqs. (44) and (45)). This behavior depends on the different
values of α and β.
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For large x (small p) we have the following situation,

α > −1
β > −1

}

→ f̃(p) ∝ |p|−α+β+2
2 → f(x) ∝ −cte.|x|α+β

2

α > −1
β < −1

}

→ f̃(p) ∝ |p|−α+3
2 → f(x) ∝ −cte.|x|α+1

2

α < −1
β > −1

}

→ f̃(p) ∝ |p|−β+3
2 → f(x) ∝ −cte.|x|β+1

2

α < −1
β < −1

}

→ f̃(p) ∝ 1
|p|

→ f(x) ∝ cte. ln |x|

(54)

We note that the Jastrow form (43) is kept for all potentials at long distances, but
the physics may be very different depending on the values of α anb β. From the first
line of (54), we see that for α > −1 and β > −1 we have two types of long distance
limits. If α+β < 0, the wave functional tends asymptotically to a constant, a typical
behavior of an incompressible fluid. But, if α + β > 0, the wave functional goes to

zero exponentially as exp(−cte.|x− x′|α+β
2 ), characterizing a confining phase. Lines

two and three of (54) also characterize a confining phase, because this exponential
decay of the wave function implies that asymptotic fermionic states cannot exist.
Last but not least, the case α < −1, β < −1, represent another phase, that can be
identified as the Thirring phase, since the general form of the wave function is the
same as in the local Thirring model with the appropriate redefinition of the coupling
constant (the exponent in the Jastrow wave function).

Another way of classifying these phases, is through the transport properties of
the systems. That is to say, each phase is associated to a free propagating mode
with different dispersion relations in each phase. From (36) and (53), we can write
the long distance dispersion relations for the free propagation modes as:

α > −1
β > −1

}

→ w0 = ±|p|
β−α+2

2

α > −1
β < −1

}

→ w0 = ±|p|
1−α
2

α < −1
β > −1

}

→ w0 = ±|p|
β+3
2

α < −1
β < −1

}

→ w0 = ±|p|

(55)

Note that these relations distinguish between V0 and V1 (α and β). This is so
because, in order to propagate such modes, not only the ground state is necessary,
but the excited states are necessary also.

This completes our analysis of the long distance behavior in our non-local Thirring
model. Let us now show, by specifying the potentials, that this general theory con-
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tains some other models already discussed in the literature related to 1-d strong
correlated systems.

We shall apply the approach developed in previous Sections to the Tomonaga-
Luttinger model [3] [4] [5]. This model describes a non-relativistic gas of spinless
and massless particles (electrons) in which the dispersion relation is taken to be
linear. The free-particle Hamiltonian is given by

H0 = vF

∫

dxΨ†(x)(σ3p− pF )Ψ(x) (56)

where vF and pF are the Fermi velocity and momentum respectively (vFpF is a
convenient origin for the energy scale). σ3 is a Pauli matrix and Ψ is a column
bispinor with components Ψ1 and Ψ2 (Ψ† = (Ψ†

1 Ψ†
2)). The function Ψ1(x) [Ψ2(x)]

is associated with the motion of particles in the positive [negative] x direction. The
interaction piece of the Hamiltonian, when only forward scattering is considered, is

Hint =
∫

dx
∫

dy
∑

a,b

Ψ†
a(x)Ψa(x)Vab(x, y)Ψ

†
b(y)Ψb(y) (57)

where a, b = 1, 2, and the interaction matrix is parametrized in the form

Vab =

(

v1 v2
v2 v1

)

. (58)

Using the imaginary-time formalism one can show that the finite-temperature [16]
[17] action for this problem becomes

STL =
∫ β

0
dτ
∫

dx {p0γ0(∂τ − vppF )Ψ + vFpγ1∂xΨ}

+
∫ β

0
dτ
∫

dx
∫

dy
∑

a,b

Ψ†
aΨa(x, τ)Vab(x, y)Ψ

†
bΨb(y, τ). (59)

For simplicity, we shall set vF = 1 and consider the case v1 = v2 in (58) [5]. We
shall also restrict ourselves to the zero temperature limit (β → ∞). Under these
conditions it is easy to verify that STL coincides with the non-local Thirring model
discussed in the precedent Sections, provided that the following identities hold:

g2 = 2

V(0)(x, y) = v1(x, y) = v2(x, y) = v(x1 − y1)δ(x0 − y0)
V(1) = 0 (60)

Of course one has also to make the shift pγ0∂0Ψ → pγ0(∂0 − pF )Ψ and identify
x0 = τ , x1 = x.
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One then can employ the method described in the preceding sections in order to
study the Tomonaga-Luttinger model. In [7] this model was studied with emphasis
in the bosonization approach. It has also been previously studied, through a different
functional approach, by D.K. Lee and Y. Chen [18]. These authors, however, avoided
the use of the decoupling technique applied here. Now we want to examine the
vacuum properties of the model and show how to evaluate the GSWF considering
the model as a special case of a non-local Thirring model.

Let us first focus our attention to the dispersion relations corresponding to the
elementary excitations of the model at hand. This dispersion relation is, of course,
a special case of (36). Using (60) we have

ω2
−(p) = p2{1 + 2v(p)

π
} (61)

which is the well-known result for the spectrum of the charge-density excitations of
the TL model in the Mattis-Lieb version [5].

We can now compute the corresponding GSWF by replacing (60) in (41):

|ψ0[ρ]|2 = e
1
2

∫

dpρ(p)
√

( 2
π
v(p)+1)( 1

|p|)ρ(−p) (62)

For example for V (x) = 1/|x|2 we can deduce, employing the same analysis
used for the general model, that the long distance behavior of the wave functional
is essentialy of the Thirring type, with a renormalization of the exponent of the
Jastrow form. On the other hand, if we consider the 3d Coulomb potential V (p) =
1/|p|2, then, |ψ|2 ∝ exp{−cte|x − x′|}, showing again the landmark of a confining
phase. This means, that no asymptotic fermionic states can exist, and the dispersion
relation (61) refers to the “condensed” bosonic degrees of freedom. Note that this
is a relativistic bosonic mass mode (ω2

−(p) = p2 + 2
π
).

An interesting observation is the following. If we change in (60) V0 ↔ V1, we
obtain another model with j− j interaction rather than ρ−ρ interaction. This new
model has the same vacuum properties of the former (the same GSWF), implying
that for the “Coulomb j−j interaction” we have also a confining behavior. However,
the confined bosonic modes are very different, since their dispersion relation is now
ω2
0 = p4/(p2 + 2

π
).

Another special case that we can analyze is the Sutherland’s model [13]. It
is a system of non-relativistic spinless fermions interacting via a pair interaction
potential V (|x− y|) whose hamilonian is:

H =
∫

dx
1

2m
|∂xψ(x)|2 +

1

2

∫

dx
∫

dy(ψ†ψ)(x)V (|x− y|)(ψ†ψ)(y) (63)

The spectrum of this hamiltonian was calculated exactly in [13].
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It can be shown that at long distance, the Sutherland’s model (63) is equivalent
to the model described by the action

S0 =
∫

d2x [Ψ̄i/∂Ψ− g2

2
(ψ̄γµψ)

2]

+
1

2

∫

dxdy (ψ†ψ)(x)u(|x− y|)(ψ†ψ)(y) (64)

It is easy to realize that this action is a special case of the one described by (3)
and (4), provided we identify

V0(x− y) = δ(x− y)− 1

g2
u(x− y)δ(x0 − y0) (65)

V1(x− y) = δ(x− y) (66)

Replacing the Fourier transform of this expressions in (41) we immediately arrive at

|ψ0|2 = e
1
2
( g

2

π
+1)
∫

dp ρ(p)

√

1−
ũ(p)

π(1+g2/π)
( 1
|p|)ρ(−p)

(67)

This wave functional was extensively studied in [10].

5 GSWF in the Grassmann representation

Another representation for the wave functional is the so called Grassmann represen-

tation [8] [9] [10], in which the vacuum is projected onto fermionic coherent states.
This representation allows to implement the antisymmetry of the wave functional
automatically. However, the final expression for the functional is less intuitive than
the density representation.

In a subspace with a finite number of particles, we can build a fermionic coherent
state by

|ξ1, . . . , ξn >= e
∑n

j=1
ξjC

†(xj)|0 > (68)

where ξj are Grassmann variables and C†(xj) are the fermionic creation operators.
The wave function is constructed by projecting this states onto the vacuum, i.

e. :
ψ(ξ1, . . . , ξn) =< 0|ξ1, . . . , ξn >=< 0|e

∑n

j=1
ξjC

†(xj)|0 > (69)

We can see the relation between equation (69) and the orbital wave functions by
expanding the exponential,

ψ(ξ1, . . . , ξn) =
N
∑

n=1

1

(n!)2

(

n
∏

i=1

ξi

)

ψ(x1, . . . , xn) (70)
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where ψ(x1, . . . , xn) =< 0|C†(x1), . . . , C
†(xn)|0 >. So, the orbital wave functions

are the coefficients of a polynomial expansion in the Grassmann variables.
In the case of a dense system, a coherent state is given by

|χ >= ei
∫

dx χ(x)ˆ̄ψ(x)+ψ̂(x)χ̄(x)|0 > (71)

where χ(x) is a Grassmann field, and a wave functional is labeled by

ψ(χ, χ̄) =< 0|ei
∫

dx χ(x)ˆ̄ψ(x)+ψ̂(x)χ̄(x)|0 > (72)

Let us now derive the wave functional (72) for the NLT. The Grassmann repre-
sentation of the wave functions can be built in a way that is quite similar to the one
discussed in Section 3 for the density representation (see Appendix).

It can be shown that the probability for the state χ to occur in the ground state
is given by

|ψ0[χ̄, χ]|2 =
∫

Dη̄ Dη Z[η̄, η] exp(−i
∫

dx (χ̄η + η̄χ)) (73)

where

Z[η̄, η] =
∫

DΨ̄ DΨ e−S0exp[
∫

d2x (
g2

2
JµKµ − η̄Ψ− Ψ̄η)] (74)

and we have taken the equal-time limit χ(x, t) = χ(x)δ(t), and similarly for χ̄. S0,
Jµ and Kµ were defined in Section 2, and η and η̄ are, of course, a couple of fermionic
sources.

One can rewrite Z[η̄, η], by using the procedure depicted in Section 2, based
on the introduction of a set of auxiliary vector fields. This leads to an expression
which is nothing but the generalization of equation (14) for non-vanishing fermionic
sources:

Z[η̄, η] =
∫

DA e−S
′[A] exp[−

∫

d2xΨ̄(i/∂+ 6A)Ψ] exp[−
∫

dx(η̄Ψ+ Ψ̄η)] (75)

where S ′[A] is given in (15).
Performing now a uniform translation in the fields Ψ and Ψ̄, one gets

Z[η̄, η] =
∫

DA e−S
′[A] det(i/∂+ 6A) exp−[

∫

dxdy η̄(x) (i/∂+ 6A)−1
(x, y) η(y)] (76)

As explained in Section 3, we can make a chiral transformation in the fermionic
measure and express Aµ in terms of two scalar fields Φ and ω (see equations (18)
and (20)). Taking into account the corresponding Jacobian, we obtain
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Z[η̄, η] =
∫

DΦ Dω e−Seff [Φ,ω] exp[−
∫

dxdy η̄(x) GF [Φ, ω] η(y)] (77)

where Seff [Φ, ω] picks up the contribution of the Jacobian, and coincides with
(24) if one sets Qµ = 0. We have also defined

GF [Φ, ω] = e−g[γ5φ(x)+iη(x)] (i/∂)
−1
(x, y) e−g[γ5φ(y)−iη(y)] (78)

At this stage we are ready to insert (77) in the expression for the GSWF, equation
(73). In so doing one sees that the integration in the fields η and η̄ is elementary,
yielding

|ψ0[χ̄, χ]|2 =
∫

DΦ Dω e−Seff [Φ,ω] exp
[

−
∫

dxdy χ̄(x) GF
−1[Φ, ω] χ(y)

]

(79)

In the functional integrand of (79) we have omitted a factor det GF [Φ, ω], which
can be shown to be constant, using, for instance, a coherent-state definition of the
functional integral.

Now one can expand the exponential and perform the integrations over Φ and ω
for each term of the series. The result can be written as

|ψ0[χ̄, χ]|2 =
∑

n

(

2i

π

)n 1

n!2

∫

(

n
∏

i=1

dxidyi

)

n
∏

j=1

χ̄αj
(xj) χβj (yj) F ([xj , yj])αkβk

(80)
where the indices αi and βi indicate Dirac spinor components and j, k = 1, ..., n.

The function F ([xj , yj])αkβk
is the product of two factors:

F0 ([xj , yj])αkβk
= (det

1

(xi − yj)
)
n
∏

i=1

(γ1)αiβi
(81)

which comes from the contribution of the free fermion (equal-time) propagators, and
a bosonic factor that corresponds to a multipoint (equal-time) correlation function
of vertex operators,

B(xj , yj) =
〈

exp





n
∑

j=1

(sjΦ(xj , t) + tjΦ(yj, t))



 exp



−i
n
∑

j=1

(ω(xj, t)− ω(yj, t))




〉

(82)
where si (ti) = 1 or −1 if αi (βi) = 1 or 2. Up to this point the results of this
Section are formally equal to those obtained for the local Thirring model, in ref.[10].
However, we have to stress that in our case the vacuum expectation value in (82)
is to be computed for the non-local model defined by Seff [Φ, ω]. Introducing the
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Fourier transformed fields Φ̃(p) and ω̃(p), it is straightforward to express the bosonic
factor as

B(xj , yj) =
∫

DΦ̃ Dω̃ exp
[

−
(

Seff [Φ̃, ω̃] +
∫

d2p (Φ̃(p)J(p) + ω̃(p)K(p))
)]

(83)
with

J(p) = −
n
∑

j=1

(

sj e
ipxj + tj e

ipyj
)

(84)

and

K(p) = i
n
∑

j=1

(

eipxj − eipyj
)

(85)

As usual, the functional integrations in (83) can be easily done just by con-
veniently shifting the fields. Indeed, if we introduce two new fields φ̃ and ρ̃ such
that

Φ̃(p) = φ̃(p) +M(p) (86)

ω̃(p) = ρ̃(p) +N(p), (87)

the choice

M(−p) = 2B(p)J(p)− C(p)K(p)

∆(p)
(88)

N(−p) = 2A(p)K(p)− C(p)J(p)
∆(p)

(89)

with A,B and C defined in (25) and ∆ = C2 − 4AB, allows to obtain

B = exp

[

−1
(2π)2

∫

d2p
1

∆(p)
(B(p)J(p)J(−p) + A(p)K(p)K(−p)− C(p)J(p)K(−p))

]

(90)
Please note that in this equation we have omitted the explicit dependence on the
spatial coordinates, which enters the game through J and K (see eqs.(84) and (85)).
After replacing the corresponding expressions the final result can be written in the
form

B = exp







(−1/(2π)2)
∫

d2p (1/∆(p))
∑

j,k

[

(sjskB(p)− A(p) + isjC(p))e
ip(xj−xk)

+ (tjtkB(p)− A(p)− itjC(p))eip(yj−yk) + 2(sjtkB(p) + A(p)) cos[p(xj − yk)]
+ iC(p)(tje

ip(yj−xk) − sjeip(xj−yk))
]}

(91)
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This result is to be multiplied by the fermionic factor F0 ([xj , yj])αkβk
(see eq.(81))

in order to find the general term in the series of the squared vacuum functional,
given by eq.(80). Thus, we have obtained the general structure of the ground-state,
not only as a functional of the Grassmann sources (χ̄,χ) but also of the potentials
that bind the original fermions of the model. Remember that these potentials are
contained in the coefficients A, B and C. If one considers the local limit, which
corresponds to contact interactions in coordinate space, one can then easily show
that eq.(91), and therefore also the general term in (80), acquire the Jastrow form,
i.e. a factorized structure with constant exponents given by simple combinations of
A,B and C.
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6 Summary and conclusions

In this article we have considered a recently proposed non-local version of the
Thirring model, in which densities and currents are coupled by arbitrary poten-
tial functions V0(|x−y|) and V1(|x−y|), respectively. One of the interesting aspects
of this theory is that it describes, as particular cases, relevant many-body systems
such as the TL and Sutherland’s models.

We have focused our attention on the vacuum properties of this model. In partic-
ular, we computed the exact ground-state wave functions, as functionals of external
sources and two-body potentials, in both the density (Section 3) and Grassmann
(Section 5) representations. In the context of the more intuitive density representa-
tion we have stressed several physical features of the model which, in our framework,
can be easily discussed. For example we got the exact electromagnetic response of
the system for any potential. Concerning the vacuum in itself, we found a non-trivial
symmetry with respect to the interchange of density-density and current-current po-
tentials. Of course, this symmetry does not persist at the level of the dispersion rela-
tions of the collective modes (plasmons), to which the excited states are expected to
contribute. The universal factorized Jastrow form was also obtained. On the other
hand, we have analyzed the long-distance behavior of the GSWF (Section 4) for this
general model, showing that it contains the TL and Sutherland’s models as special
cases. In particular we have examined the asymptotic behavior of GSWF’s and
density-waves frequencies for a wide variety of power-law potentials. This allowed
us to identify different phases contained in the non-local Thirring model.

We want to emphasize that our results are valid for abitrary bilocal potentials.
This means that in our approach one does not need to specify the couplings in order
to get closed formulae for the GSWF’s. Therefore these formulae could be directly
used to obtain the effect of specific potentials on the vacuum structure. It is also
interesting to point out that the techniques we presented could be easily modified
in order to study the response of the ground-state in the presence of impurities,
following, for example, the lines of ref.[19].
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A Path integral approach to wave functionals

The path integral approach to wave functionals was fully developed in refs. [8], [9]
and [10].

In order to make this paper self-contained we sketch in this appendix the main
steps that enable to deduce equations (16) and (73).

A.1 Density Representation

In any system with particle number conservation we have

∂tρ̂(x, t) + ∂xĵ(x, t) = 0 (1)

where ρ (j) is the charge (current) density, and a non-relativistic model should
satisfy the following relations:

[ρ̂(x), ĵ(x′)] = −i∂x(δ(x− x′)ρ̂(x)), (2)

[ρ̂(x), ρ̂(x′)] = [ĵ(x), ĵ(x′)] = 0. (3)

Thus, we can label the quantum states with the eigenvalues of the operator ρ̂, and
represent ĵ by

ĵ(x)|ψ[ρ] >≡ −iρ(x)∂x
(

δ

δρ(x)
|ψ[ρ] >

)

(4)

This is called the density representation.
Since this states completely expand all the Hilbert space, we can resolve the

identity operator as

Î =
∫

Dρ |[ρ] >< [ρ]| (5)

Using this identity, it is easy to derive the relation between wave functionals and
the functional generator of density correlation functions

Z(Q0, Q1 = 0) = < 0|ei
∫

dx Q0(x)ĵ0(x)|0 >
=

∫

Dρ′ < 0|ei
∫

d2x Q0(x)ĵ0(x)|ρ′ >< ρ′|0 >

=
∫

Dρ′ei
∫

d2x Q0(x)ρ′(x) < 0|ρ′ >< ρ′|0 >

=
∫

Dρ′ei
∫

d2x Q0(x)ρ′(x)|ψ[ρ′]|2 (6)

Taking the limit for fixed time generators we have

lim
Q0(x)→Q0(x)δ(x0)

Z(Q0, Q1 = 0) =
∫

Dρ′ei
∫

dx Q0(x)ρ′(x)|ψ[ρ′]|2 (7)
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Fourier transforming this expression we finally get
∫

DQ0e
−i
∫

dxQ0(x)ρ(x) lim
Q0(x)→Q0(x)δ(x0)

Z(Q0, Q1 = 0) =
∫

Dρ′δ(ρ′(x)− ρ(x))|ψ[ρ′]|2

= |ψ[ρ]|2 (8)

which is the equation (16).

A.2 Grassmann Representation

Let us begin by considering the generating functional for equal time fermionic cor-
relation functions

Z(η, η̄) =
∫

DψDψ̄ e−iS(ψ̄,ψ)+i
∫

dx η̄ψ+ηψ̄

= < 0|ei
∫

dx η̄ψ̂+η ˆ̄ψ|0 > (9)

where η(x, x0) ≡ η(x)δ(x0) is the fermionic source.
The Hilbert space is built through fermionic coherent states:

|χ, χ̄ >= ei
∫

dx χ(x)ˆ̄ψ(x)+ψ̂(x)χ̄(x)|0 > (10)

This space is a complete one, so we can represent the identity operator as

I =
∫

DχDχ̄ |χ̄, χ >< χ, χ̄| (11)

Inserting this expression in (9) we have

Z(η, η̄) =
∫

DχDχ̄ < 0|ei
∫

dx η̄ψ̂+η ˆ̄ψ|χ̄, χ >< χ, χ̄|0 > (12)

The fermionic operators ψ̂ and ˆ̄ψ satisfy the following anti-commutation relations

{ψ̂i(x), ˆ̄ψj(y)} = (γ0)ijδ(x− y) (13)

One can represent these operators by using multiplicative and derivative operators
χi and

δ
δχj

acting on the coherent states (10):

ˆ̄ψi =
1√
2

(

χ̄i + (γ0)ij
δ

δχj

)

ψ̂i =
1√
2

(

χi + (γ0)ij
δ

δχ̄j

)

(14)
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With this operations we obtain

Z(η, η̄) =
∫

DχDχ̄ei
∫

dx η̄χ+ηχ̄|ψ0(χ+ γ0η, χ̄+ γ0η̄)|2 (15)

and making the Grassmann translation

χ −→ χ− γ0η
χ̄ −→ χ̄− γ0η̄

we get

Z(η, η̄) =
∫

DχDχ̄ei
∫

dx η̄χ+ηχ̄|ψ0(χ, χ̄)|2 (16)

Note that formally, (16) is the fermionic Fourier Transform of |ψ0(χ, χ̄)|2. We
can anti-transform this expression obtaining finally

|ψ0[χ̄, χ]|2 =
∫

Dη̄ Dη Z[η̄, η] exp(−i
∫

dx (χ̄η + η̄χ)) (17)

which is the equation (73).
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