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Coarsening dynamics of adsorption processes with diffusional relaxation
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We investigate the late coarsening stages of one dimensional adsorption processes with diffusional
relaxation. The nonequilibrium domain size distribution is studied by means of the field theory
associated to the stochastic evolution. An exact asymptotic solution satisfying dynamical scaling
is given for cluster sizes smaller than the average domain length. Our results are supported and
compared with Monte Carlo simulations.
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Random sequential adsorption models have been sys-
tematically investigated as basic prototypes of monolayer
growth in many physical, chemical and biological pro-
cesses [1,2]. The characteristic feature dominating the
late stage dynamics of such phenomena is the jamming of
the available area of deposition, leading to the formation
of partially covered and fully blocked states. Recent ex-
perimental advances indicate that even for large colloidal
particles, monolayer deposits may further redistribute on
the substrate by particle diffusion on time scales compa-
rable with the adsorption process [3]. A range of theoreti-
cal efforts including exact solutions, asymptotic methods
and extensive numerical simulations based on simple mi-
croscopic models, has been used to understand the role of
fluctuations and collective effects in these processes [1,2].
There is ample simulational evidence for the existence
of a scaling regime where the system is effectively made
up of pure phase regions separated by narrow interfaces,
highly reminiscent of quenched binary alloys and fluids at
low temperatures [4]. For large times t a network of do-
mains emerges such that can be characterized by a single

length scale L(t) namely, the average domain size, which
coarsens continuously. On general grounds, typical sta-
tistical quantities are expected to be scaling functions of
a single argument involving both space and time [5].
Although there are several exact results in coarsen-

ing dynamics available mostly in one dimension [5], they
essentially refer to the dynamical scaling of two-point
correlations (structure factor), and average properties of
the domain size distribution (DSD). More complete de-
scriptions of cluster growth at the submicron level clearly
require knowledge of the DSD itself, a quantity of funda-
mental interest in modern nucleation theories and acces-
sible to light microscope studies [4]. As a contribution
in this direction, here we present an asymptotic analysis
of nonequilibrium DSD in a simpler system lending itself
more readily for this calculation and still capturing basic
aspects of coarsening phenomena.
Specifically, we consider an extension of the random

dimer deposition problem of Flory [1] where vacant pairs
of nearest-neighbor lattice sites are filled randomly by
two hard core particles at a time, say with adsorption
rate R. To prevent an otherwise jamming behavior (re-

sulting from both hard core interactions and the lack of
nearest-neighbor vacancies), we enable the system to re-
lax diffusively by single particle hopping between nearest
neighbors with probability h, though yet avoiding multi-
ple occupancy. This leads to an effective hopping motion
of vacant sites which recombine to form larger voids ac-
cessible to deposition attempts, ultimately covering the
full crystalline limit at large times.
Turning to the evaluation of DSD, in what follows

we shall restrict our discussion to one-dimensional sys-
tems. Far from being trivial, asymptotic solutions in
d = 1 share many features emphasized in higher dimen-
sions and do provide a demanding test for theories of
late stage coarsening, particularly for the dynamical scal-
ing hypothesis. The strategy is to study the field the-
ory that can be associated to the master equation of our
adsorption-diffusion process [6]. This can be achieved by
means of a (pseudo) fermionic representation in which its
occupation numbers 1 or 0 at site j correspond to particle
or vacancy at that location. After introducing creation

(annihilation) fermi operators C†
j (Cj) along with the lo-

cal density fields n̂j ≡ C†
jCj , the stochastic evolution at

a given time can be represented by the action e−Ht of
the quantum ’Hamiltonian’

H = − R
∑

j

C†
jC

†
j+1 − h

∑

j

(

C†
jCj+1 + h.c.

)

+NR

+ (R − 2h)
∑

j

n̂j n̂j+1 + 2(h−R)
∑

j

n̂j , (1)

operating over a periodic chain with N locations. Here,
deposition (hopping) of dimers (particles) is described by
the effect of the first (second) sum in Eq. (1), whereas
conservation of probability requires the action of the
remaining (diagonal) field operators. We address the
reader to Ref. [6] for a more detailed derivation in this
and related systems.
The analysis of DSD requires to consider the number of

domains having at least L consecutive particles (with L
arbitrarily large), by averaging over all possible histories
up to a certain instant. For a given initial probability dis-
tribution |P (0)〉, this is related to the L-point correlation
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function [7]

F (L, t) =
1

N

∑

j

〈ψ∼ | n̂j+1 ...n̂j+L e
−Ht |P (0)〉 , (2)

where 〈ψ∼ | is an equally weighted sum of all accessible
configurations, i.e. the left steady state of H . Although
the diagonalization of the evolution operator becomes
fairly standard by choosing R = 2h , i.e. dimer adsorp-
tion and particle diffusion occuring with the same prob-
ability [8], the difficulties associated to the evaluation of
these high order correlators as we shall see, are simplified
significantly by detaching dimers with rate ǫ ≡ 2h − R,
whether or not the selected pair of adjacent particles ar-
rived together. Though this fictitious process introduces
additional terms in Eq. (1) [6], the latter constraint en-
sures that H remains bilinear in C, C† operators. There-
fore, it can be readily verified that after a Bogoliubov-
type similarity transformation in momentum space [9],
we are finally left with the free fermion Hamiltonian

H =
∑

−π<q<π

λqξ
+
q ξq , λq = b+ a cos q , (3)

where a = R − ǫ, b = R + ǫ, and the elementary ξ-
excitations are given by

~ξq = − ei
π
4

√
N

∑

j

eiqj
(

−α cos θq i α−1 sin θq
α sin θq i α−1 cos θq

)

~Cj ,

α = (R/ǫ)1/4, tan θq = α2 cot
q

2
, (4)

with ~ξq, ~C
†
j denoting respectively

( ξ+q
ξ−q

)

,
(C†

j

Cj

)

. So, in the

limit ǫ→ 0 in which the original process is recovered, the
dynamical evolution becomes critical as it is dominated
asymptotically by low-lying massless modes q0 = ∓π± q
with spectrum λq0 ∝ q2.
We are especially interested to elucidate the long time

behavior of the correlators (2) for which it is convenient
to expand the initial probability distribution in terms of
these fermions. In particular, starting from an empty
substrate, it is a simple matter to check that |P (0)〉 cor-
responds to the coherent pair state

|P (0)〉 =
∏

0<q<π

(

1 + tan θq ξ
+
q ξ

+
−q

)

|ψ 〉 , (5)

where |ψ〉 is the right vacuum (steady) state ofH . Hence,
from Eqs. (2) and (3) it follows that for nonvanishing des-
orption rates, F (L, t) can be expanded perturbatively in

powers of u ≡ e−4ǫ t as ρLs +
1
N

∑

j

∑L
n=1 Fn,j(L, t), where

Fn,j(L, t) =
un

n!

∑

q1

...
∑

qn

〈ψ∼ |C†
j+1Cj+1 ... C

†
j+LCj+L

×
n
∏

i=1

e−2a(1+cos qi) t tan θqi ξ
+
qi ξ

+
−qi |ψ〉 , (6)

0 < qi < π and, ρs = 1/(1+
√

ǫ/R) is the coverage of the
steady state. To evaluate the vacuum expectation value

of this product, we use Wick’s theorem [10] for which we
compute all pair contractions (in this case, steady state
expectation values) contributing to such typical term.
The six kind of contractions that occur are readily ob-
tained if we combine the inverse of Eq. (4) along with its
associated anticommutative algebra. In the limitN → ∞
this finally yields

〈Cl Cm〉 = −〈C†
l C

†
m〉 =

√
R ǫ

2b
(1 + β2)βn−1 , (7)

〈C†
l Cm〉 = −〈Cl C

†
m〉 = −〈Cl Cm〉 , (8)

〈Cl ξ
+
q 〉 =

ei
π
4

√
N

cos θq e
iql , (9)

〈C†
l ξ

+
q 〉 =

e−iπ
4

√
N

sin θq e
iql , (10)

where n = m − l > 0, and β = (
√
ǫ −

√
R)/(

√
ǫ +

√
R).

Since |P (0)〉 has zero total momentum, notice that the
sum over all these pairings in Eq. (6) (with their corre-
sponding permutation signature), results independent of
the site location, i. e. Fn,j(L, t) ≡ Fn(L, t). Thus, F (L, t)
remains translationally invariant for all subsequent times,
as it should.
Clearly, for finite detaching rates ǫ, there is an expo-

nentially large number of pairing groups contributing to
Eq. (6). Even the calculation of the leading order F1 re-
sults prohibitively involved. However, in the limit ǫ→ 0
contractions (7), (8) and (9) vanish as

√
ǫ. Thus, by

taking into account the Bogoliubov angles appearing in
Eqs. (4) and (6), a moment of reflection shows that there
are only two relevant pairing forms contributing to F1

namely, 〈C†ξ+〉2 〈CC〉 , e.g. 〈C†
l ξ

+
q 〉〈C†

mξ
+
−q〉〈ClCm〉, and

〈C†ξ+〉 〈Cξ+〉 , a remarkable simplification. Using the
multiplicity and signature of these products, and after
introducing the integrals

f±
n (τ) =

1

π

π
∫

0

e− τ cos q

sin q
sinnq (1 ± cos q) dq , (11)

it is straightforward to show that

F1(L, t) = −e−τ

[

LI0(τ) +

L−1
∑

n=1

(−1)n(L− n)f+
n (τ)

]

, (12)

where I0(τ) is a modified Bessel function of the first
kind [11], and τ ≡ 2Rt. Similarly, the number of
pairing groups which yield a net contribution to higher
orders of Eq. (6) remains bounded irrespective of the
domain size L, though proliferating very rapidly with
the order n. For instance, there are 24 products of
the form 〈Cξ+〉2 〈C†ξ+〉2, 72 〈C†ξ+〉4 〈CC〉2, and 72
〈C†ξ+〉3 〈Cξ+〉 〈CC〉 to be considered in the calculation
of F2(L, t). The analysis is simple albeit in fact rather
lengthy. In the long time limit and fixed domain size, it
can be shown that the former 24 products contribute as
L2/t, whereas the latter 144 are bounded by L5/t3. More
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specifically, employing the integrals (11) along with mod-
ified Bessel functions of integer order In, we find

F2(L, t) ∼
e−2τ

2

{

L (L− 1) I20 (τ) −
L−1
∑

n=1

(L− n)

×
[

I2n(τ) + f+
n (τ) f−

n (τ)
]

}

+O(L5/t3) . (13)

We are not concerned here with the possibility of im-
proving the second order calculation, which is a prob-
lem of great technical difficulty, but in showing that the
approach, even in lowest order, can be successfully ap-
plied to late coarsening stages. It should be borne in
mind however, that for arbitrarily large domain sizes the
prefactors involved in higher orders of Eq. (6) result in-
creasingly weighted. Nevertheless, it turns out that these
contributions become irrelevant within the scaling regime
t → ∞, L → ∞, with L2/t ≪ 1, where they provide
solely subdominant large-time corrections.
In studying this asymptotic region it is helpful to con-

sider the number NL(t) of filled L-intervals between two
vacancies, along with the density of domains Nd(t) av-
eraged up to a given instant. Clearly, the probabil-
ity to observe a cluster having exactly L particles at
that time is P (L, t) = NL(t)/Nd(t). It can be easily
checked that NL = F (L) + F (L + 2) − 2F (L + 1), ∀t,
while on the other hand Nd coincides with the number
of particle–vacancy interfaces, and therefore can be cal-
culated as 〈 n̂j (1− n̂j+1)〉, (the brackets indicate an av-
erage over histories). Following a similar analysis dis-
cussed as in [6], Nd(t) can be shown to yield e−τI1(τ).
Hence, by virtue of the asymptotic behavior of Eqs. (12)

and (13), it finally turns out that for z ≡ L/
√
2πτ ≪ 1,

P (L, t) satisfies the dynamical scaling hypothesis, namely

P (L, t) = P(z)/
√
2πτ , where P(z) is a universal scaling

function given by

P(z) =
π

2
z e−π z2 [

1 + erfc(
√
π z)

]

+
1

2

(

1− e−2πz2
)

+O(z5) , (14)

and erfc (x) = 2
π

∫∞

x e−u2

du is the complementary error
function [11]. Thus, there is an emerging typical length

scale L(t) =
√
2πτ which characterizes the whole domain

structure at large times. In a statistical sense, the do-
main morphology becomes self similar if all lengths are
measured in units of L(t). In fact, this characteristic
scale can be ultimately identified with the average do-
main size, since by construction 〈L〉 = ρ(t)/Nd(t), where
ρ(t) =

∑

L LNL(t) → 1, is the particle coverage; so in
the long time limit 〈L〉 ≡ L(t). Moreover, it is known
[6] that two point vacancy-vacancy correlation functions
C(L, t)= 1

N

∑

j〈(1−n̂j)(1−n̂j+L)〉 scale asymptotically as

C(L, t) =
e−π z2

L2(t)

[ π

2
z erfc(

√
π z) + 2 sinh(π z2)

]

, (15)

where the scaling parameter is taken as in Eq (14). Thus,
we see that both average domain size and pair correlation
length coalesce into a single physical scale which is typ-
ically diffusional. This is in line with the coarse grained
(hydrodynamic) level of description, the so called (noise-
less) model A or time dependent Ginzburg-Landau ap-
proach [4,12], in which there is a single non-conserved
scalar field (in our case, the particle density) leading to
a characteristic scale which grows as

√
t. In addition,

these results reveal a close asymptotic relationship be-
tween DSD and two point correlations, namely

P (L, t) = 2L(t)C(L, t) +O(L2/t3/2) , (16)

so, apart from a global change of scale they closely follow
each other.
We have conducted Monte Carlo simulations to con-

firm the validity of our theoretical expectations in a peri-
odic chain of N = 105 sites. The microscopic dynamical
rules accounting for the stochastic process described by
Eq. (1), are as follows. Starting from an empty lattice,
dimer deposition attempts on randomly targeted bonds

are made with probability R while maintaining single
occupancy throughout. Alternatively, a particle hop-
ping attempt with probability h takes place isotropically
within the selected bond provided it contains a vacant
site; otherwise the move is rejected. The unit Monte
Carlo step is defined such that each bond is checked once
on average. This corresponds to N trials per unit time.
We direct the reader’s attention to Fig. 1, where we
display the DSD results obtained for a wide range of do-
main sizes, after averaging over 3 × 104 histories up to
103 steps. This has been adequate to suppress numeri-
cal fluctuations arising particularly from large sizes L yet
smaller than the typical system length.
As expected, by setting R = 2h our results for L ≪

L(t) reproduce completely the asymptotic scaling distri-
bution (14). However, for arbitrarily large domain sizes
the relevance of the high order corrections referred to
above, evidently is reflected in the progressive departure
between theory and simulation. Nevertheless, our ap-
proach turns out to be still successful to yield an accurate
estimate of the most probable cluster size ∼ 0.468L(t),
occurring in fact within a regime of intermediate lengths.
For L ≫ L(t) we content ourselves with giving just the
numerical results displayed in the inset of Fig. 1 which
suggest the DSD follows an exponential distribution scal-
ing as P(z) ∼ P0 e

−kz, with k = 1.3(1) and P0 = 1.8(1).
Similar results were observed starting with other initial
conditions, the scaling distribution always appearing in
the long time limit, as long as only short-range spatial
correlations are initially present. It is worth remarking
that this robustness applies as well to the unrestricted
general case R 6= 2h (also shown in Fig. 1), where the
dynamics can not be solved explicitly.
The existence of dynamic scaling, however, appears to

be associated with a clean separation between fast micro-
scopic time scales ∝ 1/R and slow collective modes, such
as the gapless ξ-excitations of Eq. (4). For instance, no
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scaling behavior seems to hold for finite detaching rates
ǫ. In fact, the non-critical dynamics includes a subcase
(ǫ = R = h) entirely soluble by standard transfer matrix
techniques [6], in which there is no dynamic scaling of any
kind. Thus, the issue of universality in critical dynam-
ics arises immediately. Whether or not slightly different
nonequilibrium systems share a similar set of exponents
and scaling functions is still an open problem which is re-
ceiving systematic attention [13]. In this context, we con-
clude by examining a number of common aspects between
the dynamics discussed so far and an alternative process
of cluster growth on a lattice, in which hard-core particles
diffuse and eventually give birth to another particle at an
adjacent site [14]. At the level of the average domain size,
it is by now well established that both processes coarsen
diffusively [13,14]. Furthermore, even the dynamics of
two point correlations can be described asymptotically
by the same scaling function (15) [6,14]. However, at the
more demanding microscopic level of DSD universality
no longer holds. In fact [14], the birth process follows a

scaling distribution P(z) = π
2 ze

−π
4
z2

, whose gaussian tail
indicate the occurrence of relatively larger domains (see
Fig. 1), whereas on the other hand it can not be either
rescaled into Eq. (14) beyond third order in L/L(t).
In summary, we have presented a scaling picture which

accounts for the late coarsening stages of simple adsorp-
tion processes where, however, fluctuation-induced be-
havior is essential. As often in nonequilibrium statistical
mechanics, even the solution of the simplest models helps
to convey a clearer understanding of the many charac-
teristics present in complex systems. While progress has
been accomplished in d = 1, a similar understanding of
spatial structures in higher dimensional systems still re-
quires further investigations.
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FIG. 1. Asymptotic domain size distribution at t = 103

for R = 1, h = 0.5 (squares), and R = 1, h = 0.1 (trian-
gles, non-soluble case). The averages were taken over 3× 104

histories starting from an empty chain of 105 sites. For do-
main sizes L smaller than the average domain size ∝ t1/2 [here
denoted as X(t)], the numerical data follow closely the the-
oretical results given by Eq.(14) in the text (solid line). For
comparison, we show the scaling distribution of the birth pro-
cess discussed in the text (dashed line). The inset provides
evidence of exponential distribution for large domain sizes.
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